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Abstract 
 

Adenoviruses (Ads) have many attractive characteristics for use as agents of gene-

based vaccines and therapies. The most frequently used Ad vectors in preclinical 

research are based on Ad5. However, in the clinical setting Ad5 vectors have severe 

limitations. About 90% of the population have neutralising antibodies against Ad5 

and infection requires expression of the viral receptor CAR, which is not present on 

important cell types. Previous data from this laboratory suggested that the species D 

adenovirus, Ad19a, may overcome some of these limitations. Most relevant for 

vaccination is its high efficiency of infection of human dendritic cells (DCs), the 

most important antigen presenting cells. This highly effective DC targeting was 

retained in Ad19aGFP vectors. To investigate the potential of Ad19a vectors for 

vaccination further, two transgenes, the nucleocapsid gene from pneumovirus of 

mice (PVM-N), and a HIV polyprotein cassette (HIVA), were inserted into 

replication-deficient Ad5 and Ad19a vectors using recombineering. rAd19aPVM and 

rAd19aHIVA expressed a significantly higher amount of transgene compared with 

their Ad5 homologues. Encouraging results were obtained when the ability of 

rAd5PVM and rAd19aPVM to protect mice from lethal PVM challenge was 

examined using various prime/boost vaccinations. A dose of 106 pfu of rAd19aPVM, 

but not rAd5PVM, provided protection. rAd5PVM did, however, protect mice at the 

same dose when combined with rAd19aPVM in a heterologous prime boost 

schedule. Vaccination-induced IgG responses to PVM-N did not correlate with 

protection, implicating cell-mediated immune responses in protection. Utilising 

rAd19aGFP, evidence is also provided that Ad19a may use CD46 and to some extent 

CAR as a receptor on CHO cells, expanding our knowledge of the basic biology of 

this virus. 
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Chapter 1: Introduction 
 

1.1: Adenovirus Biology 
 

  1.1.1: The Adenoviruses 
 

The adenoviruses (Ads) were first discovered in 1953 when an agent isolated from 

adenoidal tissue was found to cause the degradation of cells in culture (Rowe et al., 

1953). Concurrently, the same viral agents were isolated from the respiratory 

secretions of military recruits suffering from a feverish respiratory illness (Hillman 

&Werner, 1954). These agents were subsequently shown to be related and induced 

cytopathic changes in human cells in culture (Huebner et al., 1954). They were also 

identified as the agent responsible for other clinical diseases such as epidemic 

keratoconjuctivitis (EKC) and many other respiratory diseases which had no 

identified cause until the classification of the virus family which was named after the 

tissue it was initially isolated from, the adenoid (Enders et al., 1956). They have 

therefore been classified as the Adenoviridae family, which has subsequently been 

further categorised into those viruses which only infect mammals, the 

Mastadenoviridae, those which infect only birds, the Aviadenoviridae, those which 

infect fish, the Ichtadenoviridae, and two groups with the ability to infect a wide 

range of hosts including mammals, birds, reptiles and marsupials, the first named for 

their high Adenine and Thymine (A & T) compostion, the Atadenoviridae, and the 

remainder named the Siadenoviridae (Berk, 2007). 

 

The Mastadenoviridae genus consists, among others, of fifty three described 

serotypes which infect humans, the fifty-second (Jones et al., 2007) and fifty-third 

(Aoki et al., 2008) being described only recently. The taxonomy of the human 

adenoviruses is based primarily on two criteria i) the differential ability of a virus to 

haemagglutinate red blood cells and ii) the differential ability to withstand 

neutralisation by antisera raised against known adenoviral serotypes (Rosen et al., 

1962), resulting in the placement of each serotype into one of six species labelled A-

F (Table 1.1). Generally the lower the serotype number the better characterised the 

viruses have become. To date, the serotypes Ad2 and Ad5 of species C, which share 

high sequence identity, have been studied most extensively (Berk, 2007). 

1 
 



 

Species Serotypes Examples of diseases caused 

A 12, 18, 31,  Gastroenteritis  

B 3, 7, 11, 14, 16, 21, 34, 35, 

50,  

Acute respiratory and urethral diseases  

C 1, 2, 5, 6,  Respiratory disease 

D 8, 9, 10, 13, 15, 17, 19a, 20, 

22-30, 32, 33, 36, 37-39, 42-

49, 51 

Eye infections and Urogenital diseases 

E 4 Acute respiratory disease 

F 40, 41 Gastroenteritis  

 

Table 1.1: Classification of the human adenoviruses. The classification of the 53 

human Ad serotypes showing the allocation to species A-F and examples of the 

diseases caused by members of each species. Subtypes 52 and 53 have yet to be 

classified into a species although it has been suggested subtype 52 belongs to a new 

species, species G (Jones et al., 2007). 

 

 1.1.2: Virion structure 

 

Adenoviruses are non-enveloped DNA/protein particles of between 70-100nm in 

diameter with an icosahedral structure (Berk, 2007; Figure 1.1). The majority of the 

eleven structural polypeptides which constitute the Ad virions are encoded by the 

major late transcription unit (MLTU). The double stranded (ds) genome is packaged 

inside a capsid which is composed of seven of these polypeptides, the outer shell of 

which is arranged of 252 subunits (capsomeres) of which 240 trimers are of 

polypeptide II (hexon) and 12 are oligomers of polypeptide III (penton) which are 

surrounded by six and five identical neighbours respectively. The penton 
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Figure 1.1: Schematic representation of an Ad virion showing its structure and 
the location of the 11 virion associated polypeptides. Taken from Russell, 2009. 
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oligomer provides the base for the projecting trimer of polypeptide IV (fibre) whose 

length varies vastly between serotypes and terminates in a knob which plays a major 

role in cell receptor usage (Berk, 2007; Russell, 2009). The remaining capsid 

polypeptides consist of the ‘cement’ proteins: polypeptide IIIa which associates with 

those hexon proteins which surround the penton base and link adjacent facets of the 

capsid, polypeptide IX which associates with hexon and stabilises the hexon lattice 

polypeptide from the outside and polypeptides VI and VIII which bridge the capsid 

and core (Russell, 2009). The internal space created by the capsid is known as the 

core and the remaining four structural polypeptides reside here interacting with the 

genome: the terminal protein which covalently attaches to the ends of the viral DNA, 

mediates the attachment of the genome to the nuclear matrix and serves as a primer 

for DNA replication. Polypeptide X or µ, the function of which is not fully 

understood, contacts viral DNA and is proposed to act as a DNA condensing agent 

(Anderson et al., 1989). Polypeptide V binds to the penton base and bridges the core 

and capsid and polypeptide VII, the most abundant core protein, forms a histone like 

coat for the viral DNA to coil around. For the remainder of this thesis herein any 

mention of these proteins refers to their multimeric form and will be identified by 

their common names especially in the case of the hexon, penton and fibre proteins. 

 

 1.1.3: Genome organisation and composition 

 

Adenovirus genome lengths vary from 26,163 to 45,063 base pairs (bp) (Berk, 

2007). All adenoviral genomes which have been described share an identical genome 

organisation with genes common between all genera located more centrally on the 

genome whilst genes specific to each particular genus often located closer to the 

DNA terminus (Davison et al., 2003). The linear genome possesses two identical 

origins of DNA replication and a packaging sequence in the left end of the viral 

genome. Figure 1.2 displays the transcription map for Ad5. The genome encodes 

five early transcription units, (E1A, E1B, E2, E3 and E4), two delayed early 

transcription units (IX and IVa) and the MLTU whose primary transcript is 

alternatively processed to give five families of mRNA (L1-L5) which are all 

transcribed by RNA polymerase II. Finally, either one or two virus associated (VA) 

RNAs, dependent on serotype, are produced from the VA 
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transcription unit and are transcribed by RNA polymerase III. Generally, 

transcription units encode proteins with related functions in accordance with their 

temporal transcription (Chapter 1.1.4). The E1A/B and E3 proteins i.e. those which 

are deleted in Ad vectors (Chapter 1.1.7) are described in more detail below 

(Chapters 1.1.3.1 and 1.1.3.2). The E2 unit encodes the E2A-72kDa single stranded 

(ss) DNA-binding protein (DBP), the E2B-80kDa precursor terminal protein (pTP) 

and the E2B-140kDa DNA polymerase (Adpol) proteins which are essential for viral 

replication (Berk, 2007). The E4 unit encodes seven polypeptides termed Orf1, 2, 3, 

4, 6, Orf3/4, and Orf6/7, all of which have been demonstrated to exist within infected 

cells except in the case of Orf3/4 which has only been predicted to exist from 

splicing analysis of the Ad mRNA (Virtanen et al., 1984). The seven proteins have 

varied roles in lytic growth, host cell shutoff, mRNA stability and DNA replication 

(Leppard, 1997). The L1-L5 units encode the eleven structural polypeptides which 

make up the Ad virion and four non-structural regulatory proteins, L1-52/55K, L4-

33K, L4-22K and L4-100K with various functions (Berk, 2007; Morris and Leppard, 

2009). 

 

  1.1.3.1: The E1 region 

 

The E1 region is essential for virus replication and consists of two distinct genes, 

E1A and E1B. E1A produces three mRNAs through alternative splicing, 9S, 12S and 

13S. The proteins produced by these mRNAs activate and repress transcription of 

both cellular and viral genes (Berk, 2007). They lack DNA binding properties and as 

such achieve this function by the modulation of cellular transcription factors. E1A 

proteins are principally responsible for the transcriptional activation of all 

subsequent early genes, activation of the expression of cellular genes which instigate 

progression of the cell cycle into S phase and inhibit the cellular response to 

interferon upon infection. Concurrently the E1B gene products, E1B/19K and 

E1B/55K are involved in the prevention of cell cycle arrest at the G1/S phase 

checkpoint caused by up-regulation of p53 produced by E1A modulation of 

transcription factors by the binding of E1B/55K to the activation domain of p53 and 
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the prevention of early apoptosis by E1B/19K acting as a homologue of the cellular 

anti-apoptotic protein Bcl-2. 

  1.1.3.2: The E3 region 

 

The E3 region is presumed to be required for Ad replication in vivo and can be 

deleted from the Ad genome without an effect on viral growth in vitro. The E3 gene 

products vary in number and function between species and are therefore assumed to 

be determinants of adenoviral pathogenicity and tropism. The composition of the E3 

region in varying species and serotypes is reviewed in Burgert et al., 2002. Most E3 

proteins have been shown to have an immunomodulatory function and consist of 

transmembrane and intracellular proteins. With the exception of a single secreted 

protein, all E3 gene products act on the cell in which they were originally produced. 

The functions of the major E3 proteins described in species D Ads, including Ad19a 

(Chapter 1.3) are given below. 

 

   1.1.3.2.1: E3/19K 

 

E3/19K is a type I transmembrane protein of between 25 and 35 kDa, represents the 

archetypical adenovirus immunomodulatory protein and has three known functions. 

Firstly, it binds to and retains newly synthesised MHC class I molecules in the 

endoplasmic reticulum (ER) preventing the transit of MHC class I molecules to the 

cell surface (Burgert & Kvist, 1985; Burgert et al., 1987) where viral peptides would 

be presented to CD8+ cytotoxic T-lymphocytes (CTLs), which would cause either 

perforin and granzyme release resulting in cell lysis (Trapani et al., 2000) or induce 

Fas mediated apoptosis of the infected cell (Nagata & Golstein, 1995). Secondly, it 

has been proposed to bind to the antigen processing transporter TAP and prevents it 

from transferring peptides processed in the cytosol, such as viral peptides for MHC 

presentation, to the ER (Bennett et al., 1999). Thirdly, it has more recently been 

shown that E3/19K also prevents major histocompatibility complex class I chain-

related proteins A and B (MICA and MICB) from being expressed on the cell 

surface by intracellular sequestration (McSharry et al., 2008; Sester et al., 2010). 

MICA and MICB are ligands for the major Natural killer (NK) cell activating 

receptor NKG2D and their expression triggers activation of the NK cell (Gasser & 
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Raulet, 2006). The sequestration of MICA and MICB therefore prevents the killing 

of the infected cell by NK action which would otherwise occur on sensing down-

regulation of MHC class I and up-regulation of MICA and MICB due to the 

expression of E1A (Routes et al., 2005) and other Ad proteins (Tomasec et al., 

2005). Thus, E3/19K has a dual function: inhibition of T-cell recognition by the 

sequestration of MHC class I by ER retrieval and possibly the prevention of peptide 

transport by interaction with TAP and the prevention of NK cell action by the 

sequestration of MICA and MICB. E3/19K molecules are expressed by species B-E 

and may have differential ability to retain MHC I alleles (Deryckere & Burgert, 

1996; Windheim et al., 2004) 

 

   1.1.3.2.2: E3/49K 

 

E3/49K was first discovered in Ad19a and was first thought to correlate with the 

ability to cause EKC but was later found to be expressed by all species D Ads 

regardless of EKC causing ability (Blusch et al., 2002). E3/49K is an unusually large 

highly glycosylated 80-100 kDa type I transmembrane protein which is the only Ad 

protein to be secreted from the cell (Windheim & Burgert, 2002; Windheim et al., 

unpublished data). The protein possesses unusual immunoglobulin-like folds and is 

thought to be secreted after proteolytic cleavage at the cell surface (Windheim, 

2002). The secreted extracellular form of E3/49K has the ability to bind to NK cells 

and other lymphocytes (Windheim et al., 2004; Windheim et al., unpublished data). 

Inhibition of NK cell lysis suggests it has some immunomodulatory effect. It is also 

possible that it enhances transmission of species D Ads by other means. 

 

   1.1.3.2.3: E3/10.4-14.5K 

 

The E3/10.4K and E3/14.5K proteins form a complex, named the receptor for 

internalisation for degradation (RID). E3/10.4K is produced as two isoforms, a 

transmembrane anchored protein of 91 aa (Burgert et al., 2003) and an alternate form 

lacking an N-terminal signal sequence (Hoffman et al., 1992). These two species of 

E3/10.4K form a disulphide-linked complex within the membrane and associate with 

E3/14.5K. E3/14.5K is another type I transmembrane protein which varies in length 
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between 107 and 134 aa (Burgert and Blusch, 2000). A potential function of the 

complex was first suggested when the epidermal growth factor receptor (EGFR) was 

down-regulated and subsequently degraded during Ad infection (Carlin et al. 1989). 

Subsequent virus deletion mutant studies identified the viral proteins responsible as 

the RID complex (Tollefson et al. 1991; Elsing & Burgert 1998). The biological 

significance for the down-regulation and degradation of EGFR remains unknown. 

The RID complex was subsequently shown to also down-regulate the Fas receptor 

from the cell surface of Ad infected cells and target them for degradation in 

lysosomes, thus protecting the cells from Fas mediated apoptosis (Tollefson et al. 

1998; Elsing and Burgert 1998). The RID complex also mediates down-regulation of 

other death receptors from the cell surface, such as the tumour necrosis factor (TNF) 

– related apoptosis inducing ligand (TRAIL) receptor 1 (Tollefson et al. 2001) and, 

in combination with the E3/6.7K protein, TRAIL-R2 (Benedict et al. 2001). These 

findings confirmed a possible role for the RID complex in evading apoptosis.  

 

   1.1.3.2.4: E3/14.7K 

 

The E3/14.7K protein ranges in size between species and localises to the cytosol and 

nucleus (Gooding et al., 1990). It is known to inhibit apoptosis induced by tumour 

necrosis factor (TNF). A yeast two hybrid screen identified a number of proteins that 

can bind 14.7K, which were termed 14.7K interacting proteins (FIPs) (Li et al., 

1997, 1998, 1999), prevented the internalisation of the tumour necrosis factor 

receptor (TNFR) from the cell surface (Schneider-Brachert et al., 2006) and the 

formation of the death inducing signaling complex (DISC) (Schneider-Brachert et 

al., 2006) but how it performs these functions remains to be confirmed.  

 

 1.1.4: Replication and life cycle 

 

A diagram of the adenovirus replicative life cycle is shown in Figure 1.3. Briefly, the 

infecting virion binds first to its primary receptor (Chapter 1.1.6) and is endocytosed 

into the cell. The virion exits the endosome by pH-dependent lysis, the particle is 

uncoated and transported to the nucleus where the genome associates with the 

nuclear matrix (Berk, 2007). The Ad genes are transcribed in a temporal fashion and  
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Figure 1.3: The adenovirus life cycle. Adenovirus attachment to the host cell is 
mediated by the interaction between fibre and each serotype’s specific receptor (see 
Chapter 1.1.6). The virus then enters the cell by endocytosis (1). Once the virion has 
transferred through the cell membrane it is uncoated and the viral genome, which 
remains associated with polyprotein VII, is imported into the nucleus (2). The early 
gene E1A is then transcribed by the host cell RNA polymerase II (RNA PolII) (3). 
The produced E1A mRNAs are alternatively spliced into their three constituents and 
exported to the cytoplasm (4), where the E1A proteins are then translated (5). Once 
translated, these proteins, which are first extensively phosphorylated are imported 
back into the nucleus (6), where upon they begin their function regulating the 
transcription of cellular and viral genes and progressing the cell cycle to S phase. 
The E1A proteins stimulate transcription of the other E1 genes by cellular RNA 
PolII (7). The remaining E1 mRNA species produced are processed as before and 
exported to the cytoplasm (8), translated into the remaining E1 proteins (9). These 
products include the proteins essential for viral replication which are imported into 
the nucleus (10) and induce viral DNA synthesis (11). The viral DNA molecules 
produced by replication events serve as further templates for replication (12) or for 
transcription of the MLTU (13). Efficient transcription of the MLTU requires the 
interaction of IVa2, which is produced upon viral replication. The late mRNAs are 
first processed and then selectively exported to the cytoplasm by a complex the E1B 
and E4 proteins (14). The translation of late mRNAs (15) requires the action of VA 
RNA I produced earlier to prevent breakdown of the late mRNAs by cellular attack. 
The structural polypeptides are translated from the late mRNAs and imported to the 
nucleus (16), where the capsid is assembled and progeny genomes packaged within 
to form immature virions (17). The structural proteins are matured by the action of 
the L3 protease to produce mature virions (18). Mature progeny virions are then 
released from the cell (19) either upon the lytic death of the cell or by some unknown 
process. Figure adapted and text taken from Flint et al., 2000. 
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are divided into ‘immediate early, ‘early’ and ‘late’ which refer to the time after cell 

infection when the genes involved in each of these phases are maximally expressed.  

 

The ‘immediate early’ phase involves the transcription of the E1A region 

immediately after particle disassembly and entry into the nucleus due to its promoter 

being constitutively active (Berk, 2007). The E1A proteins, once translated, trans-

activate the ‘early’ genes. ‘Early’ phase gene expression begins on both strands of 

the genome with the E1, VA, major late transcription unit (MLTU) and E3 regions 

transcribed from the rightward strand and the E4 and E2 regions transcribed from the 

leftward strand. This organisation of gene clusters helps to control the timing of early 

gene expression with the E1 region being the first to be transcribed from rightward 

strand and the E4 region the first from the leftward strand, the proteins of both 

regions being required for DNA replication to begin (Berk, 2007). The ‘late’ phase 

begins upon viral DNA replication and continues with the transcription of the MLTU 

from either the original or progeny genomes. Replication begins from the origin of 

replication contained within one of the ITR and continues to the opposite end. Only 

one of the parental DNA strands serves as a template which results in the creation of 

a duplex containing one of the parental strands and a new daughter strand. The other 

parental strand is circularised by the binding of complementary 5’ and 3’ termini (to 

form a circular DNA molecule) with a short duplex which has become known as a 

‘panhandle’. This terminal duplex is identical to the ITR DNA duplex of the normal 

Ad genome and allows the remaining single strand to be replicated by the same 

process creating a second parent-daughter heteroduplex (Berk, 2007). The MLTU is 

under the control of the major late promoter (MLP), which is only weakly active 

during the ‘early’ phase of the Ad life cycle to prevent the structural proteins being 

produced too early. Once DNA replication has taken place, transcription of the 

MLTU from the MLP increases by an as yet unknown process (Berk, 2007). This 

allows the expression of the structural proteins and the four non-structural late 

proteins. The structural proteins are imported to the nucleus where they form the 

immature capsid which is packaged with a progeny genome, matured by proteolytic 

cleavage and the mature progeny virion exits the cell (Berk, 2007; Figure 1.3). 
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The time taken between virion entry and progeny exit from the cell varies dependent 

on the cell line, serotype and multiplicity of infection (MOI) used. When using an 

MOI of 10 in A549 cells the ‘immediate early’ and ‘early’ phases take between 5-6 

hours after initial infection. The onset of late gene expression follows between 7-12 

hours and the infectious cycle is complete in 20-24 hours. 

 

 1.1.5: Disease association 

 

Of the 53 Ad serotypes which infect humans only 22 (Ad1, 2, 3, 4, 5, 6, 7, 8, 11, 12, 

14, 18, 19a, 21, 31, 34, 35 37, 40, 41, 52 & 53) have been associated with 

symptomatic disease (Wold & Horwitz, 2007; Jones et al., 2007; Aoki et al., 2008). 

In general Ad infections are acute and self-limiting with neutralising antibodies 

(Abs) quickly generated against the immunodominant hexon and penton proteins 

(Sumida et al., 2005). Ad infection provides the host with life-long immunity to that 

serotype (Kojaoghlanian et al., 2003). Disease and the site of infection vary greatly 

dependent on serotype (Table 1.1). Upper respiratory tract infections have been 

associated with species B, C and E Ads 1-6 whilst more severe lower respiratory 

tract infections have been associated specifically with the species B and E Ads 3, 7, 

21 and 4 (Madisch et al., 2006; Wold & Horwitz, 2007). Urinary tract infections and 

associated kidney infections of immunocompromised patients are associated with 

species B and D Ads 8, 11, 34, 35 and 37 (Swenson et al., 1995; Wold & Horwitz, 

2007). Gastrointestinal infections are associated with species A and F Ads 12, 18, 

31, 40 and 41 along with the two more recently discovered Ad serotypes Ads 52 and 

53. Ads 40 and 41 are considered to be the second most important viral cause of 

childhood gastrointestinal illness worldwide (Avery et al., 1992; Madisch et al., 

2006). Finally eye infections are associated with species D Ads 8, 11, 19a and 37 

with 8, 19a and 37 known to cause severe cases of epidemic keratoconjunctivitis 

(EKC) in densely populated areas and are frequently associated with nosocomial 

infections in Asia (Jernigan et al., 1993; Aoki & Tagawa, 2002). If an Ad can be 

detected in the blood, replication was shown to take place from several serotypes in 

the liver, the urinary bladder, the pancreas, the myocardium, and the central nervous 

system (Collier et al., 1966; Ginsberg et al., 1991; Heemskerk et al., 2005). Several 

studies have shown a link between the presence of anti-Ad36 antibodies and obesity 

14 
 



in humans although this remains unconfirmed (Pasarica et al., 2008). Many of the 

human adenoviruses have been shown to transform rodent cells in vitro and some 

have been shown to be highly oncogenic, however, none have, to date, been 

associated with any malignancy in humans (Shenk, 1996; Endter & Dobner, 2005). 

 

Ad infections can become persistent in immunocompromised patients, such as 

transplant recipients on immunosuppressive drugs or human immunodeficiency virus 

(HIV) infected hosts. Diseases associated with persistent infections of Ads include 

haemorrhagic cystitis by Ads 11, 34 and 35 (Wadell, 1999), hepatitis from Ad5 

(Berthau et al., 1996) and acute pneumonia (Marcos et al., 2009). These infections 

are thought to be the result of transmission of an Ad from the donor to the recipient 

or re-activation of a previous infection due to immunosupression. Re-activation of a 

previous infection confirms previous findings that Ads are capable of establishing 

persistent infections in immunocompetent hosts (Fox et al., 1969, 1977) but whether 

or not they continue to replicate at an undetectable low level or they are truly latent 

and which cell type in vivo is supporting infection remains unknown. Persistence 

may be facilitated by the action of the immunodulatory E3 proteins (Chapter 1.1.3.2) 

and may, in fact, represent their primary function (Burgert et al., 2002). 

 

The reason behind the differential infection of human tissues by the Ad species and 

serotypes is thought to be dependent on various factors including the action of 

various Ad genes such as E3. One factor is the specificity of each serotype for a cell 

type which is thought to be dependent on the fibre knob protein and its specificity for 

a human cell receptor (Arnberg, 2009; Xia et al., 1995). 

 

 1.1.6: Adenovirus receptors 

 

Many host molecules have been identified over the past 50 years which have been 

suggested to serve as primary receptors for the Ads. More recently, long-held 

theories as to the identities of the receptors for the most commonly used Ad 

serotypes (Ad2 and Ad5) have been challenged (Walters et al., 1999, 2002). The 

current candidate human cellular proteins discussed as adenovirus receptors and the 

Ad serotypes which have been associated with them are described below. Major 
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difference between the fibre proteins of the different serotypes include their amino 

acid sequence and the number of fibre shaft repeats, and therefore the length of the 

fibre protein itself, both having significant effects on the ability of Ads to bind 

cellular receptors (Table 1.2; Arnberg, 2009). 

 

A summary of the receptors proposed for each of the Ad species is given in Table 

1.2. 

Species Serotypes Proposed True 

receptors 

Other 

attachment 

molecules 

Fibre 

shaft 

repeats 

A 12, 18, 31,  CAR, Integrins Factor IX, 

Factor X 

23 

B1 3, 7, 16, 21, 50 CD46, CD80, CD86, 

Integrins, Receptor ‘X’ 

Factor X 6 

B2 11, 14, 34, 35 CD46, CD80, CD86, 

Integrins, Receptor ‘X’ 

Factor X 6 

C 1, 2, 5, 6,  CAR, VCAM-1, MHC, 

Integrins 

Factor IX, 

Lactoferrin, 

DPPC, Heparan 

sulfate 

22 

D 8, 9, 10, 13, 15, 

17, 19a, 20, 22-

30, 32, 33, 36, 

37-39, 42-49, 51

Sialic Acid, CD46, 

CAR, Integrins 

Factor X 8 

E 4 CAR, Integrins  12 

F 40, 41 CAR, Integrins  12/22 

Dipalmitoylphosphatidylcholine (DPPC), Vascular Cell adhesion molecule 1 (VCAM-1), Major 

Histocompatibility Complex (MHC). Receptor ‘X’ refers to an as-of-yet unidentified protein referred 

to in Tuve et al., 2006 

 

Table 1.2: The proposed receptors used by human Ad species. The table lists the 

species, the serotypes, the proposed receptors and the number of fibre shaft repeats 

in each fibre protein (Adapted from Arnberg, 2009). 
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CAR 

 

The coxsackie and adenovirus receptor (CAR) is a 40-46 kDa human protein with 

homologues in other mammalian species (Tomko et al., 1997). It belongs to the 

immunoglobulin-like superfamily and can exist as extensively glycosylated forms 

(Tomko et al., 1997). Its primary function in humans is thought to be as a component 

of tight junctions in epithelia (Cohen et al., 2001). The protein was first named for 

the observed competition between the Coxsackie B virus and Ads 2 and 5 for its use 

in vitro (Lonberg-Holm, et al., 1976; Bergelson et al., 1997) and the murine 

homolog in vivo (Bergelson et al., 1998). CAR has been subsequently shown, by 

sequence analysis and mutagenesis, to function as a receptor for Ads from species A, 

C, D, E and F in vitro (Roelvink et al., 1998) but in vivo the use of CAR by several 

Ads has been contested. For example, there is an accumulating body of evidence that 

CAR is an efficient receptor for Ads in vitro on non-polarised epithelial cells such as 

A549s but the receptor’s polarised expression in vivo (Walters et al., 1999) and its 

lack of expression on some targeted tissue types, such as the liver and lymphocytes 

(Tomko et al., 1997), suggest that it is not used in vivo although these findings can 

be explained by alternative mechanisms such as Factor X. Further evidence includes 

the use of a mutant Ad vector, unable to bind CAR, whose biodistribution in vivo 

was unaltered compared to a vector with the wild-type fibre knob (Alemany & 

Curiel, 2001). Other functions have now been suggested for the Ad/CAR interaction, 

such as viral escape (Walters et al., 2002), and other human proteins are beginning to 

emerge as the functional receptors of Ads and these are discussed below. 

 

Sialic Acid (SA) 

 

Sialic acid is a generic term for the N- or O-substituted derivatives of neuraminic 

acid (NANA), a nine-carbon monosaccharide. In mammalian cells, the most 

common sialic acids are NANA and N-glycolylneuraminic acid, although only the 

former is present in human cells (Ulloa & Real, 2001). The structural diversity of 

sialic acids arises not only from the nature of the monosaccharide but also from its 
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variable linkage to other sugars, which occurs in two main configurations: α2-3 and 

α2-6. SA has been shown to be a receptor for other viruses including, amongst 

others, influenzavirus (Springer et al., 1969), which utilises both the α2-3 and α2-6 

form in humans (Palese & Shaw, 2007), and rotavirus, shown to utilise the α2-3 form 

(Delorme et al., 2001). In vivo, SA has been shown to have two main functions. 

Firstly, SA acts as an anti-recognition agent by shielding sites such as other 

monosaccharides and macromolecules on cell membranes including receptor 

molecules. In this way SA contributes to cells being identified as ‘self’ and prevents 

attack from the immune system (Schauer, 2009). In fact, over expression of SA by 

tumour cells has been shown to prevent an immune response and increases 

malignancy (Varki, 2008). Secondly, SA can be a biological recognition site, 

functioning as ligands for a great variety of molecules such as hormones, lectins, 

antibodies, and inorganic cations (Varki, 2008).  

 

The fibre-knob domains of the EKC-causing species D Ads 8, 19 and 37 have been 

shown to have an unusual positive surface charge which may facilitate binding to the 

negatively charged SA (Arnberg et al., 1997) and the Ad37 fibre knob domain has 

been crystallised in complex with SA (Burmeister et al., 2004). Subsequently, 

studies have shown that SA functions as the Ad37 receptor in vitro (Arnberg et al., 

1997, 2000a, 2000b,, 2002; Johansson et al., 2007). This was done either by utilising 

an enzyme which cleaves SA, neuraminidase, sialic-acid blocking lectins and/or 

CHO cells deficient in SA (Arnberg et al., 2000). This data has been challenged, 

however, by other evidence which suggests the Ad37 receptor is CD46 (Wu et al., 

2001, 2003, 2004). It has even shown that the Ad37 fibre knob also binds to CAR 

with high affinity (Seiradake et al., 2006). Neuraminidase treatment has 

subsequently been shown to affect both Ad8 (Lecollinet et al., 2006) and Ad19a 

(Thirion et al., 2006) infectivity in vitro providing more evidence for SA as a 

potential receptor for EKC-causing Ads. Ad37 and Ad19a possess identical fibres 

(Arnberg et al., 1997) and as such it is thought that they may utilise the same 

receptor, however this has been disputed and will be examined within this thesis 

(Chapter 7). The receptor for the EKC-causing Ads therefore remains controversial 

and an investigation into the use of sialic acid in vitro by Ad19a will follow in this 

thesis. 
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CD46 

 

The membrane cofactor protein (MCP) or CD46 is a complement regulatory protein 

(Liszewski et al., 1991) which, unlike CAR, is expressed apically on human 

epithelial cells in vivo and like SA has been shown to be used by other viruses such 

as the measles virus (Dhiman et al., 2004; Cattaneo, 2004). Its primary function is to 

protect cells from complement attack by inactivation of complement components 

C3b and C4b   (Arnberg, 2009) and CD46 down-regulation, by infection with an 

Ad35 vector, has been shown to trigger complement-mediated cell death (Sakurai et 

al., 2007). There are four major splice variants of CD46 in humans, MCP1, MCP2, 

BC1 and BC2 (Liszewski et al., 1991), with most investigations of viral receptor 

usage focusing on the MCP1 variant. CD46 is expressed on all nucleated cells in 

humans whereas in mice it is restricted to the testis (Sakurai et al., 2008). The first 

Ads shown to utilise a receptor other than CAR in vitro, were from species B (Defer 

et al., 1990; Roelvink et al., 1998). It was first shown that Ads 11, 14, 16, 21, 35 and 

50 (Gaggar et al., 2003; Segerman et al., 2003) but not Ad3 utilise CD46. Further 

work showed enhanced transduction of a CHO cell line expressing hCD46 and Ab 

blocking of hCD46 usage on A549 cells in Ads 11, 14, 16, 21, 34, 35 and 50 but not 

Ads 3 and 7 (Martilla et al., 2005) and this was confirmed by blocking studies. This 

work has been countered by the finding that Ad3 infects cells expressing a different 

CD46 splice variant, BC1, when expressed on BHK cells and the Ad3 fibre can be 

isolated in a pull-down experiment bound to a soluble form of the same variant 

(Sirena et al., 1994). Subsequently, the Ad7 fibre has also been shown by structural 

analysis to have affinity for CD46, however, it was shown to be significantly less 

than the affinity of the Ad11 fibre as a result of a differing orientation of a single 

arginine in the fibre head (Persson et al., 2009). Further findings, however, suggest 

that Ad3 and Ad7 may utilise a receptor other than CD46. Ad3 fibres were shown to 

bind a protein of a significantly higher molecular weight than CD46 (130,000 

compared to 50-70,000; Di Guilmi et al., 1995) and the binding of 3H labelled Ads 3, 

7 and 14 was <48% blocked by anti-CD46 Abs in various highly CD46 expressing 

cell lines and their interaction with 293 cells was shown to be nearly independent of 

CD46 (Tuve et al., 2006). It has been hypothesised that the high seroprevalance of 
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Ads 3 and 7 compared to the other species B Ads may also be linked to the 

utilisation of a receptor other than CD46 (Arnberg, 2009). 

 

A great deal of structural work has now taken place on the species B Ad fibres and 

their interactions with CD46 and it is now generally accepted that CD46 functions as 

a primary receptor for the majority of the species (Persson et al., 2008; Pache et al., 

2008; Cupelli et al., 2010). It has also been noted that the binding of the Ad11 fibre 

to hCD46 is the first example of a viral receptor protein altering the conformation of 

its receptor (Persson et al., 2007). As previously mentioned, CD46 has also become 

a candidate receptor for the EKC-causing species D Ads 19a and 37 (Wu et al., 

2001, 2003, 2004).   

 

Heparan Sulfate proteoglycans (HSPG) 

 

Heparan sulphate (HSPG) is a glycosaminoglycan which is ubiquitously expressed 

on human cells, is known to have many functions including developmental 

processes, angiogenesis, blood coagulation and tumour metastasis (Dechecchi et al., 

2001) and serves as the cellular receptor for multiple viruses, including RSV (Hallak 

et al., 2000). HSPG was first shown have a role in the infection of Ads 2 and 5 but 

not Ad3 when pre-incubation of the viruses with heparin prevented infection of 

A549 cells (Dechecchi et al., 2001). The addition of Heparin in vitro also had an 

additive inhibitory effect on the transduction of human muscle cells by Ad5 vectors 

(Thirion et al., 2006). A similar inhibitory effect on the transduction of Ad19a and 

Ad37 vectors has also been noted, however, the removal of SA was found to affect 

these vectors more profoundly (Thirion et al., 2006). It was subsequently proposed 

that this mechanism, in Ad5, relied on a hypothetical motif in the Ad5 fibre shaft, the 

KKTK motif, when the mutation of the region containing this motif resulted in a 

significant decrease of Ad5 vector transduction of non-human primate (NHP) organs 

when administered systemically (Smith et al., 2003). It is not known, however, if 

this finding was due to the inability of the Ad5 vector containing the KKTK 

mutation to interact with HSPG or whether it was due to reduced inflexibility of the 

Ad5 fibre as a result of the mutation (Nicklin et al., 2005). The fibre shafts of Ads 

outside of species C do not possess the KKTK motif so this mechanism, if 
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confirmed, is most likely limited to species C Ads. The fibre knobs of Ads 3 and 

Ad35 have also been shown to have binding affinity for HSPG, however, the use of 

heparinase to remove HSPG from HeLa, CHO and Y79 cells had little effect on 

interaction with Ad3 or Ad35 (Tuve et al., 2008). It is widely held that HSPG 

functions as an important co-receptor for certain Ad species C serotypes. 

 

Integrins 

 

As can be seen in table 1.2 Integrins are listed as a proposed receptors for all Ad 

species, however, they do not function as a primary receptor, rather they are 

considered secondary receptors, required for Ad endocytosis to take place through an 

interaction between the Ad penton base proteins (Belin & Boulanger, 1993; Mathias 

et al., 1994; reviewed in Nemerow et al., 2009). Integrins refer to a group of 24 

distinct proteins made up of α and β subunits which function in cellular adhesion and 

cell signalling. A large number of viruses from diverse groups have now been shown 

to use integrins as secondary receptors and their effect on cell binding is not minor 

(Stewart & Nemerow, 2007). Ads from all major species except those of species E 

and F have been shown to have an exposed RGD (Arginine-Glycine-Aspartic acid) 

motif on their penton base protein and it is this motif which confers specificity for 

the use of integrins (Mathias et al., 1994). Irrespective of their candidate receptors all 

Ads except Ads4, 40 and 41 retain the RGD motif (Arnberg, 2009) and this is 

thought to be one possible reason for their delayed uptake of Ad41 in A549 cells in 

vitro (Albinsson & Kidd, 1999). Upregulation of integrins on human monocytes and 

T lymphocytes and expression in trans on CHO cells has been shown to increase the 

transduction of an Ad5 vector (Huang et al., 1995) and the use of anti-integrin 

antibodies prevented the transduction of a similar Ad5 vector in both normal CHO 

cells and CHO cells expressing hCAR (Salone et al., 2003). Both these findings have 

led to the conclusion that integrins may be of importance in vivo (Arnberg, 2009). It 

is also thought that Ads may also utilise this interaction for initial attachment on 

certain cell types which lack their fibre knob primary receptor such as monocytic 

cells or dendritic cells (DCs) (Huang et al., 1996). 
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Receptor X 

 

In 2006 a study revealed that the group B Ads, previously thought to use CD46 as 

their primary receptor could be separated into three groups: those that used CD46 

solely (Ads 16, 21, 35 and 50) those that could use both CD46 and an unidentified 

alternate receptor termed ‘X’ (Ad 11) and those that solely use this new receptor 

(Ads 3, 7 and 14)(Tuve et al., 2006, 2008; Wang et al., 2009). Receptor X has been 

shown to be a glycoprotein more abundantly expressed on human cell types than 

CD46 but with less Ad binding affinity (Tuve et al., 2006). Its identity, however, 

remains unknown. 

 

Coagulation factors IX and X 

 

Coagulation factors IX and X are a serine protease and a serine peptidase, 

respectively, of the blood coagulation system in humans. Secreted by the liver, they 

act in the thrombin pathway with factor IX activating factor X which cleaves 

prothrombin to produce thrombin. Both have a half-life of ~ 40-45 hours in the 

human blood stream. In 2005 it was first shown that they may have a role in Ad 

tropism by co-precipitation and mass spectrometry which showed that the Ad5 fibre 

knob bound factor IX and formed a ‘bridge’ to either low-density lipoprotein 

receptor-related protein or heparan sulfate proteoglycans (HSPGs; Shayakhmetov et 

al., 2005). In a subsequent study, factor X was also found to promote the 

transduction of hepatocytes of both Ad5 vectors which could utilise CAR and those 

in which the CAR binding site was ablated (Parker et al., 2006). Factor X was also 

shown to be important for Ad5 liver transduction in vivo when, in MF1 mice, 

warfarin treatment, which leads to the production of an inactive factor X, was shown 

to prevent liver transduction (Waddington et al., 2007). It has also shown that Ad 5 

vectors pseudotyped with fibres from either species C and D showed tropism for 

Factor X regardless of the receptor specificity of the fibre (Parker et al., 2007). The 

binding of these vectors to Factor X was subsequently found to be conferred by the 

binding of the Gla domain of FX to the central depression of the Ad5 hexon protein 

in a calcium dependent manner (Waddington et al., 2008). Further experiments have 

shown that that other blood factors, including factor IX, bind to Ad5 hexon much 
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more weakly and do not enhance the transduction of hepatocytes as efficiently 

suggesting FX is the most important blood factor in Ad5 infection (Waddington et 

al., 2008). 

 

It has since been shown that the level of Factor X binding by the hexon protein of 

other Ad serotypes varies greatly. The hexon proteins of species B Ads 16 and 50 

have been shown to have an even higher binding affinity for FX than Ad5 but others, 

such as the species D Ads 48 and 26 have no FX binding affinity (Waddington et al., 

2008). Surface Plasmon resonance (SPR) experiments have shown that an Ad35 

vector or an Ad35 vector pseudotyped with the Ad5 fibre bound FX with tenfold 

lower affinity and in CD46 transgenic mice in vivo the addition of a FX binding 

protein upon systemic administration reduced liver accumulation for Ad5 based 

vectors (Grieg et al., 2009).  

 

These findings may help explain why a 18 year old male gene therapy patient died 

after treatment with an Ad5 vector due to liver complications (Raper et al., 2003). 

Some studies have now recommended an investigation into the tropism of wt 

serotypes of Ads, i.e. not only fibre pseudotyped Ads, with various blood factors to 

help prevent problems in vivo downstream (Baker et al., 2007; Arnberg, 2009). 

 

Dipalmitoylphosphatidylcholine (DPPC) 

 

DPPC is a phospholipid which comprises 40-50% of lung surfactant and is essential 

for normal lung function (Arnberg, 2009). It is secreted by epithelial cells and its 

addition in vitro promotes gene delivery by an Ad5 vector in A549 cells (Balakireva 

et al., 2003). DPPC binds the Ad5 hexon protein and may suggest a role in infection 

of the lungs by species C Ads (Balakireva et al., 2003). It is now thought that DPPC 

may also play a role in respiratory infections caused by Ads outside of species C 

(Arnberg, 2009). 
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VCAM-1 

 

Vascular cell adhesion molecule 1 (VCAM-1) is an endothelial adhesion receptor 

which belongs to the immunoglobulin superfamily. Its main function is as an 

endothelial receptor for leukocytes (Elices et al., 1990). VCAM-1 and CAR have 

significant homology and VCAM-1 expression on 3T3 cells increased Ad5 vector 

transduction (Chu et al., 2001). VCAM-1, unlike CAR, is expressed apically on 

endothelial cells (Arnberg, 2009) and this may provide Ad5, and other CAR utilising 

Ads entry to these cells in vivo, however, this has yet to be investigated. 

 

MHC-I 

 

The MHC-I complex consists of three domains α1, 2 and 3, which are exposed to the 

extracellular space, and are expressed on all nucleated cells. The most important 

function of MHC-I is the presentation of intracellular antigenic peptides to CTLs, the 

antigenic peptide being bound in a cleft between the α1 and α2 regions. When MHC-

I expression was restored in Daudi cells, which otherwise lack cell surface MHCI 

due to the loss of the β2 microglobulin gene, the cells became more permissive to 

Ad5 vector transduction and an MHC-I α2 synthetic icosapeptide prevented Ad5 

transduction of HeLa cells suggesting a role as a receptor target (Hong et al., 1997). 

However, expression of MHC-1 α2 was subsequently shown not to enhance Ad5 

vector transduction of CHO cells (Davison et al., 1999; McDonald et al., 1999). 

Research on the use of MHC as a receptor has not advanced since. 

 

Lactoferrin (Lf) 

 

Lf is a globular glycoprotein of the transferrin family with a mass of ~80 kD which 

is found in various secretory fluids, such as milk, saliva, tears, and nasal secretions. 

It has multiple functions, acting simultaneously as an anti-bacterial, anti-fungal and 

anti-viral component by a number of different mechansism including substrate 

sequestration to prevent bacterial growth, direct bacterial and fungal cell lysis by the 

generation of peroxides and the diversion of viral binding by competition for 
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lipoproteins. Lf has also been shown to bind some viruses, such as the hepatitis 

viruses (Nozaki et al., 2003), directly to prevent virus-receptor interactions.  

 

It was first found that tear fluid promoted wt Ad5 infection in vitro and subsequently 

shown that Lf was responsible for this activity (Johansson et al., 2007). Lf was then 

shown to increase 3H Ad5 particle binding to A549 cells alone in a dose-dependent 

manner and to increase transduction of an Ad5 vector (Johansson et al., 2007). 

Similar to FX and DPPC, Lf is thought to act as a co-receptor, ‘bridging’ virus 

particles and host cells (Arnberg, 2009). All Ads of species C have shown Lf binding 

activity in vitro while representatives of other serotypes: species A (Ad31), B (Ad7 

and Ad11), D (Ad37), E (Ad4), or F (Ad41) have not (Johansson et al., 2007). Lf is 

also thought to promote Ad5 infection of T-lymphocytes in the tonsils and adenoids 

as evidenced by the high levels of Ad5 genomes in CAR-negative T cells (Garnett et 

al., 2002). It has also been shown that DCs, which lack CAR, can be transduced by 

an Ad5 vector in the presence of lactoferrin presumably involving DC-SIGN (Adams 

et al., 2009). 

 

CD80/CD86 

 

CD80 and CD86, also known as B7.1 and B7.2, are proteins expressed on activated 

B cells, DCs and monocytes which bind CD28 and CTLA-4 (cytotoxic T-

lymphocyte-associated protein 4) to provide the costimulatory signal necessary for T 

cell activation and survival. CD80 and CD86 were first proposed as receptors for the 

species B Ad3 due to the ability of the recombinant knob domain of the Ad3 fiber to 

specifically bind to CHO cells which heterologously express CD80 (CHO-CD80) or 

CD86 (CHO-CD86; Vasu et al., 2003; Short et al., 2004). Subsequently, Ad5 

vectors pseudotyped with the Ad3 fibre transduced CHO-CD80 or CHO-CD86 

whilst not transducing parental CHO cells (Short et al., 2004). Ads 3, 7, 11, 14, 35, 

and 50 of both species B1 and B2 have since been shown to utilise CD80 and CD86 

by enhanced infection and hexon accumulation in CHO-CD80 and CHO-CD86 cells 

(Short et al., 2006). 

25 
 

http://en.wikipedia.org/wiki/B_cell
http://en.wikipedia.org/wiki/Monocyte
http://en.wikipedia.org/wiki/T_cell
http://en.wikipedia.org/wiki/T_cell


The previous findings for Ad3, however, have been challenged recently in a separate 

study which showed that an rAd3GFP vector was unable to utilise CD80 or CD86 

for HeLa cell entry (Hall et al., 2009). 

 

GD1a 

 

GD1a is a widely distributed ganglioside involved in the development, function and 

maintenance of the nervous system (Goodfellow et al., 2005). GD1a’s, however, are 

widely distributed on multiple human cell types. It has recently been suggested that 

GD1a might function as a receptor for the species D Ad37 (Arnberg, personal 

communication) 

 

 1.1.7: Adenovirus vectors 

 

Advances in molecular virology have allowed the manipulation of viruses to suit 

medical treatments such as gene therapy or vaccination (reviewed in Russell, 2009; 

Imperiale & Kochanek, 2004). Ads are considered good candidates for such uses due 

to their natural ability to infect human cells and the relatively simple manipulation of 

their large DNA genomes. To prevent them from causing their associated diseases 

during their use in humans (Chapter 1.1.5), their genomes were generally modified 

to prevent normal replication and pathogenesis from occuring. 

 

The first generation of Ad vectors had their E1 region (Chapter 1.1.3.1; E1A and 

E1B inclusive) deleted by homologous recombination to create a vector that was 

theoretically replication incompetent in normal somatic cells (Haj-Ahmad & 

Graham, 1986). A beneficial by-product of this deletion was the increase of space for 

transgenic sequences which was later increased by the additional deletion of the E3 

region whose products are non-essential for virus replication (Chapter 1.1.3.2; Jones 

& Shenk, 1978; Saito et al., 1985; Xiang et al., 1986). These vectors are grown in 

cell lines which express the E1 region in trans such as 293 cells or Per.C6 cells 

which were created by the transformation of human embryonic kidney cells with 

Ad5 (Graham et al., 1977). With the deletion of the E1 and E3 region and dependent 
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on the serotype Ad vectors can accommodate an additional 6.5kb of foreign 

sequence. 

 

To counteract some of the problems associated with E1 deleted vectors such as the 

increased possibility of an immune response after Ad protein expression and to 

further increase transgene capacity, research began to focus on a second generation 

of Ad vectors which possessed further deletions. Research first focussed on the E2 

region. Deleting Adpol and pTP resulted in reduced replication in non-

complementing cell lines and a decrease in immune response in mice (Ding et al., 

2001). However, these deletions gave poor growth yields in complementing cell 

lines and it is possible that deletion of E2A in particular triggers enhanced 

expression of other viral genes, such as E4 (Rice and Klessig, 1985; Zhou et al., 

1996). Another candidate for deletion is the E4 region which would increase the 

packaging capacity to 10-11kb however new complimenting cell lines would be 

required which are difficult to manufacture due to the cytotoxicity of E4 proteins 

when produced in trans and fail to completely complement Ad replication (Brough 

et al., 1996). It would also appear that the deletion of E4 sequences can affect the 

level of transgene expression (Brough et al., 1997; Lusky et al., 1998). There is 

some evidence that E4 deletions may become necessary for in vivo human usage as 

E4-Orf1 has been shown to have transforming activity (Javier, 1994) and E4-Orf 6 

blocks p53 activation (Dobner et al., 1996). A further target for second generation 

vector deletion was polypeptide IX which allowed the growth of the vector in 

complementing cell lines and further increased transgene capacity (Caravokyri & 

Leppard, 1995).  

 

A third generation of Ad vectors has been developed which are deleted of either 

multiple regions, such as E1, E2A, E3 and E4 (Gorzigilia et al., 1999; Andrews et 

al., 2001) or deleted entirely so that only the cis-elements required for DNA 

replication and the packaging signal are present, thus liberating the remainder of the 

genome to harbour transgenic sequences (Mitani et al., 1995; Steinwaerder et al., 

1999). They have been developed to address the immunogenicity of first and second 

generation vectors by preventing expression of any Ad proteins thus making them 

less immunogenic and safer in vivo. Third generation vectors cannot be propagated 

in complementing cell lines, as currently no such cells exist to provide all the 
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necessary viral proteins in trans and their development is unlikely due to the level of 

complexity of Ad gene expression and regulation. They must therefore be grown in 

the presence of a packaging-incompetent, replication-defective helper virus, which 

expresses its viral genes, if grown in E1-complementing cells, in order to generate 

Ad virions. The helper virus is then removed from the vector stock by purification 

using the difference in virion density, although this is still relatively inefficient. 

 

One danger in the growth of Ad vectors in 293 cells is homologous recombination 

allowing the vector to regain E1A functionality and become replication competent. A 

more recently developed cell line, PER.C6, attempts to prevent this by placing the 

Ad5 E1A and E1B sequences under the control of the human phosphoglycerate 

kinase promoter (Fallaux et al., 1998). Lack of overlap with sequences outside the 

E1 transcription units in this cell line diminishes homologous recombination and 

thus the generation of a replication competent vector (Tatsis & Ertl, 2004). Other 

human adenoviral vectors, such as those based on Ad35, are not complemented by 

the E1 of Ad5 virus and thus necessitate modifications of available packaging cell 

lines, such as insertion of the Ad35 E1B gene into cell lines that carry the E1 of Ad5 

virus (Vogels et al., 2003). Furthermore, in the case of Ad35, the deletion of E1B is 

beneficial with only the E1B/55K protein being required for growth in vitro (Vogels 

et al., 2003). The construction of other serotypes of adenoviral vectors, requires the 

endogenous E4 ORF6 (which binds to E1B) to be replaced by that of Ad5, for 

efficient replication in all cells (Tatsis & Ertl, 2004). 

 

Regardless of which form of vector is used for vaccination or gene therapy, further 

research is required, especially in the use of Ads other than Ad5, to elucidate the 

growth characteristics of any created vector before it can safely advance to clinical 

trials. 

 

1.2: Adenoviruses as vaccine vectors 
 

Adenovirus vectors were first developed for their use in gene therapy (for an 

example see Crystal et al., 1994) but they are subject to immune responses directed 

against the capsid, genome, viral proteins and incorporated transgenes, and these can 

severely limit the efficacy of in vivo gene therapy (reviewed in Tatsis & Ertl, 2004; 
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Lasaro & Ertl, 2009; Nayak & Herzog, 2010). The same immune responses which 

were generated against gene therapy vectors maybe advantageous when used as 

vectors for vaccination where transgene expression may not need to be permanent 

and the vector can help to recruit immune cells to the target tissue and act as an 

adjuvant. 

 

 1.2.1: Ad5 
 

The first Ad vaccine vectors were generated based on Ad5; the most widely used and 

best understood Ad serotype. Very quickly, large numbers of transgenic antigens 

were inserted into Ad5 vectors and immune responses detected (Tatsis & Ertl, 2004; 

in Table 1.3 a non-comprehensive list is presented). Whilst highly promising results 

were gained demonstrating protection against various viral pathogens in pre-clinical 

non-human models (Shiver et al., 2002; Sullivan et al., 2000; Tang et al., 2002; 

Schindler et al., 1994; Casimiro et al., 2003) it was soon discovered that Ad5 had 

severe limitations for use as a vaccine vector in humans. 

 

  1.2.1.1: The problems with Ad5 
 

The major limitation of Ad5 vectors discovered was that the majority of the human 

population have pre-existing neutralising antibodies (NAbs) to Ad5 as a result of 

natural exposure over their life-time (Vogels et al., 2007). This pre-existing 

immunity has been shown to substantially reduce the immunogenicity of rAd5 

vaccines in several animal settings (Barouch et al., 2003; Yang et al., 2003; 

Casimiro et al., 2003) and in humans (Barouch et al., 2004). The immunogenicity 

could be recovered in part by increasing the dose given but toxic effects are induced. 

The full consequences of pre-existing immunity were not realised until the failure of 

a phase III clinical trial using an Ad5 vector in 2008. Three thousand uninfected 

volunteers were given a mixture of Ad5 based vaccines expressing either the gag, pol 

and nef genes of HIV1 and monitored for the vaccine’s ability to reduce infection or 

viral load if HIV was acquired. Vaccination was successful in that HIV-specific 

CD8+ T cells were induced, however, it failed to protect Ad5 seronegative 

individuals from HIV infection (Buchbinder et al., 2008) and more startlingly 

appeared to increase the rate  

29 
 



 

 

Pathogen Transgene Animal Model Genes 

Deleted 

Immune 

response  

HIV/SIV Gag, Pol, Nef Env Rodents, NHP, 

human 

E1, E3 CMI & Ab 

Rabies Glycoprotein Rodents, dog E1, E3 CMI & Ab 

Dengue Envelope Rodents E1, E3 CMI & Ab 

Ebola Glycoprotein, nucleoprotein Rodents, NHP E1, E3 CMI & Ab 

SARS Spike, nucelocapsid Rodents, NHP E1 CMI & Ab 

HPV Various Rodents, NHP E1 CMI & Ab 

HCV Various Rodents E1, E3 CMI & Ab 

HBV Surface antigen Rodents, NHP, 

dog 

 Ab 

Rotavirus VP7 Rodents E1, E3 Ab 

Measles Nucleocapsid, heamaglutinin, 

fusion protein 

Rodents E1, E3 CMI & Ab 

RSV Glycoprotein Rodents, NHP, 

dog 

E3 Ab 

CMV Glycoprotein B Rodents E1 Ab 

HSV-2 Glycoprotein B Rodents E1, E3 CMI & Ab 

EBV Envelope Glycoprotein Rodents E1 CMI & Ab 

Abbreviations: HIV, Human Immunodeficiency Virus; SIV, Simian Immunodeficiency Virus; HPV, 

Human papilloma virus; HCV, Hepatitis C Virus; HBV, Hepatitis B Virus; RSV, Respiratory 

syncitial virus; CMV, Cytomegalovirus; HSV-2, Herpes simplex 2 virus; EBV, Epstein-Barr Virus; 

NHP, Non-human primate; CMI, Cell mediated Immunity. 

 

Table 1.3: Vaccine vectors created using Ad5 showing the pathogen from which 

the transgene was isolated, the nature of the transgene takes, the animal models they 
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have been used in and the immune response generated. Adapted from Tatsis & Ertl, 

2004. 

of HIV infection in trial participants with high anti-Ad5 NAb titres (McElrath et al., 

2008). It was first thought that this response had been caused by the activation of a 

subset of Ad5 specific T cells which became susceptible to HIV infection, although 

this hypothesis has been challenged (O’Brien et al., 2009). 

 

Ad5 vectors have also been shown to have a strong tropism for the liver mediated by 

their interaction with FX (Chapter 1.1.6; Waddington et al., 2008) which can have 

disastrous consequences as was seen in a phase 1 clinical trial when a patient with 

ornithine transcarbamylase deficiency was given 3.8 x 1013 particles of an Ad5 in the 

intra-hepatic artery. A large innate immune response was generated which, combined 

with the underlying liver problems associated with his condition, led to his death 

(Raper et al., 2002). 

 

Several strategies have been developed to allow Ad5 to circumvent pre-existing 

immunity. Initially it was thought that replacement of the Ad5 fibre with that of 

another serotype would suffice and there are multiple studies wherein the Ad5 vector 

has been pseudotyped with the fibre of another human Ad serotype (for examples see 

Cashman et al., 2004; Denby et al., 2004; Waddington et al., 2007. Granio et al., 

2010) which have seen some success in altering the tropism of Ad5 vectors but liver 

toxicity and the vector targeting immune response was not significantly reduced. 

 

As the majority of the anti-Ad5 immune response is directed against the hexon 

protein the goal is to eliminate the ability of the immune system to either recognise 

or access the capsid proteins. Genomic modifications have included the replacement 

of either the entire hexon gene or section of it with hexon proteins from other 

serotypes (Gall et al., 1998; Youil et al., 2002) but early results were not promising 

due to the use of other serotypes with high pre-existing immunity, such as Ad2. In 

contrast it was shown that by replacing the seven hypervariable regions (HVR) of the 

Ad5 hexon with those of a rare serotype, Ad48 allowed Ad5 to evade pre-existing 

immunity in the form of neutralising Abs in non-human primates and produce high 

levels of anti-transgene antibodies whilst a wt Ad5 vector could not (Roberts et al., 

2006). 
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Chemical methodologies have also seen early successes, such as; coating Ad5 

particles with polyethylene glycol (PEG; reviewed in Kreppel & Kochanek, 2008) 

which reduced the level of anti-Ad5 immune response but did not affect liver 

transduction (Croyle et al., 2005), encapsulating the particles in microspheres which 

also reduced the NAb response (Sailaja et al., 2002) as did the formulation of Ad 

particles with anionic liposomes (Zhong et al., 2010) but neither of the latter studies 

examined liver transduction. 

 

A strategy is also under development for the prevention of Factor X mediated liver 

transduction which can be blocked by as little as a single mutation in HVR7 of the 

Ad5 hexon protein (Alba et al., 2009).  

 

Despite the partial success of these strategies, it has become generally accepted that 

research on other serotypes, particularly those with low seroprevalance in the 

population is vital to prevent problems from arising when Ad vectors are used in 

clinical settings. It is also important to develop vectors from other serotypes for use 

in heterologous prime-boost regimens as multiple infections of the same vector 

trigger strong anti-vector responses. 

 

 1.2.2: The use of other Ad serotypes 
 

The use of serotypes other than Ad5 was systematically approached by the 

examination of seroprevalance to each serotype in the adult human population. 

Examination of 100 serum samples from the Belgian population for Abs against 51 

Ad serotypes showed that less that 20% of the population tested had pre-existing Abs 

against 27 of the human Ads (Vogels et al., 2003). These findings suggested that 

using those Ads with significantly lower pre-existing immunity compared to Ad5, 

found to be as high as 80%, as the basis for vaccine vectors may prove useful. To 

date, there have been reports of vectors based on human Ad serotypes 2, 3, 4, 5, 6, 7, 

11, 19, 24, 26, 34, 35, 36, 41, 48, 49, and 50 (reviewed in Stone & Lieber, 2006) and 

of those 9 have been examined and shown promising results for their ability to 

circumvent pre-existing Ad5 NAbs in animal models, those being: Ad2 (Morral et 

al., 1999), Ad11 (Holterman et al., 2004), Ad26 (Abbink et al., 2007), Ad35 (Vogels 
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et al., 2003), Ad41 (Lemiale et al., 2007) Ad48 (Abbink et al., 2007), Ad49 

(Lemckert et al., 2006) and Ad50 (Abbink et al., 2007). However, those tested have 

so far proven to be less immunogenic than the homologous Ad5 vector in animals 

where no pre-existing immunity to Ad5 is present (Barouch et al., 2004; Lemckert et 

al., 2006; Lemckert et al., 2005) and no studies have been carried out investigating 

the use of any of these vectors in animal models with pre-existing immunity to the 

tested serotype. 

 

By far the largest body of work has been carried out on the species B Ad35 which 

has been shown to have very low seropostivity (Vogels et al., 2003), evade pre-

existing anti-Ad5 immunity in humans (Brouwer et al., 2007) and pre-dosing of 

animals with Ad35 did not affect the subsequent use of an Ad5 vector (Shashkova et 

al., 2009). Its usage of CD46 as a receptor has been shown to improve the 

transduction of dendritic cells (Chapter 1.5) and their subsequent activation 

compared to Ad5 vectors (Lore et al., 2007) and produce almost no transduction of 

Non-Human Primate organs (Sakurai et al., 2008; 2009) or the liver (Seshidhar 

Reddy et al., 2003; Grieg et al., 2009). Ad35 vectors have been used in protection 

studies using malaria (Ophorst et al., 2006; Rodriguez et al., 2009) and TB antigens 

(Radosević et al., 2007) in all cases providing an equal or better level of protection 

as the homologous Ad5 vector and performing even better in heterologous 

prime/boost studies when the vectors were mixed. 

 

Whilst there are promising features, some concerns in the use of Ads other than Ad5 

including those which use CD46 as a receptor remain. In CD46 transgenic mice (a 

better model for humans) several serotypes induced high levels of toxicity at a 1011 

particles with death rates of 25% for Ad11, 75% for Ad3 and 100% for Ad4 (Stone 

et al., 2007; Verhaagh et al., 2006). Toxicity at a 1011 dose and sequestration in the 

spleen or lungs has not been observed for an Ad5 vector and as such the application 

of Ad35 in humans in current clinical trials (Stone et al., 2007), without further 

understanding of the nature of this toxicity, must be approached with caution. 

 

CD4+ T cells against one human serotype have been shown to cross-react with other 

serotypes (Smith et al., 1998; Heemskerk et al., 2003) whilst CD4+ and CD8+ T cell 

responses were even shown to cross-react with Chimpanzee Ads 6 and 7 (Hutnick et 
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al., 2010). However, one possible method for circumventing pre-existing immunity 

in humans completely is the creation of a vector from serotypes which infect 

different species. 

 

  1.2.3: Non-human Ad usage 
 
Ad vectors have, to date, been developed from bovine (Reddy et al., 1999), ovine 

(Hoffmann et al., 1999), porcine (Tuboly & Nagy, 2001), canine (Perreau & Kremer, 

2006) and several simian serotypes (Farina et al., 2001; Fitzgerald et al., 2003; 

Reyes-Sandoval et al., 2004; Roy et al., 2006 Santra et al., 2009; Reyes-Sandoval et 

al., 2010). Research, for the majority of these serotypes, remains in the early stages 

or is aimed more at vectors for use in the species they were isolated from rather than 

humans but some have been investigated in more detail.  

 

Canine Ad (CAdV) serotype 2 was not neutralised by 98% of human sera, better 

than any human Ad and has potential as a gene therapy vector due to long term 

transgene expression in rats but has been shown to be incapable of transducing DCs 

and as such is unlikely to be applicable for vaccination in humans (Perrau & Kremer, 

2006).  

 

The largest body of research on a simian Ad has been performed with Ads isolated 

from Chimpanzees, CAds 6, 7 & 68. These Ads have been shown to be closely 

related to the species E Ads of humans; their level of seropositivity in the 

chimpanzee population is similar to Ad5 in humans (Cohen et al., 2002) and CAd68 

gains entry to cells by the use of CAR. They have been tested for transgene 

expression (Farina et al., 2001), stimulation of anti-transgene antibody response 

(Xiang et al., 2002) and stimulation of CD8+ T cells (Fitzgerald et al., 2003) and 

have been found to perform similarly to Ad5, however, they express 15 fold less 

transgene product in both human and mouse DCs and upon highly-efficient DC 

transduction induce the production of IFN-α and interleukin 6 (IL-6), something not 

observed with human Ads (Varnavski et al., 2003). It is likely though that the use of 

Ads from other species may encounter regulatory problems when they enter clinical 

trials without a greater amount of research focussed on the effects of any simian-

specific gene products they might produce on the human immune system. 
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1.3 Ad19a 
 
 1.3.1: Isolation, identification and characterisation 
 
An Ad was first isolated in 1955 in a Saudi Arabian child with trachoma (Bell et al., 

1959, 1960), originally identified as the 19th human Ad discovered that did not cross-

react with available antisera and thus was named Ad19. In subsequent years it 

became apparent that whilst the first isolation was made in a patient with an eye 

condition this original isolate did not cause eye disease (Robinson et al., 2009). Prior 

to 1974, the major causative agent of EKC was thought to be Ad8 (Jawetz et al., 

1959; Dawson et al., 1960) From 1974, Ad19-like Ads were isolated frequently in 

outbreaks of EKC (Desmyter et al., 1974; Hierholzer et al., 1974; Wadell & De 

Jong, 1980). These turned out to be a different genotype named Ad19a. The original 

isolate was subsequently termed the Ad19 proto-type virus (Ad19p). Ad19a was 

eventually placed in species D based on its haemagglutination profile. 

 

In subsequent years it has been shown that a considerable number of cases of EKC, 

assumed to be caused by Ad19a based on serology, when analysed by 

haemagglutination inhibition, were actually caused by another species D Ad, Ad37 

(Meng et al., 1986). With Ad37 it was surprisingly found that the E3, E4 and fibre 

regions were 100% identical to Ad19a whereas the hexon and penton were very 

similar to Ad19p (Blusch et al., 2002). Subsequent sequencing of the entire genome 

of Ad19a (Burgert & Ruzsics, patent; Robinson et al., 2009) confirmed this view. 

These findings confirmed that Ad19a and Ad37 were closely related and it has been 

hypothesised that Ad19a may represent a virus which has undergone a prior 

recombination event, possibly between an Ad19p-like virus and Ad37 (Blusch et al., 

2002). 

 

 1.3.2: Disease Association 
 
As previously stated, Ad19a has been shown to be a major etiological agent 

responsible for EKC a highly-infectious condition which can cause severe visual 

sequalae (Butt & Chodosh, 2006) and the majority of the available literature on 
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Ad19a examines its isolation in clinical situations worldwide in patients suffering 

from EKC. The association with EKC prompted increasing interest to isolate the 

feature of Ad19a, Ad8 and Ad37 responsible. Principally it could be the result of a 

specific targeting of the EKC causing Ads to the eye, although other Ads cause eye 

infections, or a specific subset of immunological events that lead to this special 

disease state. A novel E3 protein, E3/49K (Burgert & Blusch 2002), which presents 

selectively in species D Ads might be a possible determinant. Interestingly, in 2003 

an EKC isolate was discovered which possessed an unidentified restriction pattern. 

Further research revealed the majority of the hexon protein of this virus to be 

identical to Ad37 except for two loops which were identical to Ad22, which does not 

cause EKC, whilst the fibre knob was identical to Ad8 and the penton base identical 

to Ad37 (Aoki et al., 2008). It has now been proposed that this isolate in particular, 

having been re-isolated in 16.1% of recent EKC cases in Japan, could represent a 

new Ad, Ad54 (Ishiko & Aoki, 2009). The characterisation of such intermediate Ad 

strains (Noda et al., 1991; Engelmann et al., 2006) may allow a better determination 

of the structural or genetic requirements for an EKC causing Ad and help to 

elucidate the reason for the disease association. 

 
 1.3.3: Vector development 
 
Ad19a became interesting for vector development when it was shown in a screen, 

along with other Ad serotypes, to have a high efficiency to infect DCs, an important 

target for vaccination. FACS staining for hexon revealed that >70% of DCs were 

infected by Ad19a whilst Ad2 only infected ~10% (Ruzsics et al., 2006). This 

finding indicated Ad19a’s ability to infect cells independently of CAR and, together 

with other data (T cells and B cells) suggested an interesting tropism for cells of the 

immune system and for these reasons was developed as a vector. Standard cloning 

methods (utilising either high or low copy plasmids) did not allow cloning of the 

genome. Only when the genome was inserted in a BAC vector could clones be 

isolated. Thus, an entirely new technology for genetic manipulation was required. 

The E3 region was deleted from the Ad19a genome and the E1 region replaced with 

an expression cassette consisting of green fluorescent protein (GFP) under the 

control of the CMV immediate-early promoter and the SV40 enhancer to create 

rAd19aΔE1ΔE3GFP (Ruzsics et al., 2006). The vector was found to be stable in 293 

36 
 



cells and had a transduction pattern which contrasted with the homologous Ad5 

vector used, efficiently transducing all the lymphoid cell lines tested (Thirion et al., 

2006).  

 

Transgene expression and real-time PCR monitoring showed that rAd19aGFP 

transduced primary human myoblasts more efficiently than rAd5GFP but that this 

observation was not seen in the myoblasts of apes, pigs, mice and rats (Thirion et al., 

2006). Similar results were obtained in myotubes and further experiments suggested 

that Ad19a transduction of muscle cells was dependent on SA (Thirion et al., 2006).  

 

It was therefore concluded from the results of both studies that Ad19a represented a 

good candidate for use as both a vaccine vector, based on its infection of DCs, and a 

gene therapy vector for the treatment of human muscle disorders and that the vector 

warranted further investigation.  

 

1.4: Vaccination 
 

In 1972, Ads were found to be potent inducers of ‘interferon’ (Ustacelebi & 

Williams, 1972) and since then considerable research has been committed to 

identifying the makeup of the intrinsic responses to Ad infection. The field has 

grown substantially since genetic manipulation of Ads has allowed the creation of 

vectors for eventual use in humans with the intention of improving the safety and 

efficacy of these vectors in clinical applications. 

 

As previously stated, Ad vectors are attractive candidates for vaccination due to their 

well characterised and easily manipulatable genome, broad tropism, their growth to 

high titres in tissue culture systems and their relative stability (Shiver & Emini, 

2004; Tatsis & Ertl, 2004). Perhaps more importantly, they are also well suited for 

vaccination due to the immune responses they generate upon systemic inoculation in 

vivo (Tatsis & Ertl, 2004). Ad vectors are highly immunogenic, potently activating 

the innate immune response, initiating the production of cytokines and recruiting 

important antigen-presenting cells (APCs) to the site of infection (Yamaguchi et al., 

2007; Appledorn et al., 2008) and subsequently activating the adaptive immune 

response, instigating the creation of CD8+ T cells to both its own structural proteins 
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and heterologously expressed transgenes (Hensley et al., 2005; Appledorn et al., 

2008). 

 

 1.4.1: Immune responses to Ad vectors 
 

Due to their ability to stimulate strong innate and adaptive immune responses, Ads 

seem to act as adjuvants that facilitate immune responses against encoded 

transgenes. Table 1.3 shows the vaccine vectors generated based on Ad5 and as can 

be seen the majority have elicited antibody and cell mediated responses against their 

encoded insert. In pre-clinical studies, Ad vectors have been shown to generate 

transgene-specific T and B cell responses (Xiang et al., 1996; He et al., 2000). The 

generated T cells have been shown to consist mainly of CD8+ T cells, although 

CD4+ T cell responses have also been detected (Fitzgerald et al., 2003). The full 

mechanism of how they generate these responses is still not fully understood (Tatsis 

& Ertl, 2004). It is likely that the responses to an expressed transgene are potentiated 

by the immune response to the vector itself and the transduction of subsequent APCs 

facilitates antigen presentation and the induction of an adaptive immune response. 

 

A large majority of the studies on the immune response to Ad vectors have been 

performed in vitro (Hartman et al., 2008) and the response in vivo is potentially 

much more complicated. Ad vectors elicit such strong innate immune responses that 

90% of vector DNA is cleared from tissues within 24 hours of inoculation (Nayak & 

Herzog 2010), although this may also be linked to the transient nature of non-

integrative vectors. Ads activate the innate immune response by the expression of 

pathogen-associated molecular patterns (PAMPs) which directly interact with 

pathogen recognition receptors (PRRs). A prominent group of PRRs is the toll-like 

receptor (TLR) family, however Ads activate immunity through both TLR-

dependent and independent pathways (Yamaguchi et al., 2007). TLR-independent 

pathways include the recognition of Ad DNA by the cytosolic cryopryin NALT3, 

which triggers a pro-inflammatory cytokine response (Muruve et al., 2008). There 

are two TLRs which have been directly linked to the innate response to Ad vectors, 

TLR-2 and TLR-9 (Iacobelli-Martinez & Nemerow, 2007; Appledorn et al., 2008). 

TLR-9 is an endosomal receptor identified as a PRR for unmethylated DNA, like 

that of an Ad vector (Huang & Yang, 2009). TLR-2 is found on the cell surface and 
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is known to play a role in innate immunity (Appledorn et al., 2008) but its Ad PAMP 

has yet to be identified (Nayak & Herzog, 2010). Signalling through these receptors 

is known to drive Th1 immunity by the induction of Interferon alpha (IFN-α) and 

Interferon beta (IFN-β) which instigate the innate immune response to the vector and 

its transgene by first recruiting NK cells (Zhu et al., 2008; Lasaro & Ertl, 2009). The 

activation of innate immune responses by Ad vectors relies on the activation of a 

universal adapter protein, Myeloid differentiation primary response gene 88 

(MyD88), in both TLR-dependent and TLR-independent pathways. MyD88 is used 

by all the TLR family to activate the transcription factor NF-κB. NF-κB activation 

triggers the transcription and subsequent translation and secretion of monocyte 

chemoattractant proteins (MCPs), macrophage inflammatory proteins (MIPs), 

Interferons (IFN), Interleukins (IL), regulated on activation, normal T cell expressed 

and secreted protein (RANTES), interferon gamma inducible proteins, Granulocyte 

colony stimulating factor (G-CSF) and Granulocyte macrophage colony stimulating 

factor (GM-CSF) (Worgall et al., 1997; Muruve et al., 1999; Borgland et al., 2000; 

Hartman et al., 2007; Hartman et al., 2008) which recruit macrophages and DCs to 

the site of transduction and subsequently activate them. Maturation of DCs upon Ad 

transduction or infection has been shown to be important for the initiation of an 

adaptive immune response and this will be covered in more detail in Chapter 1.5. 

Systemic inoculation of both mice and NHPs has been shown to trigger the rapid 

release of IL-6, IL-12 and TNF-α and lead to the accumulation of macrophages and 

DCs in the lymphatic tissues supporting the in vitro findings (Zhang et al., 2001; 

Schnell et al., 2001). The rapid increase of IFNs, ILs, RANTES, G-CSF, GM-CSF 

and the trafficking of APCs to the lymphatic tissue activates an adaptive immune 

response which generates CD4+ and CD8+ T cells and B cells (Barouch et al., 2004; 

Nayak & Herzog, 2010). As previously mentioned, once a primary inoculation has 

been administered levels of neutralising antibodies to that serotype quickly rise and 

this has been shown to impair response to the transgene product (Fitzgerald et al., 

2003; Besis et al., 2004; Tatsis & Ertl, 2004; Lasaro & Ertl, 2009). 

 

Different pathogens are cleared by the human immune system by different pathways. 

For prophylactic vaccines to function effectively and for protection against the 

pathogen to be generated the encoded transgene must elucidate the correct immune 

response. Two types of CD4+ T cell responses can be induced by the action of DCs 
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and other APCs, Th1 CD4+ T cells and Th2 CD4+ T cells and result in very 

different downstream pathways. Ad vectors are known to generate a Th1 response 

(Liu & Muruve, 2003) and as such may be more effective as a prophylactic vaccine 

for pathogens as a Th1 response generates CD8+ T cells which are essential for viral 

clearance amd antibodies that can mediate antibody dependent cytotoxicity (Tatsis & 

Ertl, 2004; Lasaro & Ertl, 2009). Before experimentation in a clinical setting can 

take place in humans, experiments must be performed in animal model systems to 

evaluate the level of toxicity of the vector used, the amount of transgene expressed 

and whether immunogenicity has been triggered to protect against pathogen 

infection. Animal model systems can be used to monitor immune responses to a 

vector and its transgene and can be utilised to attempt prophylactic protection against 

a pathogen. In the latter examples it is possible that an animal species may not be 

found which can be successfully infected with the human pathogen to be examined. 

In these scenarios a related pathogen may be used, if one can be found, to monitor 

the efficacy of protection and they type of immune response generated. This thesis 

will use two examples of vaccine model systems and they are described herein. 

 

 1.4.2: Vaccine model systems 
 

 1.4.3: HIV 

 

There are currently an estimated 40 million individuals in the world infected with 

HIV, and the World Health Organisation estimates AIDS has killed more than 25 

million people since it was first recognised, making it one of the most destructive 

pandemics in recorded history (Derdeyn & Silvestri, 2005). Antiretroviral treatment 

reduces both the mortality and the morbidity of HIV infection, but routine access to 

antiretroviral medication is not available in all countries. Cheaper and easier to 

administer treatments are required to halt the growing pandemic (Letvin, 2006). A 

tremendous amount of effort and money has been spent on the search for an effective 

vaccine to control the growing AIDS pandemic long after the discovery and isolation 

of HIV 27 years ago (Barré-Sinoussi et al., 1983). 
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HIV is transmitted both by sexual contact and haematogenously through 

contaminated needles and blood products. The virus can initiate infection by crossing 

a mucosal barrier or by direct entry into a T cell or monocyte/macrophage lineage 

cell in the peripheral blood (Valentin et al., 1994; Letvin, 2006). HIV infection 

begins with primary infection representing a period of rapid viral replication that 

immediately follows the individual's exposure to HIV which leads to levels of HIV 

within peripheral blood commonly approaching several million viruses per ml 

(Barouch, 2008). During this period (usually 2–4 weeks post-exposure) most 

individuals (80 to 90%) develop an influenza-like illness called acute HIV infection, 

the most common symptoms of which may include fever, lymphadenopathy, 

pharyngitis, rashes, mouth and esophageal sores, and may also include, but less 

commonly, headaches, nausea, weight loss, and neurological symptoms (Kahn & 

Walker, 1998). Infected individuals may experience all, some, or none of these 

symptoms with symptoms lasting at least a week (Kahn & Walker, 1998). This phase 

is also characterised by a rapid and marked drop in the numbers of memory CD4+ T 

cells that takes place mainly in mucosal tissues. This acute viremia is associated in 

virtually all patients with the activation of CD8+ T cells which have the ability to kill 

HIV-infected cells, and a considerable time later with antibody production 

(seroconversion). Virus levels initially peak and then decline, as the CD4+ T cell 

counts rebound to around 800 cells/ml (the normal value is 1,200 cells/ml). The early 

CD8+ T cell response is thought to be important in controlling virus levels and has 

been linked to slower disease progression and a better prognosis (Pantaleo et al., 

1997). However, a clear immune correlate of protection remains elusive (Barouch, 

2008). 

 

Early attempts to develop a vaccine focused on the stimulation of Nabs using 

preparations of viral envelope proteins, such as the glycoprotein gp120. These were 

largely unsuccessful in eliciting antibodies that would bind to primary viruses, i.e., 

viruses that have not been passaged in cell lines (McMichael et al., 2002). There are 

several reasons why the generated Abs are unable to bind primary virus isolates. 

Firstly, very few epitopes on the primary isolate envelope are accessible for antibody 

binding (McMichael et al., 2002). Secondly, the existence of several conformational 

forms of the envelope proteins is a major complicating factor in vaccine design 

(Letvin, 2006). The NAb response to natural infection is directed to many different 

41 
 

http://en.wikipedia.org/wiki/Acute_HIV_infection
http://en.wikipedia.org/wiki/Fever
http://en.wikipedia.org/wiki/Lymphadenopathy
http://en.wikipedia.org/wiki/Pharyngitis
http://en.wikipedia.org/wiki/Rash
http://en.wikipedia.org/wiki/Headache
http://en.wikipedia.org/wiki/Nausea
http://en.wikipedia.org/wiki/Weight_loss


envelope epitopes, but only a very small fraction of this response is directed to 

epitopes of primary virus isolates. It is thought that the Ab response in a natural 

infection is directed not to the virus but to other conformations of the envelope 

proteins and in particular unprocessed gp160 (Haigwood et al., 1996). Thirdly, HIV 

has a very high genetic variability as a result of its fast replication cycle, with the 

generation of about 1010 virions every day, coupled with a high mutation rate of 

approximately 3 x 10−5 per nucleotide base per cycle of replication (Rambaut et al., 

2004). The key parts of the envelope, that bind to CD4 and CXCR4 and CCR5, the 

HIV receptors, are conserved however they are protected from Ab binding by 

hypervariable loops of polypeptide that easily mutate preventing Ab binding. Studies 

have shown that even minor variations in the hypervariable loops can dramatically 

alter antibody and CTL specificities in in vitro assays and immune control of 

persistent infections in vivo (Kusumi et al., 1992; O’Connor et al., 2001; Wei et al., 

2003; Lasaro & Ertl, 2009). Despite this evidence, Abs can protect animals from 

HIV infection in vivo. NAbs to the V3 loop of gp120 have been shown to completely 

protect chimpanzees from infection with T cell line adapted HIV (Emini et al., 

1992). NAbs isolated from long-term SIV infected macaques have also shown the 

ability to protect naïve macaques against HIV challenge (Haigwood et al., 1996). In 

humans gp120 vaccine recipients could still be infected with HIV showing that a 

NAb response to envelope proteins is not sufficient to confer protection (McMichael 

et al., 2002). 

 

The CD8+ response against HIV has been very well characterised (reviewed in 

McMichael et al., 2002). Although the variation of the virus is a huge challenge for 

developing an effective HIV vaccine based on Abs or CD8+ T cells, considerable 

advances have been made towards inducing stronger and broader responses in 

animal models. As Ad vectors have been shown to generate largely Th1 type 

immunity and a CD8+ T cell response some of these advances have come through 

implementing live adenoviral vectors, expressing HIV antigens such as gag, pol, nef 

and env, (Shiver et al., 2002; Casimiro et al., 2003; Pinto et al., 2004). The majority 

of these vectors have been based on Ad5 and have encountered both predictable and 

unexpected problems in clinical trials (Barouch, 2008; Priddy et al., 2008; McElrath 

et al., 2008). In any case, these T cell vaccines are predicted to cause non-sterilising 

immunity, that does not protect from infection but may prevent disease progression. 
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There are several model systems for the investigation of anti-HIV1 immunity, 

including many which involve NHP models (reviewed in Shiver & Emini, 2004 and 

Barouch, 2008); however, for early investigations of vaccine research, particularly 

when using a new vector, it is essential to use a small animal model. Many different 

transgenes designed to generate anti-HIV immunity have been developed and 

expressed from a variety of vectors. One such transgene system is the HIVA 

transgene system, that has been extensively tested in immunogencicity and toxicity 

studies in mice, NHPs and humans (Hanke et al., 2007). 

 

   1.4.2.1.1 The HIVA transgene 
 

The HIVA immunogen was first developed in partnership between the UK Medical 

Research Council (MRC), the International AIDS Vaccine Initiative (IAVI) and the 

University of Nairobi. It consists of a consensus HIV-1 Gag p24/p17 sequence, 

multiple CD8+ T cell epitopes and a monoclonal antibody tag (Figure 1.4; Hanke & 

McMichael, 2000). The immunogen was designed for use in a DNA and modified 

vaccine Ankara (MVA) heterologous prime/boost regimen which had been tested 

previously using a malaria antigen (Schneider et al., 1998). Pre-clinical safety 

studies were carried out in BALB/c mice and the vaccine and transgene were found 

to be non-toxic (Hanke et al., 2002). CD8+ T cell generation was demonstrated by 

IFN-γ ELISPOT in mice using both the DNA vaccine and MVA vaccine alone and 

in combination (Hanke & McMichael, 2000; Hanke et al., 2002; Estcourt et al., 

2005). The HIVA immunogen became the first MVA based prophylactic HIV-1 

vaccine candidate to enter clinical trials and the first with an HIV-1 derived string of 

CD8+ T cell epitopes tested in humans (Hanke et al., 2007). The immunogen has 

been used in both prophylactic (Mwau et al., 2004; Cebere et al., 2006; Goonetilleke 

et al., 2006; Guimarães-Walker et al., 2008; Jaoko et al., 2008) and therapeutic trials 

(Dorrell et al., 2005; 2006; 2007; Ondondo et al., 2006; Yang et al., 2009) and the 

knowledge gained has allowed the construction of improved immunogens such as 

RENTA (Nkolola et al., 2004) and HIVconsv (cRosario et al., 2010). Both the DNA 

and MVA HIVA vaccines have been shown to induce HIV-1 specific T cell 

responses in the majority of vaccine recipients, when given therapeutically and 

prophylactically. The DNA vaccine has proved weak, whilst the MVA vaccine has 

consistently generated a strong CD4+ and CD8+ T cell response particularly when 



Figure 1.4: Composition of the HIVA polypeptide. Sequences from Gag p24 (red), p17 (blue) and CD8+ T cell epitopes from nef (green), 

envelope (grey), polymerase (light blue), macaque (purple) and mouse (yellow) and a monoclonal antibody tag (black) are highlighted. Adapted 

from Hanke & McMichael, 2000 
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given therapeutically (Barouch, 2008). In prophylactic studies, however, a 

DNA/MVA heterologous prime/boost regime elicited a higher response than MVA 

alone (Barouch, 2008). 

 

The HIVA immunogen has also been tested for the generation of CD8+ T cell 

response in other vector systems such as Semliki Forest virus (alphavirus; Hanke et 

al., 2003), bluetongue virus (Larke et al., 2005), Bacillus Calmette-Guérin (BCG; 

Rosario et al., 2010a), ovine atadenovirus (Bridgeman et al., 2009; Rosario et al., 

2010b) and Ad5 (Bridgeman et al., 2009). The immunogen has therefore proven 

extremely useful in comparative vector studies and represents an excellent model 

system for the testing of new vectors and the comparison of immune responses 

generated. 

 

  1.4.2.2 RSV 

 

Respiratory syncitial virus (RSV) is the major cause of upper and lower moderate-to-

severe respiratory tract infections worldwide in children (Ogra, 2004), the 

immunosuppressed and the elderly (reviewed in Falsey & Walsh, 2000). Almost all 

children have been infected by 3 years of age (Smith & Openshaw, 2006) and it is 

estimated, in the US, that there are up to 60,000 RSV-related hospitalisations and as 

many as 7,000 deaths each year due to RSV infection (Falsey & Walsh, 2000). 

 

All efforts to formulate a safe and effective vaccine for use in humans have, so far, 

been unsuccessful (Olszewska & Openshaw, 2009). Formalin-inactivated vaccines 

were tested in the 1960s but failed to prevent the acquisition of the disease in 

children and in younger infants and actually enhanced symptoms upon subsequent 

natural infection (Kim et al., 1969). Other vaccine strategies are being developed but 

have so far only be weakly immunogenic (Olszewska & Openshaw, 2009). The 

present form of prevention during RSV season is palivizumab, a monoclonal 

antibody directed against the RSV fusion protein, whilst ribavirin remains the only 

form of treatment at onset of infection (Olszewska & Openshaw, 2009). Early 

studies using ribavirin were promising although it is now well-recognised that it has 

little impact on the progression of disease (Rosenberg et al., 2005) and does not halt 
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progression to severe bronchiolitis and RSV pneumonia which require 

hospitalisation for respiratory support (Broughton & Greenough, 2003). 

 

One of the main reasons for the lack of an effective vaccine or viable therapeutics in 

humans is the lack of a good working animal model for RSV infection. Human RSV 

effectively replicates in African green monkey and chimpanzee but only naturally 

infects primates, however, it does not cause the same symptoms as in humans and 

suffers from the significant practical and ethical impracticalities of any NHP model 

(Maggon & Barrik, 2004). 

 

The bovine form of RSV (bRSV) is closely related to hRSV but it too suffers from 

the impracticalities of such a large animal model and a reverse genetics system for 

the modification of bRSV remains elusive (Rosenberg et al., 2005; Valarcher & 

Taylor, 2007). Small animal models such as mice and rats are generally not useful 

since hRSV replicates inefficiently within the murine host resulting in no symptoms 

homologous to human infection (Rosenberg et al., 2005). There is a requirement, 

therefore, for a small animal model system which reproduces hRSV-like 

pathogenesis. It was proposed that Pneumovirus of mice (PVM) could be used as a 

surrogate virus (see below). 

 

The correlates of protection against RSV infection are still not fully understood but it 

is known to involve both humoral and cellular effectors, including CD8+ T cells 

(Maggon & Barrik, 2004). It is generally thought that an antibody response prevents 

infection of the upper or lower respiratory tract after the initial encounter but it is 

cell-mediated responses such as the CD8+ T cell response to internal proteins, such 

as the hRSV nucelocapsid protein, which terminate infection and cause prophylactic 

protection from infection (reviewed in Maggon & Barrik, 2004). In contrast, a Th2 

response does not result in effective viral clearance and it is now thought that hRSV 

evades a protective Th1 response by driving a Th2 response instead which actively 

inhibits the generation of a Th1 response (reviewed in Becker, 2006). For 

prophylactic protection to work, it is therefore believed to be vital for the vaccine to 

have triggered a Th1 response condition so that on subsequent infection a Th2 

response is prevented. 
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In bRSV infection, CD8+ T cells are directed against the surface glycoproteins (F & 

G), Polymerase (L), Matrix (M), ion channel (M2) and nucleocapsid (N) proteins 

(Gaddum et al., 2003). The bRSV N protein has been shown to be the major target of 

CD8+ T cells in cattle in a DNA prime/ protein boost strategy (Letellier et al., 2008). 

An immune response against N has long been known to induce protection in other 

animal models also (King et al., 1987). More recently the heterologous expression of 

the bRSV N protein has been shown to protect against subsequent challenge with the 

virus itself (Letellier et al., 2008). 

 

   1.4.2.2.1 The PVM challenge model 
 

Pneumovirus of mice (PVM) belongs to the same family, subfamily and genus as 

hRSV (Rosenberg et al., 2005). It was originally isolated from healthy mice but 

passage of extracts of the lung tissue from these mice in further animals led to the 

isolation of a virus that caused lethal infection (Thorpe & Easton, 2005). A 

significant proportion of the human population have been shown to be seropositive 

for PVM or an antigenically closely related virus and it has been suggested it 

remains an undiagnosed cause of a small number of cases of respiratory disease in 

humans (Pringle & Eglin, 1986). Serial passage of the early PVM isolates has 

resulted in attenuation and the loss of disease in mice (Domachowske et al., 2002), 

however a second strain, J3666, has been described which has been maintained by 

animal-to-animal passage and remains fully virulent in mice (Cook et al., 1998). 

 

There is intensive research into using the pathogenesis of PVM J3666 in mice as a 

model of hRSV infection in humans due to the similar pathogenesis. The immediate 

response to both PVM infection in mice and RSV infection in humans is the 

recruitment of eosinophils to the lung tissue (Garofalo et al., 1992 Garofalo et al., 

2001; Domachowske et al., 2000) which results in the influx of granulocytes 

followed by a CD8+ T cell response which results in viral clearance (Cook et al., 

1998). The production of MIP1α has been shown to be responsible for severe hRSV 

infection (Garofalo et al., 2001). The speed of progression of PVM infection, similar 

to hRSV, suggests that a NAb response is unlikely to be involved in resolving of 

disease (Thorpe & Easton, 2005). 
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An investigation was recently begun into the use of Ad vectors expressing PVM 

proteins to protect against lethal challenge with PVM. The F, M, N & L proteins of 

PVM have all been inserted into a transgene expression cassette within an Ad5 

vector and all have shown the ability to protect mice against a lethal dose of PVM 

(Helen Terry, PhD 2010). So far the vaccine vector expressing the N protein has 

shown the greatest efficacy for protection which corroborates earlier evidence seen 

in bRSV and hRSV infections. Therefore, it was decided to also insert the N protein 

of PVM into an Ad19a based vector for comparisons of protection and immune 

responses generated between the Ad5 and Ad19a vectors. 

 

1.5 Dendritic Cells 
 

DCs are considered the most potent of all APCs to trigger adaptive immune 

responses (Steinmann and Hemmi, 2006). Lymphocytes such as T cells, B cells and 

NK cells and their products are controlled by their interactions with DCs 

(Banchereau & Steinmann, 1998). The term DC actually represents a number of 

distinct subsets with different localisations and differing functions. The localisation 

of each DC subset is usually linked to their function (Palucka et al., 2008). DCs 

represent the major link between the innate and adaptive immune response due to 

their ability to sense foreign pathogens, to secrete chemokines and cytokines that 

activate the local innate immune response and act as APCs in the adaptive immune 

response. In vitro or in vivo, only a few DCs are necessary to provoke a strong T cell 

response (Banchereau & Steinman, 1998).  

 

CD14+ monocytes and/or pluripotential CD34+ bone marrow cells can be stimulated 

to become immature DCs (iDCs; Figure 1.5), by the action of GM-CSF followed by 

encounter with a cytokine. The cytokine encountered specifies which form of iDC 

will form. The best studied iDC is stimulated by CD14+ monocyte encounter with 

IL-4 to produce IL4-iDCs (Romani et al., 1994; Palucka et al., 2005), however, it is 

becoming clear that DCs derived from CD34+ progenitors are better at eliciting 

CD8+ T cell responses when exposed to IL4 (Ahlers & Belyakov, 2009). Other 

cytokines can produce whole spectra of iDCs whose functions are only beginning to 

be understood. For example, if a GM-CSF stimulated CD14+ monocyte is incubated 
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Figure 1.5: DC life cycle. 1. Circulating progenitor cells are stimulated to become iDCs by the action of GM-CSF and cytokines. 2. iDCs 
encounter microbes or free antigen at peripheral tissue such as the epithelium and undergo antigen capture by phagocytosis or viral infection. 3. 
iDCs produce pro-inflammatory cytokines, such as IFN-α, and chemokines. 4. Produced chemokines and cytokines recruit and activate innate 
immune response effector cells, such as eosinophils, macrophages and NK cells at the site of iDC antigen encounter. 5. iDCs are activated, 
undergo maturation and migrate to the draining lymph node. 6. mDCs enter lymph organs and activate antigen-specific CD4+ T cells, CD8+ T 
cells and B cells by the display of peptide-MHCI and/or peptide MHCII complexes. 7. B cells migrate and mature into plasma cells producing 
Abs to neutralise the pathogen. 8. Activated T lymphocytes migrate to the site of antigen encounter where they eliminate pathogens or pathogen 
infected cells. 



with an immunosuppressive cytokine such as IL10 an IL10-iDC is formed which 

expands primarily regulatory T cells to suppress activation of the immune response 

(Steinbrink et al., 2007). 

 

iDCs are distributed in the blood, lymphoid tissues and all peripheral tissues that are 

in contact with the external environment, mainly the skin and the inner lining of the 

nose, lungs, stomach and intestines (Banchereau & Steinmann, 1998; Ueno et al., 

2010). In the blood, DCs exist as either myeloid DCs (myDCs) or plasmacytoid DCs 

(pDCs). pDCs release large amounts of type I IFN upon pathogen recognition and 

limit the spread of infection, they can also cross to the endothelial layer and activate 

the inflammatory response and the secretion of chemokines (Siegal et al., 1999; 

Palucka et al., 2008). pDCs have also been shown to have an important role in innate 

immunity as secretors of high levels of IFN-α upon contact with exogenous Ag 

(Cella et al., 1999).  The role of blood myDCs is not as well understood but it has 

been suggested that they represent the human equivalent of mouse ‘patrolling’ DCs 

which migrate from the blood to the dermis and into the lymph nodes (Ginhoux et 

al., 2007). The peripheral tissues contain two further subsets of myDCs which 

represent more ‘classical’ DCs, epidermal Langerhans cells (LCs) and dermal 

(interstitial) DCs (Palucka et al., 2008; Ueno et al., 2010). It is these two subsets of 

DCs which, when immature, have high endocytic and phagocytic capacity.  

 

iDCs have several features that allow them to capture Ag; they can take up particles 

and pathogens by phagocytosis (Banchereau & Steinman, 1998), they can form large 

pinocytic vesicles to sample extracellular fluid for pathogens and particles in a 

process called macropinocytosis (Sallusto & Lanzavecchia, 1994) or they express 

PRRs, which can recognise PAMPs and subsequently endocytose microbial 

organisms via receptor mediated endocytosis (Jiang et al., 1995). Macropinocytosis, 

the use of PRRs and the DC capacity for co-stimulatory molecule expression result 

in antigen presentation by DCs being so effective that even picomolar concentrations 

of Ags can suffice for stimulation, much lower than the micromolar amounts 

required by other APCs (Bhardwaj et al., 1993). 

 

The captured Ags enter the endocytic pathway of the cell. DCs are able to produce 

large amounts of MHC class II-peptide complexes. This is due to the specialised, 
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MHC class II rich compartments (MIICs) that are abundant in iDCs (Pierre et al., 

1997). During maturation of DCs, MIICs discharge their MHC II-peptide complexes 

on to the cell surface (Pierre et al., 1997). This interaction generates a Th2 biased 

response leading to an inflammatory and Ab response. 

 

A unique feature of DCs is their ability to deliver endocytosed Ags into the MHC 

class I presentation pathway in a process called cross-presentation (Brode & 

McCary, 2004; Heath et al., 2004). This process is vital for the presentation of 

peptides to generate a CD8+ T cell response against tumours or viruses which do not 

infect the DC itself which would otherwise only be presented to CD4 T cells on 

MHC class II resulting in an inflammatory and B cell response (Ueno et al., 2010). 

As in all cell types, peptides can also enter the MHC class I presentation pathway if 

the iDC itself is infected with a virus or transduced with a vector. A dedicated 

peptide transporter, TAP, translocates these peptides from their site of generation in 

the cytosol to the endoplasmic reticulum, where they bind to MHC class I molecules. 

The peptide-bound MHC class I complexes are transported to the cell surface where 

they are displayed for CD8+ T cell recognition. Thus, DCs have the capacity to 

activate both CD4+ and CD8+ T cells (Liu, 2003; Ueno et al., 2010). DCs are 

therefore essential for an effective immune response against the majority of viruses 

due to their cross-presentation ability. Without the generation of a CD8+ T cell 

response by MHC class I presentation most viral infections could not be cleared 

(Banchereau & Steinman, 1998). 

 

After receiving maturation signals the DCs undergo a process of maturation which 

eventually allows them to traffic to the lymph nodes and become effective antigen 

presenters (Figure 1.5; 1.6). DCs can receive maturation signals through several 

pathways including, but not limited to, the binding of microbial organisms or 

products e.g. Lipopolysaccharide (LPS) to PRRs, cell products such as pro-

inflammatory cytokines e.g. TNF-α, the products of dying cells or stimulation by NK 

cells (Palucka et al., 2008). DC maturation is associated with several co-ordinated 

events beginning with the loss of endocytic/phagocytic capacity due to the 

downregulation of corresponding receptors, a change in cell morphology to allow for 

cell motility, the translocation of MHC molecules to the cell surface, in particular 



 

Figure 1.6: The growth and maturation of DCs. Diagram highlights the stimulation of iDC formation from CD14+ monocytes by GM-CSF 
and IL-4 and the subsequent maturation of iDCs to mDCs in the presence of TNF-α or pathogen antigen such as Lipopolysaccharide in vivo or ex 
vivo. Given underneath each cell type is their receptor expression pattern at each stage of the DC life cycle which can subsequently be used to 
dissociate the cells from one another in vivo. MHCII (extracellular) denotes detectable cell surface MHCII rather than internal.  
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MHC II, the upregulation of B7-1 (CD80) and B7-2 (CD86) and the secretion of 

various cytokines for the generation of effector T cells (Palucka et al., 2008; Ueno et 

al., 2010). DCs migrate with their bound Ag from the peripheral tissue to the 

draining lymph nodes. Upon arrival the upregulation of CD80 and CD86 allows the 

effective activation of naïve CD8 and CD4 T lymphocytes via MHC class I or II 

(Banchereau & Steinman, 1998). If CD80 and CD86 are not present to bind to the 

the CD28 molecules on T lymphocytes during MHC presentation and Ag recognition 

by the T cell receptor, the T lymphocyte will enter into a state of anergy (Groux et 

al., 2004). Thus, it is in this way that primary immune responses can be intitiated. 

Other APCs, such as macrophages, and to a lesser degree B cells also contribute to 

initiation of immune responses. 

 

Following contact with mDCs via MHC class I or II, naive CD8+ and CD4+ T cells 

differentiate into CD8+ cytotoxic T cells and helper CD4+ T cells. Helper CD4+ T 

cells support the differentiation and expansion of CD8+ T cells and B cells.  

 

When exposed to virally infected cells which are expressing their specific viral 

peptide on MHC class I, CD8+ T cells release substances, primarily the cytotoxin 

perforin. Perforin creates a pore through which granzymes of the cytotoxic granules 

can enter the target cell cytosol where they cleave the central caspase 3 and other 

cellular targets resulting in the activation of apoptosis regulators (Bleackley, 2005). 

An alternative mechanism of CD8+ killing involves the binding of activated CD8+ T 

cells to the Fas receptor (CD95) expressed on target cells via apoptosis inducing 

ligands, primarily Fas ligand (FasL; CD95L). CD95 is expressed by all cells and is 

up-regulated when infected with viruses, damaged or dysfunctional. The interaction 

between CD95 and CD95L results in the recruitment of the death-inducing signalling 

complex (DISC) which interacts and translocates with the Fas-associated death 

domain (FADD) subsequently instigating a caspase cascade which results in the 

death of the cell (Berke, 1995). 

 

As DCs can be generated in vitro by differentiation from monocytes their ability to 

stimulate naive T cells has been successfully exploited for various kinds of 

vaccination, against tumours (Banchereau et al., 2001) and against infectious disease 

(Steinman & Banchereau, 2007). DCs can be loaded with Ag peptides or proteins, or 
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the genes for the corresponding Ag can be transferred by transfection or via 

transduction with viral vectors (Schuler et al., 2003). 

 

 1.5.1 DCs as vaccine targets 
 

Generating the correct kind of immune response can mean the difference between 

mortality or viral clearance and recovery (Banchereau et al., 2009). There remain 

many pathogens for which no efficient vaccine is available, most causing chronic 

disease where a CD8+ T cell response is critical for pathogen clearance. Due to their 

critical role in both the innate and the adaptive immune response there is now a large 

body of research into the targeting of vaccines to DCs to generate a protective or 

therapeutic response. 

 

DCs can be targeted in vivo or ex vivo. Ex vivo peripheral blood leukocytes are 

obtained by leukophoresis and monocytes isolated. CD14+ monocytes are cultured 

for five days with GM-CSF and IL-4 to produce iDCs which are then targeted for 

antigen delivery by ex vivo specific methods, such as electroporation, or transduction 

with viral vectors before being infused back into the patient with activated T cells. 

Several studies have now investigated the targeting of an antigen itself to DCs by 

either coupling it to a DC specific ligand or a DC-receptor specific antibody. By 

targeting the antigen to a specific receptor it is possible to affect which MHC 

pathway the antigen is delivered to, however this does not induce the maturation of 

the DC and the induction of adaptive immune responses (Ahlers & Belyakoz, 2009). 

Alternatively, the antigen itself, such as an envelope antigen incorporated into a 

surrogate vector envelope, or a DNA transgene encoding the antigen, can be 

incorporated into a vector system. Vector systems which have undergone DC trials 

include viral vectors (e.g. van de Ven et al., 2009) and lipsosomes (e.g. Zheng et al., 

2010) and in several studies these have been targeted further by the integration of a 

receptor ligand or receptor-specific antibody (Ahlers & Belyakov, 2009). The search 

continues, however, for vectors which are naturally DC specific and therefore do not 

require further modification (Ahlers & Belyakov, 2009). In vivo targeting of DCs 

implies that the vector and antigen are administered and DC transduction takes place 

by encounters with iDCs at the site of application. 
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It is also apparent that different DCs may have different potential for vaccination. 

Therefore it is important to target the best DC subset most appropriate for triggering 

the immune response wished. In vitro generated DCs appear to differ in their 

capacity to activate lymphocytes (Palucka et al., 2008). Interstitial DCs have been 

shown to effectively induce the differentiation of B cells (Caux et al., 1997) whereas 

LCs are more effective activators of CD8+ T cells (Ueno et al., 2007). This has been 

proven in a murine model wherein a vector targeted specifically to LCs (CD8+ DEC-

205+ DCs) produced a greater CD8+ T cell response whilst the same vector targeted 

to interstitial DCs (CD8- DCs) produced an antibody response (Dudziak et al., 

2007). Of further interest, it has been shown that LCs and interstitial DCs display 

distinct cell receptor repertoires, suggesting different functions (Plaucka et al., 2008; 

Ueno et al., 2010). For example, LCs express a wide range of TLRs but lack TLR4 

and TLR5 which are important bacterial PRRs (Flacher et al., 2006; van der Aar et 

al., 2007) whereas interstitial DCs specifically express TLR 4 and 5 (van der Aar et 

al., 2007). This may suggest that LCs represent a more virus/tumour specific DC 

whilst interstitial DCs are designed to handle bacterial infections. 

 

1.5.1.1 The maturation of DCs by vaccination 
 

Once effectively targeted there is a further requirement to mature DCs during 

vaccination as DC maturation has been shown to be a pre-requisite for induction of 

immunity (De Vries et al., 2003; reviewed in Steinman & Banchereau, 2007). Many 

organisms including viruses such as HIV have the capacity to block DC maturation 

and prevent the formation of an adaptive immune response (Banchereau et al., 2009) 

and research has shown that vaccines like the current yellow fever vaccine are only 

effective by transducing and subsequently maturing DCs (Querec et al., 2006). 

 

The timing of the maturation signal is very important, given too early and the 

maturation status of the DC will change before the vector reaches the cell and 

transduction may not occur, given too late, after the antigen has been processed, and 

tolerance towards that antigen may be induced (Wilson et al., 2006). The best 

method for correctly maturing DCs would therefore rely on a vector which can not 

only transduce the DC effectively but also mature the DC without the requirement of 

another treatment. For this reason it has now become important for all candidate 
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vaccine vectors to be tested for their capacity to both transduce and mature DCs. Ad 

vectors, such as human Ads (Ad35; Rea et al., 2001) and chimpanzee Ads (CAd68; 

Basner-Tschakarjan et al., 2006), have shown increasing promise for use as DC 

targeting vectors for both their level of transduction of dendritic cells and resultant 

maturation (see Chapter 5). In contrast to Ad5, however, different serotypes have 

been shown to differ in their effective targeting of DCs. 

 

1.6 Aims of the research 
 

Based on the interesting observation that Ad19a is particularly efficient at infecting 

DCs (Ruzsics et al., 2006), the major aim of this work was to evaluate whether a 

vector derived from Ad19a has potential for vaccination. To this end, two antigens 

suitable for vaccination were inserted and basic features of this vector system 

(expression level of the transgene, transduction of DCs, potential receptors and the 

capacity to induce immune responses or protect against lethal challenge in vivo) were 

investigated. 
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Chapter 2: Materials and Methods 
 
2.1: Solutions, buffers and media 
 
All chemicals were of analytical grade and supplied by either Fisher Scientific or 

BDH unless otherwise stated.  The solutions listed here are the stock solutions, the 

working concentrations are given in the methods section. 

 

2-deoxy-galactose (DOG): 1g DOG in 10ml ddH2O. 

 

2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS; Sigma): 50mg/ml 

 

ABTS buffer (Roche): 16.7g ABTS in 1L ddH2O 

 

Acrylamide solution (Roth GmbH, Germany):  rotiphorese®Gel30, 30% (w/v) 

acrylamide, 0.8% bis-acrylamide in distilled, de-ionised H2O.   

 

Blocking Buffer: 5% skim milk powder (Merck), 0.02% NaN3 in phosphate 

buffered saline (PBS) / 0.05% Tween 20. 

 

Blotting/Transfer Buffer: 48mM Tris, 39mM Glycine, 0.037% sodium dodecyl 

sulphate (SDS), 20% Methanol in H2O. 

 

Caesium chloride 1.27g/ml (CsCl): 18.47g CsCl dissolved in 50 ml PBS 

 

Caesium chloride 1.35g/ml (CsCl): 22.71g CsCl dissolved in 50ml PBS 

 

Caesium chloride 1.42g/ml (CsCl): 27.42g CsCl dissolved in 50ml PBS 

 

Carboxymethyl Cellulose (CMC) Agar: 4g in 100ml ddH2O 

 

Chloroform/iso-amyl alcohol: 96% (v/v) chloroform, 4% (v/v) iso-amyl alcohol 

 

Crystal Violet: 1.5g in 100ml EtOH (dilute 1:40 for use) 
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D-Biotin: 0.2 mg/ml in H2O 

 

Dithiothreitol (DTT): 0.5 M, 1.55 g in 20 ml H2O 

 

DNA gel loading buffer (6x): 0.25% orange G, 40% (w/v) sucrose in distilled water. 

 

DNA marker ladders (New England Biolabs): 0.25 μg/μl, dilute stock (0.5 μg/μl) 

1:1 with 6x DNA gel loading buffer.   

 

dNTPs stock (Fermentas): 100 mM solutions of dCTP, dTTP, dATP and dGTP 

 

Dulbecco’s modified Eagle’s medium (DMEM) (Gibco BRL). 

 

Dulbecco’s modified Eagle’s medium: F12 Nutrient mixture (F12) (Gibco BRL). 

 

Ethidium bromide solution: 10 mg/ml in H2O 

 

FACS buffer: PBS (-Ca2+, -Mg2+), 3% FCS, 0.075% NaN3. 

 

FACS buffer + saponin: PBS, 3% FCS, 0.075% NaN3, 0.1% saponin.  

 

Foetal Calf Serum (FCS) (Biosera, Sussex, UK) - heat inactivated. 

 

Fixation buffer (BD Bioscience): CellFIX™.  

 

Freezing buffer: DMEM (supplemented with 100 U/ml penicillin, 100 μg/ml 

streptomycin, 2 mM Glutamine), 25% FCS, 10% DMSO.  

 

G418-sulphate (Gibco): 50 mg/ml in DMEM. 

 

Glasgow Mimimal Essential Medium (GMEM) (Sigma Aldrich) 

 

Gluteraldehyde: 2g in 100ml PBS 
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L-Glutamine (100x) (Gibco BRL): 200 mM in H2O 

 

L-Leucine: 10mg/ml, filter sterilised 

 

Luria-Bertani (LB) Medium (pH 7.0): 10 g bacto-tryptone, 5 g bacto-yeast extract, 

10 g NaCl, made to a total volume of 1 litre with distilled H2O.  Autoclaved at 

15lb/sq.in. for 20 minutes on liquid cycle. 

 

LB-amp: LB medium supplemented with 100 μg/ml ampicillin (amp). 

 

LB-kan: LB medium supplemented with 25 μg/ml kanamycin (kan). 

 

LB-cm: LB medium supplemented with 35 μg/ml chloramphenicol (cm). 

 

LB-cm/kan: LB medium supplemented with 25 μg/ml kanamycin and 35 μg/ml 

chloramphenicol (cm/kan) 

 

LB agar-amp plates: Prepare LB media as above and add 15 g/l bacto-agar prior to 

autoclaving.  Allow to cool and supplement with 100 µg/ml amp before pouring into 

sterile Petri dishes. 

 

LB agar-kan plates: Prepare LB media as above and add 15 g/l bacto-agar prior to 

autoclaving.  Allow to cool and supplement with 25 µg/ml kan before pouring into 

sterile Petri dishes. 

 

LB agar-cm plates: Prepare LB media as above and add 15 g/l bacto-agar prior to 

autoclaving.  Allow to cool and supplement with 35 µg/ml cm before pouring into 

sterile Petri dishes. 

 

LB agar-kan plates: Prepare LB media as above and add 15 g/l bacto-agar prior to 

autoclaving.  Allow to cool and supplement with 25 µg/ml kan before pouring into 

sterile Petri dishes. 
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LB agar-cm/kan plates: Prepare LB media as above and add 15 g/l bacto-agar prior 

to autoclaving.  Allow to cool and supplement with 25 µg/ml kan and 35 µg/ml cm 

before pouring into sterile Petri dishes. 

 

M63 Medium: 2 g (NH4)2SO4, 13.6 g KH2PO4, 2.5 mg FeSO4.7H2O adjusted to pH 

7.0 with 2M KOH and made to a total volume of 1 litre with distilled H2O.  

Autoclave at 15lb/sq.in. for 20 minutes on liquid cycle. 

 

M63 Agar plates: 4 g bacto-agar in 200 ml ddH2O and autoclave at 15lb/sq.in. for 

20 minutes on liquid cycle. Add 50 ml M63 medium (as prepared above), 0.5 ml 1M 

MgSO4, 1.25ml D-biotin, 1.1 ml L-Leucine, 5 ml 10% glycerol, 5 ml 10% 2-deoxy-

galactose (DOG) and 12.5 µg/ml cm before pouring into sterile Petri dishes. 

 

M9 Medium: 6 g Na2HPO4, 3 g KH2PO4, 1 g NH4Cl, 0.5g NaCl made to a total 

volume of 1 litre with distilled H2O.  Autoclave at 15lb/sq.in. for 20 minutes on 

liquid cycle. 

 

MacConkey Agar-cm/kan plates:  10g MacConkey agar in 225 ml ddH2O and 

autoclave at 15lb/sq.in. for 20 minutes on liquid cycle. Add 25 ml 10% Galactose, 

12.5 µg/ml cm and 25 µg/ml kan before pouring into sterile plates. 

 

MACs buffer: PBS, 0.5% BSA, 2mM EDTA 

 

Minimum essential medium alpha (Alpha MEM) (GibCO BRL) 

 

PBS/0.05% Tween 20: 0.5 ml Tween 20 in 1 litre PBS. 

 

10x PCR buffer + MgCl2 (Roche) :  100 mM Tris-HCl, 15 mM MgCl2, 500 mM 

KCl, pH8.3 at 20°C  

 

Penicillin/Streptomycin:10,000 U/ml penicillin G sodium and 10,000 µg/ml 

Streptomycin sulphate in 0.85% saline. 
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Phenol (Roth GmbH, Karlsruhe, Germany): Phenol equilibrated in TE buffer pH 

7.5-8.0  

 

Phenol/chloroform/iso-amyl alcohol: 50% (v/v) phenol, 48% (v/v) chloroform, 2% 

(v/v) iso-amyl alcohol. 

 

Phosphate buffered saline (PBS) pH7.4: 136 mM NaCl, 2.7 mM KCl, 1.3 mM 

KH2PO4, 1.4 mM Na2HPO4. 

 

Polyacrylamide gel markers (Fermentas): High molecular weight range (10,000 – 

250,000 kDa) PAGE ruler pre-stained protein ladder. 

 

FACS Quench solution: 50 mM NH4Cl, 20 mM glycine in PBS 

 

Polyacrylamide gel electrophoresis sample buffer (PAGE sample buffer): 200 

mM Tris pH 8.8, 1 M sucrose, 0.01% Bromophenol blue, 5 mM EDTA, and prior to 

use add 0.5M DTT to 37 mM, and 10% SDS to a final concentration of 3%. 

 

Restriction endonucleases: Restriction digests were carried out according to 

manufacturer’s instructions. 

 

RPMI Medium 1640 (RPMI)  

 

Saponin (Calbiochem) 5% w/v in PBS, 0.22µm filter sterilise. 

 

Sodium dodecyl sulphate (10%): Dissolve 100 g in 900 ml H2O, heat to 68°C and 

adjust to pH 7.2 with concentrated HCl (drop wise), adjust volume to 1 litre with 

H2O 

 

SDS electrophoresis buffer (10x):  0.25 M Tris, 2.5 M glycine, pH8.3, dilute 1:10 

and add SDS to 0.1% 
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Transformation Buffer 1 (TFB1): 30 mM KAc, 100 mM RbCl2,  10mM CaCl2,  50 

mM MnCl2, 15% v/v glycerol, pH 5.8 using 0.2 M acetic acid.  

 

Transformation Buffer 2 (TFB2): 10 mM MOPS, 75 mM CaCl2, 10 mM RbCl2, 

15% v/v glycerol, pH 6.5 using 1 M KOH 

 

Tris-borate buffer (TBE) (10x): 0.89 M Tris pH8, 0.89 M boric acid, 20 mM 

EDTA. 

 

Tris-HCl (1M) pH 8.0: Dissolve 121.1g of Tris base in 800ml H2O, adjust pH to 8.0 

by the addition of 42ml concentrated HCl and adjust the volume to 1 litre with H2O.  

Sterilise by autoclaving. 

 

Trypsin (Gibco) (1x): 0.5% Trypsin in 0.02% EDTA in PBS 
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2.2: Materials 
 

2.2.1: Cell lines 
 
Table 2.1: Mammalian cell lines and growth conditions 
Cell line Source ATCC No. Growth conditions Reference 
HEK 293 
(Passage 29) 

Human Embryonic 
Kidney 

CRL-1573 DMEM + 10% FCS, 
2mM glutamine, 100 
U/ml penicillin and 
100µg/ml 
streptomycin 

Harrisson et 
al., 1977 

A549 Human Lung 
Carcinoma 

CCL-185 DMEM + 10% FCS, 
2mM glutamine, 100 
U/ml penicillin and 
100µg/ml 
streptomycin 

Giard et al., 
1973 

CHO Chinese Hamster 
Ovary 

CCL-61 DMEM + 10% FCS, 
2mM glutamine, 100 
U/ml penicillin and 
100µg/ml 
streptomycin or F12 + 
10% FCS, 2mM 
glutamine, 100 U/ml 
penicillin and 
100µg/ml 
streptomycin 
(dependant on source)  

Puck et al., 
1958 

CHO-CD46 Chinese Hamster 
Ovary transfected 
with human CD46 
and neomycin 
resistance gene 

Not listed DMEM + 10% FCS, 
2mM glutamine, 100 
U/ml penicillin and 
100µg/ml 
streptomycin or F12 + 
10% FCS, 2mM 
glutamine, 100 U/ml 
penicillin, 100µg/ml 
streptomycin and 
225µg G418 
(dependant on source) 

Liszewski & 
Atkinson, 1991 

CHO-CAR Chinese Hamster 
Ovary transfected 
with human CAR 

Not listed DMEM + 10% FCS, 
2mM glutamine, 100 
U/ml penicillin and 
100µg/ml 
streptomycin 

Bergelson et 
al., 1997 

B cell Human B 
lymphocyte 

Not listed RPMI + 10% FCS, 
2mM glutamine, 100 
U/ml penicillin and 
100µg/ml 
streptomycin 

Kindly donated 
by Tao Dong, 
University of 
Oxford 

Jurkat Human leukaemic T 
cell lymphoblast 

TIB-152 RPMI + 10% FCS, 
2mM glutamine, 100 
U/ml penicillin and 
100µg/ml 
streptomycin 

Weiss et al., 
1984 

Lec2 Chinese Hamster 
Ovary glycosylation 
mutant 

CRL-1736 Alpha + 10% FCS, 
2mM glutamine, 100 
U/ml penicillin and 
100µg/ml 
streptomycin 

Deutscher et 
al., 1984 
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Pro5 Chinese Hamster 
Ovary glycosylation 
mutant 

CRL-1781 Alpha MEM + 10% 
FCS, 2mM glutamine, 
100 U/ml penicillin 
and 100µg/ml 
streptomycin 

Stanley et al., 
1975 

BSC-1 African Green 
Monkey Kidney 
epithelial 

Not listed GMEM + 10% FCS, 
2mM glutamine, 100 
U/ml penicillin and 
100µg/ml 
streptomycin 

Hopps et al., 
1963 
 

 

P2-2 African Green 
Monkey Kidney 
epithelial 
chronically infected 
with PVM 

Not listed GMEM + 10% FCS, 
2mM glutamine, 100 
U/ml penicillin and 
100µg/ml 
streptomycin 

Personal 
communication 

 
 
2.2.2: Viruses and vectors 

 
Table 2.2: Viruses and vectors used in this study 
Virus Family Subgenus Source 
Ad19awt Adenoviridae D Obtained from Hans-

Gerhard Burgert 
(University of 
Warwick) 

Ad19aΔE1ΔE3GFP Adenoviridae D Created in this study 
by reconstitution of 
linearised BAC 

Ad19aΔE1ΔE3HIVA Adenoviridae D Created in this study 
by reconstitution of 
linearised BAC 

Ad19aΔE1ΔE3PVM-N Adenoviridae D Created in this study 
by reconstitution of 
linearised BAC 

Ad5ΔE1ΔE3GFPsv Adenoviridae C Created in this study 
by reconstitution of 
linearised BAC 

Ad5ΔE1ΔE3HIVAsv Adenoviridae C Created in this study 
by reconstitution of 
linearised BAC 

Ad5ΔE1ΔE3HIVA Adenoviridae C Obtained from 
Tomas Hanke 
(University of 
Oxford), generated 
using the AdEasy 
Adenoviral vector 
system 

Ad5ΔE1ΔE3PVM-N Adenoviridae C Obtained from Helen 
Terry (University of 
Warwick), generated 
using the AdEasy 
Adenoviral vector 
system 

Ad19aΔ19K Adenoviridae D Created in this study 
by reconstitution of 
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linearised BAC 
Ad19aΔE3 Adenoviridae D Obtained from Hans-

Gerhard Burgert 
(University of 
Warwick) 

Ad5F35ΔE1ΔE3GFP Adenoviridae C (vector), B (fibre) Obtained from 
André Lieber 
(University of 
Washington) 

PVM Pneumoviridae Strain J3666 Obtained from 
Andrew Easton 
(University of 
Warwick) 

 
2.2.3: Antibodies for FACS analysis 

 

Table 2.3: Antibodies used in flow cytometry analysis 
Antibody Species Target Iso-

type 
Working dilution Reference 

W6/32 Mouse HLA-A,-B,-C (class I) IgG2a 100µl/sample 
(supernatant) 

Barnstable et al. 
1978 

MALI* Lectin 2→3 sialic acid N/A 2µg/sample Vector Labs 
MALII* Lectin 2→3 sialic acid N/A 2µg/sample Vector Labs 
34-1-2 Mouse mMHC KdDd IgG2a 100µl/sample 

(supernatant) 
Ozato et al. 
1982 

TW1.3 Mouse Ad5/Ad2 E3/19K  IgG3 100µl/sample 
(supernatant) 

Cox, J.H. et al. 
1991 

2Hx-2 Mouse Ad2 Hexon IgG2a 100µl/sample 
(supernatant) 

Cepko et al. 
1981 

E1-1* Mouse Coxsackie and 
adenovirus receptor 
(CAR) 

IgG1 40µl/sample 
(supernatant) 

AbCam 

B-G27 Mouse Fas IgG2a 1 µg/sample Komada et al. 
1999 

J4.48* Mouse Human CD46 IgG1 2µg/sample AbCam 
4D1† Rat Ad19a E3/49K IgG2a 100µl/sample 

(supernatant) 
Windheim 2002 

L243 (G46-
6)* 

Mouse HLA-DR IgG2a 2µg/sample BD Pharmingen 

M5E2* Dog Human CD14 IgG2a 2µg/sample BD Pharmingen 
HI149* Mouse Human CD1a IgG1 2µg/ sample BD Pharmingen 
FM95* Mouse Human CD86 IgG1 2µg/sample Miltenyi 

Biotech 
HB15* Mouse Human CD83 IgG1 2µg/sample Miltenyi 

Biotech 
MOG35 Mouse Human GD1a IgG2a 1µg/sample AnaSpec 
 
Secondary antibody (when required) was FITC conjugated goat anti-mouse IgG (whole molecule) 
used at 20μg/ml except † when Phycoerythrin conjugated anti -rat IgG (whole molecule) was used at 
25µg/ml. 
 
* Commercial reagents (some information not listed) 
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2.2.4: Primers 
 
Table 2.4: Primer List 
Primer Name Sequence Details 
GalKFOR 5’-TAC TGG CTT ATC 

GAA ATT AAT ACG ACT 
CAC TAT AGG GAG ACC 
CAA GCT GGC CTG TTG 
ACA ATT AAT CAT CGG 
CA-3’ 

Forward primer  for isolation 
of GalKKnR fragment with 
CMV promoter homologous 
ends for recombination from 
pGPSGalK/KnR

GalKREV 5’-TAA GAT ACA TTG 
ATG AGT TTG GAC AAA 
CAA CTA GAA TGC AGT 
GAA AAG CCA GTG TTA 
CCA ATT AAC C-3’ 

Reverse primer  for isolation 
of GalKKnR fragment with 
poly A tail homologous ends 
for recombination from 
pGPSGalK/KnR

H1-19KO 5’-ATC TTT ATA TGC 
TGG GTA AGA CAT TGT 
GGG GAG GAA CTA TGA 
AGG GGC TCC CTG TTG 
ACA ATT AAT CAT CGG 
CA-3’ 

Forward primer for isolation 
of GalKKnR fragment with 
Ad19aE3/19K homologous 
ends for recombination from 
pGPSGalK/KnR

H2-19KO 5’-AGC ACG ATA CGG 
ATC ACT GTA TTC ATG 
GTT CTG CGA AAA AGA 
AAA AGA ATG CCA GTG 
TTA CAA CCA ATT AAC 
C-3’ 

Reverse primer for isolation 
of GalKKnR fragment with 
Ad19aE3/19K homologous 
ends for recombination from 
pGPSGalK/KnR

PVM-NIsolationFOR 5’-TGG CAG TAC ATC 
AAG TGT AT-3’ 

Forward primer  for isolation 
of PVM-N transgene from 
pCMVPVM-N 

PVM-NIsolationREV 5’-GCT GCA ATA AAC 
AAG TTA AC-3’ 

Reverse primer  for isolation 
of PVM-N transgene from 
pCMVPVM-N 

19Kfor 5’-ATC TTT ATA TGC 
TGG GTA AGA CAT TGT 
GGG GAG GAA CTA TGA 
AGG GGC TCT AAG CTT 
GCT GAT TAT CCT TTC 
CCT GGT G-3’ 

Forward primer for isolation 
of an inactivated form of the 
Ad19a E3/19K gene with an 
additional stop codon (bold) 
for recombination into 
Bad19aΔ19KGalK/KnR

19Krev 5’-AGC ACG ATA CGG 
ATC ACT ACT GTA TTC-
3’ 

Reverse primer for isolation 
of the Ad19a E3/19K gene 
for recombination into 
BAD19aΔ19KGalK/KnR

 
2.2.5: Bacterial Artificial Chromosomes (BACS) 

 
 
Table 2.5: BACs used in study 
Name Use Antibiotic resistance 
Bad19awt Ad19a wild type sequence Cm 
Bad19aΔE1ΔE3GFP Ad19a E1 and E3 deleted 

vector sequence containing 
GFP expression cassette 

Cm 

67 
 



Bad19aΔE1ΔE3GalK/KnR Ad19a E1 and E3 deleted 
vector sequence containing 
the GalK/KnR cassette 

Cm, Kn 

Bad19aΔE1ΔE3HIVA Ad19a E1 and E3 deleted 
vector sequence containing 
the HIVA polyprotein 
expression cassette 

Cm 

Bad19aΔE1ΔE3PVM-N Ad19a E1 and E3 deleted 
vector sequence containing 
the PVM nucleocapsid 
expression cassette 

Cm 

Bad19aΔ19KGalK/KnR Ad19a wild type sequence 
containing the GalK/KnR 
cassette replacing E319K 

Cm, Kn 

Bad19a19K* Ad19a wild type sequence 
containing inserted stop 
codon to prevent E319K 
expression 

Cm 

Bad5ΔE1ΔE3GFPsv Ad5 E1 and E3 deleted 
vector sequence containing 
the GFP expression cassette 
and additional SV40 
enhancer element 

Cm 

Bad5ΔE1ΔE3GalK/KnR
sv Ad5 E1 and E3 deleted 

vector sequence containing 
the GalK/KnR cassette and 
additional SV40 enhancer 
element 

Cm, Kn 

Bad5ΔE1ΔE3HIVAsv Ad5 E1 and E3 deleted 
vector sequence containing 
the HIVA polyprotein 
expression cassette and 
additional SV40 enhancer 
element 

Cm 

 
2.2.6: Plasmids 

 
Table 2.6: Plasmids used in study 
Name Use Antibiotic resistance 
pEGFPN1 Backbone for generation of 

HIVA shuttle plasmid 
Kn 

pHIVAOx Isolation of HIVA 
polyprotein for generation of 
HIVA shuttle plasmid 

Amp 

pGPSGalK/KnR PCR isolation of GalK/KnR 

cassette with homologous 
ends for recombination 

Kn 

pCMVHIVAOx Isolation of HIVA 
polyprotein expression 
cassette for recombination 

Kn 

pCMVPVM-N Isolation of PVM 
nucleocapsid expression 
cassette for recombination 

Kn 
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2.2.7: Bacterial Strains 
 
Table 2.7: Bacterial strains used in study 

Name Use Growth restrictions 
SW102 Designed for BAC 

recombineering using galK 
positive/negative selection. 
Contains a fully functional 
gal operon, except the galK 
gene is deleted. 

Growth at 32°C prevents 
recombination. Growth at 
42°C activates  temperature 
sensitive repressor and 
subsequently allows 
recombination   

PIR1 Maintenance of 
pGPSGalK/KnR

None 

DH10B Maintenance of BACs None 
DH5α Maintenance of plasmids None 
 

2.2.8: Sequencing Primers 
 
Table 2.8: Primers used in sequencing studies 
Primer Name Sequence Details 
19KSEQPRIME 5’-ACG AAG TGG TCG 

GGT ATT TG-3’ 
Primer for sequencing of 
19K mutation 

PVM-N/F/1 5’-GGT TTC GAT TGC 
GGT GTT TT-3’ 

Primer for sequencing of 
PVM nucleocapsid 
expression cassette 

PVM-N/F/2 5’-CAG AGA TGA TAG 
CAT CAA GAT-3’ 

Primer for sequencing of 
PVM nucleocapsid 
expression cassette 

PVM-N/F/3 5’-TCT CTT TGA CCA 
ATT GTC CT-3’ 

Primer for sequencing of 
PVM nucleocapsid 
expression cassette 

HIVA/F/1 5’-TTC TGC AGT CAC 
CGT CCT TG-3’ 

Primer for sequencing of 
HIVA polyprotein 
expression cassette 

HIVA/F/2 5’- ACC CTG GAG GAG 
ATG ATG AC-3’ 

Primer for sequencing of 
HIVA polyprotein 
expression cassette 

HIVA/F/3 5’- TGA CCT ACA AGG 
CCG TGG AC-3’ 

Primer for sequencing of 
HIVA polyprotein 
expression cassette 

 
2.2.9: Antibodies for Western Blot analysis 

 
Table 2.9: Antibodies used in western blot analysis 
Clone Species Target Iso-type Dilution Reference 
SV5-Pk1 Mouse V5-TAG IgG2a 1:3000 Southern et 

al., 1991 
R48 Rabbit Ad19a E3/49K Polyclonal 1:1000 Windheim 

2002 
R22612 Rabbit A19a E3/19K Polyclonal 1:500 Deryckere & 

Burgert 1996 
R2052 Rabbit PVM nucleocapsid Polyclonal 1:1500 Barr, 1993 
2-28-33 multiple β- tubulin IgG1 1:200 Siddiqui et 

al., 1989 
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2.2.10: Antibodies for Competition studies 
 
Table 2.10: Antibodies used in competition studies 

Clone Species Target Iso-type Source Reference 
αCD46FII Mouse CD46 

(MCP1) 
IgG1 Claire Harris 

(University of 
Cardiff) 

Unpubished 

αCD46POLY Rabbit CD46 MCP1-
IgG4 Fusion 

Polyclonal Claire Harris 
(University of 
Cardiff) 

Unpublished 

 
2.2.11: Soluble proteins for Competition studies 

 
Table 2.11: Soluble proteins used in competition studies 
Protein Description Source Reference 
MCP-BC-IgG4 CD46 (MCP1) fused to 

human IgG4 
Claire Harris 
(University of Cardiff) 

N/A 

rhCXADR/Fc CAR (Leu20-Gly237) 
fused to human IgG1 

R&D systems N/A 

 
2.3: Mammalian cell lines 
 
 2.3.1: Cell lines 
 

See Table 2.1 

 

 2.3.2: Maintenance of mammalian cell culture 
 
Mammalian cell lines were maintained at 37°C in a 5% CO2 incubator in a 

humidified atmosphere using the appropriate media (chapter 2.2.1). All 

manipulations were performed under sterile conditions in a Class II Laminar Flow 

cabinet using standard aseptic techniques. All centrifugation steps were performed in 

an Eppendorf 5810R centrifuge unless otherwise stated. 

 

  2.3.2.1: Adherent cell lines 
 
When confluent, adherent cells were passaged as follows: cells were washed with 

PBS, incubated with Trypsin-EDTA for 5-10 mins and detached by mechanical 

motion and returned to original volume with appropriate medium. Typically the cell 

monolayer of a 25 cm2 flask was washed with 5ml PBS, trypsinised with 0.7 ml 

Trypsin-EDTA and resuspended in 5.3ml of appropriate medium and then 

subsequently re-seeded at ratios between 1:4 and 1:10. 

 

70 
 



  2.3.2.2: Non-adherent cell lines 

 

When confluent, non-adherent cells were passaged as follows: cells were centrifuged 

(350xg for 3 mins), resuspended in PBS, centrifuged (350xg for 3 mins) and 

resuspended in original volume of appropriate medium. Cells were re-seeded at 

ratios between 1:6 and 1:10. 

 

  2.3.2.3: Long term storage of Mammalian cell lines 

 

Sub-confluent cell monolayers were washed and detached as described previously 

(section 2.2.1/2.2.2). Resuspended cells were centrifuged (300xg for 5 min) and re-

suspended in freezing buffer and frozen in 1 ml aliquots by cooling slowly in a pre-

chilled Styrofoam box placed in a –70 ˚C freezer, before being placed in liquid 

nitrogen for long-term storage. 

 

2.2.3.4: Recovery of mammalian cell lines from long term storage 

 

Cells were taken out of liquid nitrogen and thawed rapidly in a 37 ˚C water bath 

before being layered onto 3ml FCS and centrifuged (300xg for 5 min) to remove 

DMSO. The cells were re-suspended in pre-warmed 1ml appropriate media and split 

0.7ml and 0.3ml into two flasks of 10ml complete medium. 

 

2.4: Generation of virus stocks 
 
 2.4.1: Generation of adenovirus stocks 
 
Infectious medium was generated by the addition of a calculated amount of virus to 

give a multiplicity of infection (MOI) of 10 pfu/cell to DMEM without FCS. 

Subconfluent A549 cells were then washed with PBS, and then infected (by the 

addition of the infectious medium in an appropriate volume for the vessel used) with 

Ad5, Ad19a, Ad19aΔE319K or Ad19aΔE3 and incubated at 37°C/5% CO2 and 

monitored for cytopathic effect (c.p.e.). Once the c.p.e. was judged to have reached 

100% i.e. 100% of the cells were rounded and no longer adherent, which generally 

took 48-72 hours, cells were harvested by centrifugation (350xg for 7 minutes at 

4°C) and the pellets resuspended in 2 ml of sterile 30mM Tris-HCL pH 8.0 per 
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175cm2 flask. Virus was released by three to four freeze thaw cycles before 

centrifugation (1800xg for 7 min at 4°C) to remove cell debris.  Virus aliquots were 

stored long term at -80°. 

 
 2.4.2: Generation of adenovirus vector stocks 
 
Subconfluent 293 cells were infected at an MOI of 10 with rAd5HIVAsv, 

rAd5PVM-N, rAd5HIVAn, rAd5GFP, rAd19aHIVAsv, rAd19aPVM-N, rAd19aGFP 

or rAd5F35GFP and incubated at 37°C/5% CO2 until c.p.e. reached 100%, which 

generally took 48-60 hours. Cells were harvested by centrifuging (350xg for 7 

minutes) at 4°C and the pellets re-suspended in 2 ml of sterile 30mM Tris-HCL pH 

8.0.  Virus was released by three to four freeze/thaw cycles before centrifugation at 

1800xg for 7 minutes at 4°C in an eppendorf 5810R centrifuge, to remove cell 

debris. Virus aliquots were stored long term at -80°. 

. 

 2.4.3: Generation of PVM virus stocks 
 
BSC-1 cells were infected at an MOI of 50. After the c.p.e. effect had reached 100%, 

here characterised by the formation of syncytia followed by the loss of adherence, 

the infected cells were removed from the flasks by mechanical motion, centrifuged 

(300xg, 7 min, 4°C) and re-suspended in GMEM + 0% FCS. Virus aliquots were 

stored long term at -80°. 

 

 2.4.4: Adenovirus purification 
 
293 or A549 cells were grown to subconfluence in 15 large flasks and infected with 

an MOI of 1 with adenovirus vector or virus and grown until at least 75% c.p.e. was 

evident, generally 48-72 hours. Cells were re-suspended by mechanical motion, 

harvested by centrifugation (350xg for 5 min at 4°C), re-suspended in 2ml DMEM + 

0% FCS per 175cm2 flask, pooled, harvested again (as before) and re-suspended in 

15 ml 30mM Tris pH8.0. The cell suspension was sonicated (using a 20 % duty cycle 

for 10 seconds at a micro tip limit of 2)(Jenson Scientific Ultrasonic Processor), 

followed by centrifugation (3200xg for 10 min). The supernatant was collected for 

further purification. Caesium chloride (CsCl) gradients were prepared in SW41 tubes 

(Beckmann Optima) by the addition of 3ml 1.42 g/ml CsCl to the base of an SW41 
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tube which already contained 5ml 1.27 g/ml CsCl using a Pasteur pipette and 

subsequently 5ml viral cell lysate was layered on top. The tubes were weighed and 

balanced to ensure equal weight and placed in an SW40 rotor (Beckman Optima). 

The gradients were centrifuged (154693 xg for 1 hour at 15°C; Beckman Optima 

L90K) with no brake, removed and clamped. The virus band was removed by an 18G 

needle and 5ml syringe by side puncture. Harvested virus was pooled in an SW50 

tube (Beckmann Optima), and the tube filled with 1.35 g/ml CsCl, weighed and 

balanced and placed in an SW50 rotor (Beckman Optima). The gradients were 

centrifuged (151693 xg for 20 hours at 15°C; Beckman Optima L90K), removed, 

clamped, the virus band harvested by 18G needle and 5ml syringe by side puncture 

and made up to a total volume of 2.5 ml with PBS. PD-10 columns (GE Healthcare) 

were equilibrated according to manufacturer’s instructions, the virus loaded onto the 

column, eluted with 3.5 ml PBS, disposing of the first 0.5 ml eluant, collecting the 

following 2 ml and disposing of any remaining eluant. 200 µl sterile 100% glycerol 

was added to the 2ml fraction, mixed, aliquoted and stored for later titration and use. 

 
2.5: Adenovirus infection of mammalian cells 
 
 2.5.1: Infection/transduction of adherent cell lines 
 
Cells were seeded into 60mm dishes and grown to subconfluence. Cells in three 

control dishes were detached and counted before each experiment. For infection 

varying pfu/cell of virus was added per dish and cells were incubated for 1.5h at 

37°C/5% CO2 in 1 ml DMEM without FCS. Thereafter, unless otherwise stated, the 

virus was removed and the cells incubated at 37°C/5% CO2 in 5 ml DMEM 

containing 2% FCS for a further 44h. 

 
 2.5.2: Infection/transduction of non-adherent cell lines 
 
Cells were seeded into 5ml of their respective media in a 6cm dish and grown to 

subconfluence. 10 µl of cells from two control dishes were counted before each 

experiment. Cells were centrifuged (300xg, 5 min) and re-suspended in media 

containing 0% FCS and varying pfu/cell of virus then incubated for 1.5h at 37°C/5% 

CO2 in a 15 ml Falcon tube. Thereafter the cells are returned to a 6cm dish with 

media containing 2% FCS and, unless otherwise stated, incubated at 37°C/5% CO2 

for a further 44h. 

73 
 



2.6: Flow cytometry 
 
 2.6.1: Surface staining 
 
The cells were grown to ~90% confluence in 60mm cell culture plates and harvested 

by washing briefly with PBS, followed by treatment with 0.5% trypsin-EDTA to 

detach the monolayer. After re-suspension in 5 ml of media, the cells were 

centrifuged at 300xg for 7 minutes at 4°C.  The cells were then counted and re-

suspended in FACS-buffer (4°C) to give approximately 500,000 cells/sample in a 

volume of 30 μl.  Each sample was incubated with the relevant antibody (see table 

2.3) on ice for 50 minutes in a total volume of 130 μl, using a flat bottom 96 well 

tissue culture plate. Unbound antibody was then removed by washing three times 

with 200 µl FACS buffer (4°C), pelleting cells by centrifuging at 340xg for 3 

minutes at 4°C between washes. The cells were incubated with secondary antibody 

in a total volume of 50 μl for 50 minutes on ice, followed by four washes as 

previously described.  They were then either fixed in the plate by the addition of 

FACS-FIX buffer and placed at 4°C in the dark overnight, or re-suspended in 100 µl 

FACS buffer (4°C) and analysed immediately in a final volume of 400 µl using a 

Beckton Dickinson FACScan flow-cytometer and CellquestTM analysis programme. 

Emission fluorescence was recorded at 470 nm unless otherwise stated. 

 

 2.6.2: Intracellular staining 
 
Following harvesting, cells were re-suspended in 0.5 ml medium, washed with ice-

cold PBS and centrifuged as before. The supernatant was carefully removed and the 

cells re-suspended in 450 μl PBS at room temperature (RT) and transferred to 

eppendorf tubes. 50μl of BD cellFIX was added to each sample with gentle vortexing 

and the samples incubated at RT for 20 minutes with occasional vortexing. The 

samples were then washed with 600 µl PBS at room temperature, centrifuged for 3 

minutes at 800xg in a micro-centrifuge, the supernatant was removed, and the cells 

were re-suspended in 500 μl FACS-quench buffer for a minimum of 30 minutes at 

RT. Next, the cells were washed with 600 µl of PBS at RT and centrifuged as before, 

the supernatant removed and the cells re-suspended in FACS buffer to give 

approximately 500,000 cells/sample, as described previously. The antibody 

incubation protocol was the same as that for the unfixed cells, except that cells were 
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incubated with antibodies in the presence of 0.1% saponin, and washed with 

FACS+Saponin buffer. The antibodies used for FACS analysis are listed in Table 2.3 

below. 

 

2.7: Preparation of virus infected cells for flow cytometry analysis 
 

The cells were grown to sub-confluence in 60 mm tissue culture plates, washed once 

with serum free DMEM and infected with either adenovirus or adenovirus vectors at 

varying MOIs. 48 hours post-infection (p.i.), cells were harvested by trypsinisation, 

any cells that were detached prior to trypsinisation were also harvested. Cells were 

pelleted by centrifugation at 300xg for 7 minutes at 4°C, the supernatant removed 

and cells either stained as in chapter 2.5.2. or examined for GFP fluorescence using a 

Beckton Dickinson FACScan flow-cytometer and CellquestTM analysis programme. 

Emission fluorescence was recorded at 470 nm. Isotype controls were performed by 

using the W6/32 Antibody and negative controls for GFP staining by the analysis of 

uninfected cells which should be negative for GFP fluorescence. 

 

2.8: Preparation of DNA constructs 
 
All DNA was quantified by Nanodrop ND-1000 spectrophotometer (Thermo 

Scientific) according to manufacturer’s instructions. 

 

 2.8.1: Polymerase Chain reaction (PCR) 
 
A standard PCR was performed in a final volume of 100µl. This contained 150ng of 

template DNA, 0.5µM primer mixture, 1 X PCR mixture (2.5µl 10 X PCR buffer + 

MgCl2, 200µM dNTPs,), 2.5 units Taq polymerase (Invitrogen) and made up to a 

total volume with sterile water. The solution was subjected to a ‘touchdown’ 

programme consisting of 1 cycle of 95°C for 4 min and 55°C for 1 min 30 sec., 20 

cycles of 72°C for 3 min., 95°C for 45 sec., and 45°C (increasing every 2 cycles by 

1°C ending at 55°C) for 1 min 30 sec., 10 cycles of 72°C for 3 min, 95°C for 45 sec., 

55°C for 1min 30 sec and 1 cycle 72°C for 10 min followed by a 4°C soak until the 

sample could be removed for processing. 5µl of resultant PCR mixture was then 

analysed by 0.8% agarose gel electrophoresis. In stated cases adjustments of the 

thermal cycling parameters were necessary to improve DNA yield. 
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 2.8.2: Agarose Gel electrophoresis 
 
DNA was separated by agarose gel electrophoresis and subsequently visualised by 

staining with ethidium bromide (EtBr). Agarose powder (0.8-1.2% w/v) was 

dissolved by boiling in 1x TBE and EtBr was added to give a final concentration of 

0.5 μg/ml.  The gels were run using a buffer of 1xTBE containing 0.5 μg/ml EtBr, 

under a constant voltage of 100V.  DNA samples were mixed with 1/6 of the sample 

volume of DNA gel loading buffer (6x) and loaded on to the gel. Gel Bands were 

visualised and images taken on an UVIdoc trans-illuminator. DNA bands were 

excised using a UVP trans-illuminator (UV products Incorporated, USA.) and DNA 

gel purification performed. 

 

 2.8.3: DNA gel purification 
 
Bands were excised from the agarose gel using a clean scalpel, and DNA purification 

was carried out using a GFX™ PCR DNA and Gel band purification kit (GE 

Healthcare), according to the manufacturer’s instructions. 

 

 2.8.4: DNA restriction digest 
 
Restriction enzyme digests were performed under the manufacturers recommended 

conditions using the supplied 10X buffer solutions (section 2.1). 

 

 2.8.5: Ligation reactions 
 
Ligations were carried out with a 3:1 molar ratio of insert to vector using T4 DNA 

ligase (Invitrogen), following the manufacturer’s guidelines for the ligation of 

cohesive ends 

 

 2.8.6: Bacterial Artificial Chromosomes (BACs) 
 
All BACs were either constructed in the study, as stated, or obtained from Z. 

Ruzsics, University of Munich. See Table 2.5 
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 2.8.7: Plasmids 
 
Plasmids were either constructed in the study, as stated, or obtained from Z. Ruzsics, 

University of Munich. See Table 2.6. 

 
2.9: DNA propagation in bacteria  
 
 2.9.1: Bacterial strains 
 
All bacterial strains were obtained from Dr. Z. Ruzsics, University of Munich. See 

Table 2.7. 

 

2.9.2: Preparation of competent cells 
 
A starter culture was prepared by inoculating 5 ml of LB medium with a single 

colony from a plate of bacteria, and incubating overnight at 37°C with shaking 

(Gallenkamp orbital shaker).  This was used to inoculate 1 litre of LB medium.  The 

bacteria were grown at 37°C (32°C SW102) as before until the OD600 was between 

0.42 and 0.45, mid-log phase. The culture of bacteria was then placed on ice for five 

minutes before harvesting at 6000xg, for 15 minutes, at 4°C in a Beckman JA10 

rotor.  The supernatant was removed and the pellet carefully resuspended in 100 ml 

of pre-chilled TFB1, before incubating on ice for 1 hour.  The cells were harvested as 

before and resuspended in 20 ml of pre-chilled TFB2, 100 μl aliquots were then 

rapidly frozen in an isopropanol/dry ice bath and stored at -80°C.  Cells were tested 

for competency prior to use. 

 
 2.9.3: Transformation of competent cells 
 
Competent bacteria were thawed on ice, 10 μl of DNA added to them, mixed gently 

and incubated on ice for 30 minutes. The bacteria were heat-shocked at 42°C for 1 

minute 30 seconds, then 900 μl of pre-warmed LB medium was added and the cells 

incubated at 37°C (32°C SW102) for 1 hour with shaking.  100 μl of bacteria were 

spread onto an LB-Amp plate. The remaining 900 μl were centrifuged at 16,000xg 

for 1 minute in a micro-centrifuge, the supernatant removed, and the bacterial pellet 

resuspended in 100 μl of LB and spread on an LB plate supplemented with the 
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relevant antibiotic (section 2.7.6 or 2.7.7).  Plates were then incubated at 37°C (32°C 

SW102) overnight. 

 

 2.9.4: Small scale DNA preparation (mini-preps) 
 
Single transformed bacterial colonies were picked and grown overnight in 5 ml 

cultures of LB medium, supplemented with appropriate antibiotic (section 2.7.6 or 

2.7.7), at 37°C (32°C SW102) with shaking (GallenKamp Orbital shaker).  1 ml of 

overnight culture was harvested by centrifuging at 16,000xg for 3 minutes in a 

microcentrifuge, before DNA was prepared using the Qiagen mini-prep kit according 

to the manufacturer’s instruction. 

 

 2.9.5: Large Scale DNA preparation (maxi-preps) 
 
A starter culture was prepared by inoculating 5 ml of LB medium supplemented with 

appropriate antibiotic (section 2.7.6 or 2.7.7) with a single colony from a freshly 

streaked plate and incubating at 37°C (32°C SW102) with shaking for approximately 

8 hours. The starter culture was then diluted 1:500 into 200 ml of LB medium, 

supplemented with the relevant antibiotic (section 2.7.6 or 2.7.7) and incubated at 

37°C overnight with shaking (GallenKamp orbital shaker). Bacteria were harvested 

by centrifugation at 6000xg, for 15 minutes, at 4°C in a Beckman JA10 rotor, before 

DNA was prepared using the Qiagen maxi-prep kit (plasmids) or Machery Nagel 

AX100 maxi-prep kit (BACs) according to manufacturer’s instructions. 

 

2.10: Sequencing reactions 
 
250-500 ng of PCR amplified template or 1.5 µg BAC DNA was mixed with 5.5 

pmol of appropriate primer in a total volume of 10 μl, made up with H2O.  

Sequencing reactions were carried out using the Applied Biosystems Big Dye 

Terminator Version 3.1 chemistry and analysed on an ABI PRISM 3130xl Genetic 

analyser by the in house molecular biology service. For sequencing primers used see 

Table 2.8. 
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2.11: Preparation of DNA for BAC transfection 
 

2.11.1: Linearisation of DNA 
 

DNA was linearised by cutting 1µg with 10U/µg PacI (NEB) in a total volume of 

100µl at 37°C overnight. 

 

2.11.2: Phenol/Chloroform extraction 
 

An equal volume of phenol/chloroform/iso-amyl alcohol solution was added to the 

DNA, and the sample vortexed for 1 minute, before being centrifuged for 2 minutes 

at 16,000xg in a micro-centrifuge.  The upper layer was transferred to a clean tube 

and an equal volume of chloroform/iso-amyl alcohol solution added.  The sample 

was vortexed for 1 minute and centrifuged as before.  The upper layer was 

transferred to a clean tube and made up to 250 μl with distilled H2O, before adding 

1/10 of the sample volume (25 μl) of Sodium Acetate pH5 and mixing. Finally 2.5x 

the sample volume (687.5 μl) of cold 100% ethanol was added and the tube inverted 

several times.  The DNA was stored at -20°C until needed. 

 

2.11.3: Re-suspension of DNA 
 

DNA was centrifuged at 16,000xg for 30 minutes at 4°C in a micro-centrifuge, the 

ethanol supernatant was removed by careful decanting, and the pellet washed with 

600 μl of ice cold 70% ethanol, under sterile conditions. Samples were centrifuged at 

16,000xg for 20 minutes at 4°C, and the ethanol was removed by careful decanting, 

and the pellet dried by aspirating. The pellet was re-suspended in sterile H2O (v/v) to 

give a concentration of approximately 100ng/μl. 

 

2.12: Transfection of mammalian cells for vector reconstitution 
 

For transient transfections, 293 cells were grown to 80-85% confluence in 12 well 

plates and transfected with 1µg linear BAC DNA and 3µl Lipofectamine 2000 

(Invitrogen) in 200µl OptiMEM. At 5 hours post-transfection, the DNA mix was 

removed and the cells overlaid with 2 ml DMEM 2% FCS and incubated for a further 

96 hours before further passage until c.p.e. was seen and vector harvested. 
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2.13: SDS-Polyacrylamide Gel Electrophoresis (PAGE) 
 
Proteins were separated by electrophoresis on discontinuous SDS-polyacrylamide 

gels according to the method of Laemmli (1970). Cell samples were boiled in PAGE 

sample buffer for 5-10 mins. Samples and molecular weight PAGE ruler plus™ 

markers (Fermentas) were loaded onto an upper 5 % stacking gel (120 mM Tris-HCl 

pH 6.8, 5 % (w/v) acrylamide, 0.12 % (w/v) N.N’-methylene-bis-acrylamide, 0.1 % 

(w/v) SDS, 0.1 % (w/v) ammonium persulphate and 0.6 μl/ml TEMED) and proteins 

were separated as they passed through a lower 10 % resolving gel (430 mM Tris-HCl 

pH 8.8, 10 % (w/v) acrylamide, 0.27 % (w/v) N.N’-methylene-bis-acrylamide, 0.1 % 

(w/v) SDS, 0.1 % (w/v) ammonium persulphate and 0.3 μl/ml TEMED). 

Electrophoresis was performed for 90 min at 130 V in running buffer using the Mini 

PROTEAN® 3 cell system (Bio-Rad) according to the manufacturer’s instructions. 

 

2.14: Protein transfer and Western blotting 
 
Following separation by SDS-PAGE, proteins were transferred to a Hybond™-ECL 

nitrocellulose membrane (Amersham Life Science) using the Mini PROTEAN® 3 

cell system (Bio-Rad) according to manufacturer’s instructions at 300mA for 75 

minutes. Identification of molecular weight markers on the membrane enabled 

transfer of protein to be assessed. Membranes were placed in blocking solution (PBS 

containing 2 % (w/v) milk powder and 0.05% (v/v) Tween-20) for 16 hours at 4 ˚C.  

The next day membranes were washed twice in PBS/0.05%Tween-20 at 4°C to 

remove excess blocking reagents, followed by incubation with primary antibody 

diluted in PBS/0.05%Tween-20 for 1 hour at RT on a roller.  In order to remove 

excess primary antibody the membranes were washed several times in 

PBS/0.05%Tween-20, before incubation with the secondary antibody diluted in 

PBS/0.05%Tween-20 as before.  Following extensive washes to remove excess 

antibody, the proteins were detected using the Pierce® ECL Western blotting 

detection system (Thermo Scientific) according to the manufacturer’s instructions  
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2.15: Preparation of Dendritic cells 
 

2.15.1: Isolation of Peripheral Blood Monocuclear Cells (PBMCs) 
 
Buffy coats were obtained from the National Blood Service in Birmingham. Whole 

blood was transferred to Falcon tubes and diluted 1:2 with pre-warmed RPMI to a 

total volume of 30 ml. The resulting mixture was layered on to 15 ml of Lymphoprep 

(Axis-Shield) and centrifuged (800xg for 30min) with the brake de-activated. The 

defined white band of lymphocytes was removed using a Pasteur pipette, pooled, 

diluted to 40 ml with RPMI, centrifuged (500xg for 15 min), the supernatant 

removed, pellet re-suspended in 40 ml RPMI and the lymphocytes counted. CD14 

positive monocytes were then isolated via one of two methodologies.  

 

2.15.2: Isolation of CD14+ monocytes by MACS separation 
 

After counting, the cells were pelleted (350xg for 10 min) and re-suspended in 80µl 

MACS buffer and 20 µl CD14 microbeads for the isolation of human monocytes 

(Miltenyi Biotech) per 1 x 107 cells, mixed and incubated for 15 min at 4°C.  The 

cells were washed in 25 ml MACS buffer, pelleted (350xg for 3 min), supernatant 

removed and re-suspended in 3ml MACS buffer.  An LS MACs column (Miltenyi 

Biotech) was placed in the magnetic field of a MACS separator (Miltenyi Biotech) 

and rinsed with 3 ml of MACS buffer before the cell suspension was applied to the 

column and allowed to pass through, the unlabelled cell fraction collected and the 

column washed three times with 3 ml MACS buffer with the eluted fractions added 

to the unlabelled cell fraction. The column was then removed from the separator, 

placed onto a 15 ml Falcon, 5 ml MACS buffer applied to the column and 

immediately flushed by applying the plunger supplied with the column. The cells 

were counted, adjusted to 5 x 105 cells/ml to a 6 well dish in RPMI + 5% FCS, 800 

U/ml Granulocyte-macrophage colony-stimulating factor (GM-CSF) and 1000 U/ml 

Interleukin 4 (IL-4) (Immunotools) added to each dish and cultured for 5 days before 

being assessed markers of immature Dendritic cells (iDCs). Subsequent treatment 

with 25 ng/ml tumor necrosis factor alpha (TNFα) or 1 µg/ml Lipopolysaccharide 

(LPS) further differentiates the iDCs into mature dendritic cells (mDCs) within 48 

hours.  
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2.15.3: Isolation of CD14+ monocytes by adherence 
 
After counting the number of cells (generally ~1 x 108) the cells were pelleted 

(350xg for 10 min) and resuspended in 10 ml RPMI + 5% FCS and placed in a 

75cm2 cell culture flask at 37°C + 5% CO2. After 30 minutes 4 ml of media was 

removed from the flask and replaced with an equal volume of fresh RPMI + 2% 

FCS, after a further 30 minutes 8 ml was removed and replaced as before. After a 

final 30 minutes the flask was agitated, the remaining media removed, replaced with 

PBS and the flask agitated again. This process was repeated twice before the 

remaning adherent cells were cultured as before in RPMI + 5% FCS, 800 U/ml GM-

CSF and 1000 U/ml IL-4 (Immunotools) for 5 days before being assessed for 

markers of iDCs. Once again subsequent treatment with 25 ng/ml tumor necrosis 

factor alpha (TNFα) or 1 µg/ml Lipopolysaccharide (LPS) further differentiates the 

iDCs into mature dendritic cells (DCs).  

 
2.16: Virus titration 
 
 2.16.1: Adenovirus plaque assays 
 
A limiting dilution plaque assay was used to determine the infective titre of Ad19a 

and Ad5 viruses in plaque forming units per millilitre (pfu/ml). A549 cells were 

utilised for Ad viruses and the E1A expressing 293 cell line used to complement 

E1A deleted Ad vectors. The cells were seeded into 60mm dishes and grown to 

subconfluence. Cells were washed once in PBS, infected with a ten-fold serial 

dilution of each virus preparation in DMEM without FCS and incubated for 1.5h at 

37°C. The virus was removed and the cells overlayed with 4.5ml of overlay medium 

(2xDMEM, 20 mM Hepes, 4% FCS, 10% NaHCO3, 2% penicillin-streptomycin, 1% 

Glutamine) diluted 1x in 1.8% Agarose. The overlay was allowed to solidify and the 

cells were incubated at 37°C for five days when they were overlayed with another 

4.5ml overlay medium. This was repeated twice at ten days and fifteen days followed 

by a 3ml overlay at twenty days. The plaques were counted at day twenty-one for 

Ad5 and day twenty-eight for Ad19a. Counts were performed by determining the 

numbers of plaques as a two plate mean at a chosen concentration (generally the 

dilution which gives between 10-100 plaques was chosen). The mean number of 

plaques is then multiplied by the dilution factor to give the resultant number of 

pfu/ml. 
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 2.16.2: PVM plaque assays 
 
A limiting dilution plaque assay was also used to determine the infective titre of 

PVM virus. BSC-1 cells were seeded in 12 well plates and grown to subconfluence. 

Cells were washed once in PBS, infected with a ten-fold serial dilution of PVM in 

GMEM without FCS and placed at 31°C for one hour. The virus was removed and 

the cells overlayed with 2 ml of overlay medium (which was a 1:1 mixture of 4% 

CMC Agar and GMEM + 2% FCS) and incubated at 31°C for ten days. After 10 

days the cells were fixed by addition of 1 ml 2% Gluteraldehyde to each well and left 

for 1 hour at room temperature. The overlay medium was then poured off, the plates 

dried and 1ml crystal violet added to each well for 15 min. The plates were then 

rinsed with water, dried at 37°C, the plaques counted and the viral titre determined. 

 

 2.16.3: Adenovirus particle number calculation  

 

Once purified the particle number of an Ad vector or virus was calculated based on a 

modified methodology of Mittereder et al., 1996. Briefly, a sample of purified virus 

was taken, diluted 1:20 in TE + 0.1% SDS, incubated in a heat block at 56°C for 10 

mins and a 260 nm optical density reading was taken using a nanodrop as previously 

described. This reading was multiplied by 20 (the original dilution factor) and 

compared by ratio with known particle number standards for Ad5 (where an OD260 

nm reading of 1 = 1x1012 particles/ml). 

 

2.17: Recombineering 
 
Recombineering was performed using a modification of the methodology of 

Warming et al., 2005.  

 

2.17.1: GalK/KnR recombination 

 

500 µl of an overnight culture of SW102 cells transformed with the BAC to be 

recombined was diluted in 25 ml LB medium with or without antibiotic selection (see 

chapter 2.7.6) in a 100 ml conical flask and grown at 30°C in a shaking incubator 

(Gallenkamp Orbital Shaker) to an OD600 of 0.6. Then, 10 ml was transferred to 

another 100 ml conical flask and heat-shocked at 42°C for exactly 15 min in a 
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shaking waterbath (Techne SB-16). The 15 ml remaining culture was left at 32°C as 

the uninduced control. After 15 min the two samples were cooled in an ice bath and 

transferred to two 15 ml Falcon tubes and pelleted at 500xg (Eppendorf centrifuge 

5810R) at 4°C for 5 min. The supernatant was removed, the pellet resuspended in 1 

ml ice-cold ddH2O by gently swirling the tubes in a water bath, 9 ml ice-cold ddH2O 

was added and the samples pelleted again. The supernatant was removed, and the 

pellet resuspended in 100 µl ddH2O and electroporated in a 0.1 cm cuvette 

(Geneflow Ltd.) at 25 µF, 2.5 kV and 200  with 250 ng galK/KnR PCR product. 

After electroporation the bacteria were recovered in 1 ml LB in a 1.5 ml eppendorf 

for 1 h in a 32°C shaking waterbath. Both the induced and uninduced cultures were 

plated on MacConkey agar-cm/kan plates and incubated overnight at 30°C. The 

following morning the plates were inspected and normally no colonies were present 

on uninduced control plates. Surviving red colonies on the induced plate were 

selected and checked by restriction digest for successful GalK/KnR recombination. 

 

2.17.2: Second stage recombination 

 

Second stage recombination was performed as in chapter 2.16.1 using SW102 cells 

transformed with the required galK/KnR containing BAC until electroporation. The 

culture was electroporated with 1 µg PCR product or gel purified fragment. The 

bacteria were then recovered in 10 ml LB in a 100 ml conical flask and incubated for 

4.5 h in a 30°C shaking incubator. After the recovery period, the bacteria were 

washed twice in M9 medium as follows: 1 ml culture was pelleted in an Eppendorf 

tube at 13 200 r.p.m. for 30 s, the supernatant was removed and resuspended in 1ml 

M9 medium. Serial dilutions were plated on M63 agar plates with required antibiotic 

selection (see chapter 2.7.6). Plates were sealed with Parafilm© and incubated at 

30°C for 120 hours. The plates were inspected and surviving colonies on the induced 

M63 agar plates were selected and checked for successful second stage 

recombination. 

 

2.18: Animal work 
 
Female BALB/c mice (H-2d), 5 to 8 weeks old, were purchased from B&K Universal 

and acclimated for 1 week prior to experimentation. Mice were kept in accordance 
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with UK Home Office welfare guidelines and project licence restrictions and 

weighed as a group every 48 hour prior to virus challenge and every 24 hours 

thereafter. 

 

 2.18.1: Intra peritoneal anesthetisation 
 
Mice were intraperitoneally anesthetised with 100mg/kg Ketamine (Ketaset, Fort 

Dodge) and 0.1mg/kg Xylazine Hydrochloride (Sigma) and returned to a holding 

cage until under the anaesthetic’s effect, normally 2-4 min. 

 

 2.18.2: Intranasal inoculation  
 
Mice were intranasally inoculated with 50 µl of adenovirus vector or PBS by 

applying drops of the fluid to the left and right nostrils, allowing the fluid to be 

absorbed by normal respiration. Subsequently the mouse was laid on its side until 

recovery from the anaesthetic. 

 

 2.18.3: Tail tip blood 
 
Whilst under the anaesthetic’s effect, when appropriate, 1 mm of the tip of the tail 

was removed by scissors and approximately 20 µl of blood harvested by ‘milking’ 

the tail. 

 

 2.18.4: Sacrifice 
 
Mice were sacrificed according to Home Office regulations by cervical dislocation. 

The mouse was held by its tail and placed on a surface that it could grip, a finger 

placed firmly across the back of the neck. A sharp pull on the base of the tail was 

then applied to dislocate the neck. 

 
2.19: Indirect Enzyme-linked immunosorbent assay (Indirect 
ELISA) 
 
Indirect ELISAs were performed according to Sambrook et al., 1989. Briefly, 96 

well plates were coated with either 50 µl/well of 20 µg/ml BSC-1 or P2-2 lysate to 

assay for antibody response to PVM or 50 µl/well of 1 µg/ml purified Ad19a and 

Ad5 vectors to assay for antibody response to each vector and incubated O/N at 4°C. 
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The plates were washed five times with 200 µl/well PBS/Tween using a Biotrak II 

plate washer (Amersham Biosciences). The plates were blocked with 100 µl/well 5% 

Milk powder in PBS/Tween before washing again. Sera samples were diluted 1:70 

and diluted 3 fold across a 96 well plate. The serum antibodies were incubated with 

Horse Radish Peroxidase (HRP) conjugated goat anti-mouse IgG (whole molecule) 

or HRP conjugated goat anti-rabbit IgG (whole molecule) where stated. The presence 

of antibodies was quantified by the measurement of flurogenic activity by the 

addition of ABTS substrate and detected at 605nm using a RC Mutliscan 

(Labsystems Inc.). 
 

2.20: Enzyme-linked immuno spot (ELISPOT) 
 
ELISPOTs were performed at the John Radcliffe hospital (Oxford) by Dr. Anne 

Bridgemann according to Czerkinsky et al., 1983. 

 

2.21: Competition Assays 
 

2.21.1: Monoclonal or Polyclonal Antibody Competition Assay 
 
Mammalian cell lines were grown to 80% confluence in 96 well plates, the media 

removed, 50 µl DMEM without FCS containing no antibody or varying 

concentrations of monoclonal or polyclonal antibodies (see table 2.8) added and the 

plates incubated at 4°C for 1 hour. After 1 hour 50 µl of Ad5GFP, Ad5F35GFP or 

Ad19aGFP at an MOI of 3 or 10 was added, incubated at 4°C for 30 min, incubated 

at 37°C for 30 min, then the media removed, the cells washed with DMEM without 

FCS, 50 µl DMEM + 2% FCS added and the plates incubated for 38-46 hours at 

37°C/5% CO2. The cells were harvested and analysed for GFP fluorescence by flow 

cytometry (see chapter 2.6). 

 
2.21.2: Soluble Protein Competition Assay 

 
Mammalian cell lines were grown to 80% confluence in 96 well plates. Ad5GFP, 

Ad5F35GFP or Ad19aGFP at an MOI of 3 and 10 was mixed and incubated with 

varying concentrations of soluble proteins (see table 2.11) and incubated at 4°C for 1 

hour. The media was removed from the plates and replaced with 100 µl of the 

virus/protein suspension, incubated at 4°C for 30 min and then raised to 37°C for 30 
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min. The media was subsequently removed; the cells washed with DMEM without 

FCS, 50 µl DMEM + 2% FCS added to each well and the plates incubated for 38-46 

hours at 37°C/5% CO2. The cells were harvested and analysed for GFP fluorescence 

by flow cytometry (see chapter 2.6). 

 

2.22: Computer and Statistical Analysis 
 

2.22.1: Sequence Alignments 
 

DNA sequence alignments were performed in clone manager v7.04 (SciED central) 

 

2.22.2: Plasmid Maps 
 
Graphical representation of plasmids, including genes and restriction enzyme sites 

(Appendix) were generated using clone manager v7.04 (SciED central) 

 

2.22.3: Graphical Data 
 
All data, unless otherwise stated, was analysed and graphs produced using Microsoft 

Excel® (Microsoft, Redmond, United States). 

 

2.22.4: Linear Regression analysis 
 
Linear regression analysis was performed using the Prism 4 software (GraphPad 

software). 
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Chapter 3: Generation of recombinant Ad19a and Ad5 viruses and 

expression vectors 

 

3.1: Introduction 

 
The use of adenoviruses other than those from subgroup C has been held back 

initially by the lack of fully sequenced viral genomes and subsequently by the 

requirement for a cloning and mutagenesis system which is simple, quick, 

inexpensive and can be used on all adenoviral serotypes. Commercial systems, such 

as the Stratagene AdEasy system®, currently only exist for Ad5 and as such cannot 

be used to create adenovirus vectors based on other serotypes. There have been 

several approaches used to generate recombinant Ads from other serotypes which all 

work on the basis of either modifying a subcloned fragment of the Adenovirus 

genome before cloning it back into the Adenovirus genome (Berkner, 1998) or 

homologous recombination between two or more co-transfected plasmids carrying 

complementary sequences of the Ad genome (Bett et al., 1994; Chartier et al., 1996). 

Both methods were, at first, inefficient due to either the lack of restriction enzyme 

sites around the area to be modified (Chartier at al., 1996) or the requirement for the 

subcloning of the modified fragment into shuttle plasmids respectively (McVey et 

al., 2002). The recombination methodology, however, has since been further 

developed to make it more efficient. 

 

A novel recombination strategy was developed for the construction of Ad35, Ad11 

and Ad49 vectors (Vogels et al., 2003; Holterman et al., 2004; Lemckert et al., 

2006). This system used an adapter plasmid containing the left end of the Ad genome 

and a multiple cloning site flanked by a Cytomegalovirus promoter (CMV) and the 

simian virus 40 poly(A) transcription termination signal (SV40 polyA) and a cosmid 

containing the remaining genome. The adapter plasmid contained a 2,547bp overlap 

with the cosmid allowing for homologous recombination between the two in Ad5 

E1-complementing PER.C6 cells (Lemckert et al., 2006). Any modification made to 

either the adapter plasmid or cosmid could then be reconstituted into the full-length 

Ad genome. This method, however, i) required the replacement of the E4-ORF 6 of 

each Ad vector being generated with that of Ad5 to allow the growth of the vector on 

88 
 



the PER.C6 cell line, ii) required the use of a large homologous sequence and iii) 

relies on the intrinsic efficiency of homologous recombination within PER.C6 cells, 

which is relatively low. 

 

Concurrently, a novel recombination methodology had been developed, ET 

recombination (Zhang et al., 1998), which used λ phage-derived proteins to 

recombine linear DNA fragments into homologous targets within the E.coli genome. 

This basic methodology was adapted for the modification of Ad genomes in E.coli, 

such as Ad19a, and had the advantage of requiring very short areas of homology 

between the DNA fragment and the target site (Ruzsics et al., 2006) allowing the use 

of short PCR fragments or fully synthetic oligonucleotides. In this system, co-

transfection of the pBADαβγ plasmid, which encoded the λ phage protein pair 

Redα/Redβ, allows for recombination between complementary sequences with high 

efficiency (Zhang et al., 1998; Zhang et al., 2000). In a first step a kanamycin 

resistance cassette was inserted into the Ad genome using a transposon 7 (Tn7) 

derived in vitro transcription system (Biery et al., 2000), so that in a second step the 

correct modification could be identified and then the resistance cassette removed by 

a transposase. This methodology was shown to be highly effective in introducing 

deletions, insertions, and point mutations in a recombinant Ad genome (Ruzsics et 

al., 2006). Whilst highly efficient, this methodology required the use of transposase, 

which was expensive, a ligation step and the use of a helper plasmid which made it 

complex to perform. 

 

A further recombination methodology, known as recombineering, was developed by 

Warming et al., 2005. This methodology included the creation of an E.coli strain, 

SW102, which expressed the λ phage recombination proteins exo, bet and gam from 

a stably integrated λ prophage under the control of the temperature sensitive 

repressor cI857 (Yu et al., 2000) Using this repressor, exo, bet and gam are not 

expressed when the bacteria are kept at 32°C but by increasing the temperature to 

42°C for 15 min, the genes are expressed to high levels and homologous 

recombination becomes very efficient. The SW102 strain also lacks a functional 

galactokinase gene (galK), which catalyses the first step in the galactose degradation 

pathway meaning the bacteria cannot be grown on galactose as a sole source unless 

the galK gene is provided in trans. The lack or gain of the galK gene in trans can be 
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used for both positive and negative selection of transformed bacteria. Positive 

selection by a colour change from white to red induced by galactose use on 

MacConkey agar when acid is produced which lowers the pH of the agar and 

negative selection based on the phosphorylation of the galactose analog 2-deoxy-

galactose (DOG) to 2-deoxy-galactose-1-phosphate by galK which is toxic and 

cannot be further metabolised (Alper and Ames, 1975). Using this system the 

insertion and subsequent removal of a galK containing sequence by recombination 

into an existing BAC (Bacterial artificial chromosome) or plasmid can be easily 

perceived. This methodology was then further modified by Ruzsics for mutation of 

viruses (personal communication). This involved the use of a second selection 

marker in combination with the galK gene, a kanamycin resistance cassette, to 

further reduce incorrect selection. To prove the validity of this system for the 

modification of Ad genomes, this modified recombineering methodology was used 

here (summarised in Figure 3.1) to generate recombinant Ad19a and Ad5 expression 

vectors expressing different transgenes and to introduce point mutations. 

 

3.2: Aims 

 
The specific aims of this area of research were three-fold: firstly, to construct 

galK/KnR intermediate BACs for further modification; secondly, to construct shuttle 

plasmids for the recombination of vaccination relevant transgenes, such as the HIVA 

polyprotein expression cassette developed by Hanke and the nucleocapsid protein of 

PVM, into the galK/KnR containing intermediates, and thirdly, to use both the 

created BACs, shuttle plasmids and PCR generated mutagenesis sequences for 

generation of recombinant Ad19a and Ad5 viruses and expression vectors.  
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Figure 3.1.: The use of an adapted recombineering methodology to modify 
plasmids or BACs 
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3.3: Generation of recombinant galK/KnR BACs  

 

3.3.1: Generation of BAd19aΔE1ΔE3galK/KnR and 

BAd5ΔE1ΔE3galK/KnR
sv 

 

The galK/KnR cassette with 50bp of homology to the CMV and SV40 polyA tail of 

BAd19aΔE1ΔE3GFP (BAd19aGFP; Appendix Figure 5 (Figure A5)) and 

BAd5ΔE1ΔE3GFPsv (BAd5GFP; Figure A3) was isolated by PCR from 

pGPSgalK/KnR (Figure A1) using the GalKFOR and GalKREV primers. The 

resultant PCR products were subjected to agarose gel electrophoresis, the expected 

2,173bp band visualised (Figure 3.2 A) and subsequently purified by DNA gel 

purification. The purified DNA was recombined into the E1 region of BAd19aGFP 

or BAd5GFP, which had been previously transformed into SW102 cells, by Gal/KnR 

recombination (Chapter 2.16.1). A map of the general genome organisation of the Ad 

recombinants generated is given in Figure 3.8. When plated on MacConkey agar-

cm/kn plates colonies were only seen if the culture had been warmed to 42°C, at 

which the temperature-sensitive repressor is deactivated and the expression of exo, 

bet and gam allowed (Figure 3.2 B). No colonies were seen when the culture was left 

at 32°C (Figure 3.2C). Positive red clones were selected and checked by XhoI 

restriction digest for successful GalK/KnR recombination. The resultant agarose gel 

of the restriction digests showed, by comparison to the expected banding patterns 

(although DNA fragments above 4kb are difficult to elucidate, bands below that level 

are sufficient to show a match in this case and all subsequent cases of BAC 

digestion) that both BAd19aΔE1ΔE3galK/KnR (BAd19agalK/KnR Figure A6) and 

BAd5ΔE1ΔE3galK/KnR
sv (BAd5galK/KnR Figure A4) were successfully generated 

(Figure 3.2 D). 

 

Whilst the higher two bands (>4 kb) are not resolved, it is clear that all the separated 

Ad5 bands are identical except bands migrating at ~3910 and at ~8400 which are 

predicted after successful recombination (Figure 3.2 D, lanes 1 and 2). Similarly, the 

generated Ad19a recombinant shows the loss of the band migrating at ~2600 and the 

appearance of a band migrating at ~4000 which was also predicted (Figure 3.2 D, 

lanes 3 and 4). 
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D) 

BAd19aGalK/KnR (Lane4) 
 
14,918bp (9040-23958), 10,891bp (25380-36271), 3,946bp 
(36271-2196), 2,486bp (2196-4682), 2,225bp (4682-6907), 
1,548bp (6907-8455), 1050bp (23958-25008), 585bp (8455-
9040), 197bp (25008-25206), 174bp (25206-25380) 

BAd19aGFP (Lane 3) 
 
14,918bp (7663-22581), 10,891bp (24003-34894), 2,589bp 
(34894-839), 2,466bp (839-3305), 2,225bp (3305-5530), 
1,548bp (5530-7078), 1050bp (22581-23631), 585bp (7078-
7663), 197bp (23631-23829), 174bp (23829-24003) 

BAd5GalK/KnR (Lane 2) 
 
14,500bp (12144-26644), 10,274bp (26644-36918), 8,408bp 
(36918-3728), 3,910bp (3728-7638), 2,466bp (7638-10104), 
1,445bp (10104-11549), 595bp (11549-12144) 

BAd5GFP (Lane 1) 
 
14,500bp (11060-25560), 11,234bp (35834-6554), 10,274bp 
(25560-35834), 2,466bp (6554-9020), 1,445bp (9020-
10465), 595bp (10465-11060) 
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Figure 3.2: Generation of BAd19agalK/KnR and BAd5galK/KnR
. A) Agarose gel 

electrophoresis of PCR products using GalKFOR/GalKREV primers on 
pGPSgalK/KnR alongside a 1kb DNA ladder showing the generated 2,173bp 
galK/KnR fragment containing the galK and KnR ORFs flanked by 50bp of 
homologous sequence to the CMV and SV40polyA sequences of BAd19aGFP or 
BAd5GFP. B) Colonies resulting from GalK/KnR recombination after the culture was 
raised to 42°C deactivating the cI857 temperature sensitive repressor and allowing 
recombination via the integrated λ prophage elements plated at either a 1:10 dilution, 
100µl of undiluted culture or the remaining culture pelleted and re-suspended in 
100µl. C) Colonies resulting from GalK/KnR recombination when the culture was left 
at 32°C and plated as previously. D) Agarose gel electrophoresis of restriction 
digests with XhoI and expected restriction digest patterns of 1) BAd5GFP 2) 
BAd5galK/KnR 3) BAd19aGFP 4) BAd19agalK/KnR alongside 5) 1kb DNA ladder. 
Relevant visible bands are underlined in each case. For calculated banding patterns 
alongside relevant BAC maps and full DNA ladder map consult Figures A2, A3, A4, 
A5 and A6. Stars show the band denoting appearance of the GalK/KnR cassette 
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3.3.2: Generation of BAd19aΔ19KgalK/KnR 

 

The galK/KnR cassette with 50bp of homology to the 5’ and 3’ flanking regions of 

the Ad19a E3-19K gene, was isolated by PCR from pGPSgalK/KnR (Figure A1) 

using the H1-19KO and H2-19KO primers. The resultant PCR products were 

subjected to agarose gel electrophoresis, purified and recombined into BAd19awt 

(Figure A7) using GalK/KnR recombination, as previously. When plated on 

MacConkey agar-cm/kn plates colonies were only seen if the culture had been 

increased to 42°C indicating that the temperature sensitive recombination system has 

been induced. No colonies were seen when the culture was left at 32°C, as before. 

Positive red clones were selected and checked by XhoI restriction digest for 

successful recombination. The resultant agarose gel of the restriction digests matched 

the expected banding patterns (Figure 3.3) and showed that BAd19aΔ19KgalK/KnR 

(Figure A8) was successfully generated. 

 

3.4: Generation of pCMV shuttle plasmids 
 

 3.4.1: Generation of pCMVHIVA 

 

The pHIVAOx plasmid (obtained from T. Hanke; Figure A9) lacked the SV40 polyA 

signal required for recombination into the galK/KnR intermediate BACs. A shuttle 

plasmid was therefore generated containing the HIVA polyprotein expression 

cassette with both the homologous CMV promoter and SV40 polyA tail as follows. 

pHIVAOx and pEGFP-N1 (Figure A10) were digested with NdeI and NotI (Figure 

3.4A). The resultant 3,556bp band from pEGFP-N1 (shuttle plasmid backbone 

including SV40 polyA tail) and the 2,917bp band from pHIVAOx (CMV-HIVA 

fragment) were purified and then ligated to create pCMVHIVA. The generation of 

pCMVHIVA was confirmed by restriction digest with StuI generating the correct 

3,811bp and 2,672bp bands (Figure 3.4B). 
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A) 

2036bp
1636bp

1018bp

506bp

1 2 3

 

BAd19aΔ19KGalK/KnR (Lane 2) 
 
14,918bp (8044-22962), 9,442bp 
(32142-41584), 5,438bp (41584-
3687), 4,244bp (24210-28454), 
3,688bp (28454-32142), 2,224bp 
(3687-5911), 1,548bp (5911-7459), 
1050bp (22962-24012), 585bp (7459-
8044), 197bp (24012-24210), 174bp 
(24210-24384) 

BAd19awt (Lane 1) 
 
14,918bp (8044-22962), 9,486bp 
(30403-39889), 6,019bp (24384-
30403), 5,438bp (39889-3687), 
2,224bp (3687-5911), 1,548bp (5911-
7459), 1050bp (22962-24012), 585bp 
(7459-8044), 197bp (24012-24210), 
174bp (24210-24384) 

 
 
 
 
 
Figure 3.3: Generation of BAd19aΔ19KgalK/KnR  

A) Agarose gel electrophoresis of restriction digests with XhoI and expected 
restriction digest banding patterns of 1) BAd19awt 2) BAd19aΔ19KgalK/KnR 
alongside 3) 1kb DNA ladder. Relevant bands are shown (stars) and highlighted by 
underlining in key. For calculated banding patterns alongside relevant BAC maps see 
Figures A7 and A8. 
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A) 

 

pEGFP-N1 (Lane 2) 
 
4,733bp (plasmid cleave only once), 
3,566bp (1400-233), 1,167bp (233-
1400) 

pHIVAOx (Lane 1) 
 
6,439bp (plasmid cleaved only once), 
3,522bp (3902-985), 2917bp (985-3902)

 

B) 

pCMVHIVA (Lanes 1 + 2) 
3,811bp (4326-1654), 2,672bp (1654-
4326) 

 
Figure 3.4: Generation of pCMVHIVA 
 A) Agarose gel electrophoresis and expected banding patterns of NdeI/NotI 
restriction digest of 1) pHIVAOx and 2) pEGFP-N1 alongside 1kb DNA ladder 
(NEB). For calculated fragments alongside relevant BAC maps see Figures A9 and 
A10. B) Agarose gel electrophoresis and expected banding patterns of StuI 
restriction digest of pCMVHIVA. For calculated banding patterns alongside relevant 
BAC maps consult Figure A11. 
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  3.4.2: pCMVPVM-N 

 

The pCMVPVM-N shuttle plasmid (Figure A12) containing the PVM-N transgene 

flanked by the CMV promoter and SV40 polyA tail was obtained from Helen Terry 

(University of Warwick) 

 

3.5: Generation of recombinant Ad19a and Ad5 HIVA BACs  
 

To generate BACs with Ad19a and Ad5 vector genomes containing the HIVA 

transgene within their respective expression cassettes requires the replacement of the 

existing galK/KnR selection markers in BAd19agalK/KnR and BAd5galK/KnR
sv with 

the CMV-HIVA expression cassette of pCMVHIVA (Chapter 3.4.1).  

 

The pCMVHIVA plasmid was digested with NdeI and MfeI/MunI which generated 

the expected 3,024bp linear DNA fragment containing the HIVA transgene with 

336bp of homology with the CMV promoter and 96bp of homology with the SV40 

polyA tail within the corresponding regions in the galK/KnR intermediate BACs 

(Figure 3.5A). A second stage recombination reaction (2.16.2), using the generated 

DNA, was then performed. To confirm generation of BAd19aΔE1ΔE3HIVA 

(BAd19aHIVA; Figure A13) and BAd5ΔE1ΔE3HIVAsv (BAd5HIVA; Figure A14) 

any surviving colonies on M63 plates, 120 hours after plating (Figure 3.5B), were 

analysed by XhoI restriction digest alongside their predecessors (Figure 3.6). The 

BACs were also sequenced (see chapter 2.9) across the HIVA transgene and SV40 

polyA tail using sequencing primers HIVA/F/1, HIVA/F/2 and HIVA/F/3 and 

compared to the predicted BAC sequences (Figures A15 and A16). In both cases 

BAd19aHIVA and BAd5HIVA matched both the predicted restriction digest banding 

patterns and exhibited the correct sequence with no nucleotide mismatches 

confirming they were both successfully generated. 
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A) 

 
 

 

pCMVHIVA 
 
6,483bp (plasmid cleaved only 
once), 3,459bp (3257-233), 
3,024bp (233-3257) 

42°C 

32°C 

B) 

C) 

 
 

Figure 3.5: Generation of recombinant Ad19a and Ad5 HIVA BACs  

A) Agarose gel electrophoresis of restriction digests with NdeI/MunI of pCMVHIVA 
1kb DNA ladder with expected banding pattern. Two bands resulted from the digest, 
but due to the large amount of DNA used for later isolation and the proximity of the 
fragment sizes, both bands could not be resolved independently. For calculated 
banding patterns alongside relevant plasmid map see Figure A11. B) Colonies 
resulting from second stage recombination after 120 hours after the culture was 
raised to 42°C deactivating the cI857 temperature sensitive repressor plated at either 
100µl of undiluted culture or the remaining culture pelleted and re-suspended in 
100µl. C) Colonies resulting from second stage recombination when the culture was 
left at 32°C plated as previously. 
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BAd5HIVA (Lane 3) 
 
14,500bp (12406-26906), 12,580bp (37180-7900), 10,274bp (26906-37180), 2,466bp (7900-10366), 1,445bp (10366-11811), 
595bp (11811-12406) 

BAd19aHIVA (Lane 6) 
 
14,918bp (9603-24521), 10,891bp (25943-36834), 6,995bp (36834-5245), 2,225bp (5245-7470), 1,548bp (7470-9018), 1050bp 
(24521-25571), 585bp (9018-9603), 197bp (25571-25769), 174bp (25769-25943) 

BAd19aGalK/KnR (Lane 5) 
 
14,918bp (9040-23958), 10,891bp (25380-36271), 3,946bp (36271-2196), 2,486bp (2196-4682), 2,225bp (4682-6907), 1,548bp 
(6907-8455), 1050bp (23958-25008), 585bp (8455-9040), 197bp (25008-25206), 174bp (25206-25380) 

BAd19aGFP (Lane 4) 
 
14,918bp (7663-22581), 10,891bp (24003-34894), 2,589bp (34894-839), 2,466bp (839-3305), 2,225bp (3305-5530), 1,548bp 
(5530-7078), 1050bp (22581-23631), 585bp (7078-7663), 197bp (23631-23829), 174bp (23829-24003) 

BAd5GalK/KnR (Lane 2) 
 
14,500bp (12144-26644), 10,274bp (26644-36918), 8,408bp (36918-3728), 3,910bp (3728-7638), 2,466bp (7638-10104), 
1,445bp (10104-11549), 595bp (11549-12144) 

BAd5GFP (Lane 1) 
 
14,500bp (11060-25560), 11,234bp (35834-6554), 10,274bp (25560-35834), 2,466bp (6554-9020), 1,445bp (9020-10465), 
595bp (10465-11060) 
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Figure 3.6: Generation of BAd19aΔE1ΔE3HIVA and BAd5ΔE1ΔE3HIVAsv
Agarose gel electrophoresis of restriction digests with XhoI and expected restriction 
digest patterns of 1) BAd5GFP, 2) BAd5galK/KnR, 3) BAd5HIVA, 4) BAd19aGFP, 
5) BAd19agalK/KnR and 6) BAd19aHIVA alongside 1kb DNA ladder. Generation of 
Bad5HIVA has been highlighted by the loss of the 3,910 bp band from the 
corresponding galK/KnR construct. Generation of Bad19aHIVA has been highlighted 
by the loss of the 3,946 bp and 2,486 bp band from the corresponding galK/KnR. 
Important bands are highlighted (star) and underlined. For calculated banding 
patterns alongside relevant BAC maps and full DNA ladder map see Figures A2, A3, 
A4, A5, A6, A13 and A14. 
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3.6: Generation of a recombinant Ad19a PVM-N BAC  

 

A recombinant BAC containing the PVM-N transgene was generated by the same 

method as BAd19aHIVA and BAd5HIVA except that the linear DNA fragment 

containing the PVM-N transgene expression cassette and homology with the CMV 

promoter and SV40 polyA tail of BAd19aGalK/KnR, required for second stage 

recombination was generated by PCR rather than enzyme digest. The correct 1,686bp 

fragment was amplified using primers PVM-NIsolationFOR and PVM-

NIsolationREV on pCMVPVM-N (Figure 3.7), isolated and used in the second stage 

recombination reaction. As before, after 120 hours BAC DNA of surviving colonies 

was extracted and sequenced across the insert (Figure A18) using the primers PVM-

N/F/1, PVM-N/F/2 and PVM-N/F/3. No nucleotide mismatches were revealed in the 

sequenced fragment indicating correct generation of BAd19aΔE1ΔE3PVM-N 

(BAd19aPVM-N Figure A17) generation. 

 

3.7: Generation of an E3/19K inactivated Ad19a BAC 

(BAd19a19K*) 

 
To show that the recombineering system is capable of creating seamless point 

mutations within BACs the galK/KnR cassette within BAd19aΔ19KgalK/KnR was 

replaced with the Ad19a E3/19K gene ontaining a stop codon (taa) 4 codons after its 

start codon to create a nonsense mutation. The 564bp linear DNA fragment 

containing the E3/19K gene with the nonsense mutation and 50bp of homology at the 

5’ flanking end and 27bp of homology at the 3’ flanking end of the wild-type E3/19K 

gene was generated using the 19Kfor and 19Krev primers on BAd19awt (Figure 3.9 

A). The resultant PCR was subjected to agarose gel electrophoresis, isolated and 

used in a second stage recombination reaction. The surviving clones were analysed 

by XhoI restriction digest (Figure 3.9 B) and sequence alignment (Figure A20) using 

the primer 19KSEQPRIME. The restriction digest banding pattern was identical to 

that of BAd19awt indicating that the galK/KnR cassette had apparently been replaced 

with the inactivated E3/19K. This was corroborated by sequence alignment which 

showed no nucleotide mismatches with the expected mutated E3/19K sequences 

(Figure A19). 
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PCR product 

 
 

Figure 3.7: Generation of BAd19aPVM-N 
Agarose gel electrophoresis of PCR performed on two samples (lanes 1 and 2) of 
pCMVPVM-N using primers PVM-NIsolationFOR and PVM-NIsolationREV 
generated the correct 1,686bp band for second stage recombination alongside 1kb 
DNA ladder (lane 3) 

1 2 3 



 

 

 

Figure 3.8: Ad recombinant map 
Map to show genome organisation of all the Ad recombinants constructed in this chapter detailing the viral genes deleted. For functions of 
deleted genes see Chapter 1.1.3 
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A) 

PCR product 

 
 

 

BAd19a19K* (Lane 3) 
14,918bp (8044-22962), 9,486bp (30408-39894), 
6,024bp (24384-30408), 5,438bp (39884-3687), 
2,224bp (3687-5911), 1,548bp (5911-7459), 1050bp 
(22962-24012), 585bp (7459-8044), 197bp (24012-
24210), 174bp (24210-24384) 
 

BAd19aΔ19KgalK/KnR (Lane 2) 
14,918bp (8044-22962), 9,442bp (32142-41584), 
5,438bp (41584-3687), 4,244bp (24210-28454), 
3,688bp (28454-32142), 2,224bp (3687-5911), 
1,548bp (5911-7459), 1050bp (22962-24012), 585bp 
(7459-8044), 197bp (24012-24210), 174bp (24210-
24384) 

BAd19awt (Lane 1) 
14,918bp (8044-22962), 9,486bp (30403-39889), 
6,019bp (24384-30403), 5,438bp (39889-3687), 
2,224bp (3687-5911), 1,548bp (5911-7459), 1050bp 
(22962-24012), 585bp (7459-8044), 197bp (24012-
24210), 174bp (24210-24384) 

B) 

 
 

Figure 3.9: Generation of BAd19a19K*  

A) Agarose gel electrophoresis of PCR performed on BAd19awt using primers 
19Kfor and 19Krev generated the correct 564bp band for second stage 
recombination. B) Agarose gel electrophoresis of restriction digests with XhoI and 
expected restriction digest patterns of 1) BAd19awt, 2) BAd19aΔ19KgalK/KnR and 
3)BAd19aΔ19K alongside 1kb DNA ladder. Correct generation of BAd19a19K* is 
shown by the loss of the highlighted (stars) and underlined predicted bands at 
3,688bp and 2,224 bp seen in BAd19aΔ19KgalK/KnR. For correct banding patterns 
alongside relevant BAC map and full DNA ladder map see Figures A19 and A2. 
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3.8: Reconstitution and purification of recombinant Ad19a and Ad5 

viruses and expression vectors  
 

All BACs created or used in this study (except galK/KnR intermediates) were 

reconstituted into their recombinant viruses or expression vectors as follows. 

BAd19awt, BAd19a19K*, BAd19aGFP, BAd19aHIVA, BAd19aPVM-N, BAd5GFP 

and BAd5HIVA were linearised by restriction digest with PacI to remove the 

bacterial components (6415bp sequence) of the BAC backbone and generating a 

linear DNA fragment containing only the remaining Ad virus or vector genome. The 

digests were subjected to agarose gel electrophoresis (Figure 3.10), then the vector or 

virus band isolated and purified. 1µg of linear vector or virus DNA was then 

transfected into low passage HEK 293 cells (Chapter 2.11) and subsequent passage 

for between 1-3 weeks until a c.p.e was seen and then larger stocks of each virus or 

vector were generated (Chapter 2.3.1 (viruses); Chapter 2.3.2 (vectors) and titrated 

(Chapter 2.15.1). All viruses and vectors were then purified (Chapter 2.3.4) and 

titrated again. 

 

3.9: Discussion 
 

Work presented in this chapter has shown the use of a modified recombineering 

strategy developed by Zsolt Ruzsics to alter or mutate BACs containing Ad vector 

and virus genomes.  

 

The transgene expression cassettes in both Ad19a and Ad5 E1 and E3 deleted GFP 

vectors were successfully replaced with a PCR generated galK/KnR selection 

cassette. The resultant BACs can now serve as intermediates for the insertion of any 

transgene into the expression cassette of Ad19a or Ad5 which has been cloned into a 

corresponding shuttle plasmid with homology to the CMV promoter and SV40 

polyA tail of both BACs. Two vaccination-relevant transgenes, the HIVA 

polyprotein and the nucleocapsid protein of PVM, were first inserted into shuttle 

plasmids (if not already existent) and were then inserted into the expression cassette 

of the galK/KnR intermediates in second stage recombination reactions. The inserts  
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Figure 3.10: Reconstitution of recombinant Ad19a and Ad5 viruses and 
expression vectors 

Agarose gel electrophoresis of restriction digests with PacI 1) BAd19awt, 2) 
BAd19aΔ19K, 3) BAd19aGFP, 4) BAd19aHIVA, 5) BAd19aPVM-N, 6) BAd5GFP 
and 7) BAd5HIVA alongside the 1kb DNA ladder (M). A 6415bp fragment 
(indicated by star) was generated containing the bacterial sequence from each BAC 
so that the remaining linearised virus or vector genomes could be isolated for 
reconstitution by gel isolation. 
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were generated by both restriction digest, providing > 90bp of homology, and PCR, 

providing < 50bp of homology, showing that both strategies were effective 

regardless of length of the homologous sequence. This strategy has created Ad19a 

and Ad5 E1 and E3 deleted vectors which express the HIVA and PVM-N transgenes 

when used to infect mammalian cells. The expression of these proteins, by the 

reconstituted viruses will be examined in Chapter 4. 

 

To show that the recombineering system is capable of minimal modifications, a 

nonsense mutation, consisting of a 5bp sequence addition, was inserted into the E3-

19K gene of Ad19awt. Both the required galK/KnR selection cassette and the 

modified E3/19K gene were generated by PCR with the modified E3/19K gene only 

requiring 26bp of homology at its 3’ end (in combination with 50bp of homology at 

its 5’ end) for recombination to occur. This strategy has, upon reconstitution, created 

a virus that lost E3/19K production whilst having no effect on the expression of any 

surrounding E3 proteins tested (see Chapter 4). The effect of the nonsense mutation 

on E3/19K and surrounding E3 protein expression will also be examined in Chapter 

4. 

 

All BACs resulting from this study were checked by restriction digest and/or DNA 

sequencing and were found to be correct and were transformed into DH10B cells for 

long-term storage due to their lack of the SW102 recombination system.  

 

This work has demonstrated that the modified recombineering strategy can be 

effectively used to make both large-scale and small-scale modifications to BACs 

containing Ad genomes. The use of the galK/KnR selection cassette allowed for easy 

positive and negative selection of BACs during the process, however, it was found 

that some BACs underwent an unknown mutational event during second stage 

recombination which resulted in the loss of the galK/KnR selection cassette without 

incorporating the transgene and therefore false-positive colony growth. However, the 

number of false-positive clones was consistently 30-100 fold lower than the number 

of correct clones. The false-positive clones could be easily identified by restriction 

digest and/or sequencing and discarded. 
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The second stage recombination process required for transgene insertion including 

downstream analysis for correct clones can be done in < 10days and therefore, once 

established, this technique provides a quick, simple and inexpensive methodology for 

vaccine or gene therapy vector creation.  

 

More importantly, this technique can also be used to generate small mutations in an 

Ad genome or other large genomes allowing the targeted deletion or the expression 

of any gene or of any mutation. This allows the simple modification of existing 

viruses and vectors to examine the effect on virus phenotype, for example, the 

deletion of one or several E3 proteins in combination from an Ad genome for studies 

such as those published previously (Elsing and Burgert, 1998; Ruzsics et al., 2006) 

or the modification of conserved amino acids within Ad proteins, as published 

previously, (Sester and Burgert; 1994; Hilgendorf et al., 2003) which may lead to the 

design of better vectors for vaccination or gene therapy. 

 

In conclusion, the work in this chapter has generated viruses and vectors which can 

be used to examine the potential of Ad19a as a vaccine vector in comparison to Ad5 

in several settings and this work will be the subject of subsequent chapters. 
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 Chapter 4: Examination of generated vector and virus phenotype 

including transgene expression in human cells 
 

4.1: Introduction 
 

This chapter will investigate the phenotypes of the viruses and vectors generated in 

Chapter 3. 

 

 4.1.1: Particle/plaque forming unit ratios 

 

The adenoviruses, like most animal viruses, have ratios of particles to infectious 

units greater than one. Infectious units of Ads are recorded as plaque forming units 

(pfu) and are based on the number of plaques, marked areas of cell death, a known 

dilution of virus is able to generate on a monolayer culture of mammalian cells 

which support adenovirus infection and replication (Chapter 2.15.1). Ad particle 

number can be calculated by comparing the DNA concentration of a known dilution 

of disrupted Ad particles to known standards (Chapter 2.15.3). It has long been 

known that Ads differ dramatically in their particle/pfu ratios, ranging from 10:1 for 

the Ad5 and subgroup B Ads like Ad11 (Holterman et al., 2004) to values several 

orders of magnitude higher for Ads from subgroup F such as Ad40 and Ad41 

(Brown et al., 1992). Published comparisons of Adenovirus particle/pfu ratios are 

rare. In 1967 it was shown that Ad19p had the second highest particle/pfu ratio of the 

entire catalogue of Ad serotypes discovered with a calculated ratio of 1600:1 

compared to the Ad5 ratio of 20:1 (Green et al., 1967). In 1978 two Ad19 isolates 

were calculated to have particle/pfu ratios of 9,600:1 and 25,000:1, respectively 

(Newland and Cooney, 1978). It is unclear what the reason is for this vast 

inefficiency of particle assembly. Comparison of different serotypes is therefore 

complicated, and dependent on the aspect of the Ad life cycle studied, pfu’s or 

particles may be appropriate to quantitate Ads. 

 

Currently, in a variety of vaccination and gene therapy settings both in vitro and in 

vivo Ad vector dose is given by particle number rather than by pfu and as such is not 

based on the number of virions capable of cell transduction but rather on the physical 
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number of virion particles. If particle numbers are used for comparative studies of 

different Ads to determine MOI or dose, transgene expression is adversely affected 

in an Ad with a high particle/pfu ratio, due to a lower number of pfu being used. 

Conversely, during in vivo studies, using identical pfu numbers rather than particle 

numbers may result in a larger immune response to the Ad with a higher particle/pfu 

ratio as a larger amount of immunogenic proteins is present. For a true comparison 

of different Ad serotypes the particle/pfu ratios must be taken into consideration. 

Therefore, we decided to base our assessment of the quality and quantity of the 

different Ads on their ability to infect/transduce cells, hence we measured their 

activity in a plaque forming assay. 

 

 4.1.2: Adenovirus vector transgene expression 

 

Ad vectors based on differing serotypes, which contain expression cassettes with 

identical CMV promoters and SV40 polyA tails, should produce similar transgene 

expression. However, previous data suggested that sequences in cis and trans may 

influence transgene expression (Lusky et al.,, 1999). In 2006, despite having 

identical CMV promoter driven expression cassettes, the Ad19a and Ad5 eGFP 

expressing vectors showed marked differences in eGFP expression at identical 

transduction efficiencies (Ruzsics et al., 2006). The reasons remained unclear. One 

possibility was that an SV40 enhancer downstream of the expression cassette may 

have stimulated GFP expression. Therefore we have used an Ad5GFP vector with 

the same SV40 enhancer inserted downstream of GFP. As the expression level of the 

transgene is crucial for vector toxicity as well as for induction of immunity against 

the transgene, we tested transgenes other than eGFP to evaluate if we could observe 

the same enhanced expression profile. This examination of transgene expression 

from the created vectors is possible because expression of the inserted transgenes 

(HIVA and PVM-N) can be detected by western blot using antibodies SV5-Pk1 and 

R2052, respectively. In parallel, transduction efficiency can be monitored using 

FACS staining with the 2Hx-2 Ab, which recognises the hexon protein of any tested 

Ad (Cepko et al., 1981). 
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4.2: Aims 
 

The aims of this research were the examination of vector phenotype of the Ad 

vectors generated in Chapter 3 to include: 

1. Calculation and consideration of particle/pfu ratios 

2. Comparison of vector transgene expression in mammalian cells 

 

 

4.3: Particle/plaque forming unit ratios 
 

To assess the infectivity and transduction capacity of the virus vectors all virus and 

vector stocks, after reconstitution or passage, were examined in an Adenovirus 

plaque assay (Chapter 2.16.1). It was noted that Ad19a plaques were significantly 

larger than Ad5 plaques. Particle numbers were then calculated for one purified 

stock of each of the vectors used in this study and wild-type Ad controls by 

Adenovirus particle number calculation (Chapter 2.16.3). The resultant figures were 

then compared and a ratio of particles/pfu generated (Table 4.1). 

 

Table 4.1: Example of particle/pfu ratios of generated and existent viruses and 
vectors 
Virus or vector Particle number 

(particles/ml) 
Plaque 

forming units 
(pfu/ml) 

Particle/pfu 
ratio 

Number of 
preparations

Ad5wt 2.9 x 1012 2 x 1011 ~14:1 1 
Ad19awt 1.1 x 1013 2.9 x 109 ~3,793:1 2 
rAd5GFP 3.1 x 1012 6.15 x 1010 ~50:1 2 

rAd19aGFP 9.2 x 1011 5.9 x 108 ~1,560:1 6 
rAd5HIVA 2.9 x 1012 7.95 x 1010 ~36:1 1 

rAd19aHIVA 8.5 x 1012 3.4 x 108 ~25,117:1 4 
rAd5PVM-N 1.5 x 1012 2.9 x 1010 ~53:1 2 

rAd19aPVM-N 8.98 x 1012 1.378 x 109 ~6,516:1 5 
     

 
Particle/pfu ratios for Ad5 were similar and varied from 14:1 for the wild-type virus, 

50:1 for rAd5GFP, 36:1 for rAd5HIVA, up to a maximum of 53:1 for rAd5PVM-N. 

These numbers were in the same range as previously published (Brown et al., 1992; 

Ugai et al., 2005) and matched expected rAd vector industrial manufacturing 

standards (http://www.vectorbiolabs.com/vbs/faq-product.html).  
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Ratios for Ad19a showed a greater variation and were significantly higher, at their 

lowest 1,560:1 for rAd19aGFP through 3,793:1 for Ad19awt, 6,516:1 for 

rAd19aPVM-N up to a maximum of 25,117:1 for rAd19aHIVA. The published 

figure for Ad19p wild-type, 1600:1, and other Ad19 isolates, 9600:1 and 25,000:1 

(Newland and Coney, 1978) although calculated by different methodologies to the 

one used in this study, would suggest these findings are plausible.  

 

It was decided that, due to the significant difference in particle/pfu ratio values, only 

pfu would be used to calculate the MOI for the remainder of the study as it measures 

the number of virions that are replication competent in 293 cells and as such is a 

model for the comparison between the two Ads. 

 
4.4: Examination of transgene expression of recombinant 

adenovirus vectors 
 

 4.4.1: Expression of GFP in fibroblasts 

 

rAd19aGFP and rAd5GFP were used to infect A549 cells, a human fibroblast cell 

line that does not complement Ad replication, using 1, 3 and 10 pfu/cell. The % of 

GFP positive cells and the mean fluorescence intensity of GFP expression were 

recorded for each infection and the results charted (Figure 4.1A & Figure 4.1B). 

 

rAd19aGFP and rAd5GFP showed very similar transduction efficiencies across the 

range of MOI with means of 30.9%, 69.6% and 99.4% recorded for rAd19a and 

29.5%, 62.6% and 96.5% recorded for rAd5. This finding confirmed that rAd19a and 

rAd5 vectors have similar transduction efficiencies in A549 cells using equal plaque 

forming units of each vector. 

 

There was a marked difference, however, between the recorded GFP expression 

levels across the range of MOIs used. rAd19a produced considerably higher mean 

fluorescence intensities at each infection level when compared to rAd5 with means 

of 831, 3,529 and 5,680 recorded for rAd19a and 222, 408 and 729 recorded for 

rAd5. The rAd19a values were 3.7, 8.6 and 7.8x higher than the rAd5 values, 
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respectively. rAd19a transgene expression levels were, therefore, on average 6.7x 

higher than for rAd5. 

 

This was taken as preliminary evidence that rAd19a expresses considerably more 

transgene than rAd5 at equal transduction efficiencies. This showed that several fold 

lower amounts of an rAd19a vector would be required to produce equal transgene 

expression levels as a comparable rAd5 vector. 
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Figure 4.1: Examination of transduction efficiency and transgene expression of 
recombinant adenovirus GFP vectors by FACS analysis 
 

(A) Mean % transduction as measured by the percentage of GFP positive A549 cells 
upon infection with 1 MOI (blue), 3 MOI (orange) or 10 MOI (red) of rAd19aGFP 
(left) and rAd5GFP (right). Error bars show the standard error of the mean for 5 and 
4 independent experiments, respectively. (B) Mean fluorescence intensity (FL1) of 
expressed GFP upon infection with rAd19aGFP (left) and rAd5GFP (right) as above. 
(C) Examples of FACS histograms showing rAd19aGFP transduction (left) and 
rAd5GFP transduction (right) either mock infected (purple fill) or infected with 1 
MOI (blue line), 3 MOI (orange line) or 10 MOI (red line). % are calculated as the 
number of cells within a defined region over background controls (region not shown) 
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4.4.2: Western blot analysis 

 

To confirm previous findings of increased transgene expression by rAd19aGFP 

vectors and to extend those findings to other transgenes the generated PVM-N 

expressing rAd19a and rAd5 vectors were assessed for transgene expression by 

western blot alongside FACS using the 2Hx-2 Ab against hexon to confirm similar 

transduction efficiencies (Figure 4.2). 

 

Extracts from equal numbers of A549 cells were loaded into each lane of the western 

blot as evidenced by the identical expression levels of the ~50kDa β-tubulin protein 

in all samples. Multiple protein species were detected in mock infected but 

particularly in infected cells (Figure 4.2 C). The transgene product was identified as 

PVM-N as it co-migrated with the protein expressed in persistently PVM infected 

P2-2 cells. As previously observed for GFP rAd19aPVM-N expressed considerably 

more of the 42 kDa PVM-N transgene product than the equivalent rAd5 vector at 

similar transduction efficiency, as illustrated by the accompanying FACS data 

(Figure 4.2 A & B). Simple densitometry analysis using the UVI DOC trans-

illuminator software revealed that rAd19aPVM-N had expressed 3.6, 4.5 and 4.5x 

more transgene at each transduction level compared to rAd5 giving an average of 

4.2x higher transgene expression by the rAd19a vector. 

 

This data confirmed our previous conclusion that rAd19a expresses considerably 

more transgene than rAd5 at equal transduction efficiencies. Similar experiments 

were performed with the HIVA vectors using the SV5-Pk1 mAb and these results 

also showed a greater level of transgene expression from rAd19a vectors (data not 

shown). 
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Figure 4.2: Examination of transduction efficiency and transgene expression of 
recombinant adenovirus PVM-N vectors by western blot and FACS analysis 
 

(A) Mean % transduction as measured by the percentage of A549 cells positive for 
2Hx-2 staining when infected with rAd5PVM-N (left) and rAd19aPVM-N (right) at 
1 MOI (blue bars), 3 MOI (orange) and 10 MOI (red). These are essentially all cells 
with fluorescence above the background staining produced in mock infected cells 
(see fig B). Error bars show the standard error of the mean for 3 independent 
experiments. (B) Examples of FACS histograms showing rAd5PVM-N transduction 
(left) and rAd19aPVM-N transduction (right) by 2Hx-2 staining as above (C) A549 
cells were transduced with 1 MOI, 3 MOI or 10 MOI of rAd5PVM-N or 
rAd19aPVM-N, grown for 48 hours, lysed and subjected to western blot against 
PVM-N using R2052 antiserum (~42kDa highlighted in red box) or β-tubulin using 
mAb 2-28-33 (~50kDa) as a loading control. Samples were run alongside a lysed 
population of the P2-2 cell line as a positive control. 
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4.5: Evaluation of the phenotype of the putative E3/19K inactivated 
Ad19a virus  

 

 4.5.1: Inactivation of E3/19K 

 

E3/19K protects Ad infected cells from cytotoxic T lymphocyte (CTL) mediated 

lysis by sequestering MHC class I in the endoplasmic reticulum (ER) (Chapter 

1.1.3.2.1; Burgert & Kvist, 1985). Recently, we discovered a second function of 

E3/19K, protection from NK cell mediated lysis (McSharry et al., 2008; Sester et al., 

2010). Both properties are obviously crucially important for its use as a vaccine 

vector where E3/19K should be eliminated to allow antigen presentation to T cells. 

To demonstrate the power of the recombineering protocol and to test that inactivation 

of E3/19K in Ad19a results in the up-regulation of MHC class I we introduced a 

reading frameshift by inserting 4 nucleotides with a stop codon at the beginning of 

the E3/19K ORF. We hoped that E3/19K expression is abrogated without affecting 

the expression of other E3 genes.  

 

The expression of E3/19K can be monitored by FACS using several mAbs (Sester et 

al., 1994). Moreover, on infection the E3/19K deleted Ad19a should also be unable 

to sequester MHC class I and hence this should be detectable on the cell surface by 

FACS with the W6/32 Ab. If the mutation has caused no further damage to the E3 

region all other E3 genes should still produce functional proteins and their effects 

should still be observable. As examples, we tested for the expression of the E3/49K 

gene located directly downstream of E3/19K using a mAb and for the effect of the 

E3/10.4/14.5K complex by measuring the modulation of Fas (see Chapter 1).  

 

 

  4.5.1.1: Aims 

 

To assess the success of the generation of an Ad19a virus with E3/19K inactivated. It 

will also be assessed if the inactivation has had an effect on the other E3 genes. 

4.5.2: Phenotype evaluation 

 

120 
 



To assess whether the reconstituted Ad19a19K* virus lost E3/19K expression, whilst 

retaining the functional expression of other E3 genes, infected 293 cells were 

examined by FACS analysis and western blot using various Abs against E3 products 

and their respective cellular targets. Each experiment was performed alongside 293 

cells infected with 2 control viruses, Ad19awt which should have full expression of 

E3 genes and infected cells should show all E3 function remain and Ad19aΔE3 

which has had the entire E3 region deleted preventing the expression of any of the E3 

genes so infected cells should show none of their functional effects. 

  

 4.5.3: FACS analysis 

 

An MOI of 10 of Ad19a19K*, Ad19awt and Ad19aΔE3 was used to infect HEK 293 

cells alongside a mock infection. After 24 hours the cells were examined by FACS 

for HLA (mAb W6/32), FAS (Ab BG-27), E3-49K (Ab 4D/1) and hexon (Ab 2Hx-2) 

expression (Figure 4.3). If E3/19K expression has been successfully eliminated from 

the Ad19a19K* proteome down-regulation of HLA should be abrogated similar to 

cells infected with Ad19aΔE3. If the loss of E3/19K expression is confirmed it can 

then be examined if the insertion and frame-shift has caused a change to the 

expression of other E3 genes by monitoring the expression of E3/49K, which should 

still be detectable in cells infected with Ad19awt and Ad19a19K* whilst not in cells 

infected with Ad19aΔE3. The function of another E3 gene E3/10.4/14.5K can be 

examined by monitoring the modulation of Fas which should be down-regulated in 

Ad19awt and Ad19a19K* infected cells whilst not in cells infected with Ad19aΔE3.  

 

Figure 4.3 shows that this is indeed the case. As expected, the inactivation of E3/19K 

prevented a detectable down-regulation of HLA matching previously published data 

(Deryckere & Burgert 1996; Figure 4.3 A) whilst not affecting the ability of 

E3/10.4/14.5K to modulate Fas (Figure 4.3 B). Also, the expression of the 

neighbouring E3/49K gene appears similar to Ad19awt (Figure 4.3 C). In all 

infections tested, all viruses showed similar mean infection efficiencies (Figure 4.3 

D). 
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Figure 4.3: Mutation appears to selectively affect E3/19K functions and not 
those of other E3 genes 
 

(A) Example of a FACS histogram showing cell surface expression of HLA in cells 
infected with Ad19awt (green line), Ad19a19K* (pink line) and Ad19aΔE3 (blue 
line) or mock infected (purple fill). Below is a chart showing relative average 
expression of HLA on the cell surface of 293 cells compared to levels in mock 
infected cells, set to 100%, using the same colour scheme. (B) shows the cell surface 
expression of Fas upon infection with the various viruses, relative to mock infected 
cells (set to 100%), using the same colour code as above. (C) shows the average 
internal expression of E3/49K (as cell surface E3/49K is rapidly cleaved and 
secreted) upon infection with the various viruses, using the same colour code as 
above (D) shows the average internal expression of hexon, upon infection with the 
various viruses, using the same colour code as above. All error bars show the 
standard error of the mean for 3 independent experiments. 
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These findings, taken together, confirm that Ad19a19K* has lost the ability to 

express a functional form of E3/19K and that this mutation has not impaired the 

function of either the immediately downstream E3/49K protein, but has had a minor 

effect on its expression level, or on the further downstream E3/10.4/14.5K genes 

which modulated Fas to similar levels as seen in Ad19awt infections. The reduction 

in E3/49K expression may have been caused by a reduction in translation of the 

E3/49K gene due to its immediate vicinity to the E3/49K start codon. 

 

To investigate if Ad19a19K* was still expressing a form of E3/19K which was non-

functional and as such non-detectable in the FACS assay due to the lack of an 

Ad19aE3/19K mAb, a western blot was performed to detect for the presence of 

E3/19K and E3/49K using corresponding rabbit antisera. 

 

4.5.4: Western blot analysis 

 

293 cells were mock infected or infected with 10 pfu of Ad19awt, Ad19a19K* or 

Ad19aΔE3, left for 14 hours (left) or 20 hours (right) lysed and subjected to western 

blot for detection of E3/19K using antisera R22612, E3/49K using rabbit antisera 

R48 or β-tubulin using Ab 2-28-33 as a loading control (Figure 4.4). Equal amounts 

of 293 lysates were loaded into each lane of the western blot as evidenced by the 

identical expression levels of the ~50kDa β-tubulin protein in all samples. At both 14 

hours and 20 hours only Ad19awt was shown to express a detectable form of E3/19K 

(purple frame) as evidenced by the 19-36kDa bands highlighted. Both Ad19a19K* 

and Ad19awt expressed a detectable form of E3/49K as evidenced by the 88-95kDa 

bands highlighted. This finding shows that cells infected with Ad19a19K* are not 

expressing a detectable form of E3-19K at either timepoint tested, as seen in cells 

infected with Ad19awt, but are expressing E3/49K. 

 

In conclusion, the Ad19a19K* virus is unable to express an E3/19K protein that is 

functionally active showing that the nonsense mutation inserted (see Chapter 3.7) has 

had the desired effect. Moreover, strong evidence is provided that the mutation 

selectively affects E3/19K but no other E3 products. 
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Figure 4.4: Expression pattern of E3/19K and E3/49K in Ad19a19K* as 
detected by western blotting 
 

293 cells were mock infected or infected with 10 pfu of Ad19awt, Ad19a19K* or 
Ad19aΔE3. 14 h.p.i. (left) or 20 h.p.i. (right) cells were lysed and subjected to 
western blotting for E3/49K using antisera raised against its cytoplasmic tail (antisera 
R48, ~88-95kDa), E3/19K (antisera R22612, ~19-36kDa) or β-tubulin (mAb 2-28-
33, ~50kDa) as a loading control. E3/19K and E3/49K specific protein species are 
highlighted by purple and red boxes respectively. 
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4.6: Discussion 
 

The work presented in this chapter has detailed the phenotype of the viruses and 

vectors generated in Chapter 3 by recombineering, particle/pfu ratios, the expression 

of transgenes in mammalian cells by the vectors and the effect of the nonsense 

mutation inserted into Ad19a19K*.  

 

The results in section 4.3 showed that rAd19a, as had previously been seen, had a 

significantly higher particle/pfu ratio than Ad5. In the most extreme case, the 

Ad19aHIVA vector, this is almost 700x higher than the corresponding Ad5 vector. 

This should be taken into account when rAd19a vectors are used in vivo as the far 

larger number of immunogenic particles required to reach the same pfu may trigger 

some adverse inflammatory reactions, although we did not observe any negative side 

effects in our own in vivo experimentation (Chapter 7). The reason for the higher 

particle/pfu ratios could be either procedural or due to intrinsic differences in the 

biology of the serotypes.  

 

Procedurally, a differential damage to the particles during purification, for example 

during sonication, could have occurred due to some more inherent instability of the 

Ad19a particles resulting in a large number of particles which are not capable of cell 

infection. The ratio could also be caused by a flaw in the methodology used to 

calculate the number of particles present because the figure for the conversion of OD 

260nm DNA readings to particle number is based on Ad5 and other Ads may have a 

different DNA concentration per particle. This is unlikely, however, because use of 

Nanosight© technology has confirmed the particle number readings for Ad19a within 

less than 1 log (data not shown). Interestingly, the same methodology showed that, 

unlike rAd5 vectors, the rAd19a vector preparation had several particle size peaks 

suggesting distinct populations, perhaps caused by aggregation or the loss of fibre, 

which would both account for higher particle/pfu ratios. Also, 293 cells are known to 

produce Ad5 pIX protein (Ghosh-Choudhury, Haj-Ahmad and Graham, 1987) an 

important structural protein which may compete with the Ad19a equivalent for 

incorporation into Ad19a particles. 
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Biologically, the higher ratios could be natural due to some quirk of Ad evolution or 

caused by the growth conditions that Ad19a has been subjected to. If natural it may 

be due to Ad19a’s tropism for the eye (Arnberg, Mei and Wadell, 1997). The surface 

of the eye, the known site of primary Ad19a infection, is cooler than the sites of 

infection used by other Ads. This could mean that the normal growth temperature of 

Ad19a is several degrees lower than 37°C meaning growth at this temperature may 

cause defects in particle formation. A simple experiment could be envisaged where 

Ad19a isolates were grown at temperatures lower than 37°C and their particle/pfu 

ratios then analysed to observe if a lower temperature prevents the high particle/pfu 

ratios from occuring. It may also have been caused by the growth of original ocular 

isolates of Ad19 clones over several passages in FT cells, KB cells and HeLa cells 

(Newland and Cooney, 1978) which are not a natural host for Ad19 infection which 

may have resulted in adaptive changes to the genome which generated a larger 

number of non-functional particles. Any adaptive biological changes in the Ad19 

genome may have also been compounded by passage of Ad19a vectors in 293 cells 

which supply the E1A genes of Ad5 in trans which may cause some instability of the 

particles. This, however, would not explain the large particle/pfu ratio of Ad19awt 

which provides its own E1A genes. 

 

In the meantime, electron microscopy (EM) has been performed on both Ad19a and 

Ad5 purified virus preps that had been frozen (data not shown) and many of the 

Ad19a particles were observed to have begun to disintegrate. Also higher 

aggregation was seen for Ad19a. Further experiments would need to be performed to 

make firm conclusions as to the likely cause of the high particle/pfu ratio. For 

example, the titres of Ad19a vectors purified using sonication versus freeze/thawing. 

If there was shown to be no difference resulting from the use of either procedure then 

further investigation into the biology of the virus would be required, perhaps by 

growth of the virus on different cell lines followed by particle calculation or the 

generation of a new cell line which provides the Ad19a E1A region in trans rather 

than the Ad5 one. It is certain that EM will be an excellent analytical tool to improve 

the procedure for production of stable Ad19a particles. 

 

The lack of stable particle formation in Ad19a is in opposition to its known stability 

as an infectious agent. Several major Ad19a epidemics have been traced back to 
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surgical instruments used for eye examinations. This suggests that Ad19a is 

particularly stable in the environment compared to other serotypes. 

 

Even though no negative effects have been observed to date, reactions to 

administration of a large number of particles have to be carefully monitored and may 

be a safety issue for regulatory boards. 

 

It has been shown in this chapter that the generated PVM-N vector expresses its 

transgene and that, as previously observed for Ad19aGFP, rAd19a vectors express 

significantly more transgene than rAd5 vectors at equal transduction efficiencies. 

This is, of course, a very favourable feature of Ad19a vectors as less virus could be 

administered to obtain the expected therapeutic effect. As a result, toxicity issues 

would be expected to be reduced however the latter may be partially countered by 

the increased number of particles due to the high particle/pfu ratio. 

 

The reason for the increased transgene expression remains unclear. Whilst the 

expression cassettes are identical, enhancer sequences or other cis elements in the 

vicinity of the inserted transgene which differ between Ad19a and Ad5 may have 

positively influenced the expression level of the transgene. Alternatively other parts 

of the Ad19a proteome i.e. the E4 proteins, may influence transgene expression 

which has been shown to occur in Ad5 (Lusky et al., 1999). This could be examined 

by the deletion of one or all of the E4 ORFs using the same recombineering system 

and nonsense mutation insertion as described herein for Ad19a19K*. If increased 

transgene expression persists after E4 modification then the enhanced expression is 

more likely to be related to aspects of Ad19a virus biology. For example, the 

presence of multiple copies of transgene has been shown to increase levels of 

transgene expression above the expected level considering the number of additional 

genes inserted (Takahashi et al., 2010). In Ad19a aggregation of particles may result 

in a single receptor binding and cell entry event allowing multiple Ad19a particles 

and therefore multiple transgene copies entry which could account for the observed 

higher transgene expression. This conclusion is supported by the observed increased 

plaque size during Ad19a titration, compared to Ad5 plaques, which maybe the result 

of multiple copies of the genome gaining entry to a single cell after a single entry 

event. 
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Finally, the insertion of the nonsense mutation in Ad19a19K* was shown to 

effectively prevent the expression of a functional E3/19K protein and was shown to 

have no effect on the function of E3/10.4/14.5K, two E3 ORFs which are further 

downstream. A slightly lower level of expression was noted for the E3/49K protein, 

which is encoded by the neighbouring ORF. However, it is not known if this change 

in expression is significant. If it is significant it is unlikely to be caused in 

transcription, as the preceeding E3/19K ORF should be transcribed normally. It may 

instead be caused by affecting the splicing of the E3 transcription unit which has 

been shown to have an effect on the level of expressed E3 proteins (Scaria & Wold, 

1994).  

 

These findings have shown that the modification of Ad viruses or vectors on an 

individual gene basis is possible using the recombination system and allows for the 

selective mutation of individual genes which are detrimental to vector function whilst 

leaving intact other genes from the same region that may have more advantageous 

functions. This can eliminate the need to remove entire regions of the Ad genome. 

Further research on the functions of Ad genes may result in the discovery of 

additional gene products which would have a beneficial function in a vector designed 

for vaccination or gene therapy and should therefore be preserved whilst others are 

eliminated. 

 

The next chapter will concentrate on the previously described enhanced transduction 

of Ad19a vectors in immune cell lineages including, and most importantly for 

vaccination, dendritic cells. Due to the results of this chapter particular interest will 

be placed on the ability of Ad19a to express high levels of transgene product in these 

important cell types. 
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Chapter 5: Adenovirus transduction of dendritic cells 
 
5.1: Introduction 
 
This chapter will investigate transduction of Ad vectors in immune cell lineages 

including, and most importantly for vaccination, dendritic cells. 

 

5.1.1: Dendritic cells 

 

For a full introduction to DCs see Chapter 1. As mentioned before, DCs are the most 

potent APCs known (Banchereau & Steinman, 1998). In the periphery, they are 

specialised to capture a range of antigens, soluble, particulate or even entire cells. If 

the material taken up is sensed foreign, they undergo phenotypic and functional 

changes allowing them to maximise their antigen presentation capacity. They 

migrate to T cell areas in the lymph node and activate both CD4+ helpers and CD8+ 

cytotoxic T lymphocytes, which are essential for an effective cell-mediated response 

to both viruses and tumours (Banchereau & Palucka, 2005).  

 

Experimentally, DCs can be isolated from human blood by two distinct 

methodologies. Both initially require the separation of Peripheral Blood 

Mononuclear Cells (PBMCs) from human blood by the Ficoll-Hypaque gradient. To 

generate so-called monocyte derived DCs, CD14+ monocytes may be isolated which 

can be differentiated into immature DCs (iDC). The CD14 antigen is strongly 

expressed on most monocytes and macrophages and weakly on neutrophils. One 

methodology separates CD14+ monocytes from PBMCs using magnetic bead 

technology to isolate cells bound to a CD14 specific antibody (Chapter 2.14.2) 

whilst the other relies on the adherence of CD14+ monocytes to a plastic surface 

(Chapter 2.14.3). In both methodologies the resulting cells are grown for 5 days in 

the presence of human Interleukin 4 (hIL-4) and human granulocyte macrophage 

colony stimulating factor (hGM-CSF). This produces non-adherent immature DCs 

which can be identified by the loss of monocyte differentiation markers and the 

upregulation of a range of molecules including CD1a (an MHC-1 like molecule), 

CD83 and CD86 (a co-stimulatory ligand necessary to initiate T cell activation). 
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Both methodologies were explored here and the results will be presented in this 

chapter.  

 

To confirm the generation of iDCs the cells can then be differentiated to mDCs, over 

2 days in the presence of either Lipopolysaccharide (LPS; Lutz et al., 1999) or 

human TNF-α (hTNF-α; Yamaguchi et al., 1997). Maturation can then be confirmed 

by the further upregulation of CD86 and the concurrent upregulation of CD80 (a 

second co-stimulatory ligand necessary for T cell activation by APCs), HLAI, HLA 

II and adhesion molecules which can be detected by FACS. LPS, TNF-α and viral 

vector induced maturation of DCs was investigated. 

  

5.1.2: Adenovirus vectors and dendritic cells 

 

Ad vectors can be used ex vivo to target DC populations for the stimulation of a 

strong antigen specific response which could be utilised to eliminate infectious 

agents or cancer cells. 

 

Ex vivo, iDCs are generated from the patient’s blood and then transduced with an Ad 

vector encoding an antigen of pathogens or tumour cells. The resulting matured 

dendritic cells are then re-injected back into the body where they traffic to the lymph 

nodes and activate a targeted immune response to the transduced gene (for an 

example see Mercier et al., 2002).  

 

Ad vectors have shown increasing promise for the transduction of dendritic cells for 

their use in cancer therapy (Sas et al., 2008; Lundqvist & Pisa., 2002) or vaccination 

(Ranieiri et al., 1999; Basak et al 2004). Adenovirus transduction does not perturb 

normal DC function (Jenn, Schuler & Steinkasserer, 2001) and triggers maturation 

signals for the generation of highly immunostimulatory antigen presenting cells (Rea 

et al., 1999; Morelli et al., 2000). It has been noted, however that, when using Ads 

from subgroup C, very high MOIs are required to transduce 95% of immature DCs 

(Zhong et al., 1999). Therefore, the ideal vector for ex vivo DC transduction would 

avoid vector-related immune responses, have relative specificity for transducing 
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DCs, induce high levels of transgene expression (Basak et al., 2004) and act 

synergistically to induce DC maturation. 

 

In 2001 a variety of Adenovirus fibres from subgroups A, B, D (not including the 

Ad19 fibre), and F, were pseudotyped onto Ad5 vectors expressing the Luciferase 

gene. These studies showed that the fibres of Ad16, Ad35 and Ad50 mediate 

increased tropism for immature DCs (Rea et al., 2001). An Ad5F35 vector required a 

10-100 fold lower MOI for transgene expression, produced enhanced antigen 

presentation in transduced DCs and increased expression of CD80, CD86 and HLAI. 

 

Notably Ad16, 35 and 50 are all from subgroup B, the only subgroup known not to 

require CAR for transduction (Roelvink et al., 1998) which suggests CAR usage 

may be the associated with the high MOI required for Ad5 transduction. Ad19a 

receptor usage will be investigated in Chapter 6. 

 

Apart from receptor usage, the promoter driving transgene expression may be 

optimised for DC expression. It has more recently been shown that the CMV 

promoter is very effective at achieving high levels of transgene expression within a 

range of human DC populations (Papagatsias et al., 2008). The use of the CMV 

promoter in both the Ad5 and Ad19a vectors created in this study should therefore 

provide an excellent choice for transgene expression in DCs. 

 

 5.1.2: Ad19a and dendritic cells 

 

We previously showed that Ad19awt is highly efficient in infecting DCs (Ruzsics et 

al., 2006). However, it remained unclear whether this was related to a differential 

replication in DCs or different uptake mechanisms, therefore, it was crucial to 

investigate whether the replication deficient Ad19a vector retained the enhanced DC 

transduction. If the Ad19a vector is shown to efficiently transduce DCs then it would 

support the usage of Ad19a as an alternative vector for DC transduction. 
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5.2: Aims 

 

The aim of this section was to compare the efficiency of transduction and transgene 

expression in DCs with the Ad19a and Ad5 vector and to examine the maturation of 

iDCs upon Ad transduction. A secondary aim was to investigate which of the 

methods for iDC generation from CD14 + monocytes is more effective. 

 
5.3: Adenovirus transduction of immune cell lineages 
 

It was first decided to confirm the previous finding (Ruzsics et al., 2006) that the 

Ad19a vector efficiently transduced immune lineage cells using FACS. As examples, 

Jurkat T cells and a human B cell line (TD12; Chapter 2) were used alongside 

control A549 cells to monitor Ad19a and Ad5 vector transduction. 

 

 5.3.1: FACS analysis 
 

rAd19aGFP and rAd5GFP were used to transduce A549 cells, TD12 cells and Jurkat 

T cells at an MOI of 3pfu/cell or 10pfu/cell then left for 48 hours. After 48 hours the 

transduced cells were analysed for expression of GFP by FACS analysis. 

Representative histograms upon vector transduction are shown for rAd5GFP (Figure 

5.1 A) and rAd19aGFP (Figure 5.1 B). The results of three experiments are 

summarised in Figure 5.1 C.  

 

rAd19aGFP and rAd5GFP showed similar levels of transduction in A549 cells at 

both MOIs tested, as seen previously, with mean % transduction levels of 91% 

(3pfu/cell) and 99% (10pfu/cell) and 85% (3pfu/cell) and 99% (10pfu/cell) 

respectively. In contrast, rAd5GFP failed to show efficient transduction of either 

TD12 cells or Jurkat cells at either MOI tested whilst rAd19aGFP transduced 75% of 

B cells at both 3pfu/cell and 10pfu/cell and 73% (3pfu/cell) and 94% (10pfu/cell) of 

Jurkat cells. It was noted, however, that in Jurkat cells in particular the mean 

fluorescence intensity was substantially decreased when compared to A549 cells 

suggesting that transgene expression from the CMV promoter was not as high as in 

A549 cells.  
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A) 

B) 

C) 

Figure 5.1: Ad vector transduction of B and T cell lines 

(A) FACS histograms show transduction of A549 cells (column 1), B cells (column 
2), or Jurkat cells (column 3) with rAd5GFP either mock treated (purple fill) or 
transduced with an MOI of 3 (blue line) or 10 (red line). (B) FACS histograms 
showing the same transduction as previously with rAd19aGFP, MOI of 3 (orange 
line) or 10 (green line). (C) Mean % transduction, measured by the percentage of 
GFP positive cells, of A549 cells (column 1), TD12 cells (column 2) and Jurkat cells 
(column 3) using the previous colour scheme showing poor transduction of B cells 
and Jurkat cells by Ad5GFP. Error bars indicate the standard error of the mean for 
three or four experiments.  
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This data confirmed previous data that rAd19aGFP can efficiently transduce immune 

lineage cell types whilst rAd5GFP cannot (Ruzsics et al., 2006). In the previous 

experiments the transduction of Jurkat cells by rAd5GFP was more efficient (15%). 

This is likely due to the higher MOI used (25 pfu/cell).  

 

These results were taken as evidence that the rAd19aGFP and rAd5GFP vector 

preparations behaved as previously observed in B and T lymphoid cell lines and that 

Ad19a vectors may have distinct advantages in these cell types. We next wished to 

determine whether the increased efficiency of infection by Ad19a vs. Ad5 in DCs is 

preserved in the replication deficient vectors. A reliable system for the isolation of 

DCs from human PBMCs was therefore required. 

 

5.4: Purification and maturation of dendritic cells 
 

 5.4.1: Comparison of dendritic cell isolation methods 
 

The two methodologies outlined in Chapter 5.1.1 and explained in detail in chapters 

2.14.2 and 2.14.3 were compared for the ability to isolate CD14+ monocytes from 

human PBMCs. PBMCs were first isolated from human blood (Chapter 2.14.1) and 

then subjected to either MACS separation or adherence isolation. Cells were tested 

for the expression of the monocyte marker, CD14, by FACS with the M5E2 Ab prior 

to isolation (Figure 5.2 A), and following isolation (Figure 5.2 C). Cells in the wash 

solutions from both methodologies were also tested in order to evaluate if any 

CD14+ cells were being lost during either process (Figure 5.2 B). The mean purity 

of CD14+ monocytes purity achieved in all experiments using each method is given 

in Figure 5.2 D. 
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A) 
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C) 

D) 

 

Figure 5.2: Isolation of CD14+ monocytes from human blood by MACS or 
adherence separation. 

FACS histograms after staining of control cells or cells isolated by MACS isolation 
or adherence isolation showing human PBMCs (A; upper panel) Isolation Wash 
solutions (B; middle panel) or isolated CD14+ monocytes (C; lower panel) with an 
IgG1 control Ab (column 1) and a CD14 antibody (Columns 2 & 3). (D) Chart 
showing the mean purity of CD14+ monocytes isolated by MACS isolation (dark 
blue bar) or by adherence isolation (red bar) given as the % of CD14+. Error bars 
show the standard error of the mean for 7 and 4 experiments respectively. 
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When the same population of PBMCs, shown by almost equal CD14+ staining prior 

to isolation (Figure 5.1 A), was subjected to the purification schemes some 

significant differences were observed. MACS separation resulted in a mean CD14+ 

monocytes purity of 88%, whereas adherence isolation only resulted in 73% pure 

CD14+ cells. In both protocols, loss of CD14+ cells in the wash steps was minimal 

(Figure 5.2 B) but MACS separation resulted in a far purer final population of 

CD14+ monocytes as evidenced by the narrow histogram of strongly positive 

CD14+ cells following MACS separation when compared to the broader histogram 

and less bright CD14 staining following adherence isolation (Figure 5.2 C) which 

was observed consistently. These results suggest that although not many CD14+ 

cells are being lost during adherence isolation there are more cells remaining in the 

flask which are not CD14 positive or express low levels of CD14 and do not 

therefore represent CD14+ monocytes. 

 

While more expensive, MACS separation was found to be quicker, simpler and 

resulted in purer populations of CD14+ monocytes when compared to adherence 

isolation. It was decided that all subsequent experiments should be performed using 

MACS separation. 

 

 5.4.2: Comparison of Dendritic cell maturation status 
 

Following CD14+ monocyte isolation, the cells were grown in medium containing 

hIL-4 and hGM-CSF to stimulate their differentiation into iDCs. The resulting 

candidate iDCs can be tested for the loss of CD14 expression (monocyte marker) and 

the up-regulation of CD1a expression ((lymphocyte marker) see Chapter 1)) by 

FACS detection using the M5E2 (CD14) and HI149 (CD1a) Abs. (Figure 5.3). 

 

To monitor successful DC differentiation a sample of cells was stained for CD14 and 

CD1a prior to application of hIL-4 and hGM-CSF and then 5 days after their 

application (Figure 5.3 A & B) 

 

 

 

137 
 



 

A) 

B) 

C)  D) 

 

 

Figure 5.3: Development of immature dendritic cells from CD14+ monocyte 
progenitors 

FACS histograms showing staining of CD14+ progenitor monocytes (A) or 
candidate iDCs (B) for IgG1 (Column 1; isotype control), CD14 (Column 2) and 
CD1a (Column 3) (B) Mean percentage of CD14+ cells detected in CD14+ 
progenitor monocytes or candidate iDCs upon staining for CD14 (C) or CD1a (D). 
Error bars show the standard error of the mean for 6 experiments.  
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The mean % of both CD14 and CD1a positive CD14+ monocytes and iDCs were 

then recorded and summarised (Figure 5.3 C & D). Prior to every experiment, iDC 

formation was confirmed by the loss of CD14 expression from an average of 88% of 

cells to <1% and the up-regulation of CD1a expression from an average of <1% of 

cells to 82%. This data provided good evidence of differentiation into iDCs. 

 

Further evidence that the cells grown in hIL-4/GM-CSF are indeed iDCs can be 

obtained by inducing their maturation by treatment with LPS or TNFα. iDC 

maturation was characterised by the up-regulation of CD83, CD86, HLAI and 

HLAII (see Figure 1.6). A control culture was left in the same cytokine cocktail as 

previously. Two methodologies for the maturation and subsequent characterisation 

of iDCs were trialled using either LPS or hTNF-α and the resulting mDCs compared 

by FACS analysis using the mAbs HB15 (CD83), FM95 (CD86), MCA81F (HLAI) 

and L243 (HLAII) (Figure 5.4). Confirmation of the previous data that iDCs had 

been successfully generated was obtained by their ability to mature. CD83, CD86, 

HLAI and HLAII were considerably up-regulated in mDCs vs. iDCs. The findings 

across all experiments also showed that LPS generated superior up-regulation of all 

four markers tested, demonstrating approximately 3.5x (CD83), 3.1x (CD86), 3.6x 

(HLAI) and 1.8x (HLAII) higher up-regulation when compared with DCs matured 

by hTNF-α. It should be noted, however, that hTNF-α resulted in an average of 1.5x 

higher expression of all markers tested when compared to iDCs and as such still 

generated mDCs. Both sets of data will be useful as controls for the investigation of 

the maturation of iDCs by Ad vectors. 

 

5.5: Adenovirus vector transduction of immature dendritic cells 
 

Ad19awt has been previously shown to infect iDCs efficiently (Ruzsics et al., 2006). 

However, it remained unclear whether this reflected better uptake or replication, 

therefore, it was important for further development of Ad19a vectors to examine 

whether the Ad19a vector retained this capacity. 

 

 



(A) FACS histogram overlays showing staining of iDCs (purple fill), DCs matured with LPS (mDC LPS; red solid line) or DCs matured with 
hTNF-α (mDC TNF-α; blue solid line) with mAbs against CD83, CD86, HLAI and HLAII or corresponding isotype controls. (B) Mean relative 
expression to iDC levels of each marker seen in 5 experiments. Error bars show the standard error of the mean for 5 experiments.  

 

Figure 5.4: Maturation of immature dendritic cells by application of LPS or hTNF-α 
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5.5.1: FACS analysis 
 

In each DC experiment control transductions of epithelial cells (A549 cells) were 

performed to confirm correct titration of vector stocks used. rAd19aGFP and 

rAd5GFP were used to transduce A549 cells at an MOI of 3pfu/cell or 10pfu/cell. 

The % of GFP positive cells after 48 hours was recorded (example shown in Figure 

5.5 A) and the results of several experiments are summarised in Figure 5.5. 

 
As expected, rAd19aGFP and rAd5GFP showed very similar transduction 

efficiencies in this cell type as seen previously (Chapter 4.4.1). 

 

Concurrently to A549 controls, iDCs were transduced with rAd19aGFP or rAd5GFP 

at an MOI of 10pfu/cell (Figure 5.5 C & D) for 1.5 hours and returned to DC growth 

media for 48 hours before FACS analysis. As with the wild-type virus, rAd19aGFP 

was shown to efficiently transduce iDCs with a mean of 94% of iDCs staining 

positive for GFP after rAd19aGFP transduction. In comparison rAd5GFP was shown 

to be very inefficient at transducing iDCs with a mean of 22%. An unpaired t test on 

the two sets of data showed that rAd19aGFP transduces significantly more iDCs 

when compared to rAd5GFP. 

 

This data was then confirmed in a western blot system using a different vector. 
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Figure 5.5: Transduction of iDCs and control cells by GFP Ad vectors 

(A) FACS histogram overlaying the fluorescence patterns of A549 cells either mock 
transduced (purple fill) or transduced with an MOI of 3 (orange solid line 
rAd19aGFP, red solid line rAd5GFP) or 10 (green solid line rAd19aGFP, blue solid 
line rAd5GFP) (B) Chart showing the mean % of A549 cells transduced with an 
MOI of 3 or 10 of rAd19aGFP or Ad5GFP using the same colour scheme as before. 
Error bars show the standard error of the mean for 4 experiments. (C) FACS 
histograms overlaying the fluorescence patterns of iDCs mock transduced or 
transduced with an MOI of 10 or rAd19aGFP or rAd5GFP MOI using the same 
colour scheme as before. (D) Chart showing the mean % of iDCs transduced with an 
MOI of 10 of rAd19aGFP or rAd5GFP using the same colour scheme as before. 
Error bars show the standard error of the mean for 4 experiments. P value shown is 
from an unpaired t test performed on the iDC transduction data. 
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 5.5.2: Western Blot analysis 

 

To investigate whether a different antigen could also be efficiently expressed, we 

transduced iDCs with the vaccine vector Ad19aHIVA and analysed expression semi-

quantitatively by western blotting. 

 

Control transductions of A549 cells were performed with rAd19aHIVA and 

rAd5HIVA to confirm the similar titre of rAd5 and rAd19aHIVA. iDCs were 

transduced with an MOI of 10 pfu/cell of both vectors. The % of hexon positive cells 

after 48 hours was recorded for each transduction by FACS and the results are 

summarised in Figure 5.6. Concurrently a sample of each transduction was lysed and 

subjected to western blot for the HIVA transgene using the SV5-Pk1 Ab to detect an 

epitope in the HIVA transgene. The same amount of lysate was analysed for the 

presence of β-tubulin as a loading control (Figure 5.6 E & F). 

 

Hexon FACS analysis illustrated that rAd19aHIVA and rAd5HIVA performed 

similarly to the GFP vectors when they showing approximately equal transduction 

efficiencies in A549 cells but markedly different efficiencies in iDCs. This 

contrasting picture in iDC transduction was further evidenced by the observed 

detection of the HIVA transgene in cells transduced with rAd19aHIVA by western 

blot which was not observed in cells transduced with rAd5HIVA (Figure 5.6 E).By 

contrast the HIVA transgene was detected in all transductions of A549 cells and 

equal amounts of lysates were loaded into each lane as evidenced by the identical 

expression levels of the ~50kDa β-tubulin protein in all samples (Figure 5.6 F). 

 

It was concluded that the Ad19a vector retained the ability of the Ad19a wild-type 

virus to efficiently infect/transduce DCs. Therefore, we propose the use of Ad19a 

vectors as an efficient transfer vector for DCs in both in vivo and ex vivo conditions. 

The data also showed that the Ad19a vector can efficiently transduce 95% of DCs at 

far lower doses than the 100 pfu/cell required for Ad5 vectors (Zhong et al., 1999). 

This correlated with the expression of detectable amounts of transgene when 

transduced into iDCs at the doses tested which is expected to result in more efficient 

antigen presentation. 
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Figure 5.6: Transduction of immature dendritic cells by HIVA Ad vectors 

(A) FACS histograms overlaying HIVA vector hexon detection in iDCs either mock 
transduced (purple fill) or transduced with an MOI of 10 of rAd19aHIVA (green 
solid line) or rAd5HIVA (blue solid line). (B) Mean % of iDCs transduced with an 
MOI of 10 of rAd19aHIVA or rAd5HIVA using the same colour scheme as before. 
Error bars show the standard error of the mean for 3 experiments. (C) FACS 
histograms overlaying HIVA vector hexon detection as in (A) but for A549 cells 
showing mock transduction (purple fill) or transduction with an MOI of 3 (orange 
solid line Ad19a, red solid line Ad5) or 10 (green solid line Ad19a, blue solid line 
Ad5). (D) Mean % of A549 cells transduced with an MOI of 3 or 10 of rAd19aHIVA 
or rAd5HIVA using the same colour scheme as (C). Error bars show the standard 
error of the mean for 3 experiments. (E) iDCs and A549 cells were transduced with 
an MOI of 3 (A549 only) or 10 of rAd19aHIVA or rA5HIVA, lysed and subjected to 
western blot for the HIVA transgene (SV5-Pk1, ~52kDa highlighted in dashed box) 
or β-tubulin (2-28-33, ~50kDa highlighted in spotted box) as a loading control.  
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5.6: The maturation of dendritic cells by Adenovirus vector 
transduction 

 

Ad vectors have been shown to mature dendritic cells upon transduction by the 

upregulation of expression of HLAI, HLAII, CD80 and CD86 (Morelli et al., 2000), 

however, this data was generated with an Ad5 vector at an MOI of 100pfu/cell. 

Contemporaneously it was shown that an Ad vector from subgroup B, Ad35, also 

matured DCs upon transduction but did so at a 10-100 fold lower dose than Ad5 (Rea 

et al., 2001). Here the ability of an Ad19a vector mature DCs upon transduction was 

investigated. In a single preliminary experiment, the maturation profile upon rAd19a 

or rAd5 transduction was compared to LPS and TNF-α treated DCs (Figure 5.7). 

 

iDCs were transduced for 1.5 hours with rAd19aHIVA or rAd5HIVA at an MOI of 

10pfu/cell and returned to normal DC growth medium or grown for 48 hours in the 

presence of LPS or hTNF-α. The latter deliberately matured DCs were then 

compared to iDCs and iDCs transduced by the viral vectors for the expression of 

CD83, CD86, HLAI and HLAII and the results summarised (Figure 5.7 B). IgG1 and 

IgG2a controls were performed as previously (data not shown). 

 

LPS and TNF-α up-regulated the expression of all markers to approximately the 

same levels as observed previously. 10pfu/cell of rAd19a up-regulated the expression 

of all four markers tested to a greater level than hTNF-α (CD83 ~1.1x greater, CD86 

~3.4x greater, HLAI ~2.2x greater and HLAII ~1.3x greater), but less than LPS in 

the case of three markers (CD83 1.2x ~smaller, HLAI ~1.9x smaller and HLAII 

~3.5x smaller). In contrast, 10pfu/cell of rAd5 increased the expression level of two 

of the four markers tested over iDC levels (CD86 ~1.7x greater and HLAI ~1.1x 

greater) only moderately and did not up-regulate either CD86 or HLAII. rAd5 failed 

to match or exceed the levels of up-regulation induced by hTNF-α. It was therefore 

concluded, albeit from a single experiment, that Ad19a vectors can efficiently cause 

maturation of iDCs at 10pfu/cell as identified by the few cell marker profiles 

available. Further investigation was not performed due to time constraints. 

 

 



(A) Overlays of FACS histograms showing the upregulation of various activation markers in mDCs. Purple fill represents the staining of iDCs, 
the red solid line DCs matured with LPS the blue solid line DCs matured with hTNF-α, the green solid line DCs matured with rAd19aHIVA and 
the orange solid line DCs matured with rAd5HIVA, with CD83, CD86, HLAI and HLAII antibodies. (B) Relative average expression to iDCs of 
each marker. Results are for 1 experiment only.  
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Figure 5.7: Maturation of immature dendritic cells by Ad vectors 

A)

B) 

 



5.6.1: Transduction of mature dendritic cells 
 

It was then finally investigated if Ad vectors could transduce mDCs. In a single 

experiment, iDCs were matured with either LPS or hTNF-α, checked for successful 

maturation by marker staining as previously (data not shown) and when confirmed 

transduced with an MOI of 10 of either rAd19aGFP or rAd5GFP, alongside iDCs 

and returned to DC growth medium for 48 hours. Cells were then examined by 

FACS analysis for the level of GFP and the percentage of GFP positive cells and the 

results summarised in Figure 5.8. 

 

Transduction efficiencies for both vectors in iDCs were as observed previously. 

Transduction efficiencies in LPS mDCs appear reduced when compared to iDC 

levels for both the Ad19a vector (~14% reduction in transduction efficiency) and the 

rAd5 vector (~50% reduction in transduction efficiency). In contrast, transduction 

efficiencies in hTNF-α mDCs were similar to iDCs for the Ad19a vector and greatly 

enhanced for the Ad5 vector (~40% increase in transduction efficiency). It was 

concluded that LPS maturation instigates a decrease in transduction efficiency in Ad 

vectors but that hTNF-α did not affect rAd19a transduction and actually enhanced 

rAd5 transduction over iDC levels. No further experiments could be performed due 

to time constraints. 
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B) 

 

 

Figure 5.8: Infection of mature dendritic cells by Ad vectors 

(A) FACS histograms of iDCs (column 1), LPS matured DCs (column 2) or TNF-α 
matured DCs (column 3) either mock transduced (purple fill) or transduced with an 
MOI of 10 of rAd19aGFP (red solid line) or rAd5GFP (blue solid line). (B) 
Percentage of cells transduced in each transduction. Colour code as in (A). Results 
are for 1 experiment only.  
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5.7: Discussion 
 

The work presented in this chapter has detailed the ability of the Ad19a vector to 

naturally target DCs, induce their maturation, express high levels of transgene and 

transduce mDCs. Taken together, these results may herald greater in vitro and in vivo 

immunogenicity induced by rAd19a than has been observed with rAd5.  

 

The results in section 5.3 confirmed previous findings (Ruzsics et al., 2006) that the 

Ad19a vector efficiently transduced immune lineage cells. Jurkat T cells and TD12 B 

cells were shown to be efficiently transduced by the rAd19a vector but not by the 

corresponding rAd5 vector. These results were limited by the use of only two human 

immune lineage cell lines and as such cannot be conclusive of transduction of these 

cell types. However, previous data from this laboratory using other B and T cell lines 

support these claims (unpublished data). This suggests that rAd19a may utilise a cell 

receptor which is common on all immune lineage cell types. Further transduction 

experiments would be required, perhaps involving the isolation of primary immune 

lineage cells from human blood to confirm that rAd19a can infect all immune lineage 

cell types, but the results are promising for the ex vivo transduction of several 

immune cell types. If this holds true for the in vivo tropism this may allow 

therapeutic gene transfer in lymphocytes or possibly the development of oncolytic 

Ad19a viruses for targeting lymphomas or leukemic cells. 

 

Most importantly, in section 5.5 it was shown that rAd19a possesses similar 

transduction efficiency of iDCs as has been reported previously for the wt virus 

(Ruzsics et al., 2006) and that this transduction efficiency was significantly greater 

than the transduction efficiency of rAd5 at the same dose. This finding could suggest 

that Ad19a vectors would have a far greater ability to transduce DCs either in vivo or 

ex vivo allowing greater transgene or antigen expression at a lower dose and  

possibly, therefore, a greater immunostimulatory response. This data must be 

tempered by the findings in Chapter 4, specifically concerning particle/pfu ratios and 

this lower dose of rAd19a may contain a similar or greater number of particles as the 

rAd5 dose. It is important to remember, however, that rAd19a is known to use a 

cellular receptor other than CAR, much like rAd35 which shows similar transduction 

of DCs, when its fibre is pseudotyped onto Ad5 (Rea et al., 2001). This differential 
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receptor usage may account for the increased transduction efficiency. The Ad19a 

receptor will be discussed in chapter 6 including its relationship to DC uptake. 

 

The results in section 5.4 show the adoption of a simple and effective method for the 

isolation and growth of DCs from human blood. It also described two ways, using 

either LPS or hTNF-α, to induce maturation of DCs which have both been used 

previously (Lutz et al., 1999; Yamaguchi et al., 1997). In this study, LPS prompted 

greater up-regulation of CD83, the co-stimulatory molecule CD86 and the MHC 

components HLAI and HLAII. There are reasons that may account for this. It is 

important to note that hTNF-α production is itself induced in vivo by the presence of 

LPS (Dumitru et al., 2000), therefore iDCs exposed to LPS may be responding to the 

presence of LPS itself and the hTNF-α and other cytokines produced by the other 

iDCs in the culture and this may account for the greater up-regulation of maturation 

markers. Additionally, the hTNF-α may have lost some activity during storage 

whereas LPS is much more stable. It was not investigated in this study if LPS and 

hTNF-α instigate differing changes in mDC function or phenotype but it was shown 

in section 5.6.1 that DCs matured by the two different immunostimulants have 

different susceptibilities to rAd transduction. Only one experiment was performed so 

the data is not conclusive, but LPS was shown to cause a decrease in both rAd19a 

and rAd5 transduction which may suggest that it caused the DCs to mature into a 

state which is less susceptible to virus infection, perhaps by down-regulation of virus 

receptor molecules. This may be accounted for by the creation of morphology or 

phenotype to manage a bacterial infection, induced by a bacterial cell wall 

component, LPS. In contrast, TNF-α may have a more generalised effect, as it is 

produced in reaction to bacterial antigen detection and viral infection, and therefore 

might produce a form of DC which is more susceptible to virus infection to 

potentially allow all circulating viruses in vivo to be taken up, even during DC transit 

to the lymph nodes, and their antigens presented to CD4+ T cells. This function is 

unlikely to be due to the up-regulation of the Ad5 receptor, CAR, but may be due to 

the up-regulation of a non virus-specific viral uptake mechanism which has been 

hypothesised before for increased rAd5 transduction in mDCs (Lore et al., 2007) and 

has been putatively identified as involving DC-SIGN in combination with lactoferrin 

(Adams et al., 2009). Further work in this area would include repeating the rAd 
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transduction experiment from section 5.6.1 and attempting to block DC-SIGN to 

investigate if the increase in Ad5 transduction can be inhibited. 

 

Interestingly, in section 5.6 in a single experiment, it was shown that, like LPS and 

TNF-α, rAd infection was capable of maturing DCs, as had been seen previously 

(Morelli et al., 2000). It was also noted that rAd19a induced a significantly higher 

expression of DC maturation markers at the dose tested than Ad5, suggesting the 

delivery of stronger activation signals by Ad19a. This could be related to the larger 

number of particles introduced compared to Ad5 or an intrinsic property of Ad19a. 

This can only be resolved, therefore, by further titration studies (lowering the 

particle/pfu ratio of Ad19a preps by improving the quality of prep or by increasing 

the amount of Ad5 vector). The profound increase in MHC I expression is certainly a 

positive aspect for a vaccine vector as it supports efficient antigen presentation to 

CD8+ T cells. In previous studies, rAd5 has been shown to induce the maturation of 

DCs. In these studies doses, >100 pfu were used (Rea et al., 2001). This could 

explain the observed lack of maturation at the rAd5 dose tested here and add further 

weight to the hypothesis that rAd19a has a far higher immunostimulatory profile 

 

A key question that’s not addressed to date is whether the enhanced transduction and 

transgene expression by rAd19a correlates with enhanced antigen presentation by 

DCs. This could be done by co-culturing DCs transduced with the rAd19a and 

rAd5HIVA vectors with HLA-A2 restricted HIVA specific CTLs and analysing IFN-

γ secretion. This work is in progress in collaboration with Dr. T. Dong (University of 

Oxford). It is also unknown if rAd19a can target DCs in vivo, which is of course a 

major goal of any vaccine vector. Whilst this is beyond the scope of the current 

study, rAd19a’s effectiveness in an in vivo setting in mice has been analysed 

(Chapter 7).  

 

Efficient transduction of DCs has also been shown for rAd5 vector pseudotyped with 

the Ad35 fibre, which uses CD46 as its cellular receptor (Rea et al., 2001) and that 

this successfully generates antitumour CTL responses in vitro (Slager et al., 2004; 

Gruijl et al., 2006). As will be shown in Chapter 6, CD46 may also be one of the 

potential receptors for Ad19a. Thus, rAd19a may possess similar features and a 
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careful comparison between an Ad19a vector and an Ad35 vector for DC 

transduction may be useful in future studies. 

 

rAd19a possesses relative specificity for DC transduction, induced high levels of 

transgene expression in iDCs and mDCs, up-regulated co-stimulatory and MHC 

molecules induced DC maturation. In conclusion, this chapter’s findings have 

provided further progress towards the clinical use of rAd19a as a vaccine vector and 

would support the use of Ad19a vectors for ex vivo Ag delivery in DCs. Further work 

is required to examine if rAd19a transduces DCs in vivo. 
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Chapter 6: The identity of the Ad19a receptor 
 

6.1: Introduction 
 

For a full introduction to Ad receptor usage and the natural function of each of the 

receptors mentioned herein please see Chapter 1. 

 

Ad5 infection requires the presence of the Coxsackie and adenovirus receptor, CAR 

(Bergelson et al., 1997), which is essential for transduction of cell lines in vitro 

(Hutchin et al., 2000; Nalbantoglu et al., 1999; Roelvink et al., 1999), its presence 

can influence biodistribution in vivo (Seiradake et al., 2009) and its engineered 

expression on cell lines can enhance transduction (Stockwin et al., 2002). It is also 

known, however, that the use of other attachment molecules, such as Factor X, may 

have caused a fatal systemic inflammatory response in an 18 year old male gene 

therapy patient treated with an Ad5 vector (Raper et al., 2003). It would therefore be 

desirable to characterise the identity of the Ad19a receptor to better understand the 

ranges of cell types which could be transduced by the vector in vitro and any 

complications the vector may encounter in vivo. 

 

 6.1.1: The Ad19a receptor 

 

Only subgroup B Ads and the subgroup D Ad, Ad37 have been definitively shown to 

use cell attachment receptors other than CAR (Roelvink et al., 1998). Ad37 and 

Ad19a possess identical fibres (Arnberg et al., 1997) and therefore the identity of the 

Ad37 receptor should shed some light on the identity of the Ad19a receptor. 

Perplexingly, the identity of the Ad37 receptor remains controversial.  

 

The Ad37 fibre has been shown to bind CAR immobilized on a solid support with 

high affinity (Seiradake et al., 2006), but has been shown to be too inflexible to 

allow CAR binding (Wu et al., 2003; Nemerow et al., 2009). Indeed, the fibre of 

Ad37 has been shown to be both short (~150 Å), when compared to the Ad5 fibre 

(~380 Å), and rigid by cryoelectron microscopy reconstruction (Chiu et al., 2001) 

and in that regard is similar to the CD46-using Ad35 fibre which is also short (~85 

Å) especially and only marginally flexible (Saban et al., 2005). Previous data from 
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this group indicated that Ad19a can infect cells efficiently in the absence of CAR, 

and it has been concluded that CAR is unlikely to be the primary receptor for Ad37 

(Arnberg, 2009) and Ad19a alike in the context of virus infection. 

 

On Chinese hamster ovary (CHO) cells, Ad37 recognised α2-3 linked sialic acid 

(SA) displayed on surface glycoproteins (Arnberg et al., 2000a; Arnberg et al., 

2002), treatment of cells with neuraminidase reduced Ad37 and Ad19a uptake 

(Arnberg et al; 2000b; Thirion et al., 2006) and multivalent molecules of sialic acid 

inhibited Ad37 from binding to and infecting human corneal cells (Johansson et al., 

2005; Johansson et al., 2007). Ad5 pseudotyped with the Ad37 fibre has also been 

shown to require sialic acid for transduction (Cashman et al., 2004). Sialic acid is 

now widely accepted to be a primary component of the Ad37 receptor but other 

receptors have been proposed as well. 

 

CD46, a membrane cofactor protein, and the receptor for several human pathogens 

(Cattaneo, 2004) has been proposed as the Ad37 receptor, particularly on Chang C 

conjunctival cells (Wu et al., 2001; Hsu et al., 2005). This was mainly based on the 

fact that an antiserum against the N-terminal 19 amino acids of CD46 blocked Ad37 

infection of human HeLa and conjunctival cells and expression of a 50kDa isoform 

of human CD46 in a CD46 null cell line increased cell binding by wild-type Ad37 

and gene delivery by an Ad5 vector pseudotyped with the Ad37 fibre (Wu et al., 

2004). However, the study was not well controlled. If CD46 was the Ad19a receptor 

this would have dramatic implications for the choice of in vivo model as mice lack 

CD46 in the periphery (Cervoni et al., 1992). The enhanced performance of an Ad 

vector requiring CD46 in a CD46 transgenic mouse line (Verhaagh et al., 2006) 

underlines the restricted tissue distribution of CD46 in non-transgenic mice. 

 

Recently, preliminary evidence was provided for a new candidate receptor linked to 

sialic acid, the GD1a sialic acid containing ganglioside GD1a (Arnberg, unpublished 

data). 

 

The ongoing controversy in the field prompted further experiments to test which of 

the candidate receptors, if any, serve as the functional receptor for Ad19a. To this 

end, CHO cells expressing each of the candidate receptors, except GD1a, were 
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obtained. After verifying their expression alongside human control cell lines, the 

transduction efficiency of rAd19a alongside control viruses for each receptor was 

tested. The rAd5 vector served as a suitable control for CAR binding, and an Ad5 

vector pseudotyped with the Ad35 fibre (generously provided by A. Lieber) and 

shown to bind CD46 (Gaggar et al., 2003), was used as a positive control virus that 

binds CD46. 

 

6.2: Aims 
 

The aims of this study were to investigate human receptor expression on modified 

CHO lines, transduce them with rAd19a, rAd5 and rAd5F35 and, if an enhanced 

transduction interaction was obtained, the attempted blocking of this transduction by 

Ab binding was attempted. 

 

6.3: Cell Line Analysis 
 

Mock CHO cell lines, CHO cells expressing two isoforms of human CD46 (hCD46; 

CHO-CD46 MCP1 and CHO-CD46 MCP2), CHO cells expressing human CAR 

(hCAR; CHO-CAR) and CHO cells expressing more (Pro5) or less (Lec2) SA were 

obtained from various sources (Chapter 2) and were examined alongside 293 and 

A549 cells for the expression of each of the candidate receptors, CD46 (using mAb 

J4.48), CAR (mAb E1-1), SA (lectin MALI) and GD1a (mAb MOG35) (Figure 6.1). 

 

hCD46 was found to be expressed only on 293, A549, CHO-CD46 MCP1 and CHO-

CD46 MCP2 cell lines (Figure 6.1A). A549 cells expressed ~2.5x more hCD46 than 

293 cells whilst CHO-CD46 MCP1 expressed ~1.6x more and CHO-CD46 MCP2 

~2.9x more than 293 cells. The highest level was expressed by CHO-CD46 MCP2, 

followed by A549 cells, CHO-CD46 MCP1 cells and finally 293 cells. All other cell 

lines in the study were negative (data not shown). The confirmed expression of 

hCD46 in the CHO-CD46 cell lines allowed their further use in this study. 

 

 



 

Top panel shows FACS histograms for the different Abs or lectins, CD46 (A), CAR (B), SA (C) or GD1a (D). The cell lines tested with each 
antibody or lectin are shown by the colour scheme: 293 (red), A549 (blue), CHO (purple), CHO-CD46 MCP1 (orange), CHO-CD46 MCP2 
(green), CHO-CAR (black), Lec2 (pink) and Pro5 (brown). The lower panel shows bar charts summarising the experiments using the same 
colour code as above. The experiment in panel D was only performed once. Error bars represent the standard error of the mean for 3 
experiments.   
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Figure 6.1: Cell Line analysis 
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hCAR was found to be expressed on 293, A549 and CHO-CAR cells (Figure 6.1 B). 

A549 cells expressed ~2.3x less hCAR than 293 cells whilst CHO-CAR cells 

expressed ~3.3x more. All other cell lines tested negative and were not shown in the 

figure. The confirmed expression of hCAR on CHO-CAR cells, although 

substantially higher than the expression levels in human cell lines, allowed their 

further use in this study. 

 

SA display was tested only on CHO, Lec2 and Pro5 cells as it is already well 

established that it is expressed on all mammalian cell types (Figure 6.1 C). Lec 2 

expressed ~1.6x less SA than CHO cells whilst Pro5 expressed ~1.9x more 

confirming that they are good candidates to examine if the under-expression or over-

expression of SA has any effect on rAd transduction. 

 

In a single experiment, GD1a was found to be expressed on 293 and A549 cells only 

(Figure 6.1 D). There was little difference in expression between the two cell lines. 

All other cell lines tested negative. 

 

With the confirmation of receptor expression on all of the acquired cell lines their 

transduction with Ad5, Ad19a and Ad5F35 vectors could be investigated. 

 

6.4: Adenovirus transduction of receptor modified CHO cell lines 
 

A549, CHO, Lec2, Pro5, CHO-CAR, CHO-CD46 MCP1 and CHO-CD46 MCP2 

were grown in 12 well plates to 95% confluence and transduced with an MOI of 

3pfu/cell (data not shown) or 10 pfu/cell of rAd5GFP, rAd19aGFP or rAd5F35GFP. 

48 hours later they were examined for GFP fluorescence by FACS (Figure 6.2). 

 



A) 

B) 

C) 
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Figure 6.2: Adenovirus transduction of receptor modified CHO lines 

 

A549, CHO, Pro5, Lec2, CHO-CAR, CHO-CD46 MCP1 and CHO-CD46 MCP2 cell lines were transduced with an MOI of 3pfu/ cell (data not 
shown) or 10pfu/cell rAd5GFP (red solid line), rAd19aGFP (blue solid line) and rAd5F35GFP (orange solid line). 48 hours later each cell line 
was examined for GFP fluorescence. A) Example FACS histogram overlays of each cell line and each transduction using the same colour 
scheme. B) Chart showing the mean transduction of each cell line with each virus using the same colour scheme as previously. Error bars show 
the standard error of the mean for 3 experiments. C) Chart showing the same data as (B) with the CHO background transduction deducted. 

 

 

 



All 3 vectors exhibited approximately equal transduction efficiencies in the control 

cell line A549, confirming that the calculated titres for each vector were correct. In 

the control CHO cell line, i.e. in the absence of human receptor expression, both 

rAd5GFP and rAd19aGFP were capable of an average of 33% and 11% transduction 

respectively. Transduction of CHO cells with rAd5GFP has been noted before 

(Granio et al., 2009), where a dose of 500 virus particles/cell resulted in 20-30% 

transduction. These are in line with the above results since 500 virus particles/cell is 

equivalent to an MOI of 10 due to rAd5GFP having a particle/pfu ratio of 50:1 (see 

Chapter 4.3). rAd5F35GFP was unable to transduce the control CHO cell line 

suggesting significant differences between the CD46 targeting Ad35 fibre and the 

targeting of the Ad19a fibre. Transduction of the CHO cell line was used as the 

background transduction level in CHO cell lines. In subsequent transduction 

experiments with CHO cell lines expressing various human receptors this 

background transduction level was deducted (Figure 6.2 C).  

 

None of the three vectors used transduced either Lec2 or Pro5 cells above 

background levels (Figure 6.2 C) showing that, in this study, the reduced display of 

SA had no effect on rAd19aGFP transduction, arguing against it being a receptor 

component for Ad19a, despite a wealth of evidence for it being the Ad37 receptor. 

 

Predictably, rAd5GFP transduction was recovered to nearly the same level as A549 

transduction in CHO-CAR cells (Figure 6.1 B). Surprisingly though, rAd19aGFP 

transduction was also recovered to A549 levels. These findings suggested that 

rAd19aGFP was capable of using hCAR as a receptor during infection and the data 

showing the binding of the Ad37 fibre to hCAR (Seiradake et al., 2006), that was 

discounted due to fibre inflexibility (Wu et al., 2003; Nemerow et al., 2009), may 

suggest that, in the case of Ad19a infection at least, that some other interaction is 

allowing the use of CAR. rAd5F35GFP also showed ~10% average transduction 

over background levels suggesting that hCD46 usage may also allow some level of 

hCAR usage. 

 

As predicted, rAd5F35GFP transduced A549 cells to a similar level as CHO-CD46 

MCP1 and CHO-CD46 MCP2 cells suggesting that CD46 is the primary receptor for 

Ad35. Unexpectedly, transduction of rAd19aGFP also returned to approximately 
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A549 transduction levels suggesting that hCD46 could also function as an Ad19a 

receptor in agreement with previous data for Ad37 (Wu et al., 2004). rAd5GFP 

showed the same ~10% increase in average transduction over background levels as 

witnessed with rAd5F35GFP in CHO-CAR cells suggesting the prior finding that 

hCD46 usage allows some level of hCAR usage is also true in the reverse situation. 

 

In conclusion, it was found that rAd19aGFP could utilise both hCAR and hCD46 for 

CHO cell transduction. Results using both an MOI of 10 and an MOI of 3 were 

identical. The control viruses rAd5GFP and rAd5F35GFP behaved predictably in the 

presence of hCAR and hCD46 and therefore the results with rAd19aGFP were 

deemed acceptable. For confirmation of those results, I attempted to block blocking 

of transduction of each cell line by the use of monoclonal or polyclonal Abs and 

soluble forms of the candidate receptor molecules was attempted. 
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6.5: Competition of transduction 
 

Competition assays were performed as described in chapter 2.20. All stages were 

performed at 4°C to prevent receptor/antibody complex uptake and subsequent 

destruction by endosomal lysis. 

 

6.5.1: Blocking of CD46 usage 

 

Firstly, it was established that the system allows blocking of uptake of rAd5F35GFP, 

which is known to use CD46 (Figure 6.3). Representative FACS histograms for this 

work and all subsequent work in this chapter are shown in Figures A21-A24. A549 

cell transductions were performed in parallel with both rAd19aGFP and 

rAd5F35GFP in each experiment and all subsequent competition represents the 

amount of transduction relevative to these controls. Blocking of hCD46 in A549 

cells by monoclonal antibody treatment (αCD46FII) had little to no effect on 

rAd19aGFP and caused only a ~30% reduction in rAd5F35GFP transduction at the 

highest dose, although, as the error bars show, this reduction was not seen in all the 

experiments performed (Figure 6.3 B). Blocking by polyclonal antibody treatment 

(αCD46POLY) caused a 47% reduction and 61% reduction in rAd5F35GFP average 

transduction at a 1/25 dilution and 1/10 dilution respectively. rAd19aGFP average 

transduction did not change significantly on increasing antibody dosage (Figure 6.3 

C). Serum controls, i.e. rabbit sera from the same strain of rabbit used to generate the 

polyclonal antibody used in the previous treatment, had little or no effect on average 

rAd19aGFP or rAd5F35GFP transduction indicating that the inhibition was caused 

specifically by components of the serum raised against hCD46 in the polyclonal 

antibody and not by other contents of the serum. (Figure 6.3 D). Finally, blocking by 

pre-treatment of the vector particles with a soluble form of the CD46 receptor (MCP-

BC-IgG4) resulted in a 43% and 80% reduction in average rAd5F35GFP 

transduction and a 25% and 29% reduction in average rAd19aGFP transduction at 

the two doses tested respectively (Figure 6.3 E). In comparison to the positive 

control vector, transduction by rAd19aGFP was only slightly, but consistently 

reduced by any of the CD46 blocking agents (highest for soluble hCD46 at 29%). 

Taken together these results show that rAd5F35GFP transduction of 



 

Figure 6.3: Effect of CD46 blocking on transduction of A549 cells. A chart showing A) the average mock transduction of A549 cells with either 
rAd19aGFP (red bars) or rAd5F35GFP (blue bars) and the effect of treatment with increasing concentrations of either B) mAb αCD46FII, C) polyclonal 
antibodie αCD46POLY, D) Rabbit serum control or E) pre-treatment with of vector particles with soluble CD46 protein on that transduction. Error bars 
shown the standard error of the mean for three experiments. 
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A549 cells is dependent on the presence of hCD46 being present whereas 

rAd19aGFP transduction may be increased by the presence of hCD46 but it does not 

depend on it. These findings support the data from Chapter 6.3 that rAd19aGFP is 

capable of using both hCAR and hCD46, in the absence of any other human receptor 

entities, but this effect may be less relevant or irrelevant in a human cellular 

background. 

 

To investigate this hypothesis, the effect of blocking CD46 usage on CHO-CD46 

MCP1 cells (Figure 6.4) and CHO-CD46 MCP2 cells (Figure 6.5) was investigated 

as previously. Blocking of hCD46 usage in CHO-CD46 MCP1 cells by monoclonal 

antibody treatment reduced rAd19aGFP transduction 6%, 35% and 51% on 

increasing dosage and had a similar 12%, 35% and 56% effect on rAd5F35GFP 

transduction (Figure 6.4 B). Polyclonal antibody treatment clearly reduced both 

rAd5F35GFP and rAd19aGFP transduction drastically whereas the control serum 

only caused <20% reduction in average transduction by either vector except in the 

case of rAd5F35GFP at the highest dosage where it resulted in a 38% reduction. 

However, this is still 50% less reduction than the same concentration of the 

polyclonal antibody and the results are only representative of a single experiment. 

Pre-treatment with soluble hCD46 resulted in a similar reduction in rAd19aGFP 

transduction and rAd5F35GFP transduction. 

 

The blocking of hCD46 usage had a similar effect on both average rAd19aGFP and 

rAd5F35GFP transduction and it was therefore concluded that these results confirm 

that the transduction of CHO-CD46 MCP1 cells by rAd19aGFP is reliant on the 

availability of hCD46. 

 

Finally, it was investigated whether the CD46 blocking agents would also affect the 

uptake of vectors in CHO-CD46 MCP2 (Figure 6.5). Blocking of hCD46 usage by 

the monoclonal antibody did not result in any significant reduction in either 

rAd19aGFP or rAd5F35GFP transduction whilst the CD46 antiserum and the 

CD46Fc fusion protein specifically inhibited their uptake. This had been expected to 

occur due to the targeting of the monoclonal antibody used against the MCP1 

subtype of hCD46 and not the MCP2 isotype present on this particular cell line. This 

underscores the specificity of the blocking by the mAb.



 

 

Figure 6.4: Effect of CD46 blocking on transduction of CHO-CD46 MCP1 cells. A chart showing A) the average mock transduction of CHO-CD46 
MCP1 cells with either rAd19aGFP (red bars) or rAd5F35GFP (blue bars) and the effect of treatment with increasing concentrations of either B) mAb 
αCD46FII antibodies, C) polyclonal antibody αCD46POLY, D) rabbit serum controls or E) pre-treatment of vector particles with soluble CD46 protein on 
that transduction. Error bars shown the standard error of the mean for three experiments.  
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Figure 6.5: Effect of CD46 blocking on transduction of CHO-CD46 MCP2 cells. A chart showing A) the average mock transduction of CHO-CD46 
MCP2 cells with either rAd19aGFP (red bars) or rAd5F35GFP (blue bars) and the effect of treatment with increasing concentrations of either B) mAb 
αCD46FII antibodies, C) polyclonal antibody αCD46POLY, D) rabbit serum controls or E) pre-treatment of vector particles with soluble CD46 protein on 
that transduction. Error bars shown the standard error of the mean for three experiments.  
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It was concluded that as in the case of CHO-CD46 MCP1 cells, both rAd19aGFP 

and rAd5F35GFP transduction of CHO-CD46 MCP2 cells is reliant on the 

availability of hCD46. 

 

In summary, these results confirm the findings in Chapter 6.4 that rAd19aGFP can 

utilise hCD46 as a cellular receptor when expressed on the CHO cellular 

background. It remains open whether Ad19a may prefer the MCP2 isoform over 

MCP1 and this will require further investigation. Blocking of hCD46 usage in A549 

cells had little to no effect on rAd19aGFP transduction whilst rAd5F35GFP 

transduction was significantly reduced. This is in line with the data for Ad37 (Wu et 

al., 2003) and supports the hypothesis that, while under certain circumstances, 

rAd19aGFP can utilise hCD46 as a receptor it can also utilise at least one other 

receptor which may or may not be hCAR. These findings may or may not be relevant 

in the presence of a normal human receptor background. 

 

 6.5.2: Blocking of CAR usage 

 

Subsequent to hCD46 competition, attempts were made to block rAd19aGFP hCAR 

usage on CHO-CAR cells using rAd5GFP as a positive control. The first attempts at 

hCAR competition proved unsuccessful as several commercial antibodies against 

CAR proved incapable of blocking rAd5GFP transduction of CHO-CAR cells (data 

not shown) and as such could not be used to investigate the blocking of rAd19aGFP 

transduction. Pre-treatment of rAd5GFP with a soluble form of hCAR 

(rhCXADR/Fc) resulted in a 44% and 87% reduction in transduction on increasing 

dosage as hypothesised whilst the same treatment of rAd19aGFP also resulted in a 

reduction in transduction of 18% and 67% (Figure 6.6; Representative FACS 

histograms Figure A25 A)). This data, however, is only based on two experiments 

due to the low concentration and the highly expensive soluble hCAR. 

 

These results represent preliminary findings that rAd19aGFP is reliant on hCAR in 

CHO-CAR cells but further experiments with more controls must be performed 

before a conclusion can be made. 
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Figure 6.6: Effect of pre-treatment with soluble CAR on transduction of CHO-CAR 
cells. Briefly, Ad vectors were incubated with the indicated concentration of fusion protein 
for 30 mins at 4°C. Subsequently they were used to transduce CHO-CAR cells at an MOI of 
10. 24 hours later the cells were examined for GFP fluorescence by FACS analysis. The 
chart showing the average mock transduction of CHO-CAR cells with either rAd5GFP 
(green bars) or rAd19aGFP (red bars) and then the effect of pre-treatment of vector with 
soluble CAR protein on that transduction. Results are shown for two experiments  
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 6.5.3: Effect of blocking GD1a usage 

 

An attempt was made to investigate the impact of a αGD1a monoclonal antibody 

(MOG35) together with relevant control antibodies on rAd19aGFP transduction of 

A549 cells. No useful vector control was available for this study as no virus or vector 

has been shown to use GD1a as a cell receptor apart from Sendai virus (Markwell et 

al., 1981) or influenza (Bukrinskaya et al., 1989). MOG35 or isotype controls had 

only a negligible effect on rAd5GFP transduction and no effect on rAd19aGFP 

transduction of A549 cells (Figure 6.7; Representative FACS histograms figure A25 

B). It cannot, however, be concluded that rAd19aGFP does not utilise GD1a as a 

receptor as the antibodies used may not interfere with the region of the glycolipid 

which may or may not be responsible for any Ad19a binding and a larger panel of 

methods to compete GD1a usage would have to be used. 

 

6.6: Discussion 
 

This work presents the first attempt of a direct investigation into the tropism of 

Ad19a. It also represents the first attempt to investigate the tropism of the Ad19a or 

Ad37 fibre with the correct hexon and penton proteins being present rather than the 

use of an Ad5 vector pseudotyped with the Ad37 fibre (Cashman et al., 2004) or 

non-human cell lines specifically transfected with receptor candidates rather than 

human cell lines (Johannson et al., 2005; Johannson et al., 2007). Moreover, many 

of the previous studies into the tropism of the Ad37 fibre have relied on fibre binding 

data rather than infection or transduction data. 

 

After showing that the chosen non-human cell lines transfected with the candidate 

receptors indeed expressed their intended receptor (Chapter 6.3), it was then possible 

to utilise them for transduction experiments with the Ad19aGFP vector alongside 

controls for hCAR usage (rAd5GFP) and hCD46 usage (rAd5F35GFP)(Chapter 6.4). 

Somewhat surprisingly it was discovered that the rAd19aGFP vector was capable of 

utilising both hCAR and hCD46 and not SA. The binding of soluble Ad37/Ad19a 

fibre to hCAR had previously been established but it was thought that the fibre was 

too inflexible to allow hCAR binding. This finding would therefore suggest that  
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Figure 6.7: Effect of GD1a blocking on transduction of A549 cells. The chart shows the 
average mock transduction of A549 cells with either rAd5GFP (green bars) or rAd19aGFP 
(red bars) and the effect of treatment with 0.25µg/ml, 2.5µg/ml or 25µg/ml of the MOG35 
monoclonal antibody. Results are shown for two experiments.  
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further work into the ability of an Ad37 vector to utilise hCAR in the same 

experimental set-up would be required.  

 

The usage of more than one receptor by Ad species is not unusual with several 

subgroup B Ads known to use multiple receptors (Short et al., 2004; Gaggar et al., 

2003; Marttila et al., 2005) and the Ad37 fibre, which is identical to the Ad19a fibre, 

has already been shown to bind to both hCAR (Seiradake et al., 2006) and hCD46 

(Wu et al., 2001). It is plausible that the differences between the hexon and penton 

proteins in Ad37 and Ad19a allow the viruses to have different tropisms but it is 

perhaps more likely that Ad37 is also capable of using CAR as a receptor and the 

inflexibility of the fibre is overcome by some as yet unknown mechanism. It is 

certainly possible that interactions between the penton base protein and integrins 

could play a role in CAR binding as penton base-integrin interactions have been 

shown to take place regardless of fibre tropism (Arnberg, 2009). 

 

The finding that an increase or decrease in SA had no effect on the transduction 

efficiency of rAd19aGFP is unexpected considering the large amount of literature 

supporting this structure as the Ad37 receptor (Arnberg et al., 2000a; Arnberg et al., 

2002; Arnberg et al; 2000b; Thirion et al., 2006; Johansson et al., 2005; Johansson et 

al., 2007; Cashman et al., 2004). However, it has been noted that the Ad19p fibre 

only differs from the Ad19a/Ad37 fibre by two aa’s (Arnberg et al., 2002) and yet 

does not bind SA. Therefore it is plausible that the Ad37/Ad19a fibre is capable of 

binding SA when these two aa’s are available when the fibre molecule alone is used, 

but some form of hindrance, perhaps from the other Ad structural components, 

prevents it from doing so in a whole virus system. It may also be conceivable that the 

binding of the Ad37/Ad19a fibre is only an early transient form of binding which 

only serves to allow the fibre to use another secondary receptor, such as hCD46 or 

hCAR, for actual cell entry. Evidence accumulated by the use of neuraminidase 

cleavage of SA or wheat germ agglutinin treatment preventing transgene expression 

(Thirion et al., 2006) may be flawed as it could logically prevent the early 

interactions of Ads with the cells or cause hindrance to the actual receptor binding 

and subsequent entry event. Currently it is not possible to define whether Ad19a may 

use SA as a receptor, it can only be confirmed that, in the cell lines used, the 

reduction of SA in Lec2 cells did not have an impact on transduction. For this result 
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to be confirmed in further work, a positive control virus such as influenza, which 

does use SA as its primary receptor, would have to be utilised. 

 

In Chapter 6.5 it was shown that the transduction of rAd19aGFP could be effectively 

competed in multiple cell lines, except human control cells, by increasing 

concentrations of either monoclonal or polyclonal antibodies against hCD46 or 

soluble forms of either hCD46 or hCAR. These results confirmed the finding from 

Chapter 6.3 that rAd19aGFP was capable of utilising hCD46 as a receptor due to the 

ability of all three methods tested to effectively reduce rAd19aGFP transduction of 

CHO-CD46 MCP1/2 cells. The results also suggest that the theory of dual receptor 

usage by Ad19a may be true due to only minor reduction in rAd19aGFP transduction 

in A549 cells when the same concentrations almost completely ablated rAd19aGFP 

transduction in CHO-CD46 MCP1/2 cells suggesting that rAd19aGFP was capable 

of using a second receptor on A549 cells when hCD46 was blocked. It remains 

unclear, therefore, if rAd19aGFP utilises hCD46 at all on normal human cells. In 

further support of the data, polyclonal antibodies prevented both rAd5F35GFP and 

rAd19aGFP transduction in both CHO-CD46 MCP1 and MCP2 cell lines but a 

monoclonal antibody directed against the MCP1 isotype could only prevent 

transduction of the CHO-CD46 MCP1 cell line but not the CHO-CD46 MCP2 cell 

line. It must be stated that the work on blocking the utilisation of hCAR is 

incomplete in comparison to the work on hCD46 due to the lack of antibodies which 

could reduce rAd5GFP control transductions and only two experiments were 

performed using the soluble form of CAR due to the expense and low concentration 

of the available supply. It should be noted that both CD46 and CAR have multiple 

domains (Figure 6.8) which both Ad19a and Ad5 could bind to. There is data, 

derived only from antibody competition experiments, that suggests different 

adenovirus strains may contact different CCP modules in CD46 (Figure 6.8; 

Cattaneo, 2004) and the same may be true of differing domains of CAR. The binding 

site of the antibody used to attempt blocking may, therefore, be a factor as an 

antibody able to block the binding of one adenoviral species may not block another. 

For example, the blocking of Ad19a and Ad35 usage of CD46 MCP-1 but not MCP-

2 by the use of a  monoclonal anti-CD46 MCP1 antibody may be due to a change in 

virus binding site and not antibody binding site, however, we lack the antibody 

binding domain information necessary to asses this. It is known that Ad5



Figure 6.8. The domain structure of CD46 and CAR may affect antibody binding. A diagram showing A) the protein database rendering of CD46, B) the 
structure of CD46  highlighting the four tandem complement control protein (CCP) modules, followed by one or two heavily O-glycosylated (thin lines) 
serine/threonine/proline-rich (STP) domains (circles) and the transmembrane region (rectangle) (adapted from Cattaneo, 2004), C) the protein database 
rendering of CAR and D) the structure of CAR highlighting the Ig V-like, Ig C2-like domain and the transmembrane region (adapted from Carson, 2001).
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infectivity/transduction is difficult to block using antibodies and has been suggested 

that any attempt to do so would require integrin blocking alongside (Vivien Mautner, 

personal communication) to prevent unspecific transduction such as that observed in 

the parental CHO cells. To fully confirm if the blocking of hCAR usage can reduce 

both rAd5GFP and rAd19aGFP transduction a further supply of soluble protein 

would have to be acquired and used again on CHO-CAR cells and perhaps more 

importantly used on A549 cells to determine if a similar effect was obtained to that 

found when blocking hCD46 usage in the same cell line. Further controls would also 

be required, such as the use of another unrelated soluble Fc fusion protein to confirm 

that any effect detected with the soluble hCAR is caused by the CAR portion 

specifically and not a non-specific interaction of the Fc part. 

 

Finally, a preliminary attempt was made to block rAd19aGFP usage of GD1a on 

A549 cells. In both experiments performed, a GD1a monoclonal antibody failed to 

reduce rAd19aGFP transduction when compared to isotype control antibodies. This 

finding suggests that rAd19aGFP does not utilise GD1a for infection/transduction of 

A549 cells. However, it is possible that Ad19a or Ad37 may use it for entry into 

other cell types. Further experiments in other human cell lines would be vital to form 

a conclusion and, as GD1a is expressed on many mammalian cell types, further 

investigation into the use of GD1a may be useful for further mouse studies. 

 

If Ad19a can utilise both hCAR and hCD46 this may have important implications for 

the further use of the vector in vitro and in vivo. Staining of DCs has revealed high 

levels of CD46 expression (data not shown; see also Lore et al., 2007) which may 

support Ad19a’s enhanced transduction efficiency of DCs whilst CAR expression 

was negative which, similarly, would account for the low level of Ad5 transduction. 

However, in DCs many potential uptake mechanisms for Ads may exist with 

multiple receptors being involved. For example, Ad3 has been shown to use hCD80 

and hCD86 as receptors (Short et al., 2004) and as such it cannot be conclusively 

stated that hCD46 usage confers Ad19a’s increased DC transduction efficiency. 

Further experiments with DCs could be performed to establish if Ad19a utilises one 

of its candidate receptors for transduction or whether it utilises a different 

mechanism, such as DC-SIGN. hCD46 usage would allow Ad19a to be used in 

cancer gene therapy applications as CD46 is expressed on many malignant human 
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tumour cells to help them escape complement attack (Mathis et al., 2006) and has 

been proposed as a viable target for cancer gene therapy (Ulasov et al., 2006). hCAR 

usage was originally implicated in the fatal outcome of an Ad5 vector clinical trial 

(Raper et al., 2003) which may suggest that Ad19a’s hCAR usage may confer the 

same negative effects, however, it has since been shown that liver tropism by Ad5 is 

primarily conferred by Ad5 hexon binding to human coagulation Factor Ten (FX) 

and is not caused directly by the tropism of the fibre protein (Waddington et al., 

2008). As such, it is unlikely that Ad19a could cause liver sequalae due to the 

considerable sequence differences between the Ad5 and Ad19a hexon proteins, 

although it cannot be discounted and further research on the ‘full’ serotypes of Ads 

from various serotypes rather than fibre-pseudotyped vectors, as reviewed in Baker 

et al., 2007, would be required before entering human clinical trials. Current theories 

also suggest that, even in the case of Ad5, hCAR may not be a primary receptor in 

vivo for Ads because hCAR mRNA expression poorly matches the tropism of Ad5 

vectors in an in vivo setting (Tomko et al., 1997; Walters et al., 1999) although a 

new CAR variant has been found on apical surfaces (Excoffon et al., 2010). It has 

therefore been proposed that a putative function of the fibre-CAR interaction is to 

facilitate escape from the cell rather than entry. The fibre protein is produced in such 

large quantities that it cannot all be virus incorporated into virus particles; the excess 

fibre is shed and eventually reaches tight junctions where, as a consequence of CAR 

binding, it forms intercellular oligomers which facilitate the opening of tight 

junctions perhaps allowing virus escape (Walters et al., 2002). Virus escape from 

epithelia could be a putative function for hCAR binding in Ad19a, although the 

employment of this function in vivo would be impossible using E1-deleted vectors as 

no replication takes place and no excess fibre is produced. 

 
The work presented in this chapter has provided evidence for the enhanced ability of 

the Ad19a vector to transduce cells expressing hCD46 or hCAR, in the absence of 

other human molecules. This suggests that Ad19a has some intrinsic affinity for 

these molecules. However, in human cells, these interactions appear less relevant 

because other interactions may take place. As human cells are the relevant target, 

more experiments with such cell types and multiple blocking agents are required. 

Further experiments with human cell lines could include ocular cell lines, as these 

are the primary site of infection for Ad19a but not for Ad35 or Ad5 and this may 
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provide evidence as to which receptor Ad19a utilises for its primary infection at the 

ocular surface. An alternative approach would be to knock down proposed receptor 

molecules in human cells using the corresponding siRNA and analysing the effect. 

Unfortunately, the GD1a data is incomplete as information regarding its proposed 

usage by Ad37 became available relatively late in this study.  

 

Further work must first involve gaining more in vitro data. Once candidate 

molecules have been isolated, in vivo experiments with KO or transgenic mice could 

be performed, as in Chapter 7, to assess if the presence or absence of these receptors 

has any effect on the effectiveness of a vaccine vector. The same mice could also be 

used with the GFP vectors to examine if changing the available receptor molecules 

has an effect on the in vivo distribution of Ad vectors after inoculation. 
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Chapter 7: T cell responses to rAd19aHIVA in a murine model and 
the effectiveness of rAd19aPVM-N to protect mice against lethal 
challenge with PVM 
 

7.1: Introduction 
 

Ad recombinants have been shown to induce potent transgene specific immune 

responses (Xiang et al., 1995; Wang et al., 1997) and have been used previously to 

protect animals against pathogenic challenge with various viral pathogens such as 

SHIV (Shiver et al., 2002), Ebola virus (Sullivan et al., 2000), swine influenza virus 

(Tang et al., 2002), and measles virus (Schindler et al., 1994). A full introduction to 

the use of recombinant Ads as vaccines is given in Chapter 1. This chapter will 

compare the use of Ad19a and Ad5 vectors in two animal models to assess in vivo 

any advantages an Ad19a vector may possess by analysing transgene specific 

immune response and protection against pathogenic challenge. One transgene, 

HIVA, was used to assess the CD8+ T cell response while for the second, PVM-N, 

the antibody response was analysed. 

 

7.1.1: Use of the HIVA transgene 

 

The HIVA transgene, introduced in Chapter 1, was successfully inserted into 

identical expression cassettes of an Ad19a and an Ad5 vector (Chapter 3) and shown 

to express transgene (Chapter 4). The ability of each of these vectors to generate a 

CD8+ T cell response in a mouse model was then examined by ELISpot analysis. To 

enable assessment of the immunogenicity of HIVA in vivo an H-2Dd-restricted 

epitope P18-I10 (RGPGRAFVTI) (Takahashi et al., 1988; Hanke et al., 1998), herein 

designated epitope H, was intentionally inserted within the multi-epitope region of 

the HIVA transgene. A second epitope within the same region, the subdominant H-

2Kd-restricted epitope (IFQSSMTKI), herein designated epitope P, has also been 

shown to give a powerful immunological readout, however T cell responses to H 

have been shown to be generally > P (Im & Hanke, 2007). These two peptides can 

be utilised in the ELISpot assay to assess splenocytes harvested from inoculated 

BALB/c mice for the secretion of IFN-γ on contact with their corresponding peptide 

alongside unspecific stimulation by PMA and Ionomycin. 
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7.1.2: The use of the PVM-N transgene 

 

PVM, also introduced in Chapter 1, is a natural rodent Pneumovirus pathogen. 

Intranasal (I/N) inoculation of BALB/c mice with as few as 10pfu, leads to robust 

virus replication (Domachowske et al., 2000) and doses as low as 60pfu can result in 

20% mortality (Cook et al., 1998). Depending on the quantity of the virus 

innoculum, mice have been shown to normally exhibit clinical signs of disease 

between 5-7 days post-challenge with the majority of mortality taking place before 

day 10. A system for monitoring the clinical signs of the pathogenic PVM J3666 

(herein referred to as PVM; Cook et al., 1998; Domachowske et al., 2000; Bonville 

et al., 2003) pathogenesis in mice has been previously established (Cook et al., 1998; 

Figure 7.3) and the external clinical signs of disease in the mice can therefore be 

observed each day and a mean score calculated for each group. Advancing clinical 

signs have been shown to correlate with weight loss and this can also be monitored 

as initial signs, severity and subsequent recovery from disease. 

 

Recently, it has been shown that an rAd5 vector expressing the nucleocapsid gene 

from PVM (PVM-N) is capable of protecting mice prophylactically, when given 

intranasally, against a lethal 250pfu PVM challenge in a prime/boost schedule at a 

107 pfu dosage in a 50µl innoculum volume (Helen Terry, PhD thesis University of 

Warwick, 2010). It was decided to investigate if rAd19aPVM-N, generated in 

Chapter 3, can perform as well or better in the same model system. Protection has 

been shown not to correlate with an IgG response and this will also be investigated 

using a PVM-N specific ELISA. 

 

7.2: Aims 
 

The aims of this study were the investigation of the in vivo performance of Ad19a 

vectors, when compared to similar Ad5 vectors, in two vaccination model systems 

by either immunological readout or protection against lethal challenge. 
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7.3: T cell responses to rAd19aHIVA in a murine model 
 

All work in Chapter 7.3 was carried out by Dr. Anne Bridgeman at the University of 

Oxford. Processing and presentation of results was done by the author. First, dose-

escalation was used to investigate the toxicity of rAd19aHIVA and rAd5HIVA. 

Secondly, the potential of the two vectors to induce a T cell response was 

investigated. As a read-out, the ELISpot assay was used which analyses interferon 

gamma (IFN-γ) production at the single cell level. A spot forms at the site where 

secreted IFN-γ is bound, is counted using an automated ELISPOT reader and then 

related to the number of cells added to the microtitre plate. This allows the frequency 

of cells secreting the cytokine to be calculated. One spot forming unit (sfu) is equal 

to one IFN-γ secreting cell. 

 

 7.3.1: rAd19aHIVA vs. rAd5HIVA in vivo: effect of dosage 
 

Groups of 4 mice were inoculated intramuscularly (I/M) with either 105, 106 or 107 

pfu of either rAd5HIVA or rAd19aHIVA in a 10µl volume. The mice were left for 

14 days before being sacrificed, their splenocytes harvested and subjected to an 

ELISpot assay (Chapter 2.19) in duplicate (Figure 7.1; Representative ELISpot assay 

Figure A 26). The number of cells secreting IFN-γ on addition of 20ng of either the 

H peptide (Figure 7.1 A) or the P peptide (Figure 7.1 B) was calculated as sfu per 1 

million splenocytes and summarised. The significance of the data was statistically 

analysed by unpaired t test. 

 

Both vectors were found to be non-toxic at all doses tested as no external clinical 

signs of illness were observed in any of the mouse groups. rAd5HIVA produced a 

significantly higher IFN-γ response than rAd19aHIVA to both the H peptide and P 

peptide at all three dosages tested. The H peptide was found to give a comparatively 

better immunological readout than the P peptide as has been seen previously (Im & 

Hanke, 2007).  

 

 

 



 

Figure 7.1: IFN-γ response of splenocytes upon immunisation with 105, 106 and 107 pfu of rAd19aHIVA and rAd5HIVA. Groups of 4 
mice were given increasing dosages of rAd5HIVA or rAd19aHIVA intramuscularly. After 14 days the mice were sacrificed, splenocytes 
harvested and then assayed in duplicate for IFN-γ responses to either (A) the H peptide (RGPGRAFVTI) or (B) the P peptide (IFQSSMTKI). 
Results are given as the number of IFN-γ spot forming units (SFU) produced by 1 million splenocytes when stimulated. Numbers given are the 
comparative P values of an unpaired two-tailed t test between the same dosage of rAd5HIVA and rAd19aHIVA.

H‐peptide specific response

P‐peptide specific response
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It was concluded that both vectors were safe and non-toxic in BALB/c mice up to 

107 pfu and rAd5HIVA was capable of stimulating a greater IFN-γ secreting T cell 

response than rAd19aHIVA when given I/M at the three doses tested. It was next 

decided to investigate if the greater immunological response stimulated by the Ad5 

vector was reproducible when using other inoculation methodologies. 

 

 7.3.2: rAd19aHIVA vs. rAd5HIVA in vivo: influence of 
inoculation route 
 

Groups of 4 mice were given a single 106 pfu dose of rAd5HIVA or rAd19aHIVA 

by either intranasal (I/N), subcutaneous (S/C), Intraperitoneal (I/P) or Intradermal 

(I/D) inoculation. After 14 days the mice were sacrificed, splenocytes harvested and 

then assayed in duplicate as previously by ELISpot for response to either the H 

peptide (Figure 7.2 A) or the P peptide (Figure 7.2 B). Results are presented as 

previously. 

 

Both vectors were once again found to be safe and non-toxic at the dosage tested in 

each inoculation methodology. All results were subjected to the same unpaired t test. 

A significant difference in the IFN-γ response between the two vectors was only 

seen with the H peptide and only when administered I/N or S/C (Figure 7.2 A). No 

significant difference was observed when either vector was administered by I/P or 

I/D, or observed between any of the inoculation routes with the P peptide (Figure 7.2 

B). In essentially all cases, the immune response against the P peptide was extremely 

low. 

 

It was concluded that, at the 106 dosage tested, only I/M (Chapter 7.3.1), I/N or S/C 

administration produced a significantly higher T cell response in mice inoculated 

with the rAd5HIVA vector rather than the rAd19aHIVA vector. However, no 

immunisation route gave a robust T-cell response after the administration of the 

Ad19a vector. This data suggests that inoculation methodology clearly influences the 

extent of a generated T cell response and any advantage rAd5HIVA may have over 

the same Ad19a vector can be negated by using a different inoculation route. 

 

 



 

Figure 7.2: rAd19HIVA vs. rAd5HIVA in vivo: effect of inoculation route. Groups of 4 mice were given a 106 dose of rAd5HIVA or 
rAd19aHIVA by either intranasal (I/N), subcutaneous (S/C), Intraperitoneal (I/P) or Intradermal (I/D) inoculation. After 14 days the mice were 
sacrificed, splenocytes harvested and then assayed in duplicate for IFN-γ response to either (A) the H peptide (RGPGRAFVTI) or (B) the P 
peptide (IFQSSMTKI). Results are given as the number of IFN-γ spot forming units (SFU) produced by 1 million splenocytes when stimulated. 
Numbers given are the comparative P values of an unpaired two-tailed t test between the same inoculation methodology for rAd5HIVA and 
rAd19aHIVA. 
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Secondly, rAd5HIVA can generally stimulate a greater transgene-specific T cell 

response in BALB/c mice; however, it is unknown whether this greater T cell 

response against a single epitope would correlate with better protection against the 

virus, in this case HIV. As protection against HIV cannot be tested in this mouse 

model we switched to the second vaccine antigen and investigated which vector was 

more effective at providing protection against lethal challenge with PVM. 

 

7.4: Protective potential of rAd19aPVM-N and rAd5PVM-N against 
lethal challenge with PVM. 
 
A series of experiments were performed based on the Ad5 vector which had already 

been shown to provide protection (Helen Terry, PhD thesis, Warwick 2010). 

Therefore a newly generated corresponding Ad19a vector was tested, alongside GFP 

controls from both vectors, for protection against a lethal challenge by PVM. Unless 

otherwise stated, groups of five 5-8 week old female BALB/c mice were I/P 

anaesthetised (Chapter 2.17.1) and given an I/N 50µl (Chapter 2.17.2) prime dose of 

the vector, a boost dose 14 days later followed by a lethal 250 pfu dose of PVM 14 

days thereafter (Figure 7.3 B). During the prime/boosting period, the weight of the 

mice was monitored up to day 29 when the PVM challenge was administered. 

Subsequently the weight and clinical score of the mice was monitored for the 

following 21 days when any surviving mice were culled and the experiment ended 

(Chapter 2.17.4). A diagram showing the clinical score scale used is shown in figure 

7.3 A. Once a mouse had reached a clinical score of 5 it was sacrificed to prevent 

further suffering. Results are shown as the average clinical score for a group of 5 

mice, including those which had been sacrificed which were given a score of 6. Mice 

that died for reasons unrelated to the PVM infection e.g. under anaesthetic were 

discounted. The average percentage bodyweight of the group of mice on each day 

was calculated based on the surviving mice in that group compared to the day of 

challenge. 

 
 



Figure 7.3: Murine monitoring and vaccination schedule 

A) Clinical score alongside associated clinical symptoms and example 
photos of various clinical stages and B) Vaccination schedule showing the 
day of the prime dose, boost dose and PVM challenge administration and 
the experiment end. The portion of the schedule where weight and clinical 
score were monitored every 24 hours for sign of disease is highlighted in 
red. 
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7.4.1: rAd19PVM-N and rAd5PVM-N protect mice against lethal 
challenge with 250pfu PVM at a 107 intranasal dosage 
 
Previous experiments have shown that a 107 dose of pfu of rAd5PVM-N could 

protect mice against a lethal PVM challenge. To see if the same was true for 

rAd19aPVM-N groups of 5 female BALB/c mice were given a prime dose and a 

boost dose exactly 14 days later of PBS or 107 pfu of either rAd19aPVM-N, 

rAd19aGFP, rAd5PVM-N or rAd5GFP followed by a lethal dose of PVM 14 days 

after that. The percentage bodyweight of the mice after challenge and their average 

clinical score over the course of the whole experiment can be seen in Figure 7.4. 

 

Both rAd5PVM-N and rAd19aPVM-N were shown to protect mice against a lethal 

PVM challenge at a 107 prime and boost dose, as shown by 100% survival in both 

groups by the end of the experiment. Mice inoculated with PBS or GFP control 

vectors lost ~25% of their original bodyweight in the ten days post challenge (Figure 

7.4 A). This, combined with their rapid rise in clinical score resulted in all three 

groups being culled by day 10 (Figure 7.4 B). The rise in clinical score between days 

29 and 32 in the rAd19aGFP group was attributed to fighting and signs of injury to 

one of the mice within that group. In comparison mice inoculated with rAd5PVM-N 

too lost ~26% of their original bodyweight by 13 days post challenge but their 

average clinical score did not exceed 3. The bodyweight of mice began to recover 

and their clinical score decrease from day 13 post challenge onwards and returned to 

a clinical score of 1 by day 21 post challenge. Surprisingly, mice inoculated with 

rAd19aPVM-N only lost 9% of their original bodyweight by day 11 post challenge 

and their clinical score reached a maximum of 1.4 on day 7 post challenge. The mice 

then quickly recovered to a clinical score of 1 by day 13 post challenge and their 

bodyweight was recovered to 100% of their original bodyweight by day 15.  

 

It was concluded that both the Ad5 and Ad19a PVM-N vectors were capable of 

protecting mice against lethal challenge with PVM at a 107 I/N dose. Unexpectedly, 

mice inoculated with rAd19aPVM-N lost less bodyweight and reached a lower 

clinical score than those inoculated with rAd5PVM-N. This might suggest that 

rAd19aPVM-N is capable of stimulating an improved protective immune response 
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Figure 7.4: rAd19PVM-N and rAd5PVM-N protect mice against lethal challenge with 250pfu PVM at a 107 intranasal dosage. Groups of 
5 female BALB/c mice were intranasally administered 50µl of a prime dose and a boost dose exactly 14 days later of PBS or 107 pfu of either 
rAd19aPVM-N, rAd19aGFP, rAd5PVM-N or rAd5GFP followed by a lethal dose of PVM 14 days after that. The mice were monitored for 
changes in bodyweight and clinical score and the figure shows (A) the percentage bodyweight of the surviving mice in relation to their 
bodyweight on day one post challenge (day of PVM challenge) for the subsequent 21 days and (B) the average clinical score of each mouse 
group over the 50 day course of the experiment. The numbers in square brackets show the number of surviving mice from each group at the end 
of the experiment. Arrows indicate timings of the prime dose, boost dose and PVM challenge in chronological order.
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when compared to rAd5PVM-N. It was decided to investigate if this result could be 

substantiated by increasing the PVM challenge dose. 

 
 7.4.2: rAd19PVM-N and rAd5PVM-N protect mice against 
super-lethal challenge with 500pfu PVM at a 107 intranasal dosage 
 

In the above experiment the rAd5PVM-N vaccinated mice barely survive as they 

nearly reached the lower bodyweight limit for culling. In this experiment the lethal 

dose of 250 pfu of PVM was doubled to 500 pfu, a super-lethal dose, to examine if 

both the PVM-N vectors could still protect or a further differential regarding 

bodyweight or clinical score would be detected. As it has been shown that 107 pfu 

dose of either of the GFP vectors was unable to protect mice against a lethal 250pfu 

PVM challenge they were removed from the schedule for ethical reasons. Groups of 

5 female BALB/c mice were intranasally administered with 50µl of a 107 pfu prime 

dose and boost dose exactly 14 days later of rAd19aPVM-N, rAd5PVM-N or PBS 

followed by a super-lethal 500pfu dose of PVM 14 days after that. The percentage 

bodyweight of the mice after challenge and their average clinical score over the 

course of the whole experiment can be seen in Figure 7.5. 

 

Both rAd5PVM-N and rAd19aPVM-N vectors protected mice against a super-lethal 

PVM challenge at a 107 prime and boost dose as shown by 100% and 80% survival 

in both the Ad19a and Ad5 groups respectively by the end of the experiment. Mice 

inoculated with PBS lost ~27% of their original bodyweight by day 9 post challenge 

(Figure 7.5 A) and this combined with a rapid rise in average clinical score resulted 

in the whole group being sacrificed on day 9, one day earlier than with a 250 pfu 

challenge dose suggesting the higher dose did increase the rapidity of the onset of 

disease and rise in clinical score. Mice inoculated with rAd5PVM-N again lost ~26% 

of their original bodyweight by day 12 post challenge suggesting the increased dose 

had had little effect on bodyweight but the mice did have a markedly higher increase 

in clinical score over the previous dosage which had increased to 4 by day 11 post 

challenge and they did not fully recover, as indicated by a clinical score of 1.6 by the 

end of the experiment. This was attributed to one of the mice in the group not 

recovering from a clinical score of 3 which may have been suffering from a chronic 
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Figure 7.5: 107 pfu of rAd19PVM-N and rAd5PVM-N intranasally administered protects mice against super-lethal challenge of 500pfu 
PVM Groups of 5 female BALB/c mice were intranasally administered 50µl of a prime dose and a boost dose exactly 14 days later of PBS or 
107 pfu of either rAd19aPVM-N or rAd5PVM-N followed by a 500pfu super-lethal dose of PVM 14 days after that. The mice were monitored 
for changes in bodyweight and clinical score and the figure shows (A) the percentage bodyweight of the surviving mice in relation to their 
bodyweight on day one post challenge (day of PVM challenge) for the subsequent 21 days and (B) the average clinical score of each mouse 
group over the 50 day course of the experiment. The numbers in square brackets show the number of surviving mice from each group at the end 
of the experiment. Arrows indicate timings of the prime dose, boost dose and PVM challenge in chronological order. 
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form of pneumovirus infection. Mice inoculated with rAd19aPVM-N only lost ~8% 

of their original bodyweight by day 9 post challenge confirming that the increased 

dose had had little effect on bodyweight as seen with the Ad5 vector. They also 

showed an increase in clinical score over the previous dosage to a maximum of 2 by 

day 8 post challenge but did recover by day 10 post challenge and they returned to 

100% of their original bodyweight by day 11 post challenge. 

 

It was concluded that increasing the PVM dosage to a super-lethal level had had no 

effect on the ability of either the rAd5 or rAd19a PVM-N vectors to protect. Whilst 

not causing any change to the amount of bodyweight lost over the course of the 

experiment it did, however, increase the average clinical score of both groups 

suggesting that the increased dosage had an effect on the symptoms of the disease.  

 

These results confirmed the earlier conclusion that rAd19aPVM-N induces an 

improved protective immune response when compared to rAd5PVM-N, however, 

increasing the challenge dose had failed to result in a difference in survival. It was 

therefore decided to lower the dose of the vectors ten-fold to observe if this had any 

effect on protection. 

 

 7.4.3: rAd19PVM-N but not rAd5PVM-N protects mice 
against lethal challenge with 250pfu PVM at a 106 intranasal dosage 
 

In the next experiment the dosage of each of the vectors was lowered to 106 pfu to 

examine if both the vectors were still capable of protection. The GFP vectors were 

included in the schedule for observation of any differences the drop in dosage may 

have on the controls. Results are shown in figure 7.6. 

 

Only rAd19aPVM-N provided protection against lethal challenge with PVM at a 106 

pfu dosage as shown by 100% survival at the end of the experiment. Mice inoculated 

with PBS or either of the GFP vectors lost ~21-27% of their bodyweight (Figure 7.6 

A) by day 9 post challenge and this combined with their rapid rise in clinical score 

(Figure 7.6 B) resulted in their culling. In contrast to previous experiments, mice 

inoculated with rAd5PVM-N also lost ~25% of their bodyweight by day 10 post 
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Figure 7.6: rAd19PVM-N but not rAd5PVM-N protects mice against lethal challenge with 250pfu PVM at a 106 intranasal dosage 
Groups of 5 female BALB/c mice were intranasally administered 50µl of a prime dose and a boost dose exactly 14 days later of PBS or 106 pfu 
of either rAd19aPVM-N, rAd19aGFP, rAd5PVM-N or rAd5GFP followed by a 250pfu lethal dose of PVM 14 days after that. The mice were 
monitored for changes in bodyweight and clinical score and the figure shows (A) the percentage bodyweight of the surviving mice in relation to 
their bodyweight on day one post challenge (day of PVM challenge) for the subsequent 21 days and (B) the average clinical score of each mouse 
group over the 50 day course of the experiment. The numbers in square brackets show the number of surviving mice from each group at the end 
of the experiment. Arrows indicate timings of the prime dose, boost dose and PVM challenge in chronological order. 
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challenge and showed a similar swift rise in clinical score which resulted in their 

culling on the same day. Mice inoculated with rAd19aPVM-N lost 14% of their 

bodyweight by day 11 post challenge and reached a maximum average clinical score 

of 2.4 by day 10 post challenge. The mice quickly recovered, however, returning to 

an average clinical score of 1 by day 13 post challenge and recovering 100% of their 

original bodyweight on the same day. 

 

It was concluded that decreasing the vector dosage had revealed a stark difference 

between the two vectors. Unexpectedly, as the ELISpot assays using the HIVA 

recombinants predicted Ad5 would be better than Ad19a at generating T cell 

responses and hence maybe protection, 106 pfu of rAd19aPVM-N was shown to 

protect mice against a lethal dose of PVM whilst a corresponding dose of Ad5 vector 

could not. It is not immediately obvious what the reason is for the different outcome, 

though there are several plausible scenarios. Firstly, the rAd19aPVM-N vector could 

be generating a larger T cell response than was witnessed for the rAd19aHIVA 

vector previously. Secondly, IFN-γ may not be the best correlate of protection to 

observe for Ad19a vectors, particularly because the protection could be being 

mediated by another arm of the immune system, perhaps by an antibody response. 

 

As rAd19aPVM-N had been shown to be superior in protection against PVM 

challenge to rAd5PVM-N at a 106 dose it was decided to examine if protection by 

rAd5PVM-N could be increased by mixing the two vectors in a heterologous 

prime/boost study.  

 

 7.4.4: rAd19aPVM-N recovers rAd5PVM-N protection in a 
heterologous prime-boost study scheme 
 

In this experiment both the GFP and PVM-N versions of the rAd19a and rAd5 

vectors were administered in different prime/boost combinations so that all possible 

configurations between the PVM vectors and the GFP vectors separately were 

administered. Results are shown in figure 7.7. 
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Figure 7.7: rAd19aPVM-N recovers rAd5PVM-N protection in a heterologous prime-boost scheme against lethal challenge with 250pfu 
PVM at a 106 intranasal dosage Groups of 5 female BALB/c mice were intranasally administered 50µl of a prime dose of PBS or 106 pfu of 
either rAd19aPVM-N, rAd5PVM-N, rAd5GFP or rAd19aGFP then the same groups given a boost dose of PBS, rAd5PVM-N, rAd19aPVM-N, 
rAd19aGFP and rAd5GFP exactly 14 days later followed by a 250pfu lethal dose of PVM 14 days after that. Control groups of mice were 
administered a prime and boost dose of the same vector, as previously. The mice were monitored for changes in bodyweight and clinical score 
and the figure shows (A) the percentage bodyweight of the surviving mice in relation to their bodyweight on day one post challenge (day of 
PVM challenge) for the subsequent 21 days and (B) the average clinical score of each mouse group over the 50 day course of the experiment. 
The numbers in square brackets show the number of surviving mice from each group at the end of the experiment. Arrows indicate timings of 
the prime dose, boost dose and PVM challenge in chronological order. 
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As before, an rAd19aPVM-N/rAd19aPVM-N prime/boost vaccination protected 

mice against lethal PVM challenge to a similar level as before whilst an rAd5PVM-

N/rAd5PVM-N schedule did not. By day 9 or 10 post challenge, PBS controls and 

all GFP/GFP schedules lost ~25-29% of their original bodyweight (Figure 7.7 A) 

which, combined with the previously observed rapid rise in clinical score (Figure 7.7 

B), resulted in all mice in these groups being culled by the day 10 post challenge. 

Interestingly, mice inoculated with rAd5PVM-N as a prime dose and rAd19aPVM-N 

as a boost dose or vice versa were protected against PVM challenge showing only a 

7% and 8% reduction in bodyweight and rise in clinical score to 1.8 and 1.6 

respectively. Even more interestingly mice inoculated with an rAd5PVM-

N/rAd19aPVM-N schedule received a greater protective response (lower maximum 

clinical score) than the rAd19aPVM-N/rAd19aPVM-N control. Further experiments 

will need to be carried out to verify that this difference is significant. 

 

It was concluded that mixing rAd19aPVM-N and rAd5PVM-N in heterologous 

prime/boost schedules allowed for protection against lethal PVM challenge when an 

rAd5PVM-N/rAd5PVM-N schedule did not. This was taken as early evidence that 

pre-existing immunity to the vector used to give the prime dose can have an effect on 

the efficacy of the boost dose and that Ad19a vectors may be used alongside Ad5 

vectors in the future in prime/boost regimens to increase the generated immune 

response against a transgene. Alternatively, the successful protection in prime/boost 

studies could be explained by the fact that rAd19aPVM-N provides the same level of 

protection as the prime/boost schedules. This was investigated below. 

 

 7.4.5: A single dose of rAd19aPVM-N but not rAd5PVM-N 
provides some protection for mice against lethal challenge with 
250pfu PVM if challenged after 2 weeks but not after 4 weeks at a 
106 intranasal dosage 
 
In the final in vivo murine experiment rAd19aPVM-N and rAd5PVM-N were 

administered as a single dose and then vaccinated mice were challenged either 2 or 4 

weeks later (Figure 7.8) to establish if a single dose could have generated the 

protection seen in the previous experiments at a 106 vector dose. 



Figure 7.8: Single dose vaccination 
schedules Vaccination schemes for A) Single 
dose 2 weeks and B) Single dose 4 weeks 
showing the day of vector dose followed by 
PVM challenge administration and the 
experiment end. The portion of the schedule 
where weight and clinical score were 
monitored every 24 hours for sign of disease is 
highlighted in red. 
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When mice were administered a single dose of either PBS or rAd5PVM-N and 

challenged with 250pfu PVM 14 days later they lost 22% and 23% of their original 

bodyweight (Figure 7.9 A) by days 9 and 10 post challenge, respectively, and once 

more their average clinical score rapidly rose (Figure 7.9 B) and both groups were 

culled on the same days. rAd19aPVM-N did display some protection, however only 

80% of the mice survived with one mouse sacrificed on day 9 post challenge due to a 

clinical score of 5 being reached. The group lost 16% of their original bodyweight, 

higher than had been witnessed with an rAd19aPVM-N prime/boost schedule in 

previous experiments and their average clinical score rose as high as 4.25 on day 10 

post challenge. It was concluded that whilst rAd19aPVM-N did protect most of the 

mice against PVM challenge after 14 days the clinical score rose significantly. 

 

When mice were administered a single dose of either PBS, rAd5PVM-N or 

rAd19aPVM-N and challenged with 250pfu PVM 28 days later they lost 30%, 26% 

and 25% of their original bodyweight (Figure 7.10 A) by days 8 (PBS) or 10 

(rAd5/19a) post challenge respectively and once more their average clinical score 

rapidly rose (Figure 7.9 B). The three groups were culled on day 8 (PBS only) or day 

10. It was concluded that even rAd19aPVM-N could not protect mice against PVM 

challenge 28 days after a single 106 pfu dose. 

 

It was further concluded that 100% rAd19aPVM-N protection at a 106 dose and 

prevention of a rise in average clinical score of more than 2 is dependent on both a 

prime and a boost dose being administered. The results suggest that protection after a 

single dose is short-lived as it has disappeared by 28 days after the dose, and a 

second dose is required to provide protection of all mice. What element of the 

immune system is primarily responsible for this protection is still unknown and it 

was decided to examine sera from the murine experiments for αPVM-N IgG to 

establish if protection is IgG linked. 
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Figure 7.9: rAd19PVM-N but not rAd5PVM-N provides some protection for mice against lethal challenge with 250pfu PVM at a 106 

intranasal dosage if challenged 2 weeks after initial dose Groups of 5 female BALB/c mice were intranasally administered a 50µl dose of 
PBS or 106 pfu of either rAd19aPVM-N or rAd5PVM-N followed by a 250pfu lethal dose of PVM 14 days after that. The mice were monitored 
for changes in bodyweight and clinical score and the figure shows (A) the percentage bodyweight of the surviving mice in relation to their 
bodyweight on day one post challenge (day of PVM challenge) for the subsequent 21 days and (B) the average clinical score of each mouse 
group over the 36 day course of the experiment. The numbers in square brackets show the number of surviving mice from each group at the end 
of the experiment. Arrows show the time of primary inoculation and PVM challenge chronologically 
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Figure 7.10: Both rAd19PVM-N and rAd5PVM-N do not provide protection for mice against lethal challenge with 250pfu PVM at a 106 

intranasal dosage if challenged 4 weeks after initial dose Groups of 5 female BALB/c mice were intranasally administered a 50µl dose of 
PBS or 106 pfu of either rAd19aPVM-N or rAd5PVM-N followed by a 250pfu lethal dose of PVM 28 days after that. The mice were monitored 
for changes in bodyweight and clinical score and the figure shows (A) the percentage bodyweight of the surviving mice in relation to their 
bodyweight on day one post challenge (day of PVM challenge) for the subsequent 21 days and (B) the average clinical score of each mouse 
group over the 50 day course of the experiment. The numbers in square brackets show the number of surviving mice from each group at the end 
of the experiment. Arrows show the time of primary inoculation and PVM challenge chronologically 
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7.5: IgG response to rAdPVM-N vectors in vivo 
 

In all experiments except those performed in chapter 7.4.5 and 7.4.6 tail sera (Figure 

2.17.2) were taken from all surviving mice on days 15, 29 and the day of sacrifice, 

identified as day 50. Indirect ELISA analysis (Chapter 2.18) was then performed on 

the serum samples to test for an antibody response to the Ad vectors and the PVM-N 

transgene. Briefly, 96 well plates were coated with either 50 µl/well of 20 µg/ml 

BSC-1 or P2-2 lysate to assay for antibody response to PVM or 50 µl/well of 1 

µg/ml purified Ad19a and Ad5 vectors to assay for antibody response to each vector 

and incubated O/N at 4°C. The plates were washed five times with 200 µl/well 

PBS/Tween and blocked with 100 µl/well 5% Milk powder in PBS/Tween before 

washing again. Sera samples were diluted 1:70 and diluted 3 fold across a 96 well 

plate. The serum antibodies were incubated with Horse Radish Peroxidase (HRP) 

conjugated goat anti-mouse IgG (whole molecule) or HRP conjugated goat anti-

rabbit IgG (whole molecule). The presence of antibodies was quantified by the 

measurement of fluorogenic activity. Negative controls consisted of no primary 

antibody addition whilst αPVM-N or αAd hexon antibodies were used as positive 

controls. Results were calculated as endpoint antibody dilution titres, i.e. the amount 

of dilution required of each sera sample for a negative ELISA response. This was 

performed by plotting the O.D.s of each serial dilution of sample on a scatter plot. 

An O.D. cut-off was then established (2 times the standard deviation of the mean of 

the negative control added to its’ mean) and statistical software used to calculate at 

what log10 dilution each sera sample and controls, both negative and positive, 

dropped below the cut-off giving a negative response. The resulting titres were then 

anti-logged and plotted on a vertical scatter plot. Endpoint titre means were 

subjected to an unpaired t test with Welch’s correction (to correct for unequal 

variance) to compare vectors at each time point. 

 

It was first investigated if the protection against 250pfu PVM challenge seen in the 

original protection study (Chapter 7.4.1) was linked to an αPVM-N IgG response by 

monitoring the levels of such a response at each of the three time points. As can be 

seen in Figure 7.11 an αPVM-N IgG response above the level of PBS immunised 

mice was rare and when it did occur it did not correlate with protection i.e. one 

mouse from the rAd19aGFP group had an IgG response above PBS background 



Tail sera samples were removed from mice vaccinated with 107 pfu of either rAd19aGFP (Green triangles), rAd19aPVM-N (Red squares), 
rAd5GFP (Oranges asterisks), rAd5PVM-N (blue circles) and PBS (purple diamonds) at day 15, 29 or the day of sacrifice for each mouse 
(represented as day 50) in the standard vaccination schedule and examined for IgG response to PVM-N alongside a positive (αPVM-N mAb) and 
negative control. 

 

Figure 7.11: αPVM-N IgG responses induced by various vectors in vivo 
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levels similar to a single mouse in the rAd5PVM-N and rAd19aPVM-N groups 

however it was not protected. In addition, even after PVM challenge a general 

αPVM-N IgG response was not seen, showing that such a response was not 

generated on wild-type virus challenge. To validate the observed results, the groups 

were statistically compared to each other at each time point and the results can be 

seen in Figure 7.12. As can be seen, a statistical difference between any of the PVM-

N or GFP vectors and PBS IgG response was only seen on day 15 and only with the 

rAd19aPVM-N vector. At the successive two time points no statistical difference 

was observed between any of the vectors. There were statistical differences between 

some of the vector responses at both days 15 and 29, however, as these responses 

were largely negative they have no effect on conclusions. 

 

Anti-Ad IgG responses which should be induced after vaccination were also 

measured. As expected, an Ad-specific IgG response was induced and this was non 

cross-reactive, as mice given an Ad19a vector only generated Abs that reacted 

against Ad19a but not Ad5 and vice versa (Figure 7.13). All mice vaccinated with 

PBS showed no anti-Ad19a or anti-Ad5 response at any time point. When compared 

statistically (Figure 7.14) a significant difference compared to PBS control mice was 

seen when mice were vaccinated with an Ad19a or Ad5 vector in anti-Ad19a or anti-

Ad5 ELISAs respectively. Statistically significant differences between the response 

in rAd19aGFP and rAd19aPVM-N vaccinated mice were only seen on day 50 when 

the αAd19a response in the rAd19aPVM-N was significantly higher than the 

response in rAd19aGFP vaccinated mice perhaps due to the difference in particle/pfu 

ratio. Statistically significant differences were also seen, however, between the 

rAd5PVM-N and rAd5GFP responses at day 15 and 29, however, the rAd5PVM-N 

response was significantly higher than the rAd5GFP response on day 15 but on day 

29 the reverse was true, suggesting that the response may be sensitive to minute 

differences in the dosage of the two vectors. The anti-Ad IgG response was 

monitored in all subsequent experiments, except those in Chapter 7.4.5 and 7.4.6, 

and very similar results were observed (data not shown) showing that in those 

experiments no errors were made with dosing, mice were only given either rAd19 or 

rAd5 vectors as intended in all cases. 
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The means of αPVM-N IgG responses to Ad vectors in vivo on day 15, 29 and 50 
were compared by an unpaired t test with Welch’s correction. Where statistical 
significance between two responses was shown, i.e. a P value of <0.05, it has been 
highlighted in green and the level of statistical significance given by either 1, 2 or 3 
asterisks. If no statistical significance was detected it has been highlighted in red.

Figure 7.12: Statistical analysis of αPVM-N IgG responses induced by various 
vectors in vivo 
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Figure 7.13: Anti-Ad IgG responses to Ad vectors in vivo 

Tail sera samples were collected from mice vaccinated with 107 pfu of either rAd19aGFP (green triangles), rAd19aPVM-N (red squares), 
rAd5GFP (oranges asterisks), rAd5PVM-N (blue circles) and PBS (purple diamonds) at day 15 post vaccination, 29 or the day of sacrifice for 
each mouse (represented as day 50) in the standard vaccination schedule and examined for IgG response to (A) Ad19a or (B) Ad5 alongside a 
positive and negative control. 
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Figure 7.14: Statistical analysis of αAd IgG responses to Ad vectors in vivo 

The means of (A) anti-Ad19a and (B) anti-Ad5 IgG responses to Ad vectors in vivo 
on day 15, 29 and 50 were compared by an unpaired t test with Welch’s correction. 
A difference between two responses was considered significant when the P value 
was <0.05. This is highlighted in green and the level of statistical significance given 
by either 1, 2 or 3 asterisks. If no statistical significance was detected it has been 
highlighted in red. 
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The αPVM-N response as also monitored in the subsequent experiments and the 

results are shown in Figure A27 and A28. No significant difference in αPVM-N IgG 

response over PBS controls was observed and so it was concluded that protection 

from lethal PVM challenge by either the rAd5PVM-N or rAd19aPVM-N vectors is 

not mediated by an IgG response which could be detected in this assay and as such it 

is likely mediated by another component of the immune response. 

 

7.6: Discussion 
 
In this chapter, we described for the first time the in vivo performance of two Ad19a 

based vectors in comparison to the well established Ad5 vector system. Whilst T cell 

responses against the incorporated HIVA antigen after a single I/M injection was less 

pronounced (as measured by IFN-γ response to two peptides) than for the 

corresponding Ad5 vector, protection against a lethal dose of PVM, by an Ad19a 

vector incorporating a PVM antigen, was consistently more effective after I/N 

vaccination. Therefore, whether Ad19a vectors perform better than Ad5 vectors in an 

in vivo mouse model remains inconclusive and there are several possible 

interpretations of the data. 

 
Firstly it is important to note that whilst transduction of human cells by Ad19a is 

superior over Ad5, in mice this is reversed in the case of mouse myoblasts (Thirion 

et al., 2006). Thus, it is to be expected that I/M inoculation with Ad19a would not 

induce a more effective T cell response vs. Ad5. This was indeed the case (Figure 

7.1). Varying the inoculation route did have an influence (Figure 7.2) and no 

difference in T cell response was seen at the same dose when the vectors were given 

I/P or I/D but in most cases there remained a small but significant improvement in T 

cell response with rAd5HIVA. It came as a surprise, therefore, that rAd19aPVM-N 

provided better protection against lethal PVM challenge than rAd5PVM-N when 

given I/N (Figure 7.5-7.7). The PVM challenge system provided an easy, clear 

readout (protection against PVM) to evaluate if the T cell response seen with the 

HIVA vectors correlated with protection in a surrogate system. In the experiments 

shown in Figures 7.3-7.10, when administered I/N, rAd19aPVM-N was shown to 

give increased protection against lethal PVM challenge over rAd5PVM-N at a 107 

pfu dosage, continued to protect mice at a 106 pfu dosage whilst the Ad5 vector did 
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not and recovered rAd5PVM-N protection at a 106 pfu dosage when mixed in a 

prime/boost schedule. This data, combined with the data generated in Figure 7.2, that 

rAd5HIVA generated a significantly greater T cell response when given I/N would 

suggest, therefore, that PVM protection is mediated by another component of the 

immune response. It is certainly possible that IFN-γ response is not the best correlate 

of protection for an Ad19a vector so it was consequently investigated if either of the 

vectors had generated an IgG antibody response to the PVM-N transgene in vivo and 

whether it was this antibody response which would correlate with protection. Neither 

of the vectors was shown, by an ELISA methodology, to generate an IgG response to 

the PVM-N transgene which was significantly greater than in mice inoculated with 

PBS. In those mice where a response was detected it did not necessarily correlate 

with protection. It is certainly plausible other immune components may be critical 

for the protection generated, perhaps IgA, but it is also possible that in the PVM 

setting the T cell response is different to the one generated by the HIVA vectors. 

Therefore an investigation by ELISpot into the T cell response to the PVM-N vectors 

is now vital for this work to be validated. It would also be useful to examine if an 

IgG response to the HIVA vectors is generated. There are several caveats to be taken 

into account when examining this data, however.  

 

Firstly, there are differences between the two sets of vectors. In Chapter 4 it was 

shown that the rAd19aHIVA vector had a particularly poor particle/pfu ratio, 

~25,000:1, when compared to the rAd19aPVM-N vector, ~6000:1. This difference 

may be as a result of the transgene and the further studies suggested in Chapter 4 

may help to confirm this. In the meantime, a significantly higher particle/pfu ratio 

may suggest one reason why the rAd19aHIVA vector performed poorly against 

rAd5HIVA in the T cell experiments when rAd19aPVM-N generated a better 

protective response. Examining the IgG response to the Ad19a vector in the HIVA 

system may help to elucidate if the higher particle/pfu ratio generates a significantly 

higher immune response against the vector therefore preventing the generation of an 

anti-transgene response in vivo. 

 

Secondly, the data suggests that inoculation route plays a role in the effectiveness of 

rAd vectors and that different transduction efficiency in different localised murine 

cell types could account for the observed differences in the resulting T cell response, 
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perhaps due to the lack of the Ad19a receptor, as discussed. Important information 

which could be gained by using the GFP vectors to examine the differences in cell 

transduction when administered by various inoculation routes in mice. The mice 

could then be sacrificed after 24-48 hours and their tissues examined for the presence 

of GFP fluorescence. 

 

It must also be stated that there are differences between the methodologies used to 

generate the HIVA results and the PVM-N results. Firstly, they use different 

schedules with the mice immunised with the HIVA vectors only given a single dose 

and then examined 14 days later for their primary T cell response whilst in all cases 

except the final PVM-N experiment both a prime and boost dose were given. Also, 

in the experiment shown in Figures 7.9 and 7.10 it was shown that mice were only 

protected when given a single 106 dose of rAd19aPVM-N and that this protection 

was short-lived, as mice were only protected when challenged 2 weeks post 

inoculation and not after 4 weeks. Therefore the T cell response after a boost dose 

may be significantly different than those observed after a single dose in Figure 7.2. 

Secondly, both immunisation and the administration of the PVM lethal dose were 

given by the same I/N route and this may play an important role in the protection 

generated i.e. a theoretical localised innate immune response generated by the Ad19a 

vector due to its high particle/pfu ratio. It would be useful, therefore, to examine if 

protection can be generated by rAd19aPVM-N when administered by a different 

inoculation route. 

 

Another caveat is that the Ad19a receptor may not be available in the mouse system 

such as CD46, shown in Chapter 6 to be a candidate receptor for Ad19a, which is 

only expressed in the testis in mice (Holers et al., 1992). It would be important, 

therefore, to perform a thorough study on which of the other candidate Ad19a 

receptors, e.g. SA or GD1a, are expressed in mouse cells. To fully explore the 

effectiveness of any vector which may utilise hCD46, a non-human primate or a 

CD46 transgenic mouse model will be required (Sakurai et al., 2008; Sakurai et al., 

2009). In contrast to hCD46, it has been shown that the expression of mouse CAR 

(mCAR) on CAR negative 3T3 cells confers susceptibility to Ad5 and Ad2 (Tomko 

et al., 1997). Therefore, as a result of this, Ad5 and possibly Ad19a, also based on 

the results in Chapter 6, might be able to utilise mCAR if available in vivo, although 
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direct tests have not been carried out. It is also important to note that the transduction 

of mouse dendritic cells (moDC) has not been investigated and the effect of any 

similar enhanced transduction of an Ad19a vector seen in human DC’s cannot 

therefore be reliably claimed until such an observation has been made. As has been 

previously discussed, DCs may use other uptake mechanisms for Ad vectors and this 

should also be taken into consideration. Overall, it can be assumed that the current 

system underestimates the potential of Ad19a vectors for vaccination in humans. 

However, the mouse system was valuable to evaluate toxicity and gave important 

early evidence into its potential in a mammalian system. 

 

Continuing work in this area of experimentation should include the mixing of GFP 

vectors with the PVM-N vectors in heterologous prime/boost schedules like those in 

Chapter 7.4.4 to confirm that the GFP vectors do not also recover protection by 

rAd5PVM-N at a 106 dosage. It would also be beneficial to observe if the protection 

generated by a normal prime/boost rAd19aPVM-N scheme is as long-term as that 

generated by the rAd5 vectors perhaps by performing the prime/boost schedule as 

normal and then administering the lethal PVM dose after 2 weeks (as in the previous 

studies), 4 weeks, 8 weeks and 20 weeks and monitoring protection as previously 

described. Most importantly, it would be of great interest to observe the difference in 

protection when using hCD46 transgenic mice which have been used previously in 

studies with Ad35 vectors (Verhaagh et al., 2006), when compared to the BALB/c 

mice used in this study. Similar to monkeys and humans, hCD46 transgenic mice 

express high-levels of hCD46 in their lungs and kidneys and might therefore 

represent a much better model for the use of Ad19a in vivo and would provide more 

significant data on the possible efficacy of Ad19a vectors in humans. 

 

In conclusion, it has been shown that rAd19aPVM-N is capable of protecting mice 

against lethal challenge with PVM to a greater level than rAd5PVM-N despite mice 

not expressing one of the candidates for the Ad19a receptor (see Chapter 6), hCD46. 

Protection was shown not to correlate with an anti-PVM-N IgG response and might 

be assumed, therefore, to be generated by a T cell response but early data with the 

HIVA vectors in an ELISpot system cannot confirm this. In mice, Ad19a vectors 

provided a greater level of protection against a lethal challenge and were used in 

heterologous prime/boost studies to recover rAd5 protection which could be used in 
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humans to help circumvent pre-existing sero-positivity in prime/boost regimens 

Further work is now required in both animal model systems as well as cell culture 

with human cells to confirm that Ad19a vectors have real potential for vaccination. 
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Chapter 8: General Discussion 
 

8.1: The effectiveness of Ad19a as a vaccine vector 
 

Since their discovery in 1953 (Rowe et al., 1953) Adenoviruses have played a 

crucial role in the characterisation of many important molecular processes, such as 

mRNA splicing (Berk, 2007). More recently they have emerged as extremely useful 

tools for the study of the interactions between viruses and the human immune system 

(Burgert et al., 2002) as they produce several proteins with immuno-modulatory 

functions which may have a wide range of future applications (Burgert & Blusch, 

2000). Moreover, Ads have been shown to possess many features that make them 

excellent candidates for their use as vectors for both gene therapy and vaccination, 

being non-integrative, transducing a wide range of cell types and establishing high 

levels of gene expression from expression cassettes.  

 

The majority of Ad vectors to date are based on the Ad5 serotype which has been 

shown to have several drawbacks including high seropositivity in the human 

population and liver tropism. More recently, there has been an increased focus on the 

use of Ads other than Ad5 to evaluate if these can overcome such deficiencies. 

 

This study has described the successful establishment of a methodology for the 

seamless modification of any Ad genome which was then validated by its utilisation 

to create several Ad vectors based on Ad5 and Ad19a and virus mutants (Chapter 3). 

Subsequent work concentrated on the assessment of some intrinsic biological 

features of the novel vector from subgroup D, Ad19a, and its potential as a vaccine 

vector. 

 

The prototype Ad19 virus (Ad19p) was first identified in 1955 when isolated from a 

patient with trachoma which, subsequently, was shown to be caused by a bacterial 

infection. (Bell et al., 1959; 1960). In 1978 an Ad was isolated from patients 

suffering from EKC that reacted with the Ad19 serum but had a different restriction 

pattern (Wadell & de Jong, 1980). This virus obviously was related to Ad19p but 

was distinct and was thus named Ad19a. Interestingly in all subsequent outbreaks of 

EKC linked to Ad19 it was this genotype which was isolated rather than Ad19p. 
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Ad19a has since become interesting for development as a vaccine vector. It has been 

shown to have a high efficiency to infect DCs, an important target for vaccination 

(Ruzsics et al., 2006) and this finding, combined with data in T and B cells, 

indicated an interesting tropism for cells of the immune system. Standard cloning 

methods (utilising either high or low copy plasmids) did not allow cloning of the 

genome. Only when the genome was inserted into a BAC vector could stable clones 

be isolated and, as such a new technology for genetic manipulation was required. A 

basic non-replicating Ad19a vector was generated by deletion of the E1 region and 

replacing it with an expression cassette under the control of the CMV immediate-

early promoter and the SV40 enhancer (Ruzsics et al., 2006). In addition, 4.5kb of 

the E3 region was deleted. 

 

In this study it was aimed to take these early findings further by establishing if 

Ad19a has potential for vaccination based on the infection efficiency of DCs. To this 

end a modified recombineering system based on a novel bacterial strain, SW102 

(Warming et al., 2005) and selection cassette (galK/KnR; Chapter 2.17.1) was 

established in this laboratory for the insertion of vaccine model antigens into the 

Ad19a vector. These antigens, along with the existing GFP-expressing vector could 

then be compared to homologous Ad5 vectors for their ability to transduce various 

cell types, to induce an anti-transgene immune response and ultimately to protect 

mice against lethal challenge. 

 

Remarkably, all Ad19a vectors tested showed the same high level of transduction of 

B cells, Jurkat T cells and dendritic cells (Chapter 5.3; 5.5) as was observed for the 

Ad19a virus (Ruzsics et al., 2006; Burgert unpublished data). This transduction was 

significantly higher than the observed levels with the corresponding Ad5 vectors and 

similar to the levels reported for Ad35 (Rea et al., 2001) and Ad11 (Holterman et al., 

2004). Ad19a vectors were shown to possess drastically higher relative specificity 

for DC transduction than Ad5 vectors, induced high levels of transgene expression in 

iDCs and mDCs and induced DC maturation as shown previously with vectors based 

on Ad35 (Rea et al., 2001). Using 10 pfu/cell of Ad19aGFP (estimated ~15,000 

virus particles/cell based on particle/pfu ratio) 90% of iDCs were transduced. This 

seems to be in a similar range or better than Ad35 (~40% iDC transduction at 5,000 
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virus particles/cell; Vogels et al., 2003) and Ad11 (74.3% iDC transduction at 500 

virus particles/cell; Holterman et al., 2004). The transduction of other DC subsets 

such as CD11+ myeloid dendritic cells (MyDCs) and CD123+ plasmacytoid 

dendritic cells (Lore et al., 2007) has not been eliminated and could be examined in 

further experiments. It is now crucial to gain quantitative data on the potential of 

Ad19a transduced DCs to activate specific CD8+ and CD4+ T cells, in parallel with 

Ad19a, with other comparable vectors in vitro, such as Ad35 (Rea et al., 2001). This 

work is being carried out in the Hanke lab (Oxford) using the HIVA Ad19a vector as 

in previous studies utilising CD8+ and CD4+ T cells specific for the epitopes of the 

HIVA transgene (Barouch, 2008). Another aspect that may be pursued in future is 

whether DC subtypes differ in their susceptibility to Ad19a. As previously 

mentioned, (Chapter 1.5.1) certain DC subsets such as LCs have been shown to 

express a cell receptor repertoire that makes them more susceptible for viral rather 

than bacterial uptake (Flacher et al., 2006; van der Aar et al., 2007) and are more 

effective activators of CD8+ T cells (Ueno et al., 2007). Whilst investigation of the 

effect of Ad19a mediated antigen expression in DCs is currently ongoing, the level 

of transgene expression was examined. It was found that Ad19a vectors expressed 4-

7x higher amounts of transgene compared to Ad5 vectors in A549 cells (Chapter 

4.4.1; 4.4.2). This finding gives further weight to the use of Ad19a as a vaccine 

vector as theoretically a lower dose would be required to generate the same level of 

transgene expression in vivo whilst simultaneously helping to prevent toxicity issues 

by the use of less vector. 

 

The high level of transgene expression from Ad19a vectors remains unexplained and 

further studies will be required to elucidate whether it is linked to an intrinsic part of 

Ad19a biology. These results must be tempered by the finding that all generated 

Ad19a viruses and vectors had varying, but high particle/pfu ratios (Chapter 4.1). 

This was not unexpected; isolates of Ad19a have been shown to have large and 

varied particle/plaque forming unit ratios previously (Newland & Cooney, 1978). 

This finding may have significant implications for the use of an Ad19a vector in 

vivo. Whilst the Ad19a dosage could be lowered due to its high level of transgene 

expression, its particle/pfu ratio may actually result in the application of a greater 

number of virus particles than a significantly higher dose of Ad5. This may result in 

a strong innate immune response, which in some cases may be detrimental to the 
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health of the host or even fatal. In our in vivo experiments in mice (Chapter 7) we did 

not detect any toxicity caused by an Ad19a vector at doses of up to ~2.5 x 1011 

particles using the Ad19aHIVA vector at 1 x 107 pfu. This does not preclude any 

toxicity, however, as the highest doses were given intranasally or intramuscular. It 

would now be important to perform dose escalating studies after intravenous 

infection because large doses of vector particles (1 x 1011) from Ad3, 4 and 11 were 

shown to be fatally toxic when given intravenously in CD46-transgenic mice (Stone 

et al., 2007). Therefore, before Ad19a can be used safely in humans further toxicity 

studies must be employed, especially in intravenous settings, and/or the reason for 

the high particle/pfu ratio must be discovered and/or rectified (discussed in Chapter 

4.6). It has not been established, in this study, what causes the high particle/pfu ratio 

in Ad19a vectors. It is possible that the ratio is due to the intrinsic biology of Ad19a 

whilst also being possible that it is caused by the procedure used to purify the vector. 

It may be that this affects vectors more than the wild-type virus, perhaps because of 

the deletion of the E1 region. It could also be procedural as no-one has fully 

optimised the procedure for the purification of Ads. Downstream procedures could 

also be optimised by the use of electron microscopy to evaluate Ad19a preps (see 

Chapter 4). 

 

It was hypothesised that the high particle/pfu ratio of Ad19a may have had an effect 

on the potential of Ad19a in a vaccination setting; however, it has been shown that 

this is not the case, although, some of the evidence gathered has been contradictory. 

For example, the HIVA transgene expressing Ad19a vector was shown, by ELISpot, 

to induce a significantly lower HIVA epitope specific CTL response when compared 

to a homologous Ad5 vector when administered at a range of dosages (Chapter 

7.3.1). In contrast, the Ad19a vector expressing the nucleocapsid gene of PVM was 

shown to protect mice against lethal challenge with PVM at lower dosages than the 

corresponding Ad5 vector and was able to recover Ad5 protection at low dosages in 

heterologous prime/boost studies (Chapter 7.4). These findings could be linked to the 

very high particle number of the Ad19aHIVA vector which is ~4x higher than that of 

the Ad19aPVM-N vector. This could affect the effectiveness of the vector in vivo by 

focussing an immune response to the vector particles rather than the expressed 

antigen; however, the data suggests that inoculation route and vaccination schedule 

used may have a greater effect. 
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Firstly, it was shown that when administered through inoculation routes other than 

intramuscular or intranasal there was no significant difference in the CD8+ T cell 

response generated by the Ad19a and Ad5HIVA vectors (Chapter 7.3.2) although no 

immunisation route gave a robust response after Ad19a administration. It should also 

be noted that both the inoculations and subsequent challenge in the PVM studies 

were given intranasally, therefore, the better protection seen with the Ad19a vector 

could, principally, be due to a localised immune response specific to Ad19a being 

detrimental to PVM replication in the lung tissue, although 14 days is a longer time 

period than is normally recorded for an innate immune response. A further 

experiment would be the evaluation of the ability of the Ad19a vector to induce 

protection against PVM compared to the Ad5 vector when administered by an 

alternative inoculation route.  

 

Secondly, and perhaps more importantly, in the ELISpot studies utilising the HIVA 

transgene, the mice were only inoculated once before sacrifice 14 days later whereas 

in the PVM protection studies the mice were given both a prime and boost dose 

before sacrifice of the surviving mice 21 days later. These schedules are, therefore, 

vastly different both temporally, in terms of the time at which the response was 

evaluated after inoculation and, more importantly, procedurally as two separated 

doses were given. A prime/boost dose schedule is likely to induce a far stronger anti-

transgene immune response due to the stimulation of immune memory established 

after the prime dose at the time of boost. However, in contradiction to this 

hypothesis, it was found that Ad19aPVM-N could protect mice against lethal 

challenge with PVM after a single prime dose if challenged 14 days later, in the 

same scenario as used in the HIVA ELISpot studies but it could not if challenged 28 

days later (Chapter 7.4.5). These findings suggested that the immune response after a 

single dose vaccination is sufficiently high for protection to occur in the first 14 

days; but is not effective after 28 days. As no reagents to examine CD8+ T cell 

responses to PVM were available we concentrated on the IgG anti-transgene 

response using an indirect ELISA system. No significant difference in αPVM-N IgG 

response over PBS controls was observed and so it was concluded that protection 

from lethal PVM challenge by either the rAd5PVM-N or rAd19aPVM-N vectors is 

not mediated by an IgG response which could be detected in this assay (Chapter 7.5). 
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There remain other arms of the immune system that could be investigated, but it 

should first be examined if the CD8+ T cell response induced by the rAd19aPVM-N 

vector is higher than the response induced by the Ad19aHIVA vector. It is also 

important to note that the ELISpot assays in this study only measured a single 

parameter of effector T cells, IFN-γ, and this may not be relevant. It is plausible that 

Ad19a induces T cells that produce more cytokines, such as IL-2 or hTNF-α and as 

such further ELISpot studies should evaluate other cytokines or the protocol could be 

changed to a killing assay to measure directly how effective the generated CD8+ T 

cells are at killing Ad19a and Ad5 vector transduced cells. 

 

Thirdly it must be noted that all of these studies have been performed in mice which 

may or may not express the equivalent of the human Ad19a receptor. For example, 

while mice express no homologue of hCD46 they do possess a homologue of hCAR 

(Tomko et al., 2007). The Ad19a receptor remains controversial. The fibre of Ad19a, 

the protein responsible for cell targeting is identical to the fibre of another EKC 

causing Ad, Ad37 (Arnberg et al., 2002). For this reason it has been assumed that 

Ad19a may use the same attachment receptor as Ad37. Ad37 has been shown to 

utilise hCAR (Seiradake et al., 2006), sialic acid (Arnberg et al., 2000a; 2000b 2002; 

Johansson et al., 2005; 2007; Thirion et al., 2006), hCD46 (Wu et al., 2001, 2004; 

Hsu et al., 2005) and other newly identified molecules such as GD1a (Arnberg, 

unpublished data). In this study, it was investigated which of these potential 

receptors is used by an Ad19aGFP vector in vitro by expressing each receptor on a 

non-human cell line to eliminate concurrent interactions with other human receptors. 

In our findings Ad19a was capable of utilising both hCAR and hCD46 for entry 

when expressed in non-human CHO cell lines, but not sialic acid or GD1a (Chapter 

6.4), a finding which does not correlate with the majority of the findings for Ad37. 

Blocking experiments using monoclonal and polyclonal antibodies and soluble forms 

of the receptor pre-incubated with the vector, resulted in a reduction in transduction 

corresponding to control vectors that used hCAR and hCD46 (Chapter 6.5). They did 

not, however, have such a significant effect on the ability of Ad19a to transduce 

human A549 cells, suggesting that whilst Ad19a can utilise hCD46 or hCAR they 

alone are not responsible for Ad19a uptake in human cell lines. These experiments 

require further repetition for this conclusion to be fully validated but they represent a 

good working hypothesis. 
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It is not immediately obvious what differences in the experimental set-up could 

cause the discrepancy between the results for Ad19a and Ad37. It is especially 

strange as they possess identical fibre proteins. One plausible hypothesis would be 

that their divergent hexon and penton proteins affect tropism either in combination 

with fibre protein or by interacting directly with a cell receptor independent of the 

fibre protein. This hypothesis is in line with the finding that structural elements apart 

from the fibre protein itself can be responsible for changing tropism, as has been 

seen with the interaction of FX with the Ad5 hexon protein (Waddington et al., 

2008). Thus, future studies on Ad receptors should be performed using the native 

structure of the complete wt virion itself, as this represents the interactions in vivo, 

rather than binding assays with soluble or fibre knobs alone or Ad5 pseudotyped 

with the fibre proteins of different serotypes. It has also become apparent that Ads 

may be promiscuous in their use of receptors, with new receptor molecules being 

proposed all the time (reviewed in Arnberg, 2009) and as such it may be time to 

abandon the concept of a ‘primary’ receptor for each serotypes’ fibre protein and 

focus instead on Ad targeting and sequestration in vivo in humanised mice as a 

model for actual cell tropism. These findings may have important consequences for 

the evaluation of Ad19a’s effectiveness as a vaccine vector in vivo. For example, the 

largest body of research on the use of an Ad serotype outside of Ad5 has been on the 

subgroup B Ad, Ad35 which requires the use of hCD46 as a cell receptor (Gaggar et 

al., 2003) and only with the use of CD46 transgenic mice (Verhaagh et al., 2006) or 

NHPs (Sakurai et al., 2008, 2009) has more relevant information for this serotype 

been gathered. A very recent study has shown that in hCD46 transgenic mice hCD46 

is expressed on bone marrow derived mouse dendritic cells, as is the case in humans 

and this up-regulated rAd35 DC transduction in mice from ~25% to ~75% at 3,000 

virus particles/cell and resulted in higher levels of serum interleukins than an Ad5 or 

Ad5F35 vector (Sakurai et al., 2010). For this reason it is now important for Ad19a 

vectors to be evaluated in such models, as they might be clinically more relevant if 

hCD46 usage can be confirmed by other experimental approaches (siRNA). 
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8.2: Further work 

 

This study has shown that Ad19a vectors may have advantages over Ad5 vectors for 

vaccination but it would be prudent to directly compare Ad19a with vectors based on 

Ad serotypes other than Ad5, such as Ad35, to address whether Ad19a vectors have 

any advantages over these. Studies such as those performed by Shott et al. in 2008 

using Ad5 and Ad35 could be repeated to include an Ad19a vector expressing the 

same transgene to evaluate if Ad19a is capable of inducing a similar or stronger 

immune response than an Ad35 vector. Ad19a may have some advantages over 

Ad35, i.e. rAd19aGFP expresses more transgene (up to 8,043 MFI at 10 pfu/cell) 

than rAd35GFP (~3,500 MFI in iDCs after 109 virus particle injection into skin 

explants; de Gruijl et al., 2006) in iDCs, although these experiments are not directly 

comparable due to the nature of the in vitro protocol and other literature does not 

evaluate transgene expression levels. Whilst it has been shown that Ad35 has a lower 

human seropositivity than Ad19a (~5% compared to ~20% for Ad19a/Ad19p; 

Vogels et al., 2003), several other findings are very similar with Ad19a transducing 

iDCs, mDCs, T cells and B cells to similar or higher levels, although at 

incomparable infection efficiencies whilst being shown to have some properties 

which have not been evaluated in Ad35, such as the ability to protect non CD46-

transgenic mice against lethal virus challenge. 

 

If experiments confirm that Ad19a is a similarly effective or even better vector 

compared to other Ad vectors then its use could be established alongside these 

vectors in heterologous prime/boost systems such as those used previously 

(Rodriguez et al., 2009) eliminating the requirement for an Ad5 vector and 

consequently the obstacles such as Ad5’s high seropostivity and liver tropism. 

 

Comparisons to other vector systems could also be investigated, especially using the 

HIVA transgene which has already been evaluated for CD8+ T cell generation by 

ELISpot in other vector systems such as MVA (Hanke et al., 2002), semliki forest 

virus (alphavirus; Hanke et al., 2003), bluetongue virus (Larke et al., 2005), Bacillus 

Calmette-Guérin (BCG; aRosario et al., 2010), ovine atadenovirus (Bridgeman et al., 

2009; bRosario et al., 2010) and Ad5 (Bridgeman et al., 2009). Ad19a may have 
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advantages over all of these vector systems due to its high transgene expression and 

efficiency of transduction of DCs. It is especially important that any comparisons are 

carried out in a human-like system, especially as MVA vectored HIVA vaccines 

have shown promising results in vivo in humans (see Chapter 1). 

 

Before comparison studies can begin it is of vital importance that further 

immunogenicity studies are completed using the existing Ad19a HIVA and PVM-N 

vectors to establish the cause of the enhanced protection over Ad5 seen when using 

rAd19aPVM-N in the PVM challenge system and whether Ad19a is stimulating a 

different type of immune response by the evaluation of multiple cytokines in the 

HIVA system. It is especially important that further immunogenicity studies are 

carried out in more human-like in vivo systems such as CD46 transgenic mice and 

that the Ad19a receptor is further elucidated in vitro and in vivo. Parallel studies in 

vivo using KO mice that lack different gangliosides (GD1a etc.) would also be 

helpful to further promote the case of Ad19a as a vaccine vector. 

 

8.3: Conclusions and Outlook 

 

This study has highlighted that whilst animal models are useful for the evaluation of 

the potential of Ad vectors for vaccination they have several flaws. Within this study 

alone, conflicting data has been generated based on two separate mouse models, 

although this could be explained by other causes as discussed. Any in vivo toxicity or 

efficacy studies performed in animal models which are not transgenic for the 

presence of the normal human receptor panels are not, therefore, good models for the 

effects of that vector in humans and any in vitro study using human cells is not 

informative of transduction profiles or sequestration in the in vivo host environment. 

The failure of the MERCK STEP trial (McElrath et al., 2008) has called into 

question the validity of any efficacy data gathered in non-human models and further 

suggests that more early experimentation should take place in humans to truly 

evaluate the potential of any viral vector system. 

 

In conclusion the Ad19a genome has been shown to be easily modified by a novel 

recombineering system allowing the seamless mutation of ORFs and the creation of 
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transgene expressing vectors. Ad19a vectors have been shown to transduce a greater 

range of human cells, including several immune lineage cell types, B cells, T cells 

and DCs, as has been seen previously for the wt virus (Ruzsics et al., 2006; Burgert, 

unpublished data), and express greater amounts of transgene upon transduction when 

compared to Ad5 vectors. Finally, Ad19a vectors have been utilised in vaccine 

model systems and have been shown, in one model at least, to provide a greater level 

of protection against lethal challenge than a homologous Ad5 vector presumably by 

the stimulation of a greater cell mediated immune response. Some aspects of Ad19a 

biology require further evaluation before the vector could enter clinical trials but this 

study has highlighted Ad19a’s potential and provided a solid basis for its continuing 

development as a vaccine vector. 
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Figure A1: Plasmid map of pGPSgalK/KnR with the galK and KnR genes and primer 
binding regions for PCR primers GalKFOR/H1-19KO and GalKREV/H2-19KO indicated. 
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Figure A2: Banding pattern of Invitrogen 1kb DNA ladder (left) and New England 
Biolabs 1kb DNA ladder (right) 
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Figure A3: BAC map of BAd5GFP with the CMV promoter, GFP transgene and SV40 
polyA tail indicated. Also shown are XhoI restriction sites and the predicted XhoI digest 
banding pattern. 
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Figure A4: BAC map of BAd5galK/KnR with the CMV promoter, the galK and KnR genes 
and the SV40 polyA tail indicated. Also shown are XhoI restriction sites and the predicted 
XhoI digest banding pattern. 
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Figure A5: BAC map of BAd19aGFP with the CMV promoter, GFP transgene and SV40 
polyA tail indicated. Also shown are XhoI restriction sites and the predicted XhoI digest 
banding pattern. BAd19aGFP lacks the E1 region from 141-424bp and all E3 genes. 
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Figure A6: BAC map of BAd19agalK/KnR with the CMV promoter, the galK and KnR 
genes and the SV40 polyA tail indicated. Also shown are XhoI restriction sites and the 
predicted XhoI digest banding pattern. BAd19agalK/KnR lacks the E1 region from 141-
424bp and all E3 genes. 
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Figure A7: BAC map of Bad19awt showing XhoI restriction sites and the predicted XhoI 
digest banding pattern 
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Figure A8: BAC map of BAd19Δ19KgalK/KnR showing in red the replacement of Ad19a 
E3/19K with the galK and KnR genes. Also shown are XhoI restriction sites and the 
predicted XhoI digest banding pattern.
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Figure A9: Plasmid map of pHIVAOx with the CMV promoter and HIVA transgene 
indicated. Also shown are NdeI and NotI restriction sites and the predicted NdeI/NotI digest 
banding pattern 
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Figure A10: Plasmid map of peGFP-N1 with the CMV promoter, GFP transgene and the 
SV40 polyA tail indicated. Also shown are NdeI and NotI restriction sites and the predicted 
NdeI/NotI fragments. 
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Figure A11: Plasmid map of pCMVHIVA with the CMV promoter, HIVA transgene, 
SV40 polyA tail and KanR gene indicated. Also shown are NdeI, MunI, NotI and StuI 
restriction sites and the predicted NdeI/MunI and StuI digest banding patterns, respectively. 
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Figure A12: Plasmid map of pCMVPVM-N with the CMV promoter, PVM-N transgene 
and SV40 polyA tail indicated. Also shown are the primer binding sites (magenta) for the 
PVM-NIsolationFOR and PVM-NIsolationREV primers. 
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Figure A13: BAC map of BAd5HIVA with the CMV promoter, the HIVA transgene and 
the SV40 polyA tail indicated. Also shown are XhoI restriction sites and the predicted XhoI 
digest banding pattern. 
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Figure A14: BAC map of BAd19aHIVA with the CMV promoter, the HIVA transgene and 
the SV40 polyA tail indicated. Also shown are XhoI restriction sites and the predicted XhoI 
digest banding pattern. 
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Figure A15: Sequencing alignment of BAd5HIVA showing the predicted sequence of BAd5HIVA 200bp before the beginning of the HIVA transgene 
sequence to the end of the SV40 polyA tail (1795-2028) inclusive of the HIVA transgene (200-1795) (L1) aligned against the sequence generated by 
sequencing primers HIVA/F/1 (L2), HIVA/F/2 (L3) and HIVA/F/3 (L4). Matches between the predicted sequence and generated sequence are highlighted. 
 
 
 
 
 
L1 BAd5HIVAHIVA      1 ctgagttgttgtgttctgataagagtcagaggtaactcccgttgcggtgctgttaacggtggagggcagtgtagtctgagcagtactcgttgctgccgcg 
L2 032009-014_H        ---------------------------------------------------------------------------------------------------- 
L3 032009-014_H        ---------------------------------------------------------------------------------------------------- 
L4 032009-014_H        ---------------------------------------------------------------------------------------------------- 
 
BAd5HIVAHIVA    101 cgcgccaccagacataatagctgacagactaacagactgttcctttccatgggtcttttctgcagtcaccgtccttgacacgaagcttcccgccgccacc 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
 
BAd5HIVAHIVA    201 atgcccatcgtgcagaacgcccagggccagatgcaccaggccctgtccccccgcaccctgaacgcctgggtgaaggtgatcgaggagaaggccttctccc 
032009-014_H      1 ---------------------------------------------------nnnnnnnncnncnnctnggtgaaggtgatcgaggagaaggccttctccc 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
 
BAd5HIVAHIVA    301 ccgaggtgatccccatgttctccgccctgtccgagggcgccaccccccaggacctgaacatgatgctgaacatcgtgggcggccaccaggccgccatgca 
032009-014_H     50 ccgaggtgatccccatgttctccgccctgtccgagggcgccaccccccaggacctgaacatgatgctgaacatcgtgggcggccaccaggccgccatgca 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
 
BAd5HIVAHIVA    401 gatgctgaaggacaccatcaacgaggaggccgccgagtgggaccgcctgcaccccgtgcacgccggccccatcccccccggccagatgcgcgagccccgc 
032009-014_H    150 gatgctgaaggacaccatcaacgaggaggccgccgagtgggaccgcctgcaccccgtgcacgccggccccatcccccccggccagatgcgcgagccccgc 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
 
BAd5HIVAHIVA    501 ggatccgacatcgccggcaccacctccaccctgcaggagcagatcggctggatgacctccaacccccccatccccgtgggcgacatctacaagcgctgga 
032009-014_H    250 ggatccgacatcgccggcaccacctccaccctgcaggagcagatcggctggatgacctccaacccccccatccccgtgggcgacatctacaagcgctgga 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
 
BAd5HIVAHIVA    601 tcatcctgggcctgaacaagatcgtgcgcatgtactcccccgtgtccatcctggacatccgccagggccccaaggagcccttccgcgactacgtggaccg 
032009-014_H    350 tcatcctgggcctgaacaagatcgtgcgcatgtactcccccgtgtccatcctggacatccgccagggccccaaggagcccttccgcgactacgtggaccg 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
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BAd5HIVAHIVA    701 cttcttcaagaccctgcgcgccgagcaggccacccaggaggtgaagaactggatgaccgagaccctgctggtgcagaacgccaaccccgactgcaagtcc 
032009-014_H    450 cttcttcaagaccctgcgcgccgagcaggccacccaggaggtgaagaactggatgaccgagaccctgctggtgcagaacgccaaccccgactgcaagtcc 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
 
BAd5HIVAHIVA    801 atcctgcgcgccctgggccccggcgccaccctggaggagatgatgaccgcctgccagggcgtgggcggccccggccacaaggcccgcgtgctgggtaccg 
032009-014_H    550 atcctgcgcgccctgggccccggcgccaccctggaggagatgatgaccgcctgccagggcgtgggcggccccggccacaaggcccgcgtgctgggtaccg 
032009-014_H      1 -----------------------------------------------------nnnnnnnnnnngnngccccggccacaaggcccgcgtgctgggtaccg 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
 
BAd5HIVAHIVA    901 gcgcccgcgcctccgtgctgtccggcggcaagctggacgcctgggagaagatccgcctgcgccccggcggcaagaagaagtaccgcctgaagcacctggt 
032009-014_H    650 gcgcccgcgcctccgtgctgtccggcggcaagctggacgcctgggagaagatccgcctgcgccccggcggcaagaagaagtaccgcctgaagcacctggt 
032009-014_H     47 gcgcccgcgcctccgtgctgtccggcggcaagctggacgcctgggagaagatccgcctgcgccccggcggcaagaagaagtaccgcctgaagcacctggt 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
 
BAd5HIVAHIVA   1001 gtgggcctcccgcgagctggagcgcttcgccctgaacccctccctgctggagaccgccgagggctgccagcagatcatggagcagctgcagtccgccctg 
032009-014_H    750 gtgggcctcccgcgagctggagcgcttcgccctgaacccctccctgctggagaccgccgagggctgccagcagatcatggagcagctgcagtccgccctg 
032009-014_H    147 gtgggcctcccgcgagctggagcgcttcgccctgaacccctccctgctggagaccgccgagggctgccagcagatcatggagcagctgcagtccgccctg 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
 
BAd5HIVAHIVA   1101 aagacctccgaggagctgaagtccctgttcaacaccgtggccaccctgtactgcgtgcaccagcgcatcgacgtgaaggacaccaaggaggccctggaca 
032009-014_H    850 aagacctccgaggagctgaagtccctgttcaacaccgtggccaccctgtactgcgtgcaccagcgcatcgacgtgaagga-------------------- 
032009-014_H    247 aagacctccgaggagctgaagtccctgttcaacaccgtggccaccctgtactgcgtgcaccagcgcatcgacgtgaaggacaccaaggaggccctggaca 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
 
BAd5HIVAHIVA   1201 agatcgaggagatccagaacaagtccaagcagaagacccagcaggccgccgccgacacccagtcctcctccaaggtgtcccagaactacgccctgaagca 
032009-014_H    930 ---------------------------------------------------------------------------------------------------- 
032009-014_H    347 agatcgaggagatccagaacaagtccaagcagaagacccagcaggccgccgccgacacccagtcctcctccaaggtgtcccagaactacgccctgaagca 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
 
BAd5HIVAHIVA   1301 ccgcgcctacgagctggaattccctccaattcctgtcggggagatttataaacggtggatcatttttagggattatgtcgataggttttataaaacgctc 
032009-014_H    939 ---------------------------------------------------------------------------------------------------- 
032009-014_H    447 ccgcgcctacgagctggaattccctccaattcctgtcggggagatttataaacggtggatcatttttagggattatgtcgataggttttataaaacgctc 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
 
BAd5HIVAHIVA   1401 agggccatcttccagtcctccatgaccaagatcaccctgtggcagcgccccctggtggagcgctacctgaaggaccagcagctgctgaccgtgtactacg 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
032009-014_H    547 agggccatcttccagtcctccatgaccaagatcaccctgtggcagcgccccctggtggagcgctacctgaaggaccagcagctgctgaccgtgtactacg 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
 
BAd5HIVAHIVA   1501 gcgtgcccgtgtggaagcgcccccaggtgcccctgcgccccatgacctacaaggccgtggacctgtcccacttcctgaaggagaagggcggcctgatcct 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
032009-014_H    647 gcgtgcccgtgtggaagcgcccccaggtgcccctgcgccccatgacctacaaggccgtggacctgtcccacttcctgaaggagaagggcggcctgatcct 
032009-014_H      1 -----------------------------------------------------------------------nnnnnnnagnngnngggcggcctgatcct 
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BAd5HIVAHIVA   1601 gaaggagcccgtgcacggcgtgtaccaccccgacatcgtgatctaccagtacatggacgacctgacccccggccccggcgtgcgctaccccctggcctgc 
032009-014_H    955 ---------------------------------------------------------------------------------------------------- 
032009-014_H    747 gaaggagcccgtgcacggcgtgtaccaccccgacatcgtgatctaccagtacatggacgacctgac------ccccggcgtgcgctaccccctggcctgc 
032009-014_H     29 gaaggagcccgtgcacggcgtgtaccaccccgacatcgtgatctaccagtacatggacgacctgacccccggccccggcgtgcgctaccccctggcctgc 
 
BAd5HIVAHIVA   1701 accccctacgacatcaaccagatgctgcgcggccccggccgcgccttcgtgaccatccccaaccccctgctgggcctggactgagcggccgcgactctag 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
032009-014_H    841 accccctacgacatcaaccagatgctgcgcggccccggccgcgcctt----------------------------------------------------- 
032009-014_H    129 accccctacgacatcaaccagatgctgcgcggccccggccgcgccttcgtgaccatccccaaccccctgctgggcctggactgagcggccgcgactctag 
 
BAd5HIVAHIVA   1801 atcataatcagccataccacatttgtagaggttttacttgctttaaaaaacctcccacacctccccctgaacctgaaacataaaatgaatgcaattgttg 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
032009-014_H        ---------------------------------------------------------------------------------------------------- 
032009-014_H    229 atcataatcagccataccacatttgtagaggttttacttgctttaaaaaacctcccacacctccccctgaacctgaaacataaaatgaatgcaattgttg 
 
BAd5HIVAHIVA   1901 ttgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtgg 
032009-014_H   1019 ---------------------------------------------------------------------------------------------------- 
032009-014_H    964 ---------------------------------------------------------------------------------------------------- 
032009-014_H    329 ttgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtgg 
 
BAd5HIVAHIVA   1999 tttgtccaaactcatcaatgtatcttaag--------------------------------------------------------------- 
032009-014_H   1044 -------------------------------------------------------------------------------------------- 
032009-014_H    983 -------------------------------------------------------------------------------------------- 
032009-014_H    427 tttgtccaaactcatcaatgtatcttaagacgcgtaaattgtaagcgttaatattgaaaaaggaagagtcctgaggcggaaagaaccagctg 
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Figure A16: Sequencing alignment of BAd19aHIVA showing the predicted sequence of BAd19aHIVA 200bp before the beginning of the HIVA transgene 
sequence to the end of the SV40 polyA tail (1795-2028) inclusive of the HIVA transgene (200-1795) (L1) aligned against the sequence generated by 
sequencing primers HIVA/F/1 (L2), HIVA/F/2 (L3) and HIVA/F/3 (L4). Matches between the predicted sequence and generated sequence are highlighted. 
 
 
 
L1 BAd19aHIVAHI      1 ctgagttgttgtgttctgataagagtcagaggtaactcccgttgcggtgctgttaacggtggagggcagtgtagtctgagcagtactcgttgctgccgcg 
L2 122007-378_H        ---------------------------------------------------------------------------------------------------- 
L3 122007-378_H        ---------------------------------------------------------------------------------------------------- 
L4 122007-378_H        ---------------------------------------------------------------------------------------------------- 
 
BAd19aHIVAHI    101 cgcgccaccagacataatagctgacagactaacagactgttcctttccatgggtcttttctgcagtcaccgtccttgacacgaagcttcccgccgccacc 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
 
BAd19aHIVAHI    201 atgcccatcgtgcagaacgcccagggccagatgcaccaggccctgtccccccgcaccctgaacgcctgggtgaaggtgatcgaggagaaggccttctccc 
122007-378_H     1  -------------nnnannncnnnggccagatgcaccaggccctgtccccccgcaccctgaacgcctgggtgaaggtgatcgaggagaaggccttctccc 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
 
BAd19aHIVAHI    301 ccgaggtgatccccatgttctccgccctgtccgagggcgccaccccccaggacctgaacatgatgctgaacatcgtgggcggccaccaggccgccatgca 
122007-378_H     87 ccgaggtgatccccatgttctccgccctgtccgagggcgccaccccccaggacctgaacatgatgctgaacatcgtgggcggccaccaggccgccatgca 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
 
BAd19aHIVAHI    401 gatgctgaaggacaccatcaacgaggaggccgccgagtgggaccgcctgcaccccgtgcacgccggccccatcccccccggccagatgcgcgagccccgc 
122007-378_H    187 gatgctgaaggacaccatcaacgaggaggccgccgagtgggaccgcctgcaccccgtgcacgccggccccatcccccccggccagatgcgcgagccccgc 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
 
BAd19aHIVAHI    501 ggatccgacatcgccggcaccacctccaccctgcaggagcagatcggctggatgacctccaacccccccatccccgtgggcgacatctacaagcgctgga 
122007-378_H    287 ggatccgacatcgccggcaccacctccaccctgcaggagcagatcggctggatgacctccaacccccccatccccgtgggcgacatctacaagcgctgga 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
 
BAd19aHIVAHI    601 tcatcctgggcctgaacaagatcgtgcgcatgtactcccccgtgtccatcctggacatccgccagggccccaaggagcccttccgcgactacgtggaccg 
122007-378_H    387 tcatcctgggcctgaacaagatcgtgcgcatgtactcccccgtgtccatcctggacatccgccagggccccaaggagcccttccgcgactacgtggaccg 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
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BAd19aHIVAHI    701 cttcttcaagaccctgcgcgccgagcaggccacccaggaggtgaagaactggatgaccgagaccctgctggtgcagaacgccaaccccgactgcaagtcc 
122007-378_H    487 cttcttcaagaccctgcgcgccgagcaggccacccaggaggtgaagaactggatgaccgagaccctgctggtgcagaacgccaaccccgactgcaagtcc 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H      1 ---------------------------------------------------------------------------------------------------- 
 
BAd19aHIVAHI    801 atcctgcgcgccctgggccccggcgccaccctggaggagatgatgaccgcctgccagggcgtgggcggccccggccacaaggcccgcgtgctgggtaccg 
122007-378_H    587 atcctgcgcgccctgggccccggcgccaccctggaggagatgatgaccgcctgccagggcgtgggcggccccggccacaaggcccgcgtgctgggtaccg 
122007-378_H      1 -------------------------------------------------------------------------nnnncnnggcccgcgtgctgggtaccg 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
 
BAd19aHIVAHI    901 gcgcccgcgcctccgtgctgtccggcggcaagctggacgcctgggagaagatccgcctgcgccccggcggcaagaagaagtaccgcctgaagcacctggt 
122007-378_H    687 gcgcccgcgcctccgtgctgtccggcggcaagctggacgcctgggagaagatccgcctgcgccccggcggcaagaagaagtaccgcctgaagcacctggt 
122007-378_H     37 gcgcccgcgcctccgtgctgtccggcggcaagctggacgcctgggagaagatccgcctgcgccccggcggcaagaagaagtaccgcctgaagcacctggt 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
 
BAd19aHIVAHI   1001 gtgggcctcccgcgagctggagcgcttcgccctgaacccctccctgctggagaccgccgagggctgccagcagatcatggagcagctgcagtccgccctg 
122007-378_H    787 gtgggcctcccgcgagctggagcgcttcgccctgaacccctccctgctggagaccgccgagggctgccagcagatcatggagcagctgcn---------- 
122007-378_H    137 gtgggcctcccgcgagctggagcgcttcgccctgaacccctccctgctggagaccgccgagggctgccagcagatcatggagcagctgcagtccgccctg 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
 
BAd19aHIVAHI   1101 aagacctccgaggagctgaagtccctgttcaacaccgtggccaccctgtactgcgtgcaccagcgcatcgacgtgaaggacaccaaggaggccctggaca 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H    237 aagacctccgaggagctgaagtccctgttcaacaccgtggccaccctgtactgcgtgcaccagcgcatcgacgtgaaggacaccaaggaggccctggaca 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
 
BAd19aHIVAHI   1201 agatcgaggagatccagaacaagtccaagcagaagacccagcaggccgccgccgacacccagtcctcctccaaggtgtcccagaactacgccctgaagca 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H    337 agatcgaggagatccagaacaagtccaagcagaagacccagcaggccgccgccgacacccagtcctcctccaaggtgtcccagaactacgccctgaagca 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
 
BAd19aHIVAHI   1301 ccgcgcctacgagctggaattccctccaattcctgtcggggagatttataaacggtggatcatttttagggattatgtcgataggttttataaaacgctc 
122007-378_H    877 ---------------------------------------------------------------------------------------------------- 
122007-378_H    437 ccgcgcctacgagctggaattccctccaattcctgtcggggagatttataaacggtggatcatttttagggattatgtcgataggttttataaaacgctc 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
 
BAd19aHIVAHI   1401 agggccatcttccagtcctccatgaccaagatcaccctgtggcagcgccccctggtggagcgctacctgaaggaccagcagctgctgaccgtgtactacg 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H    537 agggccatcttccagtcctccatgaccaagatcaccctgtggcagcgccccctggtggagcgctacctgaaggaccagcagctgctgaccgtgtactacg 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
 
BAd19aHIVAHI   1501 gcgtgcccgtgtggaagcgcccccaggtgcccctgcgccccatgacctacaaggccgtggacctgtcccacttcctgaaggagaagggcggcctgatcct 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H    637 gcgtgcccgtgtggaagcgcccccaggtgcccctgcgccccatgacctacaaggccgtggacctgtcccacttcctgaaggagaagggcggcctgatcct 
122007-378_H      8 -----------------------------------------------------------------------------nnggnnaagggcggcctgatcct 
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BAd19aHIVAHI   1601 gaaggagcccgtgcacggcgtgtaccaccccgacatcgtgatctaccagtacatggacgacctgacccccggccccggcgtgcgctaccccctggcctgc 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H    737 gaaggagcccgtgcacggcgtgtaccaccccgacatcgtgatctaccagtacatggacgacctgacccccggccccggcgtgcgctaccccctggcctgc 
122007-378_H     31 gaaggagcccgtgcacggcgtgtaccaccccgacatcgtgatctaccagtacatggacgacctgacccccggccccggcgtgcgctaccccctggcctgc 
 
BAd19aHIVAHI   1701 accccctacgacatcaaccagatgctgcgcggccccggccgcgccttcgtgaccatccccaaccccctgctgggcctggactgagcggccgcgactctag 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H    837 accccctacgacatcaaccagatgctgcgcggccccggccgcgccttcgtgaccatccccaaccccctgc------------------------------ 
122007-378_H    131 accccctacgacatcaaccagatgctgcgcggccccggccgcgccttcgtgaccatccccaaccccctgctgggcctggactgagcggccgcgactctag 
 
BAd19aHIVAHI   1801 atcataatcagccataccacatttgtagaggttttacttgctttaaaaaacctcccacacctccccctgaacctgaaacataaaatgaatgcaattgttg 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H    231 atcataatcagccataccacatttgtagaggttttacttgctttaaaaaacctcccacacctccccctgaacctgaaacataaaatgaatgcaattgttg 
 
BAd19aHIVAHI   1898 ttgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtgg 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H        ---------------------------------------------------------------------------------------------------- 
122007-378_H    331 ttgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcactgcattctagttgtgg 
 
BAd19aHIVAHI   1987 tttgtccaaactcatcaatgtatcttaag--------------------------------------------------------- 
122007-378_H        -------------------------------------------------------------------------------------- 
122007-378_H        -------------------------------------------------------------------------------------- 
122007-378_H    417 tttgtccaaactcatcaatgtatcttaaggcgtaaattgtaagcgttaatattttgttaaaattcgcgttaaatttttgttaaatc 
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Figure A17: BAC map of BAd19aPVM-N with the CMV promoter, the PVM-N transgene 
and the SV40 polyA tail highlighted.  
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Figure A18: Sequencing alignment of BAd19aPVM-N showing the predicted BAd19aPVM-N sequence from the beginning of the CMV promoter (1-392) 
to the end of the SV40 polyA tail (1665-1898) inclusive of the PVM-N transgene (468-1665) (Line 1(L1)) aligned against the sequence generated by 
sequencing primers PVM-N/F/1 (L2), PVM-N/F/2 (L3) and PVM-N/F/3 (L4). Matches between the predicted sequence and generated sequence are 
highlighted. 
 
 
 
 
L1 PVMNseqfrag       1 ggtaaactgcccac-----ttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtaca 
L2 072008-195_N      1 -------nnnnnannnnnnttggcagtacatcaagtgtatcatatgccaagtacgccccctattgacgtcaatgacggtaaatggcccgcctggcattatgcccagtaca 
L3 072008-195_N        -------------------------------------------------------------------------------------------------------------- 
L4 072008-195_N        -------------------------------------------------------------------------------------------------------------- 
 
PVMNseqfrag     106 tgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgac 
072008-195_N    104 tgaccttatgggactttcctacttggcagtacatctacgtattagtcatcgctattaccatggtgatgcggttttggcagtacatcaatgggcgtggatagcggtttgac 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
 
PVMNseqfrag     216 tcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgca 
072008-195_N    214 tcacggggatttccaagtctccaccccattgacgtcaatgggagtttgttttggcaccaaaatcaacgggactttccaaaatgtcgtaacaactccgccccattgacgca 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
 
PVMNseqfrag     326 aatgggcggtaggcgtgtacggtgggaggtctatataagcagagctggtttagtgaaccgtcagatccgctagagatctggtaccgtcgacgcggccgctcgagcctaag 
072008-195_N    324 aatgggcggtaggcgtgtacggtgggaggtctatataagcagagctggtttagtgaaccgtcagatccgctagagatctggtaccgtcgacgcggccgctcgagcctaag 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
 
PVMNseqfrag     436 cttctagataagatccgcgggtcgacatgtctctagacagattgaagctcaatgatgtctcaaacaaggatagcctgctgtccaactgcaaatacagtgttaccagatcc 
072008-195_N    434 cttctagataagatccgcgggtcgacatgtctctagacagattgaagctcaatgatgtctcaaacaaggatagcctgctgtccaactgcaaatacagtgttaccagatcc 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
 
PVMNseqfrag     546 acaggcgatgtaaccagtgtgtctggtcatgctatgcagaaagcccttgcaaggacactcggcatgttcttacttactgccttcaaccgttgcgaagaagtggcagaaat 
072008-195_N    544 acaggcgatgtaaccagtgtgtctggtcatgctatgcagaaagcccttgcaaggacactcggcatgttcttacttactgccttcaaccgttgcgaagaagtggcagaaat 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
 
PVMNseqfrag     656 agggctccaatatgccatgtccttgctaggcagagatgatagcatcaagatattaagagaagccggctacaatgtaaaatgtgtggacacacagctcaaggactttacaa 
072008-195_N    654 agggctccaatatgccatgtccttgctaggcagagatgatagcatcaagatattaagagaagccggctacaatgtaaaatgtgtggacacacagctcaaggactttacaa 
072008-195_N      7 --------------------------------------------------------------------nc-nngtnnnatgtgtggacacacagctcaaggactttacaa 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
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PVMNseqfrag     766 tcaaattacaaggaaaggaatacaaaatacaagtcctagatatagtgggaatagatgcagccaatttagctgatctagagatacaagccagaggagtggtagcaaaagaa 
072008-195_N    764 tcaaattacaaggaaaggaanacaaaatacaagtcctagan--------------------------------------------------------------------- 
072008-195_N     46 tcaaattacaaggaaaggaatacaaaatacaagtcctagatatagtgggaatagatgcagccaatttagctgatctagagatacaagccagaggagtggtagcaaaagaa 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
 
PVMNseqfrag     876 actcaaaacaggagccaggctacctgacaatcggaggcatgatgcaccagattgtggtgtgatagttctctgtattgcagcattagttgtttccaaattagctgcagggg 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
072008-195_N    155 actcaaaacaggagccaggctacctgacaatcggaggcatgatgcaccagattgtggtgtgatagttctctgtattgcagcattagttgtttccaaattagctgcagggg 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
 
PVMNseqfrag     986 acaggggaggacttgatgctgtggaaagaagggctttaaatgtgctgaaagccgagaaagccaggtaccccaacatggaggtcaagcagatagctgaaagtttttatgat 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
072008-195_N    265 acaggggaggacttgatgctgtggaaagaagggctttaaatgtgctgaaagccgagaaagccaggtaccccaacatggaggtcaagcagatagctgaaagtttttatgat 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
 
PVMNseqfrag    1096 ctgtttgaaaggaagccttattacattgatgtcttcatcacttttggcctggcccagtctagtgtcaagggaggcagcaaagttgaggggctgttttcaggtctcttcat 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
072008-195_N    375 ctgtttgaaaggaagccttattacattgatgtcttcatcacttttggcctggcccagtctagtgtcaagggaggcagcaaagttgaggggctgttttcaggtctcttcat 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
 
PVMNseqfrag    1206 gaatgcatacggggcaggacaagttatgctgaggtggggtttactggcaaaatctgtcaagaacatcatgctaggccatgctagtgtacaagctgagatggaacaggtgg 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
072008-195_N    485 gaatgcatacggggcaggacaagttatgctgaggtggggtttactggcaaaatctgtcaagaacatcatgctaggccatgctagtgtacaagctgagatggaacaggtgg 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
 
PVMNseqfrag    1316 ttgaggtttacgaatatgctcagaagcaaggaggggaggcaggattctatcacatcagaaataatccaaaagcttcacttctctctttgaccaattgtcctaatttcacc 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
072008-195_N    595 ttgaggtttacgaatatgctcagaagcaaggaggggaggcaggattctatcacatcagaaataatccaaaagcttcacttctctctttgaccaattgtcctaatttcacc 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
 
PVMNseqfrag    1426 agtgttgtgcttggcaatgctgcaggtttaggcatcatagggtcatataagggtgctcctaggaatagagaactctttgatgctgccaaagattatgcagaaagattaaa 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
072008-195_N    705 agtgttgtgcttggcaatgctgcaggtttaggcatcatagggtcatat-annntgctcctaggaatagagaactctttgatgctgccaaagattatgcagaaagattaan 
072008-195_N      1 ---nnnnnnnntngc-atgctgcaggtttaggcatcatagggtcatataagggtgctcctaggaatagagaactctttgatgctgccaaagattatgcagaaagattaaa 
 
PVMNseqfrag    1536 ggacaacaatgtaattaactacagtgcattaaacttgactgcagaagaaagagagctgatcagccagcagctgaacattgttgatgacactcctgatgatgatatttaaa 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
072008-195_N    814 ggana--------------------------------------------------------------------------------------------------------- 
072008-195_N    107 ggacaacaatgtaattaactacagtgcattaaacttgactgcagaagaaagagagctgatcagccagcagctgaacattgttgatgacactcctgatgatgatatttaaa 
 
PVMNseqfrag    1646 aacataatccgatccaccggatctagataactgatcataatcagccataccacatttgtagaggttttacttgctttaaaaaacctcccacacctccccctgaacctgag 
072008-195_N    941 -------------------------------------------------------------------------------------------------------------- 
072008-195_N    891 -------------------------------------------------------------------------------------------------------------- 
072008-195_N    217 aacataatccgatccaccggatctagataactgatcataatcagccataccacatttgtagaggttttacttgctttaaaaaacctcccacacctccccctgaacctgag 
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PVMNseqfrag    1746 gcattctaaatgaatgcaattgttgttgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcact 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
072008-195_N        -------------------------------------------------------------------------------------------------------------- 
072008-195_N    327 gcattctaaatgaatgcaattgttgttgttaacttgtttattgcagcttataatggttacaaataaagcaatagcatcacaaatttcacaaataaagcatttttttcact 
 
PVMNseqfrag    1856 gttgtggtttgtccaaactcatcaatgtatcttaac------------------------------------------------------------------ 
072008-195_N        ------------------------------------------------------------------------------------------------------ 
072008-195_N        ------------------------------------------------------------------------------------------------------ 
072008-195_N    436 gttgtggtttgtccaaactcatcaatgtatcttaacggcgtaaattgtaagcgttaatattttgttaaaattcgcgttaaatttttgttaaatcagctcatt 
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Figure A19: BAC map of Bad19a19K* with the site of stop codon insertion, XhoI 
restriction sites and the XhoI digest banding pattern indicated. 
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Figure A20: Sequencing alignment of Bad19a19K* showing the Bad19awt sequence from 161bp prior to the E3-19K start codon (Line 1) aligned against 
the sequence generated by sequencing primer 19KSEQPRIME (Line 2). The successfully inserted nonsense mutation 9bp after the start codon is underlined. 
 
 
 
 
Line 1 pBAC-19a(RL)  26901 aggcttcccccttctcaggagggggttagcccatacgaagtggtcgggtatttgattttaggggtggtcctgggtgggtgcatagcggtgctagctcagc 
Line 2 052009-50_19     18 --------------------------------------------------------------------------------catagcggtgctagctcagc 
 
pBAC-19a(RL)  27001 tgccttgctgggtggaaatcaaaatctttatatgctgggtaagacattgtggggaggaactatgaaggggct-----cttgctgattatcctttccctgg 
052009-50_19     38 tgccttgctgggtggaaatcaaaatctttatatgctgggtaagacattgtggggaggaactatgaaggggctctaagcttgctgattatcctttccctgg 
 
pBAC-19a(RL)  27096 tggggggtgtgctgtcatgccacgaacagccacgatgtaacatcaccacaggcaatgagaggaacgactgctctgtagttatcaaatgcgagcaccattg 
052009-50_19    138 tggggggtgtgctgtcatgccacgaacagccacgatgtaacatcaccacaggcaatgagaggaacgactgctctgtagttatcaaatgcgagcaccattg 
 
pBAC-19a(RL)  27196 tcctctcaacattacattcaaaaataagaccatgggaaatgtatgggtgggattctggcaaccaggagatgagcagaactacacggtcactgtccatggt 
052009-50_19    238 tcctctcaacattacattcaaaaataagaccatgggaaatgtatgggtgggattctggcaaccaggagatgagcagaactacacggtcactgtccatggt 
 
pBAC-19a(RL)  27296 agcaatggcaatcacactttcggtttcaaattcatttttgaagtcatgtgtgatatcacactacatgtggctagacttcatggcttgtggccccctacca 
052009-50_19    338 agcaatggcaatcacactttcggtttcaaattcatttttgaagtcatgtgtgatatcacactacatgtggctagacttcatggcttgtggccccctacca 
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Figure A21: Blocking of CD46 receptor usage by monoclonal antibody 
treatment presenting example histograms showing the blocking of 
rAd19aGFP or rAd5F35GFP (as labelled) transduction by either 
0.25µg/ml (red solid line), 2.5µg/ml (blue solid line) or 25µg/ml (orange 
solid line) αCD46FII monoclonal antibody in A) A549, B) CHO-CD46 
MCP1 and C) CHO-CD46 MCP2 cells.  
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Figure A22: Blocking of CD46 receptor usage by polyclonal antibody 
treatment presenting example histograms showing the blocking of 
rAd19aGFP or rAd5F35GFP (as labelled) transduction by either a 1/100 
(red solid line), 1/25 (blue solid line) or 1/10 (orange solid line) dilution of 
αCD46poly polyclonal antibody in A) A549, B) CHO-CD46 MCP1 and 
C) CHO-CD46 MCP2 cells.  
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Figure A23: Blocking of CD46 receptor usage by serum control 
antibody treatment presenting example histograms showing the blocking 
of rAd19aGFP or rAd5F35GFP (as labelled) transduction by either a 1/100 
(red solid line), 1/25 (blue solid line) or 1/10 (orange solid line) dilution of 
rabbit serum control in A) A549, B) CHO-CD46 MCP1 and C) CHO-
CD46 MCP2 cells.  
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Figure A24: Blocking of CD46 receptor usage by soluble CD46 
treatment presenting example histograms showing the blocking of 
rAd19aGFP or rAd5F35GFP (as labelled) transduction by pre-incubation 
of virus with either 75µg/ml (red solid line) or 150µg/ml (blue solid line) 
MCP-BC-IgG4 in A) A549, B) CHO-CD46 MCP1 and C) CHO-CD46 
MCP2 cells.  
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Figure A25: Attempted blocking of CAR and GD1a usage presenting example histograms showing A) the blocking of rAd19aGFP or rAd5GFP (as 
labelled) transduction by pre-incubation of virus with either 75µg/ml (red solid line) or 150µg/ml (blue solid line) rhCXADR in CHO-CAR cells and B) the 
attempted blocking of rAd19aGFP or rAd5GFP (as labelled) transduction with either 0.25µg/ml (red solid line), 2.5µg/ml (blue solid line) or 25µg/ml (orange 
solid line) MOG35 monoclonal antibody in A549 cells. 

302 
 



Figure A26: Representative ELISpot assays showing example ELISpot assays from the experiment performed in Figure 7.1. The assays show a splenocyte 
secreting IFN-γ on stimulation with a peptide or the +ve PMA/Ionomycin control as a red spot which is then counted by an ELISpot reader and the number of 
spots identified in the lower left hand corner of each well. The splenocytes from 4 mice in each inoculation grouping where performed in duplicate (e.g. 
rAd5HIVA107 mouse 1 is represented by wells a1 and b1 on the first assay). 
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Figure A27: αPVM-N IgG responses to Ad vectors in vivo on super-lethal 500pfu PVM 
challenge and statistical analysis 

(A) Tail tip sera samples were removed from mice vaccinated with 107 pfu of either 
rAd19aPVM-N (red squares), rAd5PVM-N (blue circles) and PBS (purple diamonds) at day 
15, 29 or the day of sacrifice for each mouse (represented as day 50) in the standard 
vaccination schedule and examined for IgG response to PVM-N alongside a positive and 
negative control. (B) The means of the above data were compared by an unpaired t test with 
Welch’s correction. Where statistical significance between two responses was shown, i.e. a P 
value of <0.05, it has been highlighted in green and the level of statistical significance given 
by either 1, 2 or 3 asterisks. If no statistical significance was detected it has been highlighted 
in red. 
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Figure A28: αPVM-N IgG responses to Ad vectors in vivo at 106pfu dosage and 
statistical analysis 

(A) Tail tip sera samples were removed from mice vaccinated with 107 pfu of either 
rAd19aGFP (green triangles), rAd19aPVM-N (red squares), rAd5GFP (oranges asterisks), 
rAd5PVM-N (blue circles) and PBS (purple diamonds) at day 15, 29 or the day of sacrifice 
for each mouse (represented as day 50) in the standard vaccination schedule and examined 
for IgG response to PVM-N alongside a positive and negative control. (B) The means of the 
above data were compared by an unpaired t test with Welch’s correction. Where statistical 
significance between two responses was shown, i.e. a P value of <0.05, it has been 
highlighted in green and the level of statistical significance given by either 1, 2 or 3 
asterisks. If no statistical significance was detected it has been highlighted in red. 
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