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Abstract

We introduce a novel framework for developing statistical applications in health re-
search, based on dynamic modeling of the investigated processes. We formulate the princi-
ples of dynamic modeling in health research, which are coherent to those in other fields of
research. Dynamic models explicitly describe causal relations which are to be adequately
accounted in statistical methods, making them free of misuse of statistics and statistical
fallacy.

We propose the Dynamic Model of Population Health describing temporal changes in
health indicators, having nature of state variables. The Dynamic Regression Method was
developed as statistical method for the identification of the model. This method evaluates
cohort trends for state variables at each age and calendar year. The method is illustrated
by evaluating cohort trends for the Body Mass Index for men, using survey data collected
in the years 1982, 1987, 1992, in North Karelia, Finland.

Key words: Cohort trends; Dynamic Model of Population; Dynamic Regression Method;
Principles of Dynamic Modeling; Secular trends; State Variables.

1 Introduction.

Misuse of statistics and statistical fallacy are issues of concern in many fields, including medical
research. The detailed classification of misuse and recommendations of how to avoid statistical
fallacy could be found in books (Jaffe and Spirer, 1987), (Campbell, 1974). One category of
misuse, ”lack of knowledge on subject matter” (Jaffe and Spirer, 1987), could well be inter-
preted as addressing causality among other things.

Recently, it was acknowledged that a large proportion of published medical research contains
statistical errors and shortcomings . ”The problem is a serious one, as the inappropriate use
of statistical analysis may lead to incorrect conclusions, artificial research results and a waste
of valuable resources” (Strasak et al., 2007). Interestingly, the authors believe that one of the
reason for misuse is lack of statistical literacy: ”Medical researchers have to be encouraged to
learn more about statistics, as various studies point to a lack of statistical knowledge among
medical residents” and ”statisticians should be involved early in study design”
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In disagreement with this, we consider the case of statistical misuse, which occurs when
a formally correct statistical method is used, however, causality is missing. These are the
methods of evaluating secular trends in health indicators using data from a set of independent
cross-sectional surveys (review on these methods is presented in section 2). The linear secular
trends are also used as a tool for interecensal estimates of population size (review of this
could be found in (Moltchanov et al., 1999). We use term ”secular trends” to refer to all these
methods.
Formally, methods evaluating secular trends look correct: data, linear model and assump-

tions on data properties, in combination lead to evaluation of the model’s parameters and
testing hypotheses. In this schema, the wrong element is assumptions on data, usually sug-
gesting smooth-line type of dependency of estimated means.
Note that Hill’s criteria for causation (see, for example, http://en.wikipedia.org/wiki/Bradford-

Hill criteria ), though sound reasonable, provide only circumstantial evidence for causality, and
leave plenty of room for subjective judgments.
To our view, the data on population size shown on Figure 1 provide a very strong evidence

that secular trends do not exist in nature. Rather there are smooth evolution of population
size along birth cohort. However, some of the statisticians and field researcher may disagree
with this statement.
To address properly and unambiguously causality in a real world process, first of all, knowl-

edge and skill on dynamic modeling should be applied. Only at the next stage, statistical tools
are to be considered to evaluate parameters of the dynamic model.
Our practical task (target task) is to evaluate temporal changes in health on population level,

using data from a set of independent cross-sectional population surveys. Traditionally, this task
is approached by evaluating secular trends, which appeared to be a statistical fallacy. To build
up an alternative approach, we develop Dynamic Model of Population Health (DMPH) and
statistical method for its identification, the Dynamic Regression Method(DRM), producing
time trends for health-related indicators within birth cohorts (Cohort trends, or C-trends for
short).
In turn, to build up a dynamic model, first we derive some principles, which we call the

Principles of Dynamic Modeling in Health Research. These Principles are independent of the
target task, so they could be applied to any other task, for example, to follow-up analysis with
end-points.
The aims of this paper are as follows:

• to derive the Principles of Dynamic Modeling In Health Research

• to develop the Dynamic Model of Population Health

• to build up the Dynamic Regression Method and algorithm

• to run the illustrative analysis

Note that each of the four parts above is worth of more detailed, separate presentation.
Therefore, the challenge was to provide concise and logically completed descriptions of all

parts, clearly outlining logical interrelations between them.
The earlier version of the Dynamic Regression Method was developed and presented by

(Moltchanov and Mik’halskii, 2008), where C - trends were suggested as an alternative to
circular trends, used so far. Historically, the method developed in MONICA for checking con-
sistency of the reported demographic data ((Moltchanov et al., 1999)) served as the prototype
for the method developed by (Moltchanov and Mik’halskii, 2008). Some general aspects, such
as criteria for commonly used health indicators to serve as system State Variables, have been
considered earlier by (Moltchanov, 1993).
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Section 2 contains historical review of time-trend analysis. Section 3 presents history and
key properties of Dynamic Modeling. Section 4 describes Dynamic Model paradigm being
applied to health research on Individual and Population Level. In Section 5 we present the
analytical model for the case of continuous, normally distributed one parameter. The example
of application, employing the data of real study, is given in section 6. Section 7 contains
conclusion and discussion.

2 History of Time-Trend Analysis in Health Research

Time-trend analysis of health indicators has been widely used so far in health research. One
motivation for this comes from the fact that running a cross-sectional survey is the cost-effective
way to collect the data for such an analysis (Mann, 2003).

So far, this problem has been approached by assessing trends over time for means and other
statistics (for example, percentiles) of the age-specific distributions of parameters of interest,
such as traditional risk factor indicators (for example, systolic and diastolic blood pressure,
cholesterol, body mass index), and their categorical derivatives (such as prevalence of high
blood pressure, prevalence of high cholesterol, prevalence of obesity).

Various terms are used in literature for such trends: ”trends”, ”secular trends”, ”time
trends”. Here we will use the term ”secular trends” for all of them.

Among approaches used for trend analysis, the first one, ”trends by linear regression”, was
the key element of the analysis in the WHO MONICA Project (Tunstall-Pedoe et al., 2003).
Its steps include, first, calculating the age-group specific trends using linear regression, then,
aggregation using direct age standardization with fixed weights. This method has been applied
to risk factors only (Dobson et al., 1998a; Dobson et al., 1998b), or to both, risk factors and
rates (Kuulasmaa et al., 2000). In the last case, the aggregated trends were subject to cor-
relation analysis in order to test MONICA hypotheses. Some indication of problems in this
approach come when the time plots of the age-group and survey-specific mean values of data
items exhibit clear non-linearity of time plots and diversity of these plots over age groups (see,
for example, (Tolonen et al., 2000), POL-TARa, BMI).

A different modification uses the multiple logistic regression procedure applied to the whole
set of data (Gregg et al., 2005). As a result, the marginal characteristics were obtained directly
from the procedure. This is equivalent to direct standardization, with weights corresponding
to the analyzed population.

In examples above the method was applied to the samples having wide age range (40 years
and more) while spans between consecutive surveys were 3-10 years. Some studies of adolescents
deal with samples of age range 5-8 years, being sampled every year or every other year. In
that case, the trends were first examined visually by age , since, as it was acknowledged, ”they
exhibit a wide diversity of age-specific patterns” (Kautiainen et al., 2002; Chen et al., 2003).

One commonly used approach to cope with such a diversity subdivides the overall time
period into several segments and the overall age range into several age categories, for which
the corresponding plots suggest linear trends. Alternatively, trends are evaluated for aggregated
(age-standardized) parameters (Kautiainen et al., 2002).

Summing up, we may conclude that methods used so far for the analysis of the changes
of health-related indicators, though being the best available ones at that time, suffered from
one principal drawback: lack of causality. In turn, this is due to the fact that comparison is
made between different entities, or, in terms of Dynamic Model, between different objects (see
section 3).
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3 Dynamic Modeling: History and Inventory of General

Principles

In order to apply adequately the dynamic model paradigm to population health, we have to
summarize the key notions and principles of this paradigm. We will start our inventory with
the Newton’s second law, which historically is the very first dynamic model. We will end up
this section with formulation of the main principles of Dynamic Modeling in form of definitions,
labeled P1 - P4.

3.1 Newton’s Second Law of Motion

The following stuff is quoting from the English translation by Motte (Newton and Motte., 1995)
of the Isaac Newton’s formulation in Latin in Principia, 1687.
”Law II (in English): The alteration of motion is ever proportional to the motive force

impress’d; and is made in the direction of the right line in which that force is impress’d.”
We would like to use the structure of the above law’s formulation as golden standard for

general definition. In this view, the following comments are essential.

• The above law was expressed verbally. The mathematical expression for it, for example
in modern form

m
dv

dt
= F (1)

is not fully equivalent to the original verbal form, since it does not specify what is cause
and what is effect.

• The law is not a kind of assumption to be used later in calculation, rather this is property
of real world, derived by Newton from observation and logical inference.

• The law postulates causality clearly: the cause is (motive) force, while the effect produced
by this cause is the alteration of motion.

3.2 Definition of Dynamic Model in General Case

Mathematical forms of dynamic models, often being considered as a complex of several in-
terlinked dynamic models, are subject to special mathematical discipline - theory of dynamic
(dynamical)systems (see, for example, (Luenberger, 1979)). It is important to stress, that our
prime interest is in dynamic models, not in dynamic systems.
Usually, there were no problems in application of dynamic models in engineering and econ-

omy, as well as in interpretations of the results obtained. The need for re-inventory of the
notion of dynamic model, has been encountered, however, when applying it in biology.
The following definition was given by (Ellner and Guckenheimer, 2006) : ”Dynamic models

are simplified representations of some real-world entity, in equations or computer code. They
are intended to mimic some essential features of the study system while leaving out inessentials.
The models are called dynamic because they describe how system properties change over time.”
We formulate the following definition:

P1: Definition of Dynamic Models: Dynamic models are simplified representations of pro-
cess of change (over time) of some real-world entity, in verbal and mathematical form.
They are intended to mimic some essential features of the study object in process of
change, while leaving out inessentials. The models are called dynamic because they de-
scribe changes of object properties over time, cased by driving forces. ( from Greek
dynamikos ”powerful”, dynamis ”power”) ;
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Thus, dynamic model operates with object, characterized by set of properties, and Driving
Force, acting at object and causing changes of the object’s essential properties.
Definition P1 differs from one cited above in the following elements:

• P1 defines that dynamic model represents process of change of real-world entity, rather
than real-world entity itself.

• In P1 ”computer code” is excluded, since computer code may be an image of any process,
possibly violating physical laws. While we are concerned with exploration of real world.

• The models are ”dynamic” not at all because of properties are changing. Rather because
of the cause is postulated, generating these changes, - Driving Force.

P2: Definition of Object: The real-world object is physical entity, traceable in time, which
means that it could be observed over some time interval, possibly small enough, being
virtually the same in common sense, and carrying the set of properties.

P3: Definition of State Variables: An object is associated with a set of potentially mea-
surable characteristics - State Variables. These characteristics are assumed to be essential
properties of the object. For each such variable, the rate of change is proportional to the
variable-specific net driving force, acting upon the object. Hence - State Variables are
continuous and right-differentiable function of time.

P4: Definition of Controls: The model (1) could be extended by adding position vector
and written in ”Dynamic Systems” format:

dx1

dt
= x2,

dx2

dt
=

1

m
u(t), (2)

where x1 is position vector, x2 - velocity vector, u(t) - represents driving force F ,
underlying the fact, that it could be non-continuous function of time.

Note that in (2) Driving Force for State Variable vector x1 is State Variable vector x2,
thus being continuous, while Driving Force for State Variable vector x2 is external force
defined by (vector) function u(t). We will use term ”Controls” to call such an external
Driving Forces.

For a body moving in gravitational field of a planet, State Variables position and velocity
”predict” further behavior of this object, such as ability to ”escape” the gravity of the planet
without additional propulsion. In this respect State Variables differ from controls: the last ones
modify State Variables rates of change, however they can not serve as predictors.
Using dot notation for differentiation and combining vectors x1 and x2 into common vector

x, equations (2) could be rewritten as:

ẋ = F(x,u(t)) (3)

In verbal form, it postulates that rate of change of State Variables is a function of State
Variables and controls.
For any real-world object, a dynamic model is built-up to facilitate the following three main

practical tasks pertaining to this object:

Task1: Analysis: Ultimately, design of function F is made by a researcher, dealing with a
real-word object and its dynamics, depending on his/her intuition, experience and skill.
The known prototypes play also important role. After design is made, the functional
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form is known up to a set of still unknown parameters. The simplest case is linear form
with coefficients to be set up. To evaluate these parameters, the measurements on State
Variables and controls should be used, collected during some time period. We will use
term ”Analysis” for this task.

Task2: Prognosis: If function F is identified and State Variables are known for a moment t0
and functions u(t) are defined on interval [to, T ] then State Variables could be calculated
for this interval, thus making prognosis of future behavior of the object.

Task3: Control: If criteria are set up, identifying the favorable future behavior of the object,
and options are given for possible choice of controls as functions of time, then the task
of control is to find out such a functions that optimize the given criteria.

4 Dynamic Modeling in Health Research

4.1 Health Research, Individual Level

In the following example we consider a human-being whose weight change over time is subject
of some study. Let x(t) be a weight of the subject measured in standard way at moment t.
Due to measurements error it has a nature of random variable. In addition, the theoretical
plot of this function over time will expose daily cycles, which are not of the study primary
interest. Rather we would like to operate with some smoothed characteristics of weight. We
assume that according to study protocol, weight is measured every day at the same time in
the morning, after ”emptying body tanks” before eating. So, we may think of sequence of
measurement time moments ti, where i is sequence number of day since the beginning of the
study.
We introduce function v(t) defined as follows:

v(ti) = E(x(ti)), t = ti,

v(t) = v(ti) + (v(ti+1)− v(ti)) ·
t− ti

ti+1 − ti
, ti ≤ t ≤ ti+1 (4)

This function satisfies all the requirements for the State Variable: it is continuous and right-
differentiable function of time. The current knowledge on weight changes in adults could be
summarized as follows. Weight change in adult is, in fact, change in amount of body fat, which
is determined by balance of calories taken with meal and burned throughout the body activity
in over a certain time period. Thus, we can introduce function u(t) representing daily balance of
calories, expressed in weight units (see, for example, http://www.weightlossforall.com/calories-per-pound.htm
”One pound of body fat equals roughly 3,500 calories.”). This function plays role of control
for v(t) and we may postulate simple model for weight change:

v̇ = u(t) (5)

We consider a hypothetical study testing some technique for weight reduction (it may include
education, dietary recommendation, advice on physical activity etc.). Assume that measure-
ments of weight are available before and after the beginning of intervention, moment t0.
To highlight principal conceptual aspects, we make the following additional simplifying

assumption: u(t) = u1, if t ≤ t0, u(t) = u2, if t > t0, where u1, u2 are scalars. In practice,
estimates for u1 and u2 could be obtained as slopes in linear regression models applied to
measurements x(t) for t ≤ t0 and t > t0 correspondingly.
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Condition u2 > u1 indicates that tested technique is better than previous one (in practice,
value α could be added having sense of ”practical significance”, so that condition will look like
u2 > u1 + α). Note, that ”success” is derived from comparison of time trends for weight, not
from the fact of decreasing weight for t > t0. Theoretically, positive u2 may indicate success,
if the weight growth has diminished, and negative u2 is not a success, if u1 also was negative
and approximately the same in value.
It is convenient to call all the data items, available in the study database and pertaining to

a subject at certain moment of time, measurements.
In dynamic model view, most of the measurements fall into three categories:

1: State Variables: for example, age, weight, height, schooling years. Recall, that mea-
surements for State Variables are not State Variables. They refer to each other as x(t)
and v(t) in the described above example.

2: Modifiers: for example, smoking status (smoking now, ex-smoker, or never-smoker), cur-
rent physical activity, current dietary habits ( including 24 hours food consumption
recall)

3: Class indicators: for example, sex, race, community, other characteristics, which are
categorical and believed to be constant during the study time span.

Outside of the above categories are multi-item outcomes of different questionnaires and
tests. Some of them could result in one summary item ( for example, current physical activity
level, which then could be classified as control). Questionnaire on smoking history may result
in total amount of tobacco smoked so far. This indicator has a nature of State Variable. We
leave further consideration of this issue for future publications.
Similar to models in mechanics, Modifiers in health research modify status of body in terms

of State Variables, however they can not serve as predictors, for example, as predictor of
instantaneous failure. Thus, current Hazard can not depend, for example, on smoking or phys-
ical activity. This simple rule of dynamic model philosophy is widely violated in practice of
methods used so far in health research.
Observe that continuous function of any number of State Variables is itself a State Variable,

and the same function applied to the measurements of corresponding variables serve as mea-
surement for resulting variable. The expression (5) remains valid for this variable after control
u(t) is properly scaled.
In our future example we will deal with such a variable, The Body Mass Index, defined as

BMI =
weight(kg)

height(m)2
(6)

Here we pay tribute to tradition, using term weight instead of scholastically more correct term
”mass”.

4.2 Dynamic Model of Population: Heuristic Approach

We may think of population as a collection of subjects identified for each calendar date by
a certain rule. For example, for population of an urban district such a rule may identify all
permanent citizens having home address within unambiguously defined administrative bound-
aries. The rule must be the same throughout the calendar period for which the population is
supposed to be analyzed.
Health-related and other population characteristics, if available, has a form of age-distributed

profiles, specific for calendar years, rather than individual-specific measurements for all current
subjects of population.
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Measurements on population level are performed for random samples (stratified or not),
taken, for example, every 5 year.
Thus, the challenge is how to adopt for population level the dynamic model paradigm

described so far for individual level.
To describe population history, it is convenient to use plane (y, a), where y is real-valued

calendar time in years, vertical axis, a is real-valued age in years, horizontal axis. Such a set
up for axes anticipates further use of matrices with indexes y, a, when the first index is row
number (vertical coordinate). For consistent setup, we have to specify an observational frame
in terms of ranges [ymin, ymax] for y and [amin, amax] for a.
Each subject may enter this population due to birth (if amin = 0), or crossing left-low

boundaries, or migration in. Each subject may leave this population due to death, migration
out or crossing the right-upper boundaries. If a subject with coordinates (y0, a0) is within the
population during time t , at that time it has coordinates (y0 + t, a0 + t). Thus we may say, it
is moving along cohort line.
Consider all subjects having coordinates on half-open interval ((y0, a0−∆a), (y0, a0)] at time

t = 0. At time ∆t all those left in population will arrive at ((y0 + ∆t, a0 − ∆a + ∆t), (y0 +
∆t − ∆a, a0 + ∆t]. In other words, the birth cohort of width ∆a moves from (y0, a0) to
(y0 + ∆t, a0 + ∆t). We may think of such a cohort as of a container moving on plane (y, a).
The contents of each container in process of movement is changed due to migration and death.
If the rate of contents update is negligible (say, less than 1% per year), we may ignore it in
our analysis. If not, the analysis has to take this into account.
Each container fits the definition of the dynamic model object, if we regard the correspond-

ing State Variable as mean of State Variables for currently available subjects. The dynamic
equation then could be obtained from ones for each subject, having form (5), by taking means
of both sides:

v̇ = u(t) (7)

Since the whole selected observational frame could be covered by collection of non-overlapping
cohorts of selected width, we may conclude that, in case of population, the overall dynamic
model is a collection of dynamic models specific for each cohort.

4.3 Dynamic Model of Population: Axiomatic Setup

The theoretical abstraction for birth cohort is one of infinitesimal age range, characterized by
multidimensional distribution of the parameters of interest, not by physical subjects.
Let C be a 2-dimensional real compact:

C = {(y, a) : y ∈ [ymin, ymax], a ∈ [amin, amax]},

where y is calendar time in years and a is age in years.
Consider a population defined on this compact, which suggests that there potentially exists

a set of random variables (r.v.) Xi, i = 1...k representing the corresponding set of measurable
indicators of interest (State Variables) defined at each point (y, a) of compact C. In this paper
we restrict ourselves to the case of one indicator, so that subscript of X will be omitted. To
make the following description more illustrative let us keep in mind the Body Mass Index
(BMI) as an example of the indicator in question.
We introduce the following notation

v(y, a) = E(X(y, a)).

For the sake of simplicity while describing the core dynamic model, we assume,

8



X(y, a) = v(y, a) + ǫ,where E(ǫ) = 0, D(ǫ) = σ2, ∀(y, a) : (y, a) ∈ C (8)

The dynamic equations describe changes of the distribution of r.v. X for a birth cohort
taken at point (y, a) over time interval dt:

v(y + dt, a+ dt) = v(y, a) + u(y, a)dt+ o(dt),where
o(dt)

dt
→ 0, as dt → 0. (9)

On one hand, function u(y, a) represents the rate and direction of change of the State
Variable due to the driving force generated by the environment. On the other hand, it is the
driving force (control) itself, properly scaled.

The driving force at (y, a) does not depend on the properties of the cohort passing at the
time y the age a. Moreover, theoretically, the very fact of its existence doesn’t depend on
whether or not there is a non-empty cohort passing at the time y the age a.

For the sake of convenience we will use terms ”Mean levels” or ”levels” for the values of
function v(y, a), and ”cohort trends” or ”C-trends” for the values of function u(y, a).

In the advanced model the function u(y, a) represents sum of the environmental force and
the force due to current state of the cohort. This will lead to replacement of u(y, a) in (9) by
u(y, a) + bv(y, a), where b is a model parameter.

Let v0(y, a) be the value of v(y, a) at low-left boundary of the compact C for a (birth) cohort
crossing the point (y, a):

v0(y, a) = v(y − δ, a− δ), where δ = min(y − ymin, a− amin). (10)

Then v(y, a) can be expressed as

v(y, a) = v0(y, a) +

∫ δ

0

u(y − t, a− t)dt

Thus, if the values of v0(y, a) at low-left boundary and u(y, a) on C are known, then the
function v(y, a) could be evaluated for each point on C.
The generalization of the model (8), (9) for the case of multidimensional distribution and

state-dependent dynamics is straightforward, by treating functions v(y, a) and u(y, a) as vector
functions, by replacing D(ǫ) = σ2 in (8) by Cov(ǫ) = Σ and by replacement of u(y, a) in (9)
by u(y, a) + bv(y, a), treating b as a matrix.

5 Dynamic Model of Population: Analytical Form

5.1 General Formulation of the Task

Suppose that a set of measurements is available (xk, yk, ak), k = 1, . . . ,K, for subjects selected
in a set of the independent cross-sectional surveys.We assume that for each survey the stratified
by gender and age group random sample scheme was used. The age group stratification could
be different in different surveys, however, for standard case, we assume that overall age range
is the same in all surveys.

The general formulation of the task is to estimate the functions v0(y, a) and u(y, a) on C,
using the available measurements (xk, yk, ak), k = 1, . . . ,K.
To solve this problem one option would be to formulate the optimization problem in func-

tional space: to minimize the functional I:
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I(u, v0) =

(

∑

(

xk − v(yk, ak)
)

)2

, (11)

applying some additional requirements on functions u(., .) and v0(., .), such as continuity
(piece-wise continuity), and /or restricted variation.
However, it seems more convenient to transform the above problem into the discrete - scale

analogue and to take the advantage of the simplicity of the analysis and adaptation of the
numerical methods available in the standard statistical packages.

5.2 Discrete-Scale Model

Let i and j be an integer value of time in years and an integer value of age in years corre-
spondingly. Our intention is to build up the integer-values proxies of the equations (8 - 11).
Let P (i, j) be a parallelogram-shaped element (convex hull) defined by its angle points:

{(i, j − 1), (i, j), (i + 1, j + 1), (i+ 1, j)}

excluding its left and upper boundaries, which could be written as

P (i, j)
.
= {(a, y) : y ∈ [i, i+ 1), a ∈ ((j − 1) + (y − i), j + (y − i)]} (12)

We impose for function u(., .) the conditions of being constant on each P (i, j) and for
functions v(., .) being constant on a and linear on y with constant slope u(i, j).
Formally this could be expressed as follows:

u(y, a) = u(i, j), ∀i, j, y, a : (y, a) ∈ P (i, j) (13)

v(y, a) = u(i, j) · (y − i) + v(i, j), ∀i, j, y, a : (y, a) ∈ P (i, j) (14)

We derive minimal and maximal values for i and j from the correspondent values for y and
a using definition (12):

(imin, jmin) : (ymin, amin) ∈ P (imin, jmin), (15)

(imax, jmax) : (ymax, amax) ∈ P (imax, jmax)

For convenience, from now on we will use relative scale for age and time, defined by trans-
formation

i− imin → i, j− jmin → j

Consider functions u(i, j) and v(i, j) defined on integer-valued two dimensional domains

U = {(i, j) : i ∈ [0, I], j ∈ [0, J ]},

V = {(i, j) : i ∈ [0, I + 1], j ∈ [0, J + 1]}, (16)

correspondingly, where

I = imax − imin, J = jmax − jmin

Now the main dynamic equation (9 ) could be rewritten as

v(i+ 1, j + 1) = v(i, j) + u(i, j), ∀(i, j) ∈ U (17)
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Let v0(i, j) be the value of v(., .) at low-left boundary of the domain V corresponding to a
(birth) cohort crossing the point (i, j):

v0(i, j) = v(i− δ, j − δ),where δ = min(i, j). (18)

Combining (17) and (18), we rewrite equation (10) as:

v(i, j) = v0(i, j) +

δ
∑

m=1

u(i−m, j −m) (19)

From (19) it follows that if v(i, j) is set up on the low-left boundary of V and u(i, j) is set
up on the whole U then v(i, j) could be calculated for the whole V .

Finally, assembling (8), 19) and (14) for each available observation (xk, yk, ak), k = 1, . . . ,K,
we obtain:

xk = v0(i, j) +

δ
∑

m=1

u(i−m, j −m) + (yk − i) · u(i, j) + ǫk,

where Var(ǫk) = σ2, Cov(ǫk, ǫl) = 0, if k 6= l (20)

Let z be a vector with components v0(i, j) and u(i, j) ordered in the following way:

v0 =
(

v(I + 1, 0), . . . , v(0, 0), . . . , v(0, J + 1)
)T

u =
(

u(0, 0), . . . , u(0, J), . . . , u(I, 0), . . . , u(I, J)
)T

z =
(

vT
0 uT

)T
(21)

Using vector z and introducing vector of coefficients bk, we can rewrite (20) in the form

xk = (bk, z) + ǫk, where Var(ǫk) = σ2, Cov(ǫk, ǫl) = 0, if k 6= l (22)

This form represents a particular case of Gauss-Markov Setup for the Least Squares Linear
Estimation problem (Rao, 1973).

Let B0 be a matrix composed of row vectors bT
k in (22), z and x0 stand for column vectors

of the parameters zj and the variables xk correspondingly, and S0 be a scalar function defined
as

S0(z) = (B0z− x0)
T (B0z− x0)

Note that if rank(B0) = dim(z), then estimates obtained by unconditional minimizing of
function S0(z) are unique ones. Such a case takes place only if the observations cover all the
elements P (i, j) when surveys cover the whole analysis period without gaps.

In practical cases, minimizing of S0 results in singular or ill-posed Inverse Problem, and
so-called regularization techniques are needed to obtain meaningful solution estimates. Most
of these techniques employ the idea of smoothing of some function having clear physical inter-
pretation (Neumaier, 1999).

Here we suggest one such technique for smoothing.
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5.3 Smoothing

We define the following indicator of smoothness of function v(., .)

S1(z) =
∑I+1

i=0

∑J

j=1

(

v(i, j − 1)− 2v(i, j) + v(i, j + 1)
)2

+

∑J+1

j=0

∑I
i=1

(

v(i− 1, j)− 2v(i, j) + v(i+ 1, j)
)2

(23)

Each term in this sum represents the square for a proxy of the second derivative of function
v(., .) with respect to age or with respect to calendar time at point (i, j).
Replacing v(., .) by v0(., .) and u(., .) using (19), and the last ones by vector z, we will

transform the previous expression to the following form:

S1(z) = (B1z− 0)T (B1z− 0) (24)

Similarly, we define indicator of smoothness of function u(., .)

S2(z) =
∑I

i=0

∑J−1

j=1

(

u(i, j − 1)− 2u(i, j) + u(i, j + 1)
)2

+

∑J

j=0

∑I−1

i=1

(

u(i− 1, j)− 2u(i, j) + u(i+ 1, j)
)2

allowing form
S2(z) = (B2z− 0)T (B2z− 0) (25)

Now we can add one or both constraints Sk(z) ≤ αk with some selected αk ≥ 0, k = 1, 2, to
the model (22). Observe that indicators S0, S1, S2 are quadratic functions in finite vector space
En with elements (vectors) z and n = dim(z). The optimization problem for point estimation
for our case, could be formulated as

min
x∈En

S0(x), subject to Sk(x) ≤ αk, with given αk > 0, k = 1, 2. (26)

Let n0 , n1 and n2 be numbers of rows in matrices B0 , B1 and B2 correspondingly. Let λ1,
λ2 be some non-negative scalars. Introducing matrices and vectors

B =





B0

B1

B2



 , x =





x0

0

0



 , W =





I0 0 0
0 λ1I1 0
0 0 λ2I2



 (27)

where I0, I1 and I2 are identity matrices of rank n0 , n1 and n2 correspondingly, we can
formulate the problem of least squares estimation in the following form (a modification of
Gauss-Markov setup which fits form of Aitken setup (Rao, 1973)

x = Bz+ ǫ, E(ǫ) = 0, D(ǫ) = σ2W−1 (28)

for which the point estimation problem is

min
z∈En

S(z), whereS(z) = (Bz− x)TW(Bz− x) = S0(z) + λ1S1(z) + λ2S2(z) (29)

(Moltchanov and Mik’halskii, 2008) have shown that problems (26) and (29) are equivalent:
problem (26) with given α1, α2 possesses the same solution as problem (29) with some λ1, λ2,
and vice versa, or both don’t possess any solution.
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Since part of its components are set to zero, the data vector x in (27) could not be treated
as a ”true” data vector if the problem is considered from the classical frequentist prospective.
The last one is based on retrospective evaluation of the procedure used to estimate parameters
over the distribution of possible data values conditional on the true unknown values of param-
eters (Gelman et al., 1995), p.7. The logically consistent treatment of the problem is based on
Bayesian paradigm, where statistical conclusions about unknown parameters are made in terms
of probability statements, conditional on observed data. As noted in (Gelman et al., 1995), p.7,
in despite this difference , it will be seen that in many simple analyses, superficially similar
conclusions result from the two approaches to statistical inference. In particular, this con-
cerns Bayesian analysis of the classical regression model: under a standard noninformative
prior distribution, the Bayesian estimates and standard errors coincide with the classical re-
sults (Gelman et al., 1995), p.235. The last statement justifies use of classical formulas and
numerical procedures for our ”non-classical” case.
The question of primary practical importance is the existence of a unique solution for the

problem (29).
The following statement is proofed in (Moltchanov and Mik’halskii, 2008):

Corollary 1 For existence of a unique solution to problem (29) it is sufficient to have 4 data
points such that the corresponding points (y, a) on plane y, a satisfy condition: no any 3 of
them are located on a common straight line.

5.4 Outlines of the Algorithms. Setting up the Regularization Parameters

As soon as parameters λ1, λ2 are given in setup (27, 28), the following could be obtained

routinely: ẑ - point estimate of vector z, covariance matrix of this estimate Cov(ẑ), and σ̂2 -
estimate of σ2.
Using functions u(i, j) and v(i, j) defined in (16), we can create matrices
V : vi,j = v(i + 1, j + 1),
U : ui,j = u(i+ 1, j + 1),
and vectors
v = (Shape(V, 1))T ,
u = (Shape(U, 1))T ,
where Shape is matrix function reshaping the original matrix into resulting one with different

number of rows and columns (available, for example, in SAS/IML (SAS Institute Inc., 2004b)).
In our case, results are vectors with consequently concatenated rows of the original matrices.
Each element vi,j of matrix V corresponds to element vk of vector v with

k = (i − 1) · ncol(V) + j, (30)

where ncol(.) is matrix function returning number of columns. Similar rule could be applied
for linking U and u.
Definition of vector u in (21) and expression for functions u(i, j) in (19) allow to construct

matrices
Az2v : v̂ = Az2vẑ, and
Az2u : û = Az2uẑ.
Hence, the covariance matrices could be derived as
Cov(û) = Az2uCov(ẑ)Az2u

T ,
Cov(v̂) = Az2vCov(ẑ)Az2v

T ,
from which the corresponding matrices of Pearson’s correlation coefficients Rv and Ru could

be routinely produced.
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Consider two consecutive level estimates v̂(i, j), v̂(i, j + 1) allocated along age axe (similar
consideration could be applied to allocation along calendar years.
The coefficient of correlation for these estimates could be derived fromRv applying rule (30).

Let denote it ra,i,j . Similarly, coefficients of correlation ry,i,j could be derived for estimates
v̂(i, j), v̂(i + 1, j) allocated along years axe.
Consider task of predicting estimate v̂(i, j + 1) using linear predictor based on v̂(i, j). The

expression 1 − r2a,i,j is proportion of ”unexplained” part of variance of v̂(i, j + 1), (see, for
example, (Rao, 1973) p.266). This part could be interpreted as ”new information”, or ”signal”,
while r2a,i,j could be regarded as proportion of ”Noise”. The better smoothness is associated
with lower signal-to-noise ratio. We combine all local indicators of smoothness into one common
vector

fv = Shape(Vsma, 1)‖Shape(Vsmy, 1), where vsma,i,j = 1− r2a,i,j , vsmy,i,j = 1− r2y,i,j
(31)

Vector fu could be defined in similar way.
For practical use we have to select function, producing sample statistics for a vector-

argument, such as mean, median, minimum or a value of one predefined component and a
target value for this statistics, fsm. Let fstat be generic name for such a function. Then
iterations are run by selecting λ1 and λ2 until the following condition is satisfied

max(abs(log(fstatv(fv))− log(fsmv)), abs(log(fstatu(fu))− log(fsmu)) ≤ δ, (32)

where δ is predefined accuracy.
With increasing values of fsmv, fsmu the corresponding lines and surfaces visually become

smoother. For level estimates, for example, if fsmv → 0, then λ1 → ∞, and solution converges
to 4-parametric surface ((Moltchanov and Mik’halskii, 2008)).
To measure difference in C-trends over age and calendar year, the pairwise comparison tests

are performed for mean values of C-trends, evaluated for a set of age-year clusters, defined by
cluster sizes, ∆a and ∆y.
Let Uc be matrix of such mean values, uc=Shape(Uc, 1)

T and matrix Au2uc such that
uc = Au2ucû. As soon as, matrix Au2uc is created for given ∆a, ∆y, Uc could be calculated,
as well as variance/covariance values for its elements in a format of
C = Cov(ûc) = Au2ucCov(û)Au2uc

T .
For each cluster, statistics and corresponding probabilities are computed for pairwise com-

parison of mean C-trends for current cluster and for adjacent one for older age group, and
for current one and for adjacent one for the next calendar years period ( if the corresponding
clusters exist). Using classical paradigm, this is done by testing linear hypotheses in form
H0 : uci − ucj = 0.
General expression for F-value (see for, example, SAS/Stat manual, (SAS Institute Inc., 2004c))

in this case takes a simple form

F =
(uci − ucj)

2

ci,i − 2ci,j + cj,j

Corresponding probability is computed using SAS function probF (see (SAS Institute Inc., 2011))
as
Pr = 1− probF (F, 1, n− r)
Note, that in Bayesian view, these probabilities should be referred to as tail-area probabilities

for posterior predictive distributions ((Gelman et al., 1995) , p.169).
The algorithm, implementing the above outlines, is written in SAS code using SAS products

((SAS Institute Inc., 2011), citeSAS9.2PROC, (SAS Institute Inc., 2004b), (SAS Institute Inc., 2004c)
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(SAS Institute Inc., 2004a)). Results of pairwise tests are presented graphically in figure, pro-
duced by PROC GCONTOUR, properly annotated ( see Figure 5 in example of application).
For reference, we will call this algorithm DRM2(R), with prefix DRM2 to differentiate it from

those developed in (Moltchanov and Mik’halskii, 2008). We have built up also the modification
of this algorithm, processing aggregated data, DRM2(A), thus DRM2(R) for ”oRiginal” data,
and DRM2(A) - for ”Aggregated” data.
Original individual data may be of quite big size, which reflects row number n0 of matrix

B0 in (27), and hence, the required memory and time for calculation.
Aggregation is applied to original measurements (xk, yk, ak), k = 1, . . . ,K, producing sum-

mary statistics for (age · year) cells with size 1. As a result, arithmetic means are produced
(xc, yc), number of original measurements in each cell (nc), and SCSSc -Corrected Sum of
Squares, where c = 1, . . . , C - collection of non-empty cells. Matrix B0 and vector x0 in (27 )
should be replaced by B0 and x0, with cell-specific rows.
Let n0 be a frequency vector with components (nc). The following expressions are essential

elements of the DRM2(R) algorithm.
Contribution to cross-products B · x and B · B:

EXPR1: (B0

T
·Diag(n0) · x0)

EXPR2: (B0

T
·Diag(n0) · x0)

Contribution to sum of squares of error terms,
EXPR3 : (B0ẑ− x0)

T ·Diag(n0) · (B0ẑ− x0) +
∑C

c=1
SCSSc

Note, that DRM2(A) and DRM2(R) will produce identical outputs if all yk within cells are
equal.

6 Example of Application

6.1 Data

To illustrate the method and to demonstrate its performance, the data from three cross-
sectional surveys, conducted in North Karelia, Finland, during the period 1982 -1992, will be
used. Formally this set of data can be characterized as follows:

• Study population: North Karelia, Finland.

• Study period: 1982-1992;

• Source of data: cross sectional independent surveys conducted in years 1982, 1987, 1992

• Sampling frame for each survey: the stratified by 10-year age groups (25-34, 35-44, 45-54
and 55-64) and gender random sample.

The following specifications defines sub-sample of records and items selected for analysis.
Only data for men will be used; the number of examined men in years 1982, 1987, 1992 is

equal to 1537, 1481 and 673, correspondingly.
Original measurements of interest are: gender, date of birth, date of examination, weight

and height.
The analysis variables included in the model:
BMI - the Body Mass Index, defined as weight(kg)/height(m)2.
AGE - age in full years, defined as year of examination minus year of birth.
YEAR - date of examination measured in years.
All surveys have started at the beginning of the year, surveys 1982 and 1987 have been

completed in 4 months, survey 1992 - in three months period.
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6.2 Analysis Setup

The algorithm modification DRM2(A) have been used, preprocessing original data into aggre-
gated format. There were 120 aggregated observations, 40 for each survey year. The analysis
was set up for the age range 25-64 and for the calendar year period 1982-1992. In rule, con-
trolling iterations, (32), smoothing factors fsmv, fsmu were set to 0.2, accuracy level, δ was
set to 0.05; cluster sizes, ∆a, ∆y, for producing comparison tests were set to 5.
We have found that for practical purposes it is enough to use one selected point, (1, 1) for

fstatv, and one selected point, (int(ncol(U)/2), int(nrow(U)/2)), for fstatu.

6.3 Results

The results of the analysis are visualized by the set of 3-dimensional figures.
Figure 2 displays the values representing means of BMI calculated for each age and year,

for which the survey data are available (number of cases in each cell exceeds 9). To visualize
the along-cohort changes, the columns corresponding to the same birth cohorts in different
surveys have similar shades of grey.
Figure 3 displays estimates for the mean levels of BMI for the whole domain, with study

age range plus one year, and study period plus one year.
Figure 4 displays C-trends with 95% confidence intervals, shown at left and front boundaries

only.
Figure 5 displays mean levels of C-trends for specified age-year clusters, with P-values for

differences between clusters.
These figures illustrate the principle ”one figure is better than one hundred tables”, though

all the underlying data are available and could be presented in a set of tables.
Figure 3 shows that mean BMI levels increase along cohort lines throughout the study

period, although they are different for different birth cohort. Specific peaks and troughs follow
cohort lines.
Recall that C-trends represent the net external Driving Force (Modifier) causing changes

over time in cohorts. Therefore, changes in C-trends pattern over calendar years may indicate
effect of preventive activities, while difference across age range may indicate both, age-specific
uncontrolled changes and/or different susceptibility to prevention.
In our case, Figure 5 shows clear decrease of C-trends in the period 1987-1992 compared

with the period 1982-1986 in the age range 35-40 (p < 0.05); No other significant differences
between adjacent clusters were detected.
The further detailed analysis and final interpretation of the results may require a log of the

events affecting the socio-economic and health care profiles of the study population during
the study period. For example, a feasible explanation of the observed effect in C-trends in age
range 35-40 could be associated with creating new working places in years 1987-1992, which
have decreased population flow out of the area, taking place in years 1982-1986 in this age
range and leading to negative health selection (subjects with low BMI were leaving the area
in searching for job places).
Summing up, we can conclude that, in general, clustering of C-trends looks reasonable, so

we can use the results of comparing C-trends levels in adjacent clusters for our analysis.

7 Conclusion and Discussion

In this paper we have presented a novel formulation of the key principles of dynamic modeling in
general, and in application to health research, which justify the structure and interpretation of
the core models dealing with C-trends. In particular, according to these principles, traditional
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risk factors’ indicators fall into two categories, State Variables and Modifiers (see section 3 ),
having different dynamical nature and, hence, playing different roles in the model and analysis.
As corollary of this, circular trends for State Variables have no sense at all. At the same

time, only State Variables may determine instantaneous hazard rate of failure. In dynamic
models, causality is postulated: changes are due to Driving Forces (Modifiers), existing in the
real world. In case of consecutive survey data, C-trends are believed to be proxies for Driving
Forces, providing the tool for three main practical tasks: analysis, prediction and control of
health on population level ( see section 3)
We have used these principles as a framework for developing the dynamic model of simulating

the temporal changes in characteristics of a real-world object - population. In the course of
this process, first, we have identified two interacting objects, population and its environment,
on the top aggregation level. Further system analysis has led us to breaking down the study
population into a set of potentially infinitesimally narrow birth cohorts, carrying over time
health state profiles expressed in terms of health related indicators (State Variables).
The model employs the health field concept, suggesting existence of an influencing factors

(Modifiers), generated by environment and acting on the population, specific for each calendar
year and age, and causing within-cohort changes of the health indicator with rate of change
corresponding to the strength of this factors.
For illustrative purposes we have selected one-parameter case with continuous, normally

distributed parameter and with strength numerically equal to rate of change. While keeping
model reasonably realistic, these simplifications help to highlight the key properties of the
dynamic model of population health and method of its identification - the Dynamic Regression
Method.
In the illustrative example, we have shown that the Dynamic Regression Method provides

a sensible view on the BMI dynamics. It reveals clear difference between the levels of the
parameter and its C-trends. From practical prospectives, it is C-trends, not levels, which
primarily seem to be modifiable by preventive activities or involuntary changes affecting the
population. It is worth noting that outcomes from the DRM analysis serve as data for the
next-level analysis, involving other information and aiming at finding reasonable explanation
of the observed dynamics (diagnostic property of DRM). One of the important complementary
component for such an analysis is dynamics of the population size ( we have developed a
modification of the DRM for that type of data, this is a subject for one of the next publication).
If there is significant migration ”in” or ”out” of the study population, the observed effects could
be entirely or partially due to the population instability (health selective effect). The outcomes
from the DRM analysis could be used straightforwardly for prediction of the age-specific profile
of the State Variable, say, for 5 year period, by applying the C-trends at the last year of the
study period to the estimates of the parameter’s levels at that year. Such a projection will not
cover the cohorts, not included in the study age range at the last study year.
Recall that this method has been developed as an alternative to the secular trends used so

far. In this respect, it is worth noting that the model presented here is characterized by local
cohort trends (C-trends), which have clear interpretation: changes in the State Variable of the
same physical entity per time unit. If we will formally calculate a characteristics resembling
age-specific secular trend, we will obtain a difference between two different physical entities
(birth cohorts), caught occasionally at the moments of measurement. Hence, it may behave
quite arbitrarily. In other words, in the view of the dynamic modeling approach, secular trends
do not exist in nature. In one special case only, when all the age profiles of a State Variable
are the same over calendar years (stationary case), formally calculated secular trends will be
equal to zero at each age within the study age range. Only in that trivial case, secular trends
possess both, predictive and diagnostic power.However, even in this case, secular trends are
kind of statistical fallacy, since missing causality.
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There are certain restrictions in using the current version of DRM methods, imposed by the
size of the problem, due to using matrix operations. Transfer to the Bayesian Data Analysis
and using Markov chain Monte Carlo simulation methods (Gelman et al., 1995) seems to be
a solution for these problems.

The simplified dynamic equation used in the current model could be modified, accounting
for the fact that rate of change may depend also on the current level of the State Variable.

Finally, the most comprehensive model needs to be developed, comprising multiple State
Variables, and corresponding C-trends as a linear functions of current State Variables. Such a
model could be a powerful practical tool for prediction of population health for about 5 year
span.
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Figure 1: Population size, Men, Original data. Count by year and age.



Figure 2: BMI, Men, Survey data. Means by year and age.



Figure 3: BMI, Men, Estimates of means by year and age.



Figure 4: BMI, Men, Estimates of C-trends by year and age.



Figure 5: BMI, Comparison of C-trends by clusters of age and calendar years.
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