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ABSTRACT

Microbial growth in drinking water systems evokes quality, health, aesthetic, and technical problems.

The conventional analyses of microbes in drinking water systems include determination of microbial biomass,

activity or specific microbes. Unfortunately, culturing techniques reveal only 0.01-10% of the microbes actually

present in drinking water systems. Lipid biomarkers e.g. phospholipid fatty acids (PLFAs) and

lipopolysaccharide hydroxy fatty acids (LPS OH-FAs) provide quantitative insight to the complex microbial

communities and their amounts in environmental samples without the need for microbial culturing. PLFAs can

also be used to monitor differences in the physiological state of microbes, such as the stationary growth phase of

microbes. Microbes change their fatty acid composition with changing environmental conditions. However, thus

far only limited use of lipid biomarkers for microbial community studies in drinking water systems has been

made.

In this work, the applicability of lipid biomarkers to characterise microbial communities in drinking

water systems was studied both with water and biofilms samples. Soil and sediment samples were used as

environmental reference material. In the analyses, lipids were first extracted, fractionated, PLFAs were methyl

esterfied, and analysed by gas chromatography- mass spectrometry (GC-MS) using selected ion monitoring. 2-

and 3-hydroxy fatty acid methyl esters were prepared by mild acid hydrolysis directly from the extraction

residue of lipids without further purification or derivatisation, and analysed by GC-MS using selected ion

monitoring. The ions monitored were m/z 90 and M-59 for 2-OH-FAs and m/z 103 for 3-OH-FAs.

Water and biofilm samples revealed a wide range of (from 21 to 26) PLFAs. Most of the PLFAs were

typical for microbial biomass or gram-negative bacteria (16:0, 18:0, 16:1ω7, 18:1ω7). In the biofilms, 3 or 16

LPS 3-OH-FAs were found, whereas in drinking and warm waters 3 LPS 3-OH-FAs were detected. The most

abundant 3-OH-FAs were typical of those present in gram-negative bacteria (i.e. 3-OH-10:0, -12:0, -14:0, -16:0,

-18:0). Any LPS 2-OH-FAs were never detected in either biofilms or water samples.

 There were differences in the microbial community structures between biofilms and waters, and

drinking water and warm water. In the laboratory experiment, addition of 1, 2 or 5 µg l-1 phosphate phosphorus

to water increased the proportion of gram-negative bacteria and changed their community structure as judged by

the PLFAs and 3-OH-FAs, respectively. There also were differences in microbial communities between two

full-scale distribution systems. The microbial community was more complex in those biofilms which had a

development time of 6 weeks compared to those growing for 23 or 40 weeks in the full-scale distribution system

A. In full-scale distribution systems, microbial biomass, as assessed by the quantitative amount of PLFAs,

increased with increasing water residence time.

These laboratory and full-scale studies demonstrated that lipid biomarkers are a sensitive method to

analyse microbial communities and viable biomass in drinking water systems.
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TIIVISTELMÄ (ABSTRACT IN FINNISH)

Mikrobien kasvu talousvesijärjestelmissä aiheuttaa laatu-, terveys-, esteettisiä ja teknisiä ongelmia.

Perinteisesti talousvesijärjestelmien mikrobeja on analysoitu määrittämällä mikrobibiomassaa, aktiivisuutta tai

jotain tiettyä mikrobia. Viljelymenetelmillä saadaan esiin vain 0.01-10% mikrobeista, jotka todellisuudessa

esiintyvät talousvesijärjestelmissä. Lipidibiomarkkereilla, kuten fosfolipidien rasvahapoilla (PLFAs) ja

lipopolysakkaridien hydroksihapoilla (LPS OH-FAs) saadaan kvantitatiivista tietoa monimutkaisista

mikrobiyhteisöistä ja niiden biomassasta ympäristönäytteissä ilman mikrobien viljelemistä. PLFA:ta voidaan

käyttää myös mikrobien fysiologisen tilan erojen havaitsemiseen, kuten mikrobien stationäärikasvuvaihe.

Mikrobit muuttavat rasvahappokoostumustaan muuttuvissa ympäristöolosuhteissa. Tähän asti

lipidibiomarkkereita on kuitenkin käytetty rajoitetusti mikrobiyhteisöjen tutkimiseen talousvesijärjestelmissä.

Tässä työssä lipidibiomarkkerien käyttökelpoisuutta talousvesijärjestelmien mikrobiyhteisöjen

kuvaajina tutkittiin sekä vesi- että biofilminäytteillä. Maa- ja sedimenttinäytteitä käytettiin

ympäristövertailunäytteinä. Analyysissä lipidit ensin uutettiin, fraktioitiin, PLFA:t metyyliesteröitiin ja

analysoitiin kaasukromatografia-massaspektometrialla käyttäen selektiivistä ionien monitorointia. 2- ja 3-

hydroksirasvahappojen metyyliesterit valmistettiin miedolla happamalla hydrolyysillä suoraan lipidien

uuttojäänteestä ilman jatkopuhdistuksia tai kemiallisten johdosten valmistusta ja analysoitiin

kaasukromatografia-massaspektometrialla käyttäen selektiivistä ionien monitorointia. 2-hydroksirasvahappojen

analyysissä seurattiin ioneja m/z 90 ja M-59 ja 3-hydroksirasvahappojen ionia m/z 103.

Vesi- ja biofilminäytteistä löydettiin laaja määrä (21-26 kpl) fosfolipidien rasvahappoja. Suurin osa

PLFA:sta oli tyypillisiä mikrobibiomassalle tai gram-negatiiviselle bakteereille (16:0, 18:0, 16:1ω7, 18:1ω7).

Biofilmeissä havaittiin 3 tai 16 LPS 3-OH-rasvahappoa, kun taas kylmästä talousvedestä ja lämpimästä vedestä

havaittiin kolme LPS 3-hydroksirasvahappoa. Suurin osa 3-OH-rasvahapoista oli tyypillisiä gram-negatiivisille

bakteereille (3-OH-10:0, -12:0, -14:0, -16:0, -18:0). LPS 2-OH-rasvahappoja ei havaittu biofilmi- eikä

vesinäytteissä.

Biofilmien ja vesien välillä sekä kylmän ja lämpimän talousveden mikrobiyhteisöissä havaittiin eroja.

Laboratoriokokeessa 1, 2 tai 5 µg l-1 fosfaattifosforin lisäys lisäsi gram-negatiivisten bakteerien osuutta ja

muutti niiden sisäistä yhteisörakennetta PLFA:n ja LPS 3-OH- rasvahappojen perusteella. Myös kahden täyden

mittakaavan talousvesiverkostojen mikrobiyhteisöt erosivat. Mikrobiyhteisö oli monimuotoisempi biofilmeissä,

jotka olivat kehittyneet 6 viikkoa verrattuna 23 tai 40 viikkoa kehittyneisiin biofilmeihin täyden mittakaavan

talousvesiverkostossa A. Täyden mittakaavan talousvesiverkostoissa mikrobibiomassa arvioituna PLFA:n

kvantitatiivisesta määrästä lisääntyi, kun veden ikä kasvoi.

Laboratorio- ja täyden mittakaavan tutkimukset osoittivat, että lipidibiomarkkerit ovat herkkä

menetelmä mikrobiyhteisöjen ja elävän biomassan määrittämiseen talousvesijärjestelmissä.
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ABBREVIATIONS

AOC assimilable organic carbon

AODC acridine orange direct count

ATP adenosine triphosphate

CFU colony forming units

CHCl3 chloroform

CTC 5-cyano-2, 3-ditolyl tetrazolium chloride

DGGE denaturating gradient gel electrophoresis

DNA deoxyribonucleic acid

EPS extracellular polymeric substances

FAME fatty acid methyl ester

FISH fluorescent in situ hybridisation

GC gas chromatography

HGR maximum number of heterotrophic bacteria during the 21 days incubation of water

INT 2-(p-iodo-phenyl)-3-(p-nitrophenyl)-s-phenyl tetrazolium chloride

LPS lipopolysaccharide

m/z mass/charge

MAP microbially available phosphorus

MeOH methanol

MIDI microbial identification with whole cell fatty acids

MS mass spectrometry

OH-FA hydroxy fatty acid

PE polyethene

PLFA phospholipid fatty acid

PVC polyvinyl chloride

RNA ribonucleic acid

SIM selected ion monitoring

TOC total organic carbon
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1  INTRODUCTION

Bacterial growth in aquatic systems e.g. in drinking water distribution systems, is often associated to

biofilms (Laurent et al., 1993; van der Wende et al., 1989). Biofilms are a microbial life form where

microbes aggregate and growth on a surface (for a review, see Flemming, 2002; O’Toole et al., 2000;

Watnick and Kolter, 2000). Most micro-organisms can form biofilms, in fact most of micro-organisms

on Earth are living in biofilms (for a review, see Flemming, 2002; Watnick and Kolter, 2000).

Biofilms occur at solid-liquid, solid-air, and liquid-air interfaces (for a review, see Flemming, 2002).

Biofilms colonise soils, sediments, mineral and plant surfaces. They are involved in biogeochemical

pathways of basic elements, self-purification processes in Nature, in drinking water treatment, and in

wastewater treatment (for a review, see Flemming, 2002; Tolker-Nielsen and Molin, 2002). In natural

environments, biofilms are complex, highly differentiated multicultural communities (for a review, see

Tolker-Nielsen and Molin, 2002; Watnick and Kolter, 2000).

The microbes present in drinking water systems are generally characterised by analysing the biomass

or the activity of micro-organisms. Another way would be to analyse lipid biomarkers e.g.

phospholipid fatty acids (PLFAs) and hydroxy fatty acids (OH-FAs), which have provided quantitative

and qualitative insight into the complex microbial world present in environmental samples (for a

review, see White et al., 1996; Zelles, 1999). However, there are only a few studies, which have

examined lipid biomarkers from drinking water systems.

In drinking water systems, microbial life is dependent on many only partly understood factors, such as

differences in water treatment practices, disinfection, temperature, pipe materials, nutrients, hydraulic

conditions.

In this study, microbial communities in drinking water systems were analysed using lipid biomarkers

i.e. phospholipid fatty acids and lipopolysaccharide 2- and 3-hydroxy fatty acids.  Soil and sediment

samples were used as reference materials.
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2 REVIEW OF THE LITERATURE

2.1 Biofilms

2.1.1 Formation

During biofilm formation, microbes first migrate towards an interface, become loosely attached to the

surface, then migrate over its surface to form a microcolony, grow and finally produce

exopolysaccharides to form a three dimensional structure containing 95% water (for a review, see

O’Toole et al., 2000; Stoodley et al., 2002; Watnick and Kolter, 2000). Occasionally, biofilm-

associated microbes become detached from the surface. Biofilm formation is dependent on many

factors, such as genotypic and physico-chemical factors, mechanical processes, temporal changes in

the biotic and abiotic environments, import and export of materials, initial colonisation, and

interactions between microbes (for a review, see Wimpenny et al., 2000). The formation process of

biofilms is relatively rapid. Biofilms in drinking water system have achieved a stationary phase in their

growth within 3 weeks to 4 months (Block et al., 1993; Volk and LeChevallier, 1999; Zacheus et al.,

2000). The stationary phase with negligible microbial growth is due to the densely settled area

surrounded by exopolysaccharides or growth and death of microbes, and attachment and detachment

are in balance (for a review, see Watnick and Kolter, 2000).

Different genes are transcribed in the planktonic and biofilm-associated phases of the bacterial life

cycle (for a review, see O’Toole et al., 2000; Stoodley et al., 2002; Watnick and Kolter, 2000). For

example, the transcription of 38% of the genes was different during the biofilm development,

compared to planktonic phase of Escherichia coli (Prigent-Combaret et al., 1999). Natural conjugative

plasmids express factors that induce planktonic bacteria to form and enter biofilm communities

(Ghigo, 2001). On the other hand, some genes are expressed in response to the specific surface on

which microbes have chosen to settle (for a review, see O’Toole et al., 2000; Watnick and Kolter,

2000).  In biofilms, bacteria communicate with each other using intercellular signalling using

molecules, such as bacterial metabolites, acylhomoserine lactones, secreted proteins and genetic

material. These signals might alter the distribution of microbes in the biofilms, change protein

expression, introduce new genetic traits into neighbouring cells or lure and incorporate other microbes

into the structure (for a review, see Stoodley et al., 2002; Watnick and Kolter, 2000).
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2.1.2 Structure

From 1980’s into the 1990’s, biofilms were considered simply as having a flat two dimensional

structure, with a relatively constant thickness. There has been a major change in respective of the

structure of these communities. The current image of microbial biofilms in aquatic systems is a

mushroom or tulip model with the stalk narrower than the upper surface parts, the whole being

penetrated by channels allowing the transportation of water, nutrients and metabolites (Fig. 1). The

structures resemble a heterogeneous mosaic. Biofilm structures have been studied with many

techniques e.g. microscopy such as traditional light, transmission electron, scanning electron, atomic

force and confocal laser scanning microscopy, microelectrodes, molecular methods such as 16S or 23S

rRNA directed probes and fluorescent in situ hybridisation (FISH), even mathematical, computer-

based modelling (for a review, see Wimpenny et al., 2000).

Fig 1. Open architecture structure of biofilm in a drinking water system (printed with kind permission

from C.W. Keevil).

2.1.3 Ecological advantages of biofilms

Biofilms offer many ecological advantages for microbes. Biofilms act as a protective barrier against

toxic substances such as antibiotics, disinfection chemicals and detergents, enable high cell densities,

accumulate nutrients and pollutants, and retain water (for a review, see Costerton et al., 1987;

Flemming, 2002).  Extracellular polymeric substances provide mechanical stability, permit the

development of microconsortia, concentration gradients, the retention of extracellular enzymes, the

convective mass transport through channels, easy horizontal gene transfer, a matrix for exchange of
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signalling molecules and light transmission into the deeper layers of the biofilm structure (for a review,

see Flemming, 2002).

2.1.4 Biofouling

Biofouling is the term for undesired development of microbial layers on surfaces. Usually biofouling is

caused by heterotrophic organisms, which convert dissolved organic matter into biomass (for a review,

see Flemming, 2002). In many industries, e.g. food processing, power generation, pulp and paper

industry, chemical process industry and drinking water systems, biofilms create problems for hygiene

and cleaning, as well as being responsible for energy losses, blockages in systems and corrosion (for a

review, see Mattila-Sandholm and Wirtanen, 1992; Videla, 2001). In drinking water systems, various

microbes, including actinomycetes, cyanobacteria and fungi, produce earthy tastes and odours in the

water (for a review, see Wood et al., 2001).  Biofilms generally contaminate dental unit waterlines (for

a review, see Barbeau et al., 1996; Walker et al., 2000), and are contributors to many persistent and

chronical bacterial infections contracted from medical devices (for a review, see Costerton et al., 1987;

Costerton et al., 1999; Donlan and Costerton, 2002; O’Toole et al., 2000).

2.2 Microbes in drinking water systems

The strict quality requirements demand the absence of classical pathogens, such as Vibrio cholera,

Salmonella typhi and Shigella spp.  In recent years, emerging pathogens have evoken novel challenges

for drinking water systems. The emerging pathogens originate from fecal sources, such as

Campylobacter jejuni, pathogenic strains of Escherichia coli, Yersinia enterocolitica, rotavirus,

Norwalk-like viruses (calicivirus), small round-structured viruses, astrovirus, Giardia lamblia,

Cryptosporidium parvum and microsporidia (for a review, see Szewzyk et al., 2000). In Northern

America, coliform bacteria were present in 1.4% of 115 000 samples from 31 water systems, whereas

in Finland 19% of 47 drinking water samples from 6 water supplies were positive for coliforms (Lahti,

1993; LeChevallier et al., 1996). In Korea, infectious viruses have been detected in 65% of drinking

water samples (Lee and Kim, 2002). In Finland, fourteen waterborne epidemics occurred during the

period 1998-1999. Thirteen of these epidemics were associated with undisinfected groundwaters,

which were contaminated because of floods and surface runoffs. Norwalk-like viruses caused eight and

Campylobacter three of the outbreaks (Miettinen et al., 2001).



21

Environmental bacteria that are able to grow in distribution systems, such as Legionella spp.,

Aeromonas spp., Mycobacterium spp. and Pseudomonas aeruginosa are now recognised as potentially

important pathogens (e.g., for a review, see Szewzyk et al., 2000). Legionella pneumophila was

isolated from 30% of water samples taken from the distribution systems of buildings in Finland

(Zacheus and Martikainen, 1994). When samples of hospital water systems were taken in USA,

Canada and Great Britain, 12 to 70% were colonised with Legionella (Lin et al., 1998).

Mycobacterium spp. was isolated from 5 to 32% samples of drinking water and from 17 to 100% of

biofilms (Falkinham III et al., 2001; von Reyn et al., 1993).  In drinking water and biofilms,

Acinetobacter, Algaligenes, Arthrobacter/Corynebacterium, Bacillus, Flavobacterium,

Methylobacterium, Moraxella, Pseudomonas, Staphylococcus, and Sphingomonas have been the

predominant genera detected (Koskinen et al., 2000; Lahti, 1993; LeChevallier et al., 1987; Payment et

al., 1988; Penna et al., 2002; Percival et al., 1999; Rogers et al., 1994). Nitrifying bacteria, especially

ammonia-oxidising Nitrosomonas and nitrite-oxidising Nitrospira species are common in those

distributions systems where chloramine is used as the disinfection chemical (Lipponen et al., 2002;

Regan et al., 2002; Regan et al., 2003; Wolfe et al., 1990). Filamentous fungi and microfungi are also

frequently been present in distribution systems (Lahti, 1993; Nagy and Olson, 1982).

2.3 Factors affecting the microbial growth in drinking water systems

Micro-organisms face a great diversity of habitats with very different physicochemical and nutritional

conditions during the treatment, storage and distribution of drinking water.

2.3.1 Nutrients

Organic substances in drinking water originate from the raw water and from materials such as pipe

material, lubricants and sealing. In well-functioning waterworks, the distributed drinking water is

generally low in organic carbon content. Therefore, microbial growth in distribution systems is often

carbon limited (Chandy and Angles, 2001; Frias et al., 2001; van der Kooij, 1992; LeChevallier et al.,

1991; Szewzyk et al., 2000). Heterotrophic microbial growth in drinking water has been limited when

microbially available assimilable organic carbon (AOC) concentrations have been less than 10 µg

acetate-C eg. l-1 (van der Kooij, 1992). In the boreal climate, raw water sources have a high content of

organic matter originating from humic substances of peatlands and forests (Kortelainen, 1993). In this

kind of drinking water, microbial growth is regulated by the availability of phosphorus, not by the

organic matter (Lehtola et al., 2002b; Miettinen et al., 1996b; Miettinen et al., 1997b; Sathasivan and
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Ohgaki, 1999; Sathasivan et al., 1997). In these waters a very minor increase in the phosphorus

concentration can greatly enhance microbial growth, both in water and biofilms (Lehtola et al., 2001;

Lehtola et al., 2002a; Miettinen et al., 1997b; Sathasivan et al., 1997). Lehtola et al. (1999) developed

a sensitive bioassay for the determination of microbially available phosphorus (MAP) in water. MAP

concentrations in Finnish drinking waters are generally low, from 0.06 to 10.2 µg PO4-P l-1 (Lehtola et

al., 1999; Lehtola et al., 2002b). However, even such low concentrations correlated positively with

microbial growth in drinking waters (Lehtola et al., 2002b). In contrast, addition of phosphate has been

proposed as an anticorrosion treatment, decreasing the bacterial adhesion to corrosion products and

bacterial concentration in water (Appenzeller et al., 2001; Appenzeller et al., 2002). In North America,

the use of phosphate based corrosion inhibitors was found to be associated with lower coliform levels

in drinking water (LeChevallier et al., 1996). However, the application of phosphate containing

products, such as corrosion inhibitors and additives of plastic materials need to be considered

cautiously in phosphate limited drinking waters (Szewzyk et al., 2000).

2.3.2 Water purification

Water treatment techniques aims to eliminating and inactivating potential pathogens, and removing as

many compounds as possible from the raw water to fullfill the requirements of consumers and the

authorities (for a review, see Szewzyk et al., 2000). In most countries, raw water purification consists

of a variety of treatment processes, such as chemical coagulation, filtration and disinfection (Fig. 2).

Fig. 2. Example of a water purification process (Pitkäkoski Water Treatment Plant, Helsinki) (printed

with kind permission from Helsinki Water).
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The aim of chemical coagulation is to produce particles of a size that can be removed by settlement,

flotation or filtration. The effect of coagulation is dependent on pH, the type of coagulant and its dose,

as well as the water characteristics. The typical coagulant chemicals are metal salts, such as iron and

aluminium salts (Binnie et al., 2002; Tchobanoglous and Schroeder, 1987). Coagulation of Finnish

drinking waters has resulted in decreased amounts of total organic carbon (TOC), AOC, total P, MAP,

total bacteria, CFU, maximum number of heterotrophic bacteria during the 21 days incubation of water

(HGR) but increased the HGR when there was addition of 20 µg l-1 phosphorus (Lehtola et al., 2002b).

In filtration, water passes through a granular bed of sand or some other suitable medium at low speed.

Slow sand filters operate at low loading rates, whereas rapid gravity filters work at higher loading

rates.  The slow sand filters treat water by physical straining and biological action, whereas rapid

gravity filters act by physical treatment only (Binnie et al., 2002; Tchobanoglous and Schroeder,

1987). The effectiveness of filtration is dependent on the size of the media, its particle size, the density

of particles and the temperature (Binnie et al., 2002; Tchobanoglous and Schroeder, 1987; Urfer et al.,

1997). The particle attachment to the filter media needs electrically neutral conditions, which can be

achieved with coagulation (Binnie et al., 2002; Tchobanoglous and Schroeder, 1987). Filtration can

also be used as a pre-treatment of raw water before coagulation, such as the production of artificially

recharged groundwater from lake water using bankfiltration. Bankfiltration has shown to decrease

TOC by 40-70%, chemical oxygen demand by 47%, non-purgable organic matter by 70%, AOC by

40%, total phosphorus to levels below the detection limit, and MAP by 67% (Lehtola et al., 2002b;

Miettinen et al., 1994; Miettinen et al., 1996a; Miettinen et al., 1997a). In addition, the counts of

heterotrophic bacteria, total bacteria, and bacterial enzymatic activities have decreased significantly

during bankfiltration.

Disinfection of water is used to eliminate all pathogens that have passed through the various treatment

processes and on the other hand, to guarantee microbially safe water through the distribution system to

the point of use. The generally used disinfection methods are chlorination, ozonation and UV

disinfection (Binnie et al., 2002; Tchobanoglous and Schroeder, 1987). In chlorination, carcinogenic

organochlorine compounds can be formed (for a review, see Horth, 1989). Chloramines are better than

free chlorine for many reasons, such as decreased coliform concentrations, decreased heterotrophic

plate counts and disinfection by-products, and improved maintanence of a disinfection residue (Norton

and LeChevallier, 1997). Disinfection resistance against free chlorine is increased by biofilm

formation, the age of biofilm, encapsulation and nutrient effects. In contrast, disinfection efficiency of

monochloramine has only been decreased because of biofilm formation (LeChevallier et al., 1988).
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However, a chlorine residue of up to 0.9 mg l-1 has been found to be ineffective against resistant

micro-organisms, such as sporulating bacteria and viruses (Payment, 1999).  Ozonation has been

shown to remove pathogenic microbes, taste and odor. On the other hand, as a strong oxidizing agent,

ozone can decrease TOC, but it increases the AOC and MAP, which can promote microbial growth in

distribution systems (Lehtola et al., 2002b; Zacheus et al., 2000). Biologically stable ground water can

be distributed without disinfection if there is effective removal of nutrients during the water

purification process (Hambsch, 1999; van der Kooij et al., 1999).

Biofilm development in a distribution system has promoted decay of chloramine (Chandy and Angles,

2001). Several mechanisms have been proposed to explain the resistance of microbes in biofilms

against biocides. Extracellular polymers associated with biofilms prevent the penetration of biocides,

protecting the microbes in the biofilm. Altered rates of bacterial growth dictate the response to

antimicrobial agents. The microenvironment of the biofilm adversely affects the activity of

antimicrobial substances. Induction of stress responses and development of biofilm-specific biocide

resistant phenotype may contribute to biocide resistance (for a review, see Dunne, 2002; Mah and

O’Toole, 2001; Morton et al., 1998). Bacterial responses to biocides are dependent on the nature of the

biocide and the type of organism involved (Flemming, 2002).

2.3.3 Distribution systems

The chemistry and composition of drinking water vary enormously in different distribution systems.

The concentration of disinfection residues diminishes, whereas other factors such as temperature,

nutrient levels, ion composition, oxygen concentration, pipe material and hydraulic conditions may

change in drinking water distribution systems (Block et al., 1993; van der Kooij et al., 1995; Niquette

et al., 2000; Pedersen, 1990; Percival et al., 1999; Rogers et al., 1994; Szewzyk et al., 2000; Volk and

LeChevallier, 1999; Zacheus et al., 2000). Temperature is thought to be the most important factor

controlling microbial growth in drinking water, and it affects directly or indirectly a wide array of

chemical and physical properties (LeChevallier et al., 1996). The coliform bacteria were detected in

higher frequencies in 31 full-scale drinking water systems in North America, when the water

temperature was over 15°C, as well as when the disinfectant residue was low, the AOC level was high,

the corrosion rate was high, the rainfall in the area was high, the distribution systems contained many

storage tanks, and the systems were not flushed annually (LeChevallier et al., 1996). Thus, an

integrated approach, including design of surface materials, monitoring and analysis of deposits, and
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biofilm management and engineering is needed, if one is to achieve a successful and a sustainable

antifouling strategy (for a review, see Flemming, 2002).

2.4 Methods to analyse microbes in drinking water systems

The methods used to analyse microbes in drinking water systems are summarised in Table 1.

The viable count procedure is the most commonly used method to measure microbes in drinking water.

The detached biofilm cells are plated onto a solid microbial medium, incubated and counted (for a

review see, Donlan and Costerton, 2002). These cultivation methods have been applied in drinking

water systems to judge related health risks, not the total cell numbers. Indicator organisms are used to

indicate the possible presence of pathogens, as they originate from the same fecal contamination

sources as pathogens.  Heterotrophic plate counts have become the standard technique used in

microbiological water quality testing. Unfortunately, culturable microbes represent only a small

proportion (0.01-10%) of the total microbial cells in drinking water systems, and standard methods

greatly underestimate the number and diversity of the micro-organisms present (for a review, see

Amann et al., 1995; Szewzyk et al., 2000). However, in drinking water biofilms, all of the microbes

were culturable after 13 days, and later as many as 43-65% were culturable, which might indicate that

the steady state for all bacteria was not reached in 70 days of biofilm formation (Lehtola et al., 2002a).

The culturability of microbes has been shown to decrease with succession, due to selection of

organisms that allocate a greater proportion of energy resources into maintenance relative to growth

(Garland et al., 2001).

Nucleic acid stains, such as DAPI (4’,6’-diamidino-2-phenylindole), acridine orange and SYTO9 stain

the DNA and RNA of all cells regardless of their viability and can be used to estimate the total

microbial biomass (Donlan and Costerton, 2002; Hobbie et al., 1977; Schwartz et al., 1998). The

content of adenosine triphosphate (ATP) can be used to measure metabolically active biomass (Boe-

Hansen et al., 2002; Hallam et al., 2001; van der Kooij et al., 1995; Lehtola et al., 2002a). The

exoproteolytic activity of bacteria in drinking water biofilm has been shown to be proportional to the

bacterial biomass (Laurent and Servais, 1995). The incorporation of the amino acid, leucine, has been

used to estimate the rate of protein synthesis as a measure of the bacterial growth (Boe-Hansen et al.,

2002; Butterfield et al., 2002). New molecular tools in combination with advanced microscopic

techniques have also provided information on the activity and physiological status of individual cells

in the biofilms (for a review, see Tolker-Nielsen and Molin, 2000; Wimpenny et al., 2000).
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Tetrazolium salts, such as 5-cyano-2, 3-ditolyl tetrazolium chloride (CTC), and 2-(p-iodo-phenyl)-3-

(p-nitrophenyl)-s-phenyl tetrazolium chloride (INT), have been used to measure dehydrogenase

activity, which is a component of microbial respiration (Fonseca et al., 2001; Kalmbach et al., 1997;

Rodriguez et al., 1992; Schaule et al., 1993; Schwartz et al., 1998; Servais et al., 1992). In situ

hybridisation allows the detection of specific nucleic acid sequences in eucaryotic and prokaryotic

cells via the binding of oligonucleotide probes to their complementary target sequences (Kalmbach et

al., 1997; Manz et al., 1993; Schwartz et al., 1998; Szewzyk et al., 2000). Denaturating gradient gel

electrophoresis (DGGE) of 16S RNA has been used to provide a qualitative analysis of microbial

community structure (Fonseca et al., 2001; for a review, see Muyzer and Smalla, 1998). The BIOLOG

system detects metabolism of sole carbon sources, and has been found to be suitable for characterising

microbial communities in biofilters (Moll and Summers, 1999; Moll et al., 1998). The phospholipid

fatty acids (Chang et al., 2001; Fonseca et al., 2001; Herb et al., 1995; Jain et al., 1997; Moll and

Summers, 1999; Moll et al., 1998; Moll et al., 1999; Smith et al., 2000) and MIDI-FAME techniques

(Glucksman et al., 2000; Massol-Deyá et al., 1995; Moll et al., 1999; Norton and LeChevallier, 2000)

in drinking water systems have been used to study microbes in ground water, in biofilters, in corroded

surfaces in water resorvoirs, and impact of chlorine exposure.



Table 1. Methods that have been used to analyse microbes in drinking water systems.

Method Parameter Study subject References

culturing culturable biomass widely used Percival et al., 2000; Szewzyk et al., 2000

microscopy with nucleic
acid stains

total biomass widely used Donlan and Costerton, 2002; Hobbie et al., 1977;
Schwartz et al., 1998

ATP metabolically active biomass drinking water, biofilms Boe-Hansen et al., 2002; Hallam et al., 2001; van der
Kooij et al., 1995; Lehtola et al., 2002a

potential exoproteolytic
activity

bacterial biomass drinking water biofilms Laurent and Servais, 1995

leucine incorporation bacterial growth drinking water, biofilms Boe-Hansen et al., 2002; Butterfield et al., 2002

dehydrogenase activity
(CTC, INT)

actively respiring bacteria drinking water, biofilms Kalmbach et al., 1997; Schaule et al., 1993; Schwartz et
al., 1998

ground water Rodriquez et al., 1992

biofilters Fonseca et al., 2001; Servais et al., 1992

in situ hybridization (16S
and 23S RNA)

phylogenic diversity drinking water, biofilms Kalmbach et al., 1997; Manz et al., 1993;  Schwartz et
al., 1998

DGGE microbial community biofilters Fonseca et al., 2001

DNA fingerprinting microbial community biofilters Moll et al., 1998

BIOLOG metabolic capability, microbial
community

biofilters Moll and Summers, 1999; Moll et al., 1998

PLFA viable microbial community and
biomass, physiological state

corroded surfaces in water resorvoirs Herb et al., 1995

biofilters Fonseca et al., 2001; Moll and Summers, 1999; Moll et
al., 1998; Moll et al., 1999

ground water Chang et al., 2001; Jain et al., 1997

biofilms in laboratory and full-scale Smith et al., 2000; I-IV

drinking water II, III

MIDI microbial community ground water Glucksman et al., 2000

biofilters Massol-Deya et al., 1995; Moll et al., 1999

drinking water, biofilms Norton and LeChevallier, 2000

Appreviations: ATP, adenosine triphosphate; BIOLOG, metabolism of sole carbon sources; CTC, 5-cyano-2, 3-ditolyl tetrazolium chloride;

DGGE, denaturating gradient gel electrophoresis; INT, 2-(p-iodo-phenyl)-3-(p-nitrophenyl)-s-phenyl tetrazolium chloride; PLFA, phospholipid

fatty acids; MIDI microbial identification with fatty acids

27
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2.5 Lipid biomarkers

2.5.1 Microbial lipids

Lipids are classified as compounds which are weakly soluble in water, but readily soluble in organic

solvents (Christie, 1989; Ratledge and Wilkinson, 1988a). Lipids act as storage materials in microbes,

are responsible for the structure of cell membranes mainly as phospholipids, participate in the

organisation of bacterial cell envelopes, and are associated with photosynthetic processes. Microbes

synthesise many of these lipid cell components rapidly in respond to changes in their environment

(Ratledge and Wilkinson, 1988a).

The structures of the common lipids are divided into two categories; those containing long-chain fatty

acids or their immediate derivatives, and structures derived from isoprene units and known as

terpenoid lipids.  Lipids can also be classified as neutral or polar lipids. Neutral lipids include lipids in

which the hydrophilic function has relatively little impact on the overall molecular characteristics.

Neutral lipids include simple hydrocarbons, carotenes, triacylglycerols, wax esters, sterol esters, fatty

acids, polyprenols and sterols. Polar lipids contain a polar head group, which has a major influence on

the solubility characteristics. Polar lipids include phospholipids, glycolipids, sulpholipids, some

sphingolipids, oxygenated carotenoids and chlorophylls (Ratledge and Wilkinson, 1988a).

Phospholipids are glycerophospholipids or sphingophospholipids. In glycerophospholipids, an apolar

phosphatidyl group is attached via ester-linked fatty acids in the sn-1 and sn-2 positions (Fig. 3).

Esterification with several mono- and polyhydroxy compounds gives rise to a family of

phosphodiesters which are structurally important microbial lipids. Sphingophospolipids are phosphoric

esters based on ceramide 1-phosphatases (Ratledge and Wilkinson, 1988b).

Fig. 3. Basic chemical structure of glycerophospholipids base on phosphatic acid. R1CO and R2CO are

fatty acyl groups. Group x contains a variaty of compounds such as inositol, serine or ethanolamine.

Lipopolysaccharides (LPS) are structures of the cell wall in gram-negative bacteria (Smith, 1988;

Wilkinson, 1988). The lipopolysaccharide consists of a tripartitate structure, in which an endotoxic O-

specific, antigenically dominant polymeric side chain is attached to the amphiphilic lipid A via a

common oligosaccharide containing hydroxy fatty acids (Wilkinson, 1988).

              H2COOCR1

                   |
     R2COO-CH    O

    | ||
  CH2-O-P-OX

 |
OH
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2.5.2 Fatty acids

Fatty acids are organic substances, which are linked to variety of molecules, most commonly to

glycerol (Ratledge and Wilkinson, 1988b). Fatty acids are synthesised in nature via condensation of

malonyl-coenzyme A units by a fatty acid synthetase complex (Christie, 1989).  The carbon chain

lengths of PL fatty acids in microbes commonly range between 14 and 20. Fatty acids may be

saturated, unsaturated, straight-chain, branched or contain alicyclic rings. Furthermore, the fatty acids

can contain a second oxygen-containing functional group besides the carboxyl group, such as hydroxyl

group in hydroxy fatty acids (Ratledge and Wilkinson, 1988b). The hydroxyl group can be linked to

the first carbon atom next to the carboxyl group (2-OH- or α-OH-FAs), or the second carbon atom (3-

OH- or β-OH-FAs) or to the third carbon carbon (4-OH- or ω-OH-FAs).  Organisms having

extractable lipids rich in branched-chain acids are expected to produce lipopolysaccharide fatty acids

with the same characteristics (Wilkinson, 1988).  Fatty acids can be named with systematic or trivial

names, or with a shorthand designation, e.g. decanoic acid, capric acid, 10:0 (Ratledge and Wilkinson,

1988b). Examples for chemical structures of fatty acids and 2- and 3-hydroxy fatty acids are presented

in Fig. 4. Fatty acids have been widely used to characterise monocultural microbial species (for a

review see “Microbial lipids, volume 1, edited by Ratledge C. and Wilkinson S.G.”).

Fig. 4. Examples for chemical structures of fatty acids and 2- and 3-hydroxy fatty acids.

10:0:

H3C-CH2-CH2-CH2-CH2-CH2-CH2-CH2-CH2-COOH

3-OH-10:0:

H3C-CH2-CH2-CH2-CH2-CH2-CH2-CH-CH2 -COOH
 |

  OH

2-OH-10:0:

H3C-CH2-CH2-CH2-CH2-CH2-CH2-CH2- CH -COOH
          |

           OH

16:1ω7:

H3C-CH2-CH2-CH2-CH2-CH2-CH=CH-CH2-CH2-CH2-CH2-CH2-CH2-CH2-COOH

i-10:0:

H3C-CH-CH2-CH2-CH2-CH2-CH2-CH2-CH2-COOH
         |
        CH3

cy-17:0

H3C-CH2-CH2-CH2-CH2-CH2-CH-CH-CH2-CH2-CH2-CH2-CH2-CH2-CH2-COOH
     �

                    CH2
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2.5.3 Analyses of lipid biomarkers

Phospholipid fatty acids

Analysis of phospholipid fatty acids has provided a quantitative insight into complex microbial

communities in environment without the need for isolation. PLFAs are present in all living cells, but

not in Archaea. However, Archaea do likely not make any significant contributions to microbial

communities in drinking water systems (Manz et al., 1993). Different microbial groups have specific

PLFAs, such as gram-negative bacteria contain monounsaturated or cyclopropane fatty acids

(Wilkinson, 1988), gram-positive bacteria have iso-, anteiso- or otherwise branched-chain fatty acids

(for a review, see Kaneda, 1991; O´Leary and Wilkinson, 1988), actinomycetes and some sulphate-

reducing bacteria have a methyl group in the tenth carbon atom from the carboxyl end of molecule

(Brennan, 1988; Wilkinson, 1988), and yeasts and fungi contain polyunsaturated fatty acids (Lösel,

1988; Rattray, 1988). The microbial groups might also contain same PLFAs, which in turn triggers the

interpretation of their profiles (Zelles, 1997). Phospholipid fatty acids can also be used to estimate

viable biomass, as their proportions in a cell are rather constant, they are not present in storage lipids

and are rapidly degraded following cell death (King et al., 1977; White et al., 1979). The biomass can

be analysed by performing a quantitative estimation of the PLFAs or the lipid phosphate content

(Frostegård et al., 1991; White et al., 1979). Differences in physiological status of microbes can be

monitored by comparison of certain fatty acids. The ratio of saturated to unsaturated PLFAs, an

increase in ratio of cyclopropyl fatty acids to their monoenoic precursors and an increase in the

trans/cis ratio of the unsaturated PLFAs have been used as indicators for starvation, stress or stationary

growth phase (for a review, see Suutari and Laakso, 1994; White et al., 1996).

Hydroxy fatty acids

The normal OH-FAs of gram-negative bacteria are straight-chain saturated fatty acids containing an

even number of carbon atoms in the molecule such as OH-12:0, -14:0 and –16:0 (Smith, 1988;

Wilkinson, 1988). The amount of LPS in a bacterial cell is relatively constant, so the community

structure and biomass of the gram-negative bacteria can be analysed (Watson et al., 1977). However,

2- and 3-OH-FAs have also been found in gram-positive bacteria, fungi and plants in molecular

structures other than LPS (Brennan, 1988; Lösel, 1988; Rattray, 1988; for a review, see Van Dyk et al.,

1994; Zelles, 1997). Gram-negative bacteria, Sphingomonas spp. contain several 2-OH-FAs, with 2-

OH-14:0 being the major hydroxy fatty acid in their sphingolipids (Balkwill et al., 1997). Yeast and
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other fungi contain several OH-fatty acids in their phosphosphingolipids (Lösel, 1988; Rattray, 1988;

Wells et al., 1996). Mycobacteria have straight chain, 2-methyl-branched and 2,4,6-trimethyl-branched

3-OH-FAs with 14 to 28 carbon atoms in their glycolipids (Alugupalli et al., 1994; Brennan, 1988).

Analysis of phospholipid fatty acids

One of the most widely used extraction and separation techniques for PLFAs was originally proposed

by Bligh and Dyer (1959) and subsequently modified by White et al. (1979) and Frostegård et al.

(1991). The method includes extraction with a mixture of chloroform, methanol and water or buffer (1

: 2 : 0.8 vol/vol/vol). Dilution of the solvent mixture with buffer and chloroform separates solvent

phase into two phases (chloroform: methanol: water or buffer, 1 : 1 : 0.9 vol/vol/vol), with the lower

phase containing all of the extracted lipids. The extraction has been most efficient when the solvents

have been added in the order of increasing polarity i.e. chloroform- methanol- water compared to

adding solvents in the reverse order (Lewis et al., 2000; Smedes and Askland, 1999). The solutions can

be buffered with water, citrate, acetate, Tris or phosphate. Citrate buffer has the best extraction

efficiency in organic soil, whereas in sandy soil it was found that citrate and phosphate buffers had

better extraction efficiences than the other buffers studied (Frostegård et al., 1991). The extraction can

be done by standing, shaking, sonication, homogenisation or in a pressurised hot solvent extractor

(Bligh and Dyer, 1959; Frostegård et al., 1991; Macnaughton et al., 1997b; White et al., 1979).

However, neither sonication nor homogenisation increased the amount of the extracted lipids

(Frostegård et al., 1991; Lewis et al., 2000). Shaking for two hours is sufficient to extract the

maximum amount of lipid material from soil samples. The lipids are further separated with silicic acid

chromatography to neutral, glyco- and phospholipids using chloroform, acetone and methanol as

solvents, respectively (Frostegård et al., 1991). Finally, the fatty acids are methyl esterificated with

mild alkaline hydrolysis and analysed with gas-chromatography and mass spectrometry. In mass

spectrometry, fatty acids can be detected either with total ion monitoring or selected ion monitoring.

More complex extraction techniques can be used to obtain more detailed information on fatty acid

binding in the lipid molecule.  One method includes solid phase extraction columns after mild alkaline

hydrolysis to separate PLFAs into their sub-classes (Zelles, 1999; Zelles and Bai, 1993; Zelles et al.,

1992).
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Microbial identification with whole cell fatty acids

Microbial identification with whole cell fatty acids (MIDI) can be used to differentiate microbial

communities (Haack et al., 1994; Zelles, 1999). However, the method cannot be used to estimate

microbial biomass or changes in physiological status of microbes, because extraction of the fatty acids

is not restricted to those originating from living microbes.

Analysis of hydroxy fatty acids

The hydroxy fatty acids are bonded to larger molecules via an ester or amide linkage (Alugupalli et al.,

1994; Wilkinson, 1988). The OH-FAs are generally analysed from the extraction residue of lipids by

method of Bligh and Dyer (1959). OH-FAs can be methyl esterified using acidic methanolysis or

alkaline saponification followed by methylation (Larsson, 1983; Wollenweber and Rietschel, 1990).

Alkaline saponification cleave ester linkages, whereas acidic methanolysis degrades both ester or

amide linkages. OH-FA methyl esters can be further derivatised such as with pentafluorobenzoyl,

trifluoroacetylation or trimethylsilylation (Balkwill et al., 1997; Larsson, 1983; Mielniczuk et al.,

1992; Wollenweber and Rietschel, 1990). The derivatives can be purified with thin-layer

chromatography and analysed with GC-MS (Balkwill et al., 1997).

2.5.4 Studies on environmental samples

Lipid biomarkers have been widely analysed from environmental samples. PLFA and OH-fatty acids

were first applied to study the structure and biomass of microbial communities in aquatic environments

such as sediments as well as microbes in soil (Bobbie and White, 1980; Federle et al., 1983; King et

al., 1977; Odham et al., 1985; Parker et al., 1982; Tunlid et al., 1985; White et al., 1979). The effects

of environmental changes on microbial communities have been studied widely since the first

publications utilizing these methods.

Sediments

In sediments, changes in microbial community structure changes as determined by PLFAs have been

described in geochemical processes (Coleman et al., 1993), drilling operation samples from different

depths of sediments (Lehman et al., 1995; Ringelberg et al., 1997), in the trench of a volcano zone
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(Guezennec and Fiala-Medioni, 1996), in examinations of hydrographic and chemical properties in

different parts of Osaka bay (Rajendran et al., 1994), differences between eutrophic bays in Japan

(Rajendran et al., 1992; Rajendran et al., 1997), differences between organic matter mixing zones (Shi

et al., 2001), seasonal and spatial variations (Smooth and Findlay, 2001), eutrophication (Pinturier-

Geiss et al., 2002), mercury pollution (Macalady et al., 2000), hydrocarbon contamination (Fang and

Barcelona, 1998; Franzmann et al., 1996; Langworthy et al., 2002, and in situ bioremediation of

hydrocarbon contaminated sediments (Ringelberg et al., 2001; White et al., 1998).

Soils

In soil environments, PLFAs and OH-FAs have been used to study microbial community changes in

geochemical processes (Bull et al., 2000), botanical composition (Borga et al., 1994; Ibekwe and

Kennedy, 1998; Priha et al., 1999), management practices (Bai et al., 2000; Bossio and Scow, 1998;

Ibekwe et al., 2001; Peacock et al., 2001; Steenwerth et al., 2003; Yao et al., 2000; Zelles et al., 1992;

Zelles et al., 1994; Zelles et al., 1995a; Zelles et al., 1995b), succession transects of forest (Merilä et

al., 2002), spatial position of trees (Saetre and Bååth, 2000), soil fertility (Pennanen et al., 1999),

climatic changes (Insam et al., 1999; Ronn et al., 2002; Steinberger et al., 1999; Zak et al., 1996),

heating (Pietikäinen et al., 2000), pH changes (Bååth et al., 1992; Bååth et al., 1995; Frostegård et al.,

1993a; Pennanen et al., 1998a; Pennanen et al., 1998b), and pollution with metals (Fritze et al., 2000;

Frostegård et al., 1993b; Frostegård et al., 1996; Khan and Scullion, 2000; Pennanen et al., 1996).

Indoor air

In indoor air environments, PLFAs and 3-OH-FAs have been studied to define biomass, community

composition and physiological status of airborne microbes (Macnaughton et al., 1997a; Macnaughton

et al., 1999; Sebastian and Larsson, 2003). In particular, 3-OH-FAs have been used as markers for

gram-negative bacterial lipopolysaccharides, which can act as inflammatory agents (Fox et al., 1993;

Krahmer et al., 1998; Laitinen et al., 2001; Larsson and Larsson, 2001; Liu et al., 2000). Interestingly,

endotoxin exposure via lipopolysaccharides from drinking water have been implicated as a potential

health risk following hemodialysis and inhalation (for a review, see Anderson et al., 2002).

Water systems



34

Differences in microbial communities of activated sludge of wastewater treatment plants have

occurred at various geographical locations and due to temporal changes over time (Forney et al.,

2001). Certain pathogenic microbes such as Mycobacterium spp. or Legionella pneumophila can be

detected from drinking water systems with lipid biomarkers (Alugupalli et al. 1992; Slosárek et al.

1996; Walker et al. 1993). However, there have been very few analyses of microcial communities in

drinking water systems utilising lipid profiling (see section 2.4, “Methods to analyse microbes in

drinking water systems”).
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3 AIMS OF THE STUDY

The overall aim of the work was to study the applicability of lipid biomarkers in the analysis of

microbial communities, biomass and physiological state in drinking water systems, and further to

develop the methods for drinking water research. Soil and sediment samples were used as reference

materials.

The specific goals were:

1. to simplify  the analytical procedures for determining 2- and 3-hydroxy fatty acids

directly from the extraction residue of lipids without further purification or

derivatisation (I).

2 to analyse microbial communities in drinking water and biofilms developed under

drinking water flow in a laboratory and full-scale drinking water systems using

phospholipid fatty acids (PLFA) and lipopolysaccharide (LPS) 3-OH-fatty acids (3-OH-

FAs) (I-IV).

3 to study the effects of phosphorus availability, aging of biofilms and water residence

time on the microbial communities, biomass and physiological state present in drinking

water biofilms (II, III, IV).
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4 MATERIALS AND METHODS

4.1 Biofilms

4.1.1 Laboratory experiments (I, II)

The formation of biofilms in a laboratory-scale was studied in studies I-II. The drinking water used in

these experiments was from Kuopio waterworks in Finland (61°51‘N 27°45’E), which processes bank-

filtered lake water (Table 2). The biofilms were developed under the water flow of 0.5 ml min-1 in the

dark at 21±2°C on a glass slide (41.6 cm2) in glass chambers for four (I, II) or eleven weeks (II).

Biofilms were detached from glass slides by 5 min sonication (40 kHz) (Finnsonic mO3, Lahti,

Finland). Separate Na2HPO4 solution flows of 0, 1, 2 and 5 µg l-1 of phosphorus to the chambers were

used to study the effects of phosphorus supplementation (II).

Table 2. Water purification processes at waterworks for biofilm and water samples from studies (I-IV).

Chemical

coagulation

Filtration

  rapid sand      slow sand

Disinfection

   hypochlorite      chloramine        ozone

Biofilm

Laboratory scale,

Kuopio (I, II)

x x

Full scale

A (IV) x x x x

B (III, IV) x x x x

Water

Kuopio (II) x x x

B (III) x x x x

4.1.2 Full-scale systems (III, IV)

The formation of biofilms in full-scale drinking water distribution systems was studied as a function of

water residence time and biofilm formation time in studies III and IV. The biofilms were collected on a

series of polyvinylchloride (PVC) tubes (inner diameter 10 mm, length 200 mm, area 62.8 cm2)

connected to two full-scale drinking water distribution systems A and B receiving drinking water from

two separate waterworks (Table 2). Biofilms were collected with a water flow rate of 1 l min-1 between

July 1997 and March 1998. Biofilms were detached from PVC tubes by shaking for 20 min with glass

beads. The samples from water distribution system A were collected with water residence times of 10,

39, and 141 hours after the biofilm development of 6, 23 and 40 (no sample for the 141 hour time

point) weeks (IV). Samples from distribution system B were collected with a water residence time of
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22 hours after biofilm development periods of 11, 24 and 41 weeks, and with a water residence time of

62 hours after 11 weeks of biofilm growth (IV). Samples with the water residence time of 22 and 62

hours with a development period of 11 weeks were used in study III.

4.2 Water samples (II, III)

To study the effects of water temperature on microbial communities, drinking water (7°C) and warm

water (45°C) samples of 30 liter volume were collected from the distribution system of Kuopio

waterworks with a water retention time of 1-2 days (Table 2, II).

To study the effect of residence time, 20 liters water samples were taken one week after the biofilm

sampling at the sampling sites of 22 and 62 hours from the same sites where biofilms were grown in

distribution system B (Table 2, III).

4.3 Soil and sediment samples (I)

Soil and sediment samples were analysed as references for samples from drinking water distribution

systems. The soil sample was collected (July 7, 1998) at a depth of 0-10 cm from an experimental field

with an area of 2 m2 at the Agricultural Research Center in Jokioinen, Finland (60°45’N 23°22’E). The

soil type was clay, and it was sown with barley. The sediment sample (layer of 310-320 cm) was taken

on April 15, 1997 from Lake Ahmasjärvi in Finland (64°39‘N 26°27’E). The depth of the water

column at the sampling point was 2.2 m.

4.4 Lipid biomarker analyses

The procedure for the lipid biomarker analyses was as presented in Fig. 5.
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Fig. 5. The procedure of lipid biomarker analyses.

4.4.1 Glassware and chemicals (I- IV)

For lipid analyses of waters and biofilms the glassware was heated at 550°C for 6 h.

Solvents were from Rathburn Ltd (Peeblesshire, United Kingdom), non-hydroxy fatty acid standards

and hydroxy substituted fatty acid standards from Sigma (St. Louis, MO, USA), except for 3-

hydroxytridecanoic and 2-hydroxyoctadecanoic fatty acid methyl esters which were from Larodan AB,

(Malmö, Sweden), NaOH from FF-Chemicals (Yli-Ii, Finland), HCl from Riedel- de Haën (Seelze,

Germany), acetylchloride from Fluka (Buchs, Switzerland), and other reagents from Merck

(Darmstadt, Germany).

   sample
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         extraction (CHCl3: MeOH : buffer (1 : 2 : 0.8 v/v/v))
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 fractionation with silicic acid                      extraction residue
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      �             �             �                                        � 
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                �                                                  � 
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� Calculations, statistical analysis
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4.4.2 Lipid extraction and fractionation (I-IV)

The water and extracts of biofilms were filtered through 0.2 µm (Pall Europe Ltd, Portsmouth,

England) or 0.45 µm filters (Sartorius GmbH, Goettingen, Germany) with filtration equipment

(Sartorius SM 16274; Sartorius GmbH, Goettingen, Germany (I-IV). Sediment, water and biofilm

samples were lyophilised (Edwards 4 K Modulyo freeze-dryer, Edwards, Crawley, England). All

samples were stored at -20°C until the lipid analyses.

The duplicate samples of reference without environmental material were analysed identically with the

samples. The lipids were extracted and stored at -20°C under an atmosphere of N2. All samples were

extracted in 28.2 ml of chloroform : methanol : buffer (1 : 2 : 0.8 vol/vol/vol) (Bligh and Dyer, 1959;

Frostegård et al., 1991; White et al., 1979). For the quantification of phospholipids, an internal

standard, diheptadecanoylphosphatidylcholine, was added. Lipids were separated from the solvent

phase after the addition of chloroform and buffer (final ratios of solvents 1 : 1 : 0.9 vol/vol/vol).

Lipids were fractionated in a 0.75 g silica column (100-200 mesh size, Unisil, Clarkson Chemical,

Williamsport, Pennsylvania, USA) to neutral, glyco- and phospholipids with 10, 20 and 10 ml of

chloroform, acetone and methanol, respectively (Frostegård et al., 1991; King et al., 1977).

4.4.3 Fatty acid analyses

Internal standards, tridecanoic and nonadecanoic acid methyl esters were added to the phospholipid

fraction and extraction residues of soil and sediment samples. Fatty acids and hydroxy fatty acids in

soil and sediment were saponified, methylated, and extracted as methylesters (Suutari et al., 1990) (I-

IV).

The internal standard, 3-OH tridecanoic acid methyl ester was added to the lipid extraction residues of

biofilms and waters. LPS hydroxy-substituted fatty acids of biofilm were treated with mild acid

hydrolysis in 2 M HCl in methanol and extracted as methylesters (Jantzen et al., 1989; Torkko et al.,

1998) (I, II, IV).
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4.4.4 GC-MS

Fatty acids methyl esters were analysed with a Hewlett-Packard (Palo Alto, California, USA) model

G1800A gas chromatograph (GC) equipped with a mass selective detector (MS) and HP7673

automatic sampler. The GC conditions were as follows: HP-5 capillary column (30 m by 0.2 mm by

0.11 µm) coated with crosslinked 5 % Ph Me Silicone; carrier gas, helium (1.0 ml min-1); splitless

injection; injector temperature, 250°C; detector temperature, 270°C. The oven temperature was

programmed to hold at 50°C for 1 min, and then to increase by 30°C min-1 up to 160°C, and thereafter

by 5°C min-1 up to 270°C. The phospholipid fatty acid methyl esters were analysed with selected ion

monitoring (SIM) by following ions m/z 74 and 199. As an exception, the latter ion was m/z 268 for

16:1 acids, m/z 250 for cy-17:0, m/z 298 for i-18:0 and 18:0, m/z 294 for 18:2ω6, m/z 264 for 18:1

acids, m/z 312 for 10-Me-18:0 and 19:0, m/z 278 for cy-19:0 and m/z 326 for 20:0. In the SIM of 2-

and 3-hydroxy fatty acid methyl esters, the ions monitored were m/z 90, 103 and M-59 (Gradowska

and Larsson, 1994; Wollenweber and Rietschel, 1990), except in soil and sediment where the internal

standards 13:0 and 19:0 were monitored with m/z 74 and 199 (I). The 2- and 3-OH-FAs of samples

were also analysed using total ion monitoring (I). The fatty acid methyl esters were identified by

comparing their mass spectra and retention times with those of standards.

4.5 Nomenclature of fatty acids

Fatty acids are designated as the total number of carbon atoms : the number of double bonds followed

by the position of the double bond from the methyl end (ω) of the molecule. The cis/trans-isomerism

of double bond is indicated with c/t. The prefixes i- and a- indicate iso-branched and anteiso-branched,

respectively, br- indicates an unknown methyl branch position, 10-Me- indicates a methyl group in the

10th carbon atom from the carboxyl end of the molecule, and cy- refers to cyclopropane fatty acids. 10-

Me-18:0 is designated as tuberculostearic acid (TBSA), and the prefixes 2-OH- and 3-OH- indicate 2-

and 3-hydroxy fatty acids, respectively.

4.6 Calculations and statistical analyses

To calculate calibration curves for the quantification of PLFAs, calibration standards were made with

known ratios of bacterial PL-fatty acids relative to the internal standard methyl nonadecanoate (19:0)

(Tunlid et al., 1989). The standards contained fatty acids at four to five concentrations ranging from

0.02 to 2 nmol µl-1 for 16:0 with 68 pmol µl-1 of an internal standard (I-IV).
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The calibration standards for the quantification of hydroxy fatty acids contained OH-FAs at four to

five concentrations within the range of 0.4 µmol µl-1 to 2.9 nmol µl-1, with 1.0 nmol µl-1 (soil,

sediment) or 0.4 nmol µl-1 (biofilm) of internal standard. The SIM responses were linear with

correlation coefficients of 0.996±0.004 (I).

The fatty acid content was defined as the sum of the fatty acid methyl esters. The PLFA (I-III) and

LPS OH-fatty acid (I) contents were converted to cell densities using the following factors. On

average, bacteria contain 100 µmol of PLFAs and 15 µmol of LPS OH-FAs g-1 dry weight, and 1 g of

bacteria (dry wt) is equivalent to 2.0 x 1012 cells dry weight  (Balkwill et al., 1988).

C18/C16 was calculated as the percentage ratio of 18:0, 18:1ω7c and 18:1ω9c to 16:0, 16:1ω5c and

16:1ω7c (II).

Principal component analysis (PCA) for standardised results was performed to elucidate major

variation in data either with the programmes provided by SAS Institute (1989) (II) or SPSS for

Windows version 10.1. (SPSS, Inc., Chicago, IL, USA) (IV). The relationship between phosphorus

supplementation and lipid biomarkers was tested with Pearson correlation analyses, using SAS (II).

Linear regression analysis was performed with lipid biomarkers with different water residence times or

development times of biofilms (IV). Analysis of variance (2-way ANOVA) followed by Tukey’s test

was used to detect changes in the biomass estimated on the basis of PLFAs or LPS 3-OH-FAs (IV).

All results of lipid biomarkers were presented as mean ± standard error (I, II) or mean ± standard

deviation (III, IV).
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5 RESULTS AND DISCUSSION

5.1 PLFA profiles

The PLFAs were analysed with GC-MS using SIM after lipid extraction, fractionation and methyl

esterification. There were 21 to 25 different PLFAs present in the biofilms (I-IV), 22 (II) and 26 (III)

PLFAs in drinking and warm waters, 30 PLFAs in soil and 24 PLFAs in sediment (I). In our

experiments the biofilms were collected from 41.6 cm2 (I, II) and 62.8 cm2 of surface areas (III, IV),

water samples were 20 (III) or 30 litres (II), soil and sediment samples weighed 3.1 g and 5.2 g,

respectively (I). In ealier studies, the numbers of PLFAs from environmental samples have been

similar or higher than in studies I-IV. In drinking water biofilms from 1540 cm2, 29 PLFAs (Smith et

al., 2000), and in drinking water biofilters from 2 to 10 g of sand, 57 to 90 have been detected

(Fonseca et al., 2001; Moll et al., 1998; Moll et al., 1999). From 0.5 to 1 g of coniferous forest soils a

range of 24 to 37 PLFAs have been reported (Bååth et al., 1992; Bååth et al., 1995; Frostegård et al.,

1993a) whereas 31 PLFAs were detected from 3 g of arable soil (Frostegård et al., 1993b). Using

extended extraction procedures on samples of 100 g of soil, Zelles et al. (1992) reported the presence

of as many as 100-132 PLFAs.

In water samples and biofilms, the most abundant PLFAs with over 80 % were straight-chain

saturated, characterising general biomass (White et al., 1996), and straight-chain monounsaturated

fatty acids, characteristic of gram-negative bacteria (Wilkinson, 1988) (Table 3). The terminally

branched PLFAs, indicative of gram-positive bacteria, and polyenoics, indicative of microeucaryotes,

represented generally less than 7 % of the total PLFAs in the samples. In distribution system B,

18:2ω6, typical for eucaryotic cells (Lösel, 1988; Rattray, 1988) accounted for 4 % in biofilms and 7%

in waters. High proportions of straight-chain saturated fatty acids and straight-chain monounsaturated

fatty have earlier been reported from biofilm accumulation chambers, corroded concrete surfaces and

drinking water biofilters (Fonseca et al., 2001; Herb et al., 1995; Moll and Summers, 1999; Moll et al.,

1999; Smith et al., 2000). The proportions of terminally branched PLFAs, indicative of gram-positive

bacteria, and polyenoics, typical for microeucaryotes, have been 6.3-11 % and 2.0-6.7% in drinking

water biofilters, respectively (Moll and Summers, 1999; Moll et al., 1999). In groundwater, gram-

negative bacteria have dominated the profile, indicated by the presence of monoenoic PLFAs, whereas

gram-positive bacteria and eucaryotes have been claimed to be rare or absent on the basis of low levels

of terminally branched fatty acids and absence of polyunsaturated fatty acids, respectively (Jain et al.,

1997). The PLFA profile of the soils was the most diverse of the samples studied here, as the five most
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abundant fatty acids accounted for 50% of the total profile, whereas in biofilm, drinking water samples

and sediment samples the proportion was 80-87% (Table 3). Table 3 summarises five most common

PLFAs and their percentages in different environments. In drinking water systems, the PLFA profiles

were less complex compared to other environmental samples from various geographical locations.

Table 3. The proportions of the five most abundant PLFAs in samples from studies I-IV and in some

other environments (mean±sd or range).

Five most abundant PLFAs Proportion
of all
PLFAs %

References

Biofilm (Finland)
Laboratory scale, Kuopio (n=16) 14:0, 16:0, 18:0, 18:1ω7, 18:1ω9 87.0±6.8 I, II
Full scale
A (n=16) 14:0, 15:0, 16:0, 18:0, 20:0 85.5±6.6 IV
B (n=8) 14:0, 16:0, 18:0, 18:2ω6, 18:1ω7 80.7±2.4 III, IV
Water (Finland)
Kuopio (n=4) 16:0, 18:0, 16:1ω7, 18:1ω7, 18:1ω9 81.0±4.3 II
B (n=2) 16:0, 18:0, 18:2ω6, 16:1ω7, 18:1ω7 81.8±4.5 III
Soil (n=2)  (Finland) i-15:0, i-16:0, 10-Me-16:0, 16:0, 16:1ω7 50.4±0.3 I
Sediment  (n=2) (Finland) i-15:0, a-15:0, 14:0, 16:0, 18:0 80.2±0.1 I
Biofilm accumulation chambers
(USA)

14:0, 16:0, oxirane 16:0, oxirane 18:0, 10-Me-18:0
September (summer), November (fall) 74.3, 77.9

Smith et al., 2000

Coniferous forest soil
Pine (Sweden) 16:0, 18:2ω6, 18:1ω7, 18:1ω9, , cy-19:0 55.5-58.9 Frostegård et al.,

1993a
Spruce (Sweden) i-15:0, 16:0, 18:2ω6, 18:1ω9, 18:1ω7/cy-19:0 49.3-53.5 Frostegård et al.,

1993a
Pine and spuce (Finland) i-15:0/18:1ω7, 16:0, 18:2ω6, 16:1ω7, 18:1ω9 45.5-61.1 Bååth et al., 1992;

Bååth et al., 1995
Soil from a tropical ecosystem 16:0, 18:2ω6, 16:1ω7, 18:1ω7, 18:1ω9 63.0-63.4 Insam et al., 1999
Peats (Sweden) i-15:0/16:1ω7/18:1ω9/cy-19:0, 16:0, 18:0, 18:1ω7 60.1-74.8 Borga et al., 1994
Sediments (Barbados Trench) a-15:0/16:1ω5c, 16:0, 16:1ω5t, 16:1ω7, 18:1ω7 58.2-76.6 Guezennec and Fiala-

Medioni, 1996
Sediments (Japan) i-15:0, a-15:0, 16:0, 14:0/16:1d9/18:1d9/18:1d11 47.7-49.6 Rajendran et al., 1997

5.2 LPS 2- and 3-OH-FA profiles

3- and 2-OH-FAs from the residues of samples, extracted according to Bligh and Dyer (1959) to

remove lipids, were analysed as methyl esters directly by GC-MS using SIM without further

purification, or derivatisation of hydroxyl groups. In SIM, the ion monitored to define 3-OH-FAs was

m/z 103 (CHOHCH2COOCH3), and the ions for 2-OH-FAs were m/z 90 (CH2OHCOOCH3) and M-

59. The ion m/z 103 appeared to be specific for 3-OH-FAs. The ion m/z 90 was detected

concomitantly with m/z M-59 only in 2-OH-FAs. The lowest detectable injected amounts of 3-OH-

13:0 and 2-OH-18:0 methyl esters were 78 fmol (19 pg) and 1.6 pmol (0.5 ng), respectively, measured
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with a signal to noise ratio of 4. Thus, the detection limit for 2-OH-FAs was approximately 21-times

higher than that of 3-OH-FAs. The higher detection limit of 2-OH-FAs compared to 3-OH-FAs could

be due to the poorer specificity of m/z 90 and m/z M-59 compared to m/z 103. In general,

derivatisation and purification, or the use of more efficient mass-spectrometry, for example an MS-MS

system, could possibly lower the detection limit. However, the aim was to improve the hydroxy fatty

acid analysis excluding further purifications or derivatisations and without the requirement of highly

sophisticated MS-MS.

In the biofilms 3 (I, II) and 16 LPS 3-OH-FAs (IV), indicative of gram-negative bacteria, were

detected in laboratory experiment and full-scale drinking water distribution system B, respectively. In

the biofilms from the distribution system A, the concentrations of LPS 3-OH-FAs were below the

detection limit. In drinking and warm waters, 3 LPS 3-OH-FAs (II) were detected. 2-OH-FAs were

never found in either biofilms or in waters. In soil and sediment we found a total of 25 2-OH-FAs and

25 to 27 3-OH-FAs, indicative of gram-negative bacteria, gram-positive bacteria, fungi and plants (I).

In agricultural soils with different vegetation and agricultural managements, 36 to 65 LPS OH-FAs

have been detected from a sample of 100 g of soil (Zelles et al., 1992).  The absence of 2-OH-FAs in

samples from drinking water systems might be due to higher detection limit for 2-OH-FAs than for 3-

OH-FAs. In addition, it seems likely that microbes have lower concentrations of 2-OH-FAs than 3-

OH-FAs, as can be seen from the quantitative amounts of the soil and sediment samples (Table 6).

Zelles et al. (1992) reported 2-OH-FAs only from one soil sample, whereas 3-OH-FAs were present in

every soil of their eight soil samples.  

Straight-chain, even-numbered carbon containing 3-OH-FAs, typical for gram-negative bacteria

(Wilkinson, 1988) dominated the profile in biofilms and water (Table 4). Soil and sediment samples

contained more complex 3-OH-FA profiles, since the most abundant 3-OH-FAs accounted for a

smaller proportion of all 3-OH-FAs than samples from drinking water systems. The hydroxy fatty

acids in sediment originated from different organisms than those in soil, because 3- and 2-OH-FAs

with a carbon chain length greater than 14 carbons were generally more abundant in sediment, and

hydroxy fatty acids with a chain length shorter than 14 carbons generally were more abundant in soil.

In sediments and indoor air environments, the 3-OH-FAs typically found in drinking water systems

have accounted for most of the profile (Table 4). There is much less data available on the most

abundant 3-OH-FAs and 2-OH-FAs from environmental samples in the literature than for the PLFAs.



Table 4. The proportions of the five most abundant 3- and 2-OH-FAs in samples from studies I, II, and IV, and in some other environments
(mean±sd or range).

Five most abundant 3-OH-FAs Proportion
of all 3-OH-
FAs %

Five most abundant 2-OH-FAs Proportion
of all 2-OH-
FAs %

References

Biofilm (Finland)
laboratory scale, Kuopio (n=16) 10:0, 12:0, 14:0 100 ND I, II
full scale B (n=8) 10:0, 12:0, 14:0, 16:0, 18:0 87.8±5.0 ND IV
Water, Kuopio (n=4) (Finland) 10:0, 12:0, 14:0 100 ND II
Soil (n=2) (Finland) 8:0, 10:0, 12:0, 14:0, i-15:0 73.1±0.5 12:0, 13:0, 14:0, 16:0, 24:0 51.9±0.1 I
Sediment (n=2) (Finland) 14:0, 16:0, a-15:0, i-17:0, a-17:0 66.4±0.7 i-15:0, 16:0, 24:0, 25:0, 26:0 45.8±0.5 I
Estuarine sediment (USA) 12:0, 14:0, 16:0, 18:0 100 Parker et al., 1982
Sediments (Barbados Trench) 14:0, 12:0/ i-15:0/a-15:0, 16:0, 18:0 59.3-83.2 Guezennec and Fiala-

Medioni, 1996
Indoor air in two schools (USA) 12:0, 14:0, 16:0, 18:0 100 Liu et al., 2000
Indoor air in a water damaged building 10:0, 12:0, 14:0, 16:0, 18:0 100 Larsson and Larsson, 2001
Indoor dust in a stable or a dairy (USA) 10:0, 12:0, 14:0, 16:0, 18:0 100 Krahmer et al., 1998
ND, not detected 45
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5.3 Differences in microbial communities

5.3.1 Waters (II, III)

The microbial community structure present in drinking water differed from warm water in samples

from Kuopio (II, Fig. 1A). More PLFAs 14:1, 16:1ω7c, 18:1ω7c, 18:1ω9c and LPS 3-OH-10:0,

typical for gram-negative bacteria and i-14:0, which is frequently found in gram-positive bacteria were

common in the drinking than warm water. In contrast, microbial biomass characterising PLFAs 16:0,

18:0, gram-negative bacteria characterising cy-17:0, cy-19:0, 16:1ω5c and LPS 3-OH-14:0, and

sulphate-reducing bacteria and actinomycetes characterised by 10-Me-16:0 and TBSA, were more

common in warm than in drinking water (II, Fig. 1B, Table 1). At low temperatures microbes may

decrease the ratio of C18 to C16 acids and fatty acid cyclization, and increase fatty acid unsaturation to

maintain membrane fluidity (Suutari and Laakso, 1994; Suutari et al., 1990), all of which were

differences observed between drinking and warm water. The hydroxy fatty acid content is known to

vary with the growth temperature (Suutari and Laakso, 1994). In drinking water biofilters, PLFAs

indicated that there was an increasing gradient for gram-negative bacteria and microeucaryotes when

the biofilter operation temperature decreased, replacing markers for microbial biomass, gram-positive

bacteria and sulphate-reducing bacteria (Moll and Summers, 1999; Moll et al., 1999). In drinking

waters from distribution system B, the water residence times of 22 or 62 hours had only a minor effect

on the microbial community structure (III).

5.3.2 Biofilms and waters (II, III)

Microbial community structures differed from each other in drinking and warm waters, and laboratory

biofilms from Kuopio, Finland (II, Fig. 1A). The 14 to 16 carbon PLFAs, characteristic of gram-

positive bacteria (i-14:0, i-15:0, i-16:0, a-15:0, 10-Me-16:0), and gram-negative bacteria (14:1,

16:1ω7c,  LPS 3-OH-14:0) were more abundant in water samples than in biofilms (II, Fig. 1B, Table

1). Typical PLFAs found in the biofilms were 17 and 18 fatty acids which are commonly present in

gram-positive bacteria (a-17:0, i-18:0), gram-negative bacteria (18:1ω9c), and eucaryotic cells

(18:2ω6c), in addition to the microbial biomass indicating PLFAs (14:0, 15:0 and 18:0). Furthermore,

gram-negative bacteria characterising LPS 3-OH-10:0 and 3-OH-12:0 were more abundant in biofilms

than in waters. The ratio of C18 to C16 acids was the highest in the biofilms (21°C), intermediate in

warm water (45°C), and lowest in drinking water (7°C). The lower ratio of C18 to C16 fatty acids in

free-living bacteria than in adhered bacteria has been related with the heterogeneity present in the

culture, and the rapid selection of community according to which surface the microbes have become
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attached (Valeur et al., 1988). The differences between waters and biofilms might partly be explained

by the different temperatures. At low temperatures, the ratio of C18 to C16 acids and fatty acid

cyclization decrease, and fatty acid unsaturation increases (Suutari et al., 1990).

In drinking water distribution system B there were differences in the composition of PLFAs in the

water and biofilm samples (III). In drinking waters, the proportion of gram-negative bacteria

characterising straight-chain unsaturated and cyclopropane fatty acids was on avarege 2.0 and 5.3

times higher than in those biofilms with water residence times of 22 h and 62 h, respectively. In

contrast, the proportion of microbial biomass characterising straight-chain saturated fatty acids was 3.5

times higher in a biofilm with water residence time of 22 h hours compared to drinking waters, and 2.4

times higher in biofilm with water residence time of 62 h also compared to drinking waters. The

amount of eucaryotic cell marker, polyunsaturated fatty acids was slightly higher in drinking water

than in biofilms. Methyl-branched monounsaturated fatty acids were detected only in drinking waters.

5.3.3 Effects of phosphorus-P supplementation on biofilms (II)

The microbial communities of biofilms grown without phosphate supplementation, or those developed

for 4 weeks with 1 µg l-1 phosphate-P addition were separated from those growing for 4 or 11 weeks

with 2 or 5 µg l-1 phosphate-P supplementation (II; Fig. 1A). The proportion of 16:1ω7c and 18:1ω7c

increased linearly with the increase in the phosphate-P concentration. Phosphorus also increased the

proportion of 3-OH-14:0 and decreased the proportion of 3-OH-12:0. Hence, the proportion of gram-

negative bacteria increased and their community changed with the increase in phosphate-P in biofilms

grown for 11 weeks (II; Fig. 2; Table 1). Generally, microbial communities in biofilms were similar

already after four weeks growth, and this was independent of the amount of phosphate in water.

5.3.4 Full-scale biofilms (III, IV)

The microbial community structures in the biofilms collected from the full-scale drinking water

distribution systems A and B differed (IV, Fig. 1A). The methyl-branched PLFAs a-17:0, br-15:0b,

10-Me-16:0, TBSA, characteristic of gram-positive bacteria, straight-chain saturated acids 16:0, 18:0,

20:0, typical for microbial biomass, unsaturated 18:2, common for eucaryotic cells and cy-19:0, found

in gram-negative bacteria were more abundant in the biofilms from distribution system A than biofilms

in the distribution system B. The biofilms in distribution system B were characterised with PLFAs

methyl-branched i-15:0, a-15:0 and br-15:0a, common for gram-positive bacteria, monounsaturated

16:1ω5, 16:1ω7, 16:1ω9, 18:1ω7 and 18:1ω9, typical for gram-negative bacteria, polyunsaturated
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18:2ω6 characteristic of eucaryotic cells, and straight-chain saturated 14:0 and 15:0, indicative of

microbial biomass. The proportion of gram-negative bacteria was higher in the biofilms of distribution

system B than in those of distribution system A. The amount of 18:1ω7 represented on average

11.6±6.7 % of the total in distribution system B compared to only 1.4±2.1% in system A. The

differences in microbial community structures in biofilms collected from the two distribution systems

could be associated with several factors, such as differences in raw water sources, water purification

processes, hydraulic conditions including flow velocity and pattern, and pipe materials.

According to the PLFA profiles, the microbial community structure changed in the course of the

biofilm development time in distribution system A. The microbial community was more complex in

biofilms with a development time of 6 weeks than in biofilms grown for 23 or 40 weeks (IV, Fig. 1A).

The biofilms collected after 6 weeks from the beginning of the experiment were characterised with

PLFAs present in gram-positive bacteria (i-15:0, i-16:0, i-17:0, a-15:0, br-17:0), gram-negative

sulphate-reducing bacteria (10-Me-16:0), actinomycetes (TBSA),  and microbial biomass (14:0, 15:0,

16:0), whereas in the biofilms which had developed for 23 or 40 weeks the percentage of microbial

biomass characteristic 18:0 and  20:0 were among the commonest (IV, Fig. 1B). The water residence

time also affected the PLFA profile, and it correlated with several fatty acids after 6 (TBSA, 18:1ω7,

and 16:1ω7) and 23 (16:0, 18:0) weeks of growth (IV, Fig. 2). However, the PLFAs in biofilms after

40 weeks development time did not correlate with the water residence time, which might reflect the

more steady-state nature of microbial community in system compared to the younger biofilms.

In distribution system B, the biofilm development time affected the gram-negative bacteria community

structure. LPS 3-OH-10:0 and 3-OH-16:0 correlated positively, and 3-OH-12:0, 3-OH-15:0, and 3-

OH-17:0 negatively with the biofilm development time in biofilms with a water residence time of 22

hours (IV, Fig. 3).

5.4 Biomass

5.4.1 Biofilms (I-IV)

The viable microbial biomass, estimated from the PLFA content, was at the same level in biofilms of

the full-scale distribution systems A and B (Table 5; III, IV), but it was on average 4.2 (A) and 4.6 (B)

times lower than in the drinking water biofilms in the laboratory experiment (Table 5; I, II). R2A plate

counts also showed that biofilms from full-scale distribution systems A and B contained on average
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4.6 times and 10.8 times less CFU cm-2 (A: (4.15±6.79) x 105 CFU cm-2, n=8, B: (1.75±0.64) x105

CFU cm-2, n=4, O. Zacheus, personal communication) than biofilms in the laboratory experiment

((1.89±3.09) x 106 CFU cm-2, n=8, M. Lehtola personal communication). The mean counts of

heterotrophic bacteria in drinking water biofilms have been from 103 to 106 cfu cm-2, and total cell

counts from 105 to 106 cells cm-2 (van der Kooij et al., 1995; Pedersen, 1990; Rogers et al., 1994;

Zacheus et al., 2000) Our PLFA contents were ten to a hundred times higher than in biofilms reported

by Smith et al. (2000). In contrast, biofilms from the full-scale distribution system B contained on

average 3.4 times more LPS 3-OH-FAs than the biofilms which developed in the laboratory

experiment (Table 6), whereas in distribution system A the levels of LPS 3-OH-FAs were below the

detection limit. These differences might be related to the different number of LPS 3-OH-FAs in the

samples. The biofilm formation has been similar in many conditions independent of pipe materials

PVC, PE or stainless steel and glass or teflon (van der Kooij et al., 1995; Niquette et al., 2000;

Pedersen, 1990; Zacheus et al., 2000). Temperature could be one reason for the different PLFA levels.

In the full-scale distribution systems A and B, the biofilms were grown with water temperature of

11.2-22.5°C (n=3) and 3.5-11°C (n=7), respectively, for water leaving the waterworks (IV). In the

laboratory experiment, the biofilms were developed at a higher water temperature of 21°C (II).

Phosphate-P availability did not affect microbial, or even gram-negative bacteria biomass in the

laboratory biofilms from Kuopio, as judged by the contents of PLFAs and LPS 3-OH-FAs, (II).

However, Lehtola et al. (2002a) showed that phosphate-P addition increased the total cell counts of

bacteria, heterotrophic plate counts, and the content of ATP in biofilms. The increase in heterotrophic

plate counts, and content of ATP can be explained with the increase in microbial activity.  In addition,

phosphate supplementation has been shown to encourage microbial growth in drinking water

(Miettinen et al., 1996b; Miettinen et al., 1997b; Sathasivan and Ohgaki, 1999; Sathasivan et al.,

1997).
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Table 5. Amount of PLFAs and cell estimates1 in studies I-IV (mean±sd) and some other environments
(mean±sd or range).

PLFA content g mol Cells References

Biofilm cm-2 (Finland)
Laboratory scale, Kuopio
(n=16)

(3.32 ± 1.74) x 10-7 (1.18 ± 0.63) x 10-9 (2.37 ± 1.27) x 107 I, II

Full scale
A (n=16) (7.95 ± 7.58) x 10-8 (2.85 ± 2.73) x 10-10 (5.70 ± 5.46) x 106 IV
B (n=8) (7.21 ± 1.65) x 10-8 (2.6 ± 0.60 ) x 10-10 (5.22 ± 1.19) x 106 III, IV
Water l-1  (Finland)
Kuopio
Cold (n=2) (5.40 ± 3.03) x 10-7 (1.96 ± 1.10) x 10-9 (3.92 ± 2.20) x 107 II
Warm (n=2) (1.05 ± 0.17) x 10-6 (3.75 ± 0,61) x 10-9 (7.50 ± 1.23) x 107 II
B  (n=2) (1.47 ± 0.43) x 10-5 (5.23 ± 1.56) x 10-8 (1.05 ± 0.31) x 109 III
Soil g-1 (n=2)  (Finland) (1.01 ± 0.23) x 10-4 (3.67 ± 0.83) x 10-7 (7.35 ± 1.66) x 109 I
Sediment g-1  (n=2) (Finland) (4.09 ± 2.23) x 10-6 (1.50 ± 0.82) x 10-8 (3.00 ± 1.64) x 108 I
Biofilm accumulation
chambers cm-2 (USA)

(1.1- 2.2) x 10-11 Smith et al., 2000

Groundwaters l-1 (USA) 2.0 x10-11- 1.4 x 10-8 Chang et al., 2001
Coniferous forest soils g-1 org.
matter
Pine (Sweden) (1.32- 1.71) x 10-6 Frostegård et al.,

1993a
Spruce (Sweden) (1.05- 1.61) x 10-6 Frostegård et al.,

1993a
Pine and spruce  (Finland) (1.85- 2.85) x 10-6 Bååth et al., 1995
Pine and spruce (Finland) (2.4- 2.9) x 10-6 Pennanen et al.,

1998a; Pennanen
et al., 1998b

Successional forest soils
(Finland)

(1.00- 1.43) x 10-6 Merilä et al., 2002

Forest soils g-1 (five European
countries)

1.68 x 10-8- 1.42 x 10-7 Zelles et al.,
1995a

Peats g-1 dry wt (Sweden) 5.0 x 10-12- 1.9 x 10-8 Borga et al., 1994
Agricultural soils with
different vegetations and
agricultural managements g-1

1.69 x 10-8- 1.08 x 10-7 Zelles et al., 1992
(Germany) 4.19 x 10-8- 1.63 x 10-7 Zelles  et al., 1994
(Germany) 1.68 x 10-8- 2.04 x 10-7 Zelles  et al.,

1995a
org C (Germany) (2.56- 6.14) x 10-6 Zelles et al.,

1995b
(USA) 7.4 x 10-6- 4.56 x 10-5 Steenwerth et al.,

2003
Soils from a desert  g-1 (Israel) (1.47- 3.69) x 10-10 Steinberger et al.,

1999
Soil for rice production g-1

(USA)
(1.06- 2.30)  x 10-8 Bossio and Scow,

1998
Chinese red soils g-1  (China) 2.37 x 10-9- 4.22 x 10-8 Yao et al., 2000
Soil from a tropical ecosystem
g-1

(2.97- 3.25) x 10-9 Insam et al., 1999

Silt loam soils g-1 dry wt (USA) (2.88- 7.14) x 10-8 Ibekwe and
Kennedy, 1998
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Table  5 continues

Subsurface sediment
contaminated with
hydrocarbons g-1 dry wt

(USA) 4.80 x 10-11- 3.84 x 10-10 Fang and
Barcelona, 1998

(Australia) 3.28 x 10-11- 2.98 x 10-10 Franzman et al.,
1996

Sediments g-1 dry wt (Barbados
Trench)

(3.21-8.95) x 10-6 Guezennec and
Fiala-Medioni,
1996

Sediments g-1 (Japan) 2.60 x 10-7- 3.79 x 10-6 Rajendran et al.,
1992

5.60 x 10-7- 2.97  x 10-6 Rajendran et al.,
1994

7.0 x 10-7- 1.1 x 10-6 Rajendran et al.,
1997

1Conversion factor: 100 µmol of PLFAs g-1 dry weight, and 1 g of bacteria (dry wt) is equivalent to 2.0 x 1012 cells dry
weight  (Balkwill et al., 1988).



Table 6. Amounts of 3-OH-FAs and 2-OH-FAs and cell numbers1 in studies I, II, IV (mean±sd) and in some other environments (mean±sd or
range). For biofilm and water samples the cell numbers are derived from 3-OH-FAs.

3-OH-FAs 2-OH-FAs References

g mol g mol Cells
Biofilm cm-2 (Finland)
Laboratory scale, Kuopio  (n=16) (5.04 ± 1.22)  x 10-10 (2.13 ± 0.51) x 10-12 ND2 (2.84 ± 0.68) x 105 I, II
Full scale
A (n=16) ND IV
B (n=8) (1.70 ± 0.75) x 10-9 (6.45 ± 2.85) x 10-12 ND (8.60 ± 3.80) x 105 IV
Water, Kuopio l-1 (Finland)
Cold (n=2) (3.49 ± 1.67) x 10-9 (1.45 ± 0.68) x 10-11 ND (1.93 ± 0.91) x 106 II
Warm (n=2) (9.15 ± 1.34) x 10-9 (3.74 ± 0.51) x 10-11 ND (4.99 ± 0.68) x 106 II
Soil g-1 (n=2) (Finland) (1.68  ±  0.03) x 10-5 (7.21 ± 0.12) x 10-8 (2.70 ± 0.07) x 10-6 (1.01 ± 0.01) x 10-8 (1.10 ± 0.02) x 1010 I
Sediment g-1  (n=2) (Finland) (3.14 ± 0.26) x 10-4 (1.14 ± 0.10) x 10-6 (2.9 ± 0.27) x 10-5 (9.08 ± 0.87) x 10-8 (1.64 ± 0.14) x 1011 I
Agricultural soils with different
vegetations and agricultural
managements

g-1 5.24 x 10-10- 2.30 x 10-9 Zelles et al., 1992
  All OH-FAs  g-1 (Germany) (1.1- 3.9) x 10-9 Zelles et al., 1994

     All OH-FAs  g-1 (Germany) 7.0 x 10-10-  4.4 x 10-9 Zelles et al., 1995a
Forest soils g-1 (five European
countries)

3.80 x 10-9- 1.68 x 10-8 Zelles et al., 1995a

Soils from a desert  all OH-FAs g-1

(Israel)
2.4 0x 10-11- 1.22 x 10-10 Steinberger et al., 1999

Indoor air in two schools m-3

(USA)
(1.17- 8.96) x 10-9 Liu et al., 2000

Indoor dust in a stable m-3 (USA) (4.60 ± 2.20) x 10-9 Krahmer et al., 1998
Indoor dust in a dairy m-3 (USA) (7.50 ± 3.40) x 10-9 Krahmer et al., 1998

1 Conversion factor: 15 µmol of LPS OH-FAs g-1 dry weight, and 1 g of bacteria (dry wt) is equivalent to 2.0 x 1012 cells dry weight  (Balkwill et al., 1988)
2 ND, not detected

52
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The microbial biomass increased in biofilms with increasing water residence time in full-scale

distribution systems A and B, as judged by the PLFA content (III, IV). In drinking water distribution

system A, biofilms with water residence time of 141 hours contained on average 2.5 and 3.5 times

more PLFAs than the biofilms with water residence time of 11 hours and 39 hours, respectively. Also

R2A plate count results showed that biofilms from full-scale distribution system A with water

residence time of 141 hours ((1.37±0.90) x 106 CFU cm-2, n=2) contained on average 15.1 and 12.8

times more viable counts of heterotrophic bacteria than those with water residence time of 10 h

((9.07±4.24) x104 CFU cm-2, n=3) and 39 h ((1.06±0.77) x 105 CFU cm-2, n=3), respectively (O.

Zacheus, personal communication). In the biofilms of the full-scale distribution system B, the PLFA

content was on average 1.5 times higher in biofilms with a water residence time of 62 hours compared

to those collcted with a water residence time of 22 hours. Similarly, biofilms with a water residence

time of 62 hours (2.1 x105 CFU cm-2, n=1) contained on average 1.3 times more viable counts of

heterotrophic bacteria than those with a water residence time of 22 hours (1.64±0.73) x105 CFU cm-2,

n=3) in distribution system B (III). The bacterial biomass has been higher in the dead ends of a

distribution system compared to main pipes, because of longer residence times and lower chlorine

residuals (Niquette et al., 2001). However, Block et al. (1993) have reported a decrease in microbial

biomass after a residence time of 40 hours due to nutrient limitation. In the water distribution system

B, the biomass of gram-negative bacteria seemed to increase in biofilms with the development times,

as judged by the increase in level of LPS 3-OH-FAs. The biofilms developed for 41 weeks contained

on average 2.1 times more LPS 3-OH-FAs than those which had only grown for 11 weeks (IV).

However, the increase of LPS 3-OH-FAs, might also be related to an accumulation of extracellular

polymeric substances (EPS), as the biofilm development time did not affect the total amount of

PLFAs. The greatest accumulation of extracellular polymeric substances is known to occur in the late

stationary growth phase, when cells are subjected to maximal stress (Uhlinger and White, 1983;

Williams and Winpenny, 1977).

5.4.2 Water samples (II, III)

There were on average 27.3 and 14.0 times more PLFAs in drinking water from distribution system B

than in the drinking and warm water from Kuopio, respectively (Table 5). R2A plate counts showed a

similar trend. There was on average 80 times more viable counts of heterotrophic bacteria in drinking

water from distribution system B (8.00±0.85) x106 CFU l-1 (O. Zacheus, personal communication) than

the corresponding number in drinking water from Kuopio (1.00x 105 CFU l-1) (II). Biomass in
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groundwater samples from a uranium mill tailings site have varied from 2.0 x 10-11 to 1.4 x 10-8 mol l-1

PLFAs (Chang, 2001), and thus were of the same order of magnitude as those found in drinking and

warm waters from Kuopio and distribution system B (Table 5).

The content of PLFAs was on average 1.9 times greater in warm water than in drinking water (Table 5;

II). The LPS 3-OH fatty acid content in warm water also was on average 2.6 times greater than the

amount in drinking water (Table 6; II). The bacterial biomass, presented as ng C /ml, has been found to

be greater in warm water than in cold water samples from several buildings (Zacheus and Martikainen,

1995). In distribution system B, the PLFA content in drinking water was at the same level with a water

residence time of 22 or 62 hours (III).

5.4.3 Soil and sediment samples (I)

The quantitative amount of PLFAs in the soil was almost the same as found earlier for agricultural

soils, but smaller than that reported for coniferous forest soils (Table 5). The OH-FA content in studied

soil was higher than that reported for soils ealier (Table 6). In the sediment, the PLFA content was in

the same range as found earlier from Japan or Barbados, but much higher than in subsurface sediments

contaminated with hydrocarbons (Table 5). The amount of lipid biomarkers is, however, strongly

dependent on the environmental conditions (Table 5 and 6).

5.4.4 Use of conversion factors (I-III)

Cell numbers can be calculated from the amount of lipid biomarkers using conversion factors.

However, the conversion factors for sediments (Balkwill et al, 1988) were inaccurate at least for OH-

FAs in drinking water systems, soil and sediment (I-III, Tables 5 and 6). The ratio of PLFAs to LPS

OH-FAs might be different in drinking water biofilms compared to subsurface sediments, where the

conversion factors have been originally used. Specific conversion factors should be created for

different environments. In aquifers, PLFA conversion factors have failed due to the small sizes of cells

resulting from the extreme low nutrient availability (Haldeman et al., 1995). Other factors affecting

conversion factors could be taxonomic differences, physical state of microbes and physical conditions

of environment (for a review, see Green and Scow, 2000).
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5.5 Practical implications

Lipid biomarkers are sensitive methods to analyse microbial communities, biomass and physiological

status of microbes without need for culturing, and a great amount of information is achieved with one

analysis. PLFAs give information on viable microbes that are not necessarily culturable. Total changes

in microbial communities from totally different systems can be compared. Samples can be stored in a

freezer several months or even years before analysis. Reagents are rather cheap, although purchase

costs for GC-MS can be high. However, good working practices are needed to avoid lipid

contamination when small amount of samples, e.g biofilms, are analysed. In this study, 20 to 30 liters

of water and biofilms from surface area of 42-63 cm2 were sufficient for analysis. If we want to

include also minor fatty acids in our lipid profile, then larger samples or more sophisticated detection

techniques (e.g. MS-MS system) will be needed. Intepretation of results needs good knowledge of

literature.
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6 CONCLUSIONS

The lipid biomarkers proved to be applicable, sensitive and specific molecules for the analysis of

microbial communities, biomass and physiological state of microbes in drinking water systems.

1. The analytics was developed to determine 2- and 3-hydroxy fatty acids directly from the

extraction residue of lipids without any further purification or derivatisation. The sensitivity of

the method allowed detection of 3 or 16 LPS 3-OH-FAs from drinking water biofilms and

drinking waters. 2-OH-FAs were not detected in biofilms or waters. Both 2- and 3-OH-FAs

were detected from soil and sediment samples.

2. A total of 21 to 26 PLFAs were detected in water or biofilm samples, with most of the detected

PLFAs being typical for microbial biomass or gram-negative bacteria (16:0, 18:0, 16:1ω7,

18:1ω7). The most abundant LPS 3-OH-FAs were typical for gram-negative bacteria (3-OH-

10:0, -12:0, -14:0, -16:0, -18:0). Analyses of PLFAs and OH-FAs complemented each other.

3. The lipid biomarker profiles differed mostly between water and biofilm samples. In the

laboratory experiments, an increase in the phosphate-P availability, increased the proportion of

PLFAs 16:1ω7c and 18:1ω7c and LPS 3-OH-14:0 and decreased the proportion of 3-OH-12:0

after 11 weeks of growth, indicating that an increase had occurred in the gram-negative bacteria

and possible changes in their community structure. However, the total amount of lipid

biomarkers was unaffected. The microbial communities in two full-scale distribution systems

differed, possibly reflecting the differences in raw water, water purification processes and

distribution systems. In distribution system A, the microbial community structure in biofilms

which had developed in 6 weeks was more complex than those growing for 23 or 40 weeks.

The viable microbial biomass, estimated on the basis of PLFAs, increased with increasing

water residence time in full-scale distribution systems. In distribution system B, the quantities

of LPS 3-OH- FAs increased in parallel with the development time of the biofilms.
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