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ABSTRACT

Polychlorinated dibenzo-p-dioxins, dibenzofurans (PCDD/Fs) and polychlorinated biphenyls 
(PCBs) are widespread environmental contaminants. Due to their lipophilicity and persistency, 
they accumulate in the food chain. The most potent of these compounds exert several toxic 
effects in experimental animals such as immunosuppression, body weight loss, enzyme 
induction, developmental defects and tumor promotion. In humans, accidental or occupational 
exposures to high doses of PCDD/Fs and/or PCBs have caused lesions of skin, chloracne, 
developmental defects, and increased the risk of cancers. Exposure to PCDD/Fs has been 
associated with mineralisation defects in the first molar teeth, and PCBs are suspected to cause 
neurobehavioural effects as well as to function as endocrine disrupters. 

PCDD/Fs have never been intentionally manufactured, but PCBs have been used in variety of 
applications e.g. dielectric fluids in transformers, hydraulic systems, and paints. There has been a 
significant reduction in the PCDD/F and PCB environmental levels due to control measures. 
Concentrations have declined by as much as 90% in the environment from those of the late 
1960s. Today the major sources of PCDD/Fs and PCBs are burning processes (waste 
incineration and backyard burning), metal industries, contaminated soil and sediments, and 
landfill sites with contaminated material. 

 Knowledge about the levels of intake and body burden of PCDD/Fs and PCBs in a population 
helps to focus efforts to diminish population exposure to these hazardous compounds. The 
effects of already applied measures to limit the population exposure to these contaminants can be 
judged by examining the temporal changes in intakes and body burdens. History and current 
occurrence of these compounds provide a way to assess future development of concentrations. 
The high PCDD/F and/or PCB exposed group of people would be the best target group to study 
hazardous effects of PCDD/Fs and PCBs and therefore finding such a group is essential for any 
epidemiological study.  

This study has evaluated the characteristics of average intake of PCDD/Fs and PCBs in Finland. 
Adipose tissue concentrations of PCDD/Fs and PCBs were measured in the general population, 
and concentrations in three geographical areas were compared. A survey of Finnish breast milk 
samples from two locations was conducted. A pilot study of professional fishermen was 
conducted. PCDD/F and PCB intake assessments, body burdens in the general population, breast 
milk concentrations, and change with time of these contaminants were compared with the 
corresponding results from Europe or around the world. 

Intake studies revealed that the average adult Finnish intake of PCDD/Fs and PCBs was 1.5 pg 
WHO-TEq/kg bw/day which is below the suggested tolerable daily intake (TDI) of 2 pg WHO-
TEq/kg bw/day according to EU SCF. When comparing to European countries, the intake of 
PCDD/Fs was similar and the intake of PCBs was slightly lower in Finland. An annual decrease 
of 6% in the PCDD/F intake during the 1990s has occured. Fish and fish products contributed 
most (60%-95%) to the intakes in Finland, this being due to the high contribution of Baltic Sea 
fish contaminated with these substances. It was proposed that in the imminent future, any 
changes in time in PCDD/F and PCB intakes would mostly be attributable to changes in 
population food habits and not to changes in the occurrence of these contaminants in foodstuffs. 
This is not surprising since changes in concentrations in fish take place very slowly and the 
results suggest that the decline of concentrations in Baltic herring has levelled off during the last 



5

decade. In addition, the contribution of contaminants in other foodstuffs to the intake and 
concentrations has been small when compared to fish in Finland especially during the last years.     

Adipose tissue concentrations of PCDD/Fs (median 24 pg WHOPCDD/F-TEq/g) and PCBs 
(median 17 pg WHOPCB-TEq/g) in the general Finnish population were comparable to European 
concentrations. After age adjustment, the body burdens declined as one moves from the coastal 
areas to more inland areas. This decrease was suggested to be due to differences in the 
consumption of fish species i.e. Baltic herring were consumed more frequently in coastal than in 
inland areas. Although no numerical estimate from the available data could be made, the 
population based concentration frequency graph suggested that exposure of Finnish population 
to these contaminants have been declining during the last decades. Professional fishermen were 
shown to represent a highly exposed population. Their concentrations were 2 to 4 times higher 
than in other men of the same age. The WHOPCDD/F-TEq concentrations in serum fat of 
fishermen were at maximum 500 pg/g fat.   

A decline similar to other countries was detected in the breast milk concentrations of PCDD/F 
and PCBs, being annually 5% and 6%, respectively. A difference in concentrations in breast 
milk was found between the capital and Kuopio area until 1994 but in the most recent study from 
the year 2000, this difference had disappeared. In the year 2000, the average concentration of 
WHOPCDD/F-TEq was 9.4 pg/g fat, and WHOPCB-TEq 5.9 pg/g fat, both concentrations being 
close to European levels. 

Assessment of congener patterns of PCDD/Fs and PCBs in diet and human samples indicated that 
dioxins bioaccumulate more efficiently than furans, and lower chlorinated PCBs have a lower 
bioaccumulation property than higher chlorinated ones. The differences in bioaccumulations 
suggest that the TEF values alone are not capable in depicting differences of PCDD/F and PCB 
congeners between different matrices and trophic levels. 

Keywords: PCDD/F, dioxin, PCB, dietary intake, Baltic herring, Finnish population, body 
burden, breast milk, fishermen
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TIIVISTELMÄ 

Klooratut dibentso-p-dioksiinit, dibentsofuraanit (PCDD/F) ja klooratut bifenyylit (PCB) ovat 
kaikkialle levinneitä ympäristömyrkkyjä. Rasvaliukoisuutensa ja pysyvyytensä takia ne kertyvät 
ravintoverkossa. Kaikkein haitallisimpien niistä on todettu aiheuttavan koe-eläimissä mm. 
vastustuskyvyn heikkenemistä, painonlaskua, vierasainemetabolian aktivoitumista, 
kehityshäiriöitä ja kasvaimia. Tapaturmaisesti tai työperäisesti korkeille PCDD/F- ja/tai PCB-
pitoisuuksille altistuneilla ihmisillä on raportoitu klooriakne, kehityshäiriöitä sekä kasvanut 
syöpäriski. Ensimmäisten pysyvien poskihampaiden mineralisaatiohäiriöt on yhdistetty korkeaan 
PCDD/F altistukseen, ja PCB:eiden on epäilty vaikuttavan haitallisesti keskushermoston 
kehitykseen ja häiritsevän hormonien toimintaa.    

Dioksiineja ja furaaneja ei ole valmistettu tarkoituksellisesti, kun taas PCB:lle on ollut lukuisia 
eri käyttötarkoituksia, esim. muuntajaöljyinä, hydrauliikkanesteinä ja lisäaineina maaleissa. 
Päästörajoitukset ovat merkittävästi pienentäneet PCDD/F- ja PCB-yhdisteiden pitoisuuksia 
ympäristössä. Pitoisuudet ovat laskeneet jopa 90 % 1960-luvun lopulta alkaen. Olemassaolevia 
lähteitä ovat erilaiset polttoprosessit (jätteenpoltto ja pienpoltto), metalliteollisuus, saastuneet 
maat ja sedimentit sekä saastuneita materiaaleja sisältävät kaatopaikat. 

Tietous yhdisteiden saannista sekä ihmisissä esiintyvistä pitoisuuksista auttaa kohdentamaan 
toimenpiteitä, joilla tehkkaimmin vähennetään ihmisten altistumista näille haitallisille 
yhdisteille. Jo toteutettujen päästöjen rajoitusten tehokkuutta voidaan arvioida analysoimalla 
pitoisuuksien muutosta ajan mukana. Nykyhetken ja historian tunteminen auttaa altistumisen 
tulevaisuuden ennustamisessa. Jotta altistumisen aiheuttamia terveyshaittoja päästäisiin 
parhaiten tutkimaan, olisi tärkeätä löytää ryhmä, joka altistuu PCDD/F- ja PCB-yhdisteille 
selvästi keskimääräistä enemmän.   

Tässä tutkimuksessa selvitettiin suomalaisten: a) PCDD/F- ja PCB-saanti ja sen erityispiirteitä, 
b) keskimääräiset PCDD/F- ja PCB-kudospitoisuudet ja verrattiin pitoisuuksia alueellisesti, c) 
äidinmaitojen PCDD/F- ja PCB-pitoisuudet kahdella alueella sekä d) ammattikalastajien 
dioksiini- ja PCB-pitoisuuksia. Pitoisuustuloksia sekä niissä tapahtuneita muutoksia verrattiin 
vastaaviin tutkimuksiin Euroopassa ja muulla maailmassa. 

Suomalaisten aikuisten keskimääräiseksi PCDD/F- ja PCB-päiväsaanniksi saatiin 1,5 pg WHO-
TEq/kg rp (ruumiinpainokilo) kohti, joka on alle EU:n elintarvikealan tiedekomitean ehdottaman 
sallittavan päiväsaannin (TDI), 2 pg WHO-TEq/kg rp. Dioksiinien ja furaanien osalta saanti 
Suomessa vastaa eurooppalaista saantia, mutta PCB:lle altistutaan Suomessa hiukan vähemmän 
kuin muulla Euroopassa.  Tuloksista määritettiin vuosittainen 6 % alenema PCDD/F saannissa 
1990-luvun aikana. Kalan ja kalatuotteiden osuus saannista oli suuri (60 %-95 %), joka johtuu 
Itämeren kalan runsaasta käytöstä. Itämeren kalan osoitettiin olevan saastunut PCDD/F- ja PCB-
yhdisteillä. Tuloksista arvioitiin, että muutokset väestön ruokavaliossa vaikuttavat enemmän 
altistumiseen, kuin muutokset ravintoaineiden PCDD/F- ja PCB-pitoisuuksissa. Tämä on 
ilmeistä, sillä muutokset kalojen  haitallisten aineiden pitoisuuksissa ovat hitaita.     

Kudospitoisuuksissa (PCDD/F mediaani 24 pg WHOPCDD/F-TEq/g ja PCB mediaani 17 pg 
WHOPCB-TEq/g) suomalaisten pitoisuudet vastasivat eurooppalaisia. Kun tulokset ikävakioitiin, 
pienenivät pitoisuudet siirryttäessä rannikolta sisämaahan. Pitoisuuksien ero johtui kalalajien 
kulutuseroista eri alueilla niin, että rannikoilla käytetään enemmän silakkaa ja muita Itämeren 
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kaloja. Väestöstä mitatuista pitoisuuksista pääteltiin myös, että suomalaisten altistuminen 
PCDD/F:lle ja PCB:lle on pienentynyt viimeisten vuosikymmenten aikana. Tämä oli ilmeistä, 
sillä vakioaltistuksella ja 7-8 vuoden puoliintumisajalla odotettavissa olevaa aluksi nousevaa ja 
noin 40 ikävuoden jälkeen tasoittuvaa pitoisuuskäyrää ei löytynyt väestötasolla. 
Ammattikalastajien osoitettiin altistuvan keskimääräistä väestöä enemmän PCDD/F:lle ja 
PCB:lle. Heistä mitatut pitoisuudet olivat 2-4 kertaa korkeammat kuin samanikäisillä 
keskimääräistä väestöä edustavilla miehillä. WHOPCDD/F-TEq seerumipitoisuudet olivat 
enimmillään 500 pg/g rasvaa kohden.  

Suomalaisten äidinmaitojen vuosittaiset pitoisuuksien alenemat (PCDD/F:ssa 5 % ja PCB:ssä 6 
%) olivat samansuuruiset muiden maiden kanssa ja vastasivat saantiarvioissa määritettyä laskua. 
Vielä 1994 määritetyissä äidinmaitojen pitoisuuksissa oli pääkaupunkiseudun ja Kuopion välillä 
ero, mutta uusimmissa, vuonna 2000 määritetyissä äidinmaidoissa eroa ei enää ollut. Vuonna 
2000 keskimääräiset pitoisuudet olivat WHOPCDD/F-TEq 9,4 pg/g rasvaa kohden ja WHOPCB-TEq
5,9 pg/g, jotka vastasivat eurooppalaisia tasoja. 

Tutkituista johdosprofiileista pystyttiin päättelemään, että dioksiinit kertyvät furaaneja 
tehokkaammin ravinnosta ihmiseen. Pienemmän kloorautumisasteen omaavat PCB-yhdisteet 
taas kertyivät heikommin ihmisiin verrattuna korkeammin kloorattuihin johdoksiin. Nämä 
johdosten kertymiserot osoittavat, että nykyään käytössä olevat toksisuusekvivalenttikertoimet 
(TEF) eivät pysty kuvaamaan eri johdosten eroja eri matriiseissa ja eri ravintoketjun tasoilla. 

Avansanat: PCDD/F, dioksiinit, PCB, saanti, silakka, suomalainen, kudospitoisuus, äidinmaito, 
kalastaja
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ABBREVIATIONS 
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AMAP   Arctic Monitoring and Assessment Programme 
ANOVA  analysis of variance 
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I-TEF   international toxic equivalency factor according to NATO/CCMS 
I-TEQ/I-TEq  toxic equivalent quantity according to I-TEFs 
IUPAC   International Union of Pure and Applied Chemistry 
JECFA    The Joint FAO/WHO Expert Committee on Food Additives 
LOD   limit of determination 
LOQ   limit of quantitation 
MAFF   Ministry of Agriculture, Fisheries and Food 
MBM   market basket method 
N-TEQ/N-TEq Nordic toxic equivalent quantity 
OC   organochlorine compounds 
PBDE   polybrominated diphenyl ether 
PCB   polychlorinated biphenyl 
PCB-TEF  toxic equivalency factor for PCBs according to Ahlborg et al. 1994 
PCB-TEQ/-TEq  toxic equivalent quantity according to PCB-TEFs 
PCDD   polychlorinated dibenzo-p-dioxin
PCDF   polychlorinated dibenzofuran 
PCDD/F  polychlorinated dibenzo-p-dioxin/ polychlorinated dibenzofuran 
SCF   Scientific Committee on Food 
SD   standard deviation 
SSIF   selective study of individual foodstuffs 
STS   soft tissue sarcoma 
TCDD   2,3,7,8-tetrachlorodibenzo-p-dioxin
TDI   tolerable daily intake 
TEF   toxic equivalency factor 
TEq/TEQ  TCDD-toxic equivalent quantity 
TWI   tolerable weekly intake 
USEPA   United States Environmental Protection Agency 
VIF   variance inflation factor 
WHO   World Health Organization 
WHOPCB-TEF  TCDD-toxic equivalency factor according to WHO for PCBs 
WHOPCB-TEQ/ -TEq toxic equivalent quantity according to WHOPCB-TEF
WHOPCDD/F-TEF TCDD-toxic equivalency factor according to WHO for PCDD/Fs 
WHOPCDD/F-TEQ/ -TEq toxic equivalent quantity according to WHOPCDD/F-TEF
NATO/CCMS North Atlantic Treaty Organization/Committee on the Challenge of Modern 

Society
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CHAPTER 1 

GENERAL INTRODUCTION 

1. LITERATURE REVIEW 

Structure and sources 

 Polychlorinated dibenzo-p-dioxins (PCDDs) and dibenzofurans (PCDFs) have a planar 

aromatic tricyclic structure with 1-8 chlorine atoms as substituents (Fig 1). It is possible to create 

75 different PCDDs and 135 PCDFs, which differ from each other in the number and positions 

for the chlorine atoms. From the human/biota point of view, 17 PCDD/Fs with lateral (2,3,7,8-) 

chlorine substitution pattern are considered to be toxicologically important (WHO/IPCS 1989). 

  Polychlorinated biphenyls (PCBs) have two benzene rings attached to each other, with 

1-10 chlorine atoms as substituents (Fig 1). Theoretically it is possible to form 209 different 

congeners of PCBs, but even the technical mixtures of PCBs have only a fraction of the total 

possible number of congeners. Some PCBs are called dioxin-like (co-planar/non-ortho-) PCBs. 

Those congeners do not have any or have only one chlorine atom (mono-ortho-PCBs) in the 

ortho-position to the carbon-carbon bond between the two benzene rings. A dozen of these 

congeners are believed to express similar toxicogical effects as PCDD/Fs to humans and biota 

(van den Berg et al. 1998).     

Fig 1. Chemical structures of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated 

dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs). 

PCDD/Fs have never been intentionally manufactured. However they do occur as minor 

impurities in many chlorinated chemicals (e.g. in PCBs, and in chlorinated pesticides as 

fungicides and herbicides) (WHO/IPCS 1989, Vartiainen et al. 1995, Michalek et al. 1996). 

Burning processes in the presence of chlorine and with metal catalysts are sources of PCDD/Fs. 

It has been estimated that municipal solid waste incineration and accidental fires, together with 

backyard burning, contribute significantly to PCDD/F emissions to land and water in the EU 

countries (Wenborn et al. 1999). The metal-processing industries e.g. secondary Pb, Cu, and Al 
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production also contribute to PCDD/F emissions, but not to the same extent as burning processes 

(Wenborn et al. 1999). Sources of PCDD/Fs in Finland originate partly from air emissions 

coming from Central Europe, because prevailing winds in Finland are from the southwest 

direction (Shatalov et al. 2003). Some of the air emissions are domestic in origin and earlier 

emissions can be attributed to pulp and paper industries using elemental chlorine for pulp 

bleaching (Wulff et al. 1993, MacDonald et al. 1998). The production and application of a 

chlorophenol mixture called “Ky-5” which was used as a wood preservative in sawmills from the 

1940s until the mid 1980s led to soil and sediment contamination by PCDD/Fs in many sawmill, 

landfill, and disposal sites as well as in sediments of the Gulf of Finland in the Baltic Sea 

(Vartiainen et al. 1995, Kitunen and Salkinoja-Salonen 1990, Assmuth and Vartiainen 1994, 

Isosaari et al. 2002). The prohibition of usage of chlorinated pesticides and chlorophenols, and 

abandonment of elemental chlorine for pulp bleaching, together with reductions in emissions to 

air (Quaß et al. 2004) have led to a nearly 90% decrease in PCDD/F emissions since the 1980s in 

European countries and also in Finland. 

 PCBs have many useful characteristics, e.g. non-flammability, electrical insulating 

properties, and stability and they have been used globally in a great variety of applications. So-

called closed uses of PCBs included their use as dielectric fluids in transformers, capacitors, and 

as heat transfer fluids, and in hydraulic systems. Open use has involved the application as 

pesticide extenders, sealants, carbonless copy papers, industrial oils, paints, adhesives, plastics, 

flame retardants and controlling of dust on roads (http://europa.eu.int/comm/environment/ 

waste/pcbs/index.htm). At least 1.5 million tonnes of PCBs were produced between 1930s and 

1980s under different trade names such as Aroclor, Clophen, and Kanechlor (Bernes 1998). 

Nowadays PCBs can be found everywhere around the globe including the Arctic (AMAP 2004). 

The Baltic Sea sediments reveal that the maximum emissions to the area have occured during the 

late 1960s and early 1970s (Isosaari et al. 2002, Kjeller and Rappe 1995). Current surface 

sediment concentrations of PCBs are 2-5 times lower than during the periods of maximum 

concentrations (Isosaari et al. 2002, Kjeller and Rappe 1995, Konat and Kowalewska 2001). 

Persistency and toxicity 

 PCDD/Fs and PCBs are environmentally stable and (in particular 2,3,7,8-chlorine 

subsituted PCDD/F congeners) biologically persistent (Sinkkonen and Paasivirta 2000). These 

characteristics together with high lipophilicity; log Kow for PCDD/Fs ranging from 6.1 to 8.2 

(Mackay et al. 1992), and for PCBs from 4.9 to 8.2 (Mackay et al. 1991), result in accumulation 
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of PCDD/Fs and PCBs in food chain (AMAP 2004). The half-lives of 2,3,7,8-chlorine 

substituted PCDD/Fs in man have been estimated to be on average seven years, with values 

ranging from few months to decades (Poiger and Schlatter 1986, Flesch-Janus et al. 1996, Liem 

and Theelen 1997, Geyer et al. 2002), and with the corresponding PCB half-lives in man ranging 

from months to several years (Chen et al. 1982, Taylor and Lawrence 1992, Ryan et al. 1993). 

The toxicity of PCDD/Fs involves the cytosolic aryl hydrocarbon receptor (AHR), which 

is a ligand-activated transcription factor. Binding of PCDD/Fs to AHR initiates the expression of 

several genes in a cell (Poellinger 2000) and leads to toxic effects by mechanisms, which are still 

not fully understood. The most toxic congener of PCDD/Fs is 2,3,7,8-tetrachlorodibenzo-p-

dioxin (TCDD), which serves as a reference compound in terms of its affinity to AHR for the 

other PCDD/Fs, and also for dioxin-like PCBs. The concept of TCDD toxic equivalency factor 

(TEF) was developed to describe the total toxic equivalent quantity (TEq) of a mixture of 

PCDD/Fs and/or dioxin-like PCBs (Safe 1990). The TEF concept presupposes that the molecule 

will bioaccumulate in the food chain, will possess a structural similarity to PCDD/Fs, will bind 

to AHR, and elicit AHR-mediated responses. The most recent TEFs are based on a consensus 

statement agreed at a convention organized by the World Health Organization (WHO) in 

Stockholm in 1997 (van den Berg et al. 1998). Table 1 describes these so-called WHOPCDD/F-

TEFs and WHOPCB-TEFs together with previously used TEFs (NATO/CCMS 1988, Ahlborg et 

al. 1994). Equation 1 presents the calculation of TEq in a sample. 

(1) TEq =  
=

n

i 1

(Ci * TEFi) in which Ci is the concentration of a congener with a TEFi value. 

Although there are numerous toxic endpoints of PCDD/Fs and PCBs shown in 

experimental animals (Pohjanvirta and Tuomisto 1994), only a few of them have been 

demonstrated in humans. Chloracne is associated with PCDD/Fs in both occupational and 

accidental exposures to high amounts (Zober et al. 1990, Mocarelli et al. 1991, Ott et al. 1993, 

Geusau et al. 2001). Cancer is another human endpoint associated with PCDD/Fs, and the 

International Agency for Research on Cancer (IARC) has concluded, based on experimental 

animal studies, that TCDD is a human carcinogen (IARC 1997, http://www-

cie.iarc.fr/htdocs/monographs/vol69/dioxin.html). IARC has concluded that for other PCDD/F 

congeners there is inadequate evidence of carcinogenicity to humans. According to IARC, PCBs 

are probably carcinogenic to humans (http://www-cie.iarc.fr/htdocs/monographs/suppl7/ 

polychlorinatedbiphenyls.htm). 

Although epidemiological studies attempting to link PCDD/F exposure (i.e. a mixture of 

chemicals) to cancer have suffered from simultaneous exposures to other kinds of chemicals e.g. 
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chlorinated herbicides and fungicides, and limited exposure measurements, it has been estimated 

that an increased total cancer risk can be associated with high exposures to PCDD/Fs (Fingerhut 

et al. 1991, Flesch-Janus et al. 1995, Ott and Zober 1996). On the other hand, individual 

concentration measurements were used in assessing an average and usually low level diet-driven 

exposure to PCDD/Fs in a Finnish case-control study on soft tissue sarcoma (STS). In this study 

it was not possible to associate increased risk of STS to increased PCDD/F concentration 

(Tuomisto et al. 2004).

Table 1. 

Toxic equivalency factors (TEFs) according to WHO (van den Berg et al. 1998) (WHOPCDD/F-

TEFs and WHOPCB-TEFs) together with NATO (NATO/CCMS 1988) TEFs for PCDD/Fs (I-

TEF) and PCB-TEFs according to Ahlborg et al. (1994) for PCBs. 

Congener I-TEF WHOPCDD/F-TEF Congener PCB-TEF WHOPCB-TEF 
2,3,7,8-TCDD 1 1 PCB 81 - 0.0001 
1,2,3,7,8-PeCDD 0.5 1 PCB 77 0.0005 0.0001 
1,2,3,4,7,8-HxCDD 0.1 0.1 PCB 126 0.1 0.1 
1,2,3,6,7,8-HxCDD 0.1 0.1 PCB 169 0.01 0.01 
1,2,3,7,8,9-HxCDD 0.1 0.1 PCB 105 0.0001 0.0001 
1,2,3,4,6,7,8-HpCDD 0.01 0.01 PCB 114 0.0005 0.0005 
OCDD 0.001 0.0001 PCB 118 0.0001 0.0001 
2,3,7,8-TCDF 0.1 0.1 PCB 123 0.0001 0.0001 
1,2,3,7,8-PeCDF 0.05 0.05 PCB 156 0.0005 0.0005 
2,3,4,7,8-PeCDF 0.5 0.5 PCB 157 0.0005 0.0005 
1,2,3,4,7,8-HxCDF 0.1 0.1 PCB 167 0.00001 0.00001 
1,2,3,6,7,8-HxCDF 0.1 0.1 PCB 170 0.0001 - 
2,3,4,6,7,8-HxCDF 0.1 0.1 PCB 180 0.00001 - 
1,2,3,7,8,9-HxCDF 0.1 0.1 PCB 189 0.0001 0.0001 
1,2,3,4,6,7,8.HpCDF 0.01 0.01    
1,2,3,4,7,8,9-HpCDF 0.01 0.01    
OCDF 0.001 0.0001    

Developmental toxicity of PCBs (and possibly of PCDFs), have been demonstrated with 

Yusho and Yu-Cheng accidents, where people were exposed to high concentrations of these 

contaminants accidentally by consuming contaminated rice-oil (Rogan et al. 1988, Masuda 

1996). PCDD/Fs have effects on developmental processes - it was noted that mineralisation 

defects of the first molar teeth in children were assosiated with high, breast feeding derived 

exposure to PCDD/Fs, but not to PCBs (Alaluusua et al. 1996, Alaluusua et al. 1999). PCB 

exposure has been connected to neurotoxic and neurobehavioural effects as well as to alterations 

of thyroid hormone levels and lower birth weights (Feeley and Brower 2000). It has been 

claimed that fishermen’s wives in Sweden gave birth to lower birth-weight children which was 

attributed to increased PCB exposure (Rylander et al. 1995, Rylander et al. 1996). PCDD/Fs may 

also act as endocrine disrupters. A remarkably low boy to girl ratio was found in families of 
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Seveso where the father had been exposed as a prepubertal boy to high levels of TCDD during 

the well known massive release of this agent that occurred in that town (Mocarelli 2000). 

Guidelines and legislation 

 Recently a number of authorities have assessed or re-assessed risks of PCDD/Fs and 

PCBs. In many of the newer risk assessments, the focus has turned away from cancer risk 

towards developmental risks. The differences in risk assessments originate from uncertainties 

about dioxin toxicity. The risk assessment is based on animal studies and extrapolation over 

species to humans also leads to uncertainties and differences between assessments. Risk 

assessments often describe tolerable daily or tolerable weekly intakes (TDI or TWI, 

respectively).

WHO re-evaluated the risk assessment of PCDD/Fs and related compounds in a 

consultation held in 1998. Taking into account laboratory animal results on decreased sperm 

count, immune suppression, increased genital malformations, neurobehavioural effects, and 

endometriosis, the consensus meeting ultimately suggested a range of TDI intakes for humans 

(1-4 pg TEq/kg body weight (bw)) (van Leeuwen and Younes 2002). The upper bound limit 

should be considered as a maximal TDI while the lower bound limit represents an intake below 

which the intakes should ultimately decrease.  

Based on the rodent studies, The Scientific Committee on Food (EU SCF) of the 

European Commission assessed a TWI of 14 pg WHO-TEq/kg bw for PCDD/Fs and for dioxin-

like PCBs (European Commission 2001). This guideline is in line with the tolerable monthly 

intake (70 pg WHO-TEq/kg bw) established by the Joint FAO/WHO Expert Committee on Food 

Additives, JECFA (WHO/FAO 2001). The recommendation for TDI of WHO-TEq of the UK 

Committee on Toxicity of Chemicals in Food, Consumer Products and Environment (COT) is 

also in line with EU SCF and JECFA, 2 pg WHO-TEq/kg bw (COT 2001). 

The recent re-evaluation by United States Environmental Protection Agency (USEPA) 

ended up to a TDI range of 0.001 to 0.01 pg WHO-TEq/kg bw (USEPA 2000). In its risk 

assessment, USEPA has considered cancer risk as the primary risk of PCDD/Fs unlike others 

mentioned here. The recent re-evaluations of tolerable daily intake are summarized in table 2. 
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Table 2. 

Recent guidelines (in bold) on tolerable intakes (as pg WHO-TEq / kg bw) of PCDD/Fs and 

PCBs according to risk assessments by different organizations.

Organization Year Tolerable daily intake Tolerable weekly intake Tolerable monthly 
intake 

WHO 1998 1-4 7-28a 31-124 a

EU SCF 2001 2 a 14  62 a

JECFA 2001 2.3 a 16 a 70
COT 2001 2 14 a 62 a

USEPA 2000 0.001-0.01 0.007-0.07 a 0.031-0.31 a

a values calculated by dividing or multiplying by a factor of 7 or 31. 

 In addition to providing guidelines of intakes of PCDD/Fs and PCBs, in many countries 

legislative or guideline activities have been undertaken, to limit PCDD/F and PCB emissions, in 

order to protect humans and the environment from the impact of PCDD/Fs and PCBs (Basler 

1994, Farland et al. 1994, Johansson and Ahlborg 1994, Kimura 1994, Newstead and Gemmil 

1994, Gilman et al. 1995). The impact of these activities has been reflected in the declining 

emissions (Quaß et al. 2004). 

 The Council of the European Union in 2001 in a Council Directive 2001/102/EC decreed 

the maximum levels of PCDD/Fs in substances and products for animal nutrition (EC 2002) and 

there is a Council Regulation 2375/2001 setting maximum levels of PCDD/Fs in certain 

foodstuffs (EC 2001). With these legislative measures, the EU strives to protect its inhabitants 

from exposure to PCDD/Fs, since marketing of feed and foodstuffs exceeding these maximum 

levels is not allowed within the EU countries. Only PCDD/Fs were included in these regulations. 

The Commission reviewed the maximum levels by the end of 2004 and at the beginning of year 

2005 made a proposal to add dioxin-like PCBs to the set of compounds. The maximum levels in 

force for PCDD/Fs as well as the proposed maximum levels for dioxin-like PCBs in foodstuffs 

are presented in table 3. From the Finnish point of view, Finland (and also Sweden) were granted 

a derogation from the maximum limit value for fish and fish products (EC 2001). This 

derogation allows these countries to permit fish, in which the maximum level is exceeded, to be 

sold, but prohibits the export of such fish to other EU countries. This derogation states that both 

Finland and Sweden must annually report to the Commission the monitoring results of the levels 

of PCDD/Fs in fish from the Baltic region and the measures taken to reduce the human exposure 

to PCDD/Fs from fish. In the proposal given early in 2005, this derogation of Finland and 

Sweden has been proposed to become a permanent derogation, and also the new EU countries 

like Estonia, Latvia, and Lithuania would have the same permanent derogation.
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Table 3.

Maximum levels in certain foodstuffs, set by the Council of the European Union, of PCDD/Fs as 

WHOPCDD/F-TEqs, and proposed total WHO-TEq (including PCDD/Fs and PCBs) maximum 

levels.

Products WHOPCDD/F-TEqs   Proposed for total WHO-TEq    
Meat and meat products from 
- Ruminants (bovine animals, sheep) 
- Poultry and farmed game 
- Pigs 
Liver and derived products 

3 pg/g fat 
2 pg/g fat 
1 pg/g fat 
6 pg/g fat 

4.5 pg/g fat 
4 pg/g fat 
1.5 pg/g fat 
12 pg/g fat 

Muscle meat of fish and fishery products 4 pg/g fresh weight (fw) 8 pg/g fresh weight (fw) 
Milk and milk products, including butter fat 3 pg/g fat 6 pg/g fat 
Hen eggs and egg products 3 pg/g fat 6 pg/g fat 
Oils and fats 
- Animal fat 
from ruminants 
from poultry and farmed game 
from pigs 
from mixed animal fat 
- Vegetable oil 
- Fish oil intended for human consumption 

3 pg/g fat 
2 pg/g fat 
1 pg/g fat 
2 pg/g fat 
0.75 pg/g fat 
2 pg/g fat 

4.5 pg/g fat 
4 pg/g fat 
1.5 pg/g fat 
3 pg/g fat 
1.5 pg/g fat 
10 pg/g fat 

Human intake of PCDD/Fs and PCBs 

 Food intake represents the main route of human exposure to PCDD/Fs and PCBs with a 

contribution of more than 90% of the total exposure and of this dietary exposure, 80% originates 

from food of animal origin (Dougherty et al. 2000, Parzefall 2002).  

It is a challenging task to compare the dietary exposure of populations to PCDD/Fs and 

PCBs in different countries. PCDD/F and PCB dietary intake assessment studies can include 

different amounts of food items and food categories analysed for contaminants, and also 

different methods are used for assessing subjects’ food consumption habits. Usually all 

seventeen 2,3,7,8-chlorine substituted PCDD/F congeners are measured, but with PCBs, the 

situation is not so clear. In some studies, only non-ortho-PCBs have been measured, while others 

include also mono-ortho-PCBs (dioxin-like PCBs) and a set of other PCBs. Since dioxin-like 

PCBs play an important role in the total TEq in food samples, especially of animal and fish 

origin (Alcock et al. 1998), they should not be ignored when assessing total intake of these 

organic pollutants. In addition to these differences, usage of lower bound (where non-detected 

congeners are designated as nil), medium bound (where non-detected congeners are designated 

as half of LOQs) or upper bound (where non-detected congeners are designated as LOQs) 

concentrations of PCDD/Fs and PCBs may have a major impact on the final estimated exposure 

levels or on assessment of sources of PCDD/Fs and PCBs in a study population. 
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Table 4 lists the most recent average adult daily intakes of WHOPCDD/F-TEqs and 

WHOPCB-TEqs in various countries along with contributions of different food groups to the 

PCDD/F or PCB intake.  

Daily intakes of WHOPCDD/F-TEq (including lower, medium, and upper bound results) in 

Western Europe ranged between 21 and 97 pg or from 0.3 to 1.45 pg WHOPCDD/F-TEq/kg bw. 

On average in Western Europe, the daily intake was 59 pg or 0.86 pg WHOPCDD/F-TEq/kg bw. 

The difference between lower and upper bound intake estimates can range from 25% to 40% 

(Becher et al. 1998, FSA 2003). The contribution (from 24% to 44%) of dairy, meat, and egg 

products on daily intake of PCDD/Fs has been much larger than the contribution from fish (6%-

17%) in countries where the per capita consumption of fish is the lowest. Such countries in 

Europe are Germany, UK, Belgium, and the Netherlands (Welch et al. 2002, EC 2004). In 

countries, such as Sweden, France, Norway, and Spain, where fish consumption is higher, the 

contribution of fish and fish products has dominated, ranging from 30% to 43%.  

Daily intakes of WHOPCB-TEqs in Western Europe were comparable to PCDD/F intakes, 

from 35 to 145 pg or 0.4 to 2.1 pg WHOPCB-TEq/kg bw. On average, the daily intake of PCBs 

was 74 pg or 0.84 pg WHOPCB-TEq/kg bw. There is much less data on PCBs, but the 

contribution of different food groups to PCB intake seems to be rather similar in central Europe, 

but in Norway and Sweden, the contribution of fish and fish products to PCB intake was 45% 

and 51%, respectively.  

On average, the total daily intake of WHOPCDD/F-TEq and WHOPCB-TEq (1.7 pg WHO-

TEq/kg bw) is well below the upper range of WHO guideline on tolerable daily intake, which 

was the immediate goal of WHO when it set these guidelines (van Leeuwen and Younes 2002). 

The corresponding guideline by EU SCF (2 pg WHO-TEq/kg bw/day) is quite close to the 

current average intake in Western European countries (EU SCF). The Netherlands, UK, and 

Sweden have provided estimates about how large a percentage of their populations is exceeding 

the EU SCF guideline for daily intake of WHO-TEq. In the Netherlands this value is 8% of the 

whole population, in UK it is 1.1% of the adult population, whereas in Sweden as much as 12% 

of the adult population exhibit daily intakes exceeding the EU SCF guideline (Freijer et al. 2001, 

FSA report 38/03, Lind et al. 2002).     

From the USA there are two studies giving quite different, but still comparable to 

European, estimates for WHOPCDD/F-TEq medium bound daily intake, 37 and 108 pg (or 0.53 

and 1.73 pg WHOPCDD/F-TEq/kg bw) (Schecter et al. 2001, South et al. 2004). The reported daily 

intake of WHOPCB-TEq (Schecter et al. 2001) corresponded to the lower end of PCB intake in 

Western Europe. South et al. (2004) have reported daily intake estimates of WHOPCDD/F-TEq in 
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lower, medium, and upper bound concentrations and the upper bound intake was a drastic 2.7 

times higher than the lower bound intake estimate. Also the contributions of some of the foods to 

the intake changed considerably when the upper bound method instead of the lower bound 

method was used for the intake estimation. The contribution of meat and eggs was in lower 

bound method 50% and the corresponding contribution of food group “Others” was 27%. When 

moving to the intake calculated with upper bound method, the respective contributions switched 

to 27% and 58%. 

There are recent intake studies available from China, Korea, Japan, and Taiwan. Daily 

intakes of WHOPCDD/F-TEq (including lower, medium, and upper bound results) ranged from 21 

to 82 pg/day or from 0.32 to 1.64 pg WHOPCDD/F-TEq/kg bw/day. In Japan, Korea, and Taiwan, 

the consumption of fish is high and also the contribution of fish to total intake of PCDD/Fs and 

PCBs was high in these countries, although in the study from Korea the group “Others” 

contributed by 51% to the daily intake of PCDD/Fs. In China, where the consumption of fish is 

lower (EC 2004) the dominating source of PCDD/Fs was the food group “meat and eggs”. 

The lowest intake estimations have been published from New Zealand, where the lower 

bound intake of PCDD/Fs was 3.8 pg WHOPCDD/F-TEq /day (or 0.047 pg WHOPCDD/F-TEq/kg

bw/day) and the intake of PCBs 7.8 pg WHOPCB-TEq /day (or 0.098 pg WHOPCB-TEq/kg

bw/day). The medium bound intake estimates for PCDD/Fs were almost four times higher and 

for PCBs 1.5 times higher than the lower bound estimates, being 0.18 pg WHOPCDD/F-TEq/kg

bw/day and 0.15 pg WHOPCB-TEq/kg bw/day, respectively.  

Congeners contributing the most to the WHOPCDD/F-TEq intake profile have been 

reported to be  2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, 2,3,4,7,8-PeCDF, and 1,2,3,6,7,8-HxCDD 

(Tsutsumi et al. 2001, Focant et al. 2002, Hsu et al. 2002, Diletti et al. 2004, Fernández et al. 

2004). The higher contribution of the group “fish” to the total intake of WHOPCDD/F-TEqs 

increases the contribution of 2,3,7,8-TCDF in the intake profile (Tsutsumi et al. 2001, Focant et 

al. 2002, Hsu et al. 2002). For WHOPCB-TEqs, the main contribution to the intake has been 

reported to come from congener PCB 126 (Tsutsumi et al. 2001, Fernández et al. 2004), but 

studies including all relevant (dioxin-like) PCBs are scarce and sometimes only non-ortho-PCBs 

have been measured. 

Due to their higher food intake in relation to the body weight, children are exposed to 

higher PCDD/F and PCB doses than adults. In this respect, crude estimations of intake of breast-

feeding infants have been performed by assuming that an infant weighing 5 kg eats 800 ml of 

breast milk with 3.5% fat. Using WHO-TEq concentrations in breast milk from the third round 

of WHO coordinated breast milk studies (Leeuwen and Malisch 2002) from figure 3, the daily 
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intake of an infant will vary from 32 to over 200 pg WHO-TEq/kg bw. This range is about 20 to 

100 times the TDI suggested by EU SCF. In the USA the intake of PCDD/Fs of breastfeeding 

infants (0-1 years) was about 20 times higher than that of general adult population (see table 4), 

(Schecter et al. 2001).  

Patandin et al. (1999) concluded that breast feeding infants were more exposed to total 

TEq by a factor of 50, compared to young adults (20-25 years). For children aged 1-5, the factor 

was 3, for 6-10 years old children the factor was 2 and for children at ages 10-20 it was 1.5; 

these factors have been verified in the following studies.  In Tarragona, Catalonia, Spain the 

daily intake of PCDD/Fs per bw of children, aged 4-9 years, was about twice (2.1 pg 

WHOPCDD/F-TEq/kg bw/day) the intake of adults (Bocio and Domingo 2005). In Germany, the 

daily intake of PCDD/Fs of children in the age range 14-47 months was on an average 1.6 pg I-

TEq/kg bw/day, ranging from 0.68 to 5.4 pg I-TEq/kg bw/day (Wittsiepe et al. 2001). In the 

USA, the intake of chilren aged 1-11 years had an intake of PCDD/Fs and PCBs that was about 

2.5-3 times higher than the intake of adult population, see table 4 (Schecter et al. 2001, South et 

al. 2004). In UK, in schoolchildren aged from 4 to 14 years the daily intakes were on average 

0.67 and 0.7 pg WHO-TEq/kg bw/day for PCDD/Fs and PCBs, respectively. This was about 1.5 

times the intake of the adult UK population. For toddlers in the age range 1.5 to 4 years, the 

intakes were about twice the adult intakes (FSA 2001). In the Netherlands the intake of 

PCDD/Fs and PCBs in two year old children was 2.5 times the corresponding intake of the 

general adult population, and intakes of 10 years old children were 1.4 times the intake of the 

adult population (Freijer et al. 2001).  

Time-trend of human intake of PCDD/Fs and PCBs 

 Figure 2 illustrates the time-trends of WHOPCDD/F-TEq and WHOPCB-TEq intake in the 

adult UK population between 1982 and 2001, and in the general population of the Netherlands 

between 1978 and 1999. In twenty years, the intakes of PCDD/Fs and  PCBs in UK declined by 

90% and 80% (4.8% and 4.3% annually), respectively (FSA 2001), and in the Netherlands by 85 

and 88% (4% and 4.2% annually), respectively (Liem and Theelen 1997, Freijer et al. 2001). 

The decrease was most dramatic in the period from the end of 1970s till the beginning of 

1990s and has been levelling off during the past 9 years in both contaminant groups in the 

Netherlands and in WHOPCB-TEq in the UK. The decrease of WHOPCDD/F-TEq has been steeper 

in the UK than the decline of WHOPCB-TEq and there has been no obvious levelling off in the 

decline. As a result of this the contribution of PCBs to the intake has risen over the reporting 
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period in the UK, representing 36% in 1982 and 55% in 2001. This indicates that restrictions 

placed on industrial emissions have worked more efficiently for PCDD/Fs than for PCBs in UK, 

which might be explained by the fact that the sources are more diffuse due to the abundant use 

of PCBs in many kinds of applications. During the same time period, from 1978 to 1999 in the 

Netherlands, marker PCB (marker PCBs include congeners PCB 28, 52, 101, 118, 138, 153, and 

180) intakes have also declined by 93%, being 83 ng/kg bw/day in 1978, 39 ng/kg bw/day in 

1984, 10 ng/kg bw/day in 1994, and 5.6 ng/kg bw/day in 1999 (Bakker et al. 2003). In 

Germany, the PCDD/F intake has declined by 68% from 1989 to 1999 (from 2.3 to 0.73 pg I-

TEq/kg bw/day) (Vieth et al. 2000), which is quite similar to the corresponding trends of 

PCDD/F intake in UK and the Netherlands. In Sweden, intakes of PCDD/Fs at the beginning of 

1990s were three times as high as those measured in 1999 and the intake of PCBs had declined 

by 75% (Lind et al. 2002). 

In Tarragona, Catalonia, Spain the adult intake of PCDD/Fs decreased from 210 pg I-

TEq/day in 1998 to 59.6 I-TEq/day (63.8 pg WHOPCDD/F-TEq/day) in 2002. This was 

attributable to a reduction of PCDD/F concentrations in most foodstuffs, because of the 

decreasing deposits from the atmosphere, and also because dietary habits of the population has 

changed towards a more healthy diet including more vegetables, fruits, and dairy products 

(Bocio and Domingo 2005). Between the years 2000 and 2002 in Catalonia, Spain, the intake of 

children aged 4 to 9 years decreased by 15% annually, from 3.2 to 2.1 pg WHOPCDD/F-TEq/kg

bw/day (Llobet et al. 2003, Bocio and Domingo 2005) An annual decrease of 11% between 

1995 and 1998 in the intake of PCDD/Fs (from 2.6 to 1.6 pg I-TEq/kg bw/day) of children was 

reported in Germany (Wittsiepe et al. 2001).



Table 4.
Average adult daily intakes of WHOPCDD/F-TEqs and WHOPCB-TEqs as pg (pg/kg bw). Contributions of different food groups to the PCDD/F 
intake (PCB intake). Bolded studies may include lower (0), medium (0.5 * LOQ) and/or upper bound (LOQ) estimations of daily intake.  
 Daily intakes, pg (pg/kg bw)  % Contribution of foods from PCDD/Fs (PCBs)  
Country, study period WHOPCDD/F-TEq WHOPCB-TEq Method Dairy Meat and eggs Fish Otherse Reference 
Norway, 1998 51 (0.73c)d 86 (1.2c)d 0 13 (20) 17 (24) 43 (48) 27 (8) Becher et al. 1998 
The Netherlands, 1999a 45 (0.60)  46 (0.61) 0 24 (30) 26 (29) 9.6 (22) 41 (19) Freijer et al. 2001 
Belgium, 2001 65 (1.00) 68 (1.04)b 0 30 (25) 31 (36) 40 (40) NA Focant et al. 2002 
United Kingdom, 2001 21 (0.3c) 28c (0.4) 0     FSA report 38/03 
USA, 2002 20 (0.29c)  0 12 50 11 27 South et al. 2004 
Japan, 2000 45 (0.89) 68 (1.36) 0 7.5 (2.1) 19 (13) 67 (83) 6.9 (1.1) Tsutsumi et al. 2001 
Taiwan, 2001 21 (0.32)  0 13 25 63 NA Hsu et al. 2002 
New Zealand, 1998 3.8 (0.047)d 7.8 (0.098)d 0 1.5 (29) 2.5 (27) 31 (37) 65 (7) Buckland et al. 1998 
        
Sweden, 1999 57 (0.79) 41 (0.56) 0.5 * LOQ 21 (12) 20 (21) 39 (51) 21 (16) Lind et al. 2002 
Germany, 1996 61 (0.88)d  Unknown 31 31 17 21 Malisch 1998 
Germany, 1999 51 (0.73) d  0.5 * LOQ 39 41 11 9 Vieth et al. 2000 
Italy, 1996 45 (0.74) d  0.5 * LOQ 26 39 35  SCOOP 2000 
Spain, 2000a 95 (1.36)  0.5 * LOQ 27 15 30 28 Llobet et al. 2003 
Spain, 2002 64 (0.91)  0.5 * LOQ 20 11 34 34 Bocio et al. 2005 
USA, 2002 37 (0.53c)  0.5 * LOQ 11 34 7 49 South et al. 2004 
USA, 1995 108 (1.73) 38 (0.61) 0.5 * LOQ 31 (24) 36 (51) 5.7 (17) 27 (7.7) Schecter et al. 2001 
China, 2000 72 (1.20)  Unknown 16 56 29 NA Wu et al. 2002 
Korea, 1999 30 (0.51)d  Unknown 1 8.7 39 51 Kim et al. 2000 
Japan, 2000 82 (1.64) 79 (1.59) 0.5 * LOQ 6.2 (2.3) 12 (12) 37 (71) 45 (15) Tsutsumi et al. 2001 
Taiwan, 2001 26 (0.40)  0.5 * LOQ 15 32 53 NA Hsu et al. 2002 
New Zealand, 1998 15 (0.18)d 12 (0.15*)d 0.5 * LOQ 16 (23) 39 (42) 12 (23) 33 (12) Buckland et al. 1998 
        
Norway, 1998 85 (1.2c)d 106 (1.5c)d LOQ 8 (17) 10 (31) 28 (45) 54 (7) Becher et al. 1998 
United Kingdom, 2001 28 (0.4 c) 35c (0.5) LOQ 44 (20) 19 (28) 6.0 (31) 31 (20) FSA report 38/03 
France, 1999 97 (1.45)d  LOQ 33 15 26 26 SCOOP 2000 
Italy, 2003  12 (0.20)  LOQ 50 50 NA NA Diletti et al. 2004 
Spain, 2000-2003 95 (1.36c) 145 (2.1) LOQ 14 (14) 58 (37) 9 (15) 18 (34) Fernández et al. 2004 
USA, 2002 53 (0.76c)  LOQ 10 27 5 58 South et al. 2004 
Taiwan, 2001 32 (0.48)  LOQ 16 36 47 NA Hsu et al. 2002 
a including children, b only non-ortho-PCBs, c average weight of 70 kg used, d I-TEqs or PCB-TEqs, e group Others may include vegetables, fruits, cereals, oils, and ready 
meals
NA, not analysed 
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Fig 2. Time-trend of intakes of WHOPCDD/F-TEqs (diamonds) and WHOPCB-TEqs

(squares) as pg/kg bw/day in the UK between 1982 and 2001 (open diamonds and 

squares) (MAFF 1984, 1994, 1998, FSA 2001), and in the Netherlands (closed 

diamonds and squares) (Liem and Theelen 1997, Freijer et al. 2001) between 1978 

and 1999. 

PCDD/Fs and PCBs in breast milk 

Breast milk is a useful bioindicator for assessing and comparing of the exposure of 

populations to PCDD/Fs and PCBs since its collection is easy and non-invasive. In addition, 

breast milk has a high content of fat, which makes the analysis easy to perform. It is assumed 

that the levels of PCDD/Fs and PCBs in breast milk are similar to those in plasma (from fasting 

blood), serum lipid (from fasting blood), and the adipose tissue of the mother (Norén 1988). 

Since 1987, WHO has coordinated esposure studies on levels of PCDD/Fs and PCBs in 

breast milk. By adhering to the WHO sampling protocol, the target groups should be 

homogenous between studies. Selection of breast milk donors in WHO studies has been based 

on the following criteria: the mother should be primipara, both mother and child should be 

healthy, the pregnancy should have been normal, the mother should breastfeed only one child 
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during the sampling, the mother should have lived in the area for at least 5 years, and the mother 

who is exclusively breastfeeding should be included. In the third round of WHO breast milk 

studies, the analysis of pooled breast milk samples was also performed in a single laboratory in 

order to avoid between laboratory variability of the results. Figure 3 depicts the most recent 

(2000-2002) median WHOPCDD/F-TEq and WHOPCB-TEq fat based concentrations in primiparae 

mothers all over the world measured in the third round of WHO breast milk study and other 

subsequent studies. 

The WHOPCDD/F-TEq median concentrations in Western Europe were on average 11.1 

pg/g fat and ranged between 6.9 pg/g fat in Ireland and 31.5 pg/g fat in Belgium, but it must be 

kept in mind that concentrations in Belgium originated from breast milk samples from an area 

known to be contaminated with PCDD/Fs (Focant et al. 2002).

Fig 3. Median WHOPCDD/F-TEq and WHOPCB-TEq fat based concentrations in 

primiparae mothers in different countries measured in the third round of WHO 

breast milk study (Leeuwen and Malisch 2002) and studies (*) after that from 

Taiwan (Chao et al. 2004) and from Belgium (Focant et al. 2002). 

This PCDD/F contamination of breast milk samples in Belgium was confirmed by WHOPCB-

TEq concentrations, which were in Belgium 10 pg/g fat corresponding to an average of 

WHOPCB-TEq median concentrations in Western Europe, 10.3 pg/g fat (range 4.7 – 16.3 pg/g 

fat). The contribution of WHOPCB-TEq to the total WHO-TEq in Western Europe was on 

average 45%. 

 Median WHOPCDD/F-TEq and WHOPCB-TEq in breast milk
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 In Eastern Europe, the WHOPCDD/F-TEq median concentrations were lower than those 

found in Western Europe and ranged from 6.1 pg/g fat in Bulgaria to 10 pg/g fat in Ukraine 

being on average 8.0 pg/g fat. The contribution of WHOPCB-TEq to the total WHO-TEq was 

about 10% higher in Eastern than in Western Europe (53%) and was the highest in the Czech 

Republic, Russia, and Ukraine (65%). This might be due to longer lasting duration of use of 

PCB in the Eastern European countries. 

 In Taiwan, Australia, and New Zealand, the median concentrations of both WHOPCDD/F-

TEq and WHOPCB-TEq were comparable with each other, being on average 6.7 and 4.0 pg/g fat, 

respectively. The smallest median concentrations of both WHOPCDD/F-TEq and WHOPCB-TEq in 

the third round of WHO breast milk study were measured in Brazil, 3.9 and 1.8 pg/g fat, 

respectively. The high median concentration of WHOPCDD/F-TEq (22.8 pg/g fat) in Egypt may 

be due to breast milk samples from PCDD/F contaminated locations, since the WHOPCB-TEq

concentration was quite comparable to that in other countries, being 6.0 pg/g fat. 

 The six marker PCB median concentrations in the third round of WHO breast milk study 

ranged from 16 ng/g fat in Brazil to 502 ng/g fat in the Czech Republic. Between Eastern and 

Western Europe there was no difference in the marker PCB median concentrations, these being 

200 and 195 ng/g fat, respectively.  

When comparing breast milk concentrations between studies other than the WHO 

studies, it must be kept in mind that there might be deviations from WHO protocols in sample 

collection, for example variation in the time of sampling of the milk and perhaps not all studied 

mothers have been primiparae. A woman’s body burden of lipophilic chemicals, including 

PCDD/Fs and PCBs, in adipose tissue and breast milk becomes depleted over the duration of 

lactation. Fürst et al. (1989) reported that concentrations of PCDD/Fs in mothers breast-feeding 

their second child were 20-30% lower than in primiparae mothers (Fürst et al. 1989). Similar to 

Fürst et al. percentages of PCDD/F decrease during one breast-feeding period have been 

reported by Beck et al. (1994). A monthly decrease of 12% for bioaccumulating PCBs and 

PCDD/Fs was reported in a Swedish study (Dahl et al. 1995). One extreme example of the 

decrease in concentrations of PCDD/Fs and PCBs in breast milk comes from a case study, in 

which a mother had breast-fed her twins for 30 months. During this time period, her breast milk 

concentrations of I-TEQs decreased by 69% and PCB concentrations by 78% on average 

(Schecter et al. 1998). In addition, the age of studied mothers can vary between studies, and 

results may not be representative for the whole country in question. A recent example of local 

differences in concentrations of PCDD/F and PCB TEq is illustrated with results from the Czech 
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Republic. In the third round of WHO breast milk studies, the median sum of WHOPCDD/F-TEq

and WHOPCB-TEq was 23 pg/g fat (range 21.8 to 39.2 pg/g fat), but in a more recent study the 

median TEqs ranged from 28 to 65 pg/g fat depending on the origin of the breast milk samples 

(Bencko et al. 2004).  

In table 5 there are the most recent concentrations of WHOPCDD/F-TEq or I-TEq of breast 

milk from countries, which did not provide samples to the third round of WHO breast milk 

study. Five of those concentrations originate from the second round of WHO coordinated breast 

milk studies, and those concentrations ranged from 4.3 pg I-TEq/g fat in Albania to 27.4 pg I-

TEq/g fat in Belgium (Liem et al. 1996). In other studies in table 5 the WHOPCDD/F-TEq

concentration ranged from 3.1 in China to 26.4 pp/g fat in the UK (Schecter et al. 1994, Wearne 

et al. 1996).  

Congeners contributing the most to the WHOPCDD/F-TEq in breast milk have been 

reported to be  2,3,4,7,8-PeCDF, 1,2,3,7,8-PeCDD, 2,3,7,8-TCDD, and 1,2,3,6,7,8-HxCDD, 

while OCDD contributes the most to the PCDD/F sum concentrations. PCB 126, PCB 156, and 

PCB 118 are the congeners dominating in the WHOPCB-TEq, while contribution to the sum of 

PCB congeners are dominated by PCB 153, PCB 138, PCB 180, and PCB 170 (Norén and 

Meironyté 2000, Focant et al. 2002, Chao et al. 2004, Bencko et al. 2004). These contributions 

of PCDD/F and PCB congeners are similar to those reported in intake studies for those food 

groups which contribute most to the intakes. Due to local contamination patterns or due to 

differences in dietary habits, the contributions might change to some extent.
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Fig 4. Time-trend of WHOPCDD/F-TEqs (open diamonds) and WHOPCB-TEqs 

(open squares) as pg/g in Swedish breast milk samples (Norén and Meironyté 

2000, Leeuwen and Malisch 2002), and of I-TEqs in German (closed diamonds) 

breast milk samples. (WHO 1989, Jensen and Slorach 1991, Liem et al. 1996 

,EC 1999) between 1976 and 2002. 

Time-trend of PCDD/Fs and PCBs in breast milk  

 Collecting longitudinally breast milk samples, as recommended by WHO, provides a 

way of assessing, whether control on sources of PCDD/Fs and PCBs has been effective. 

Similarly to the dietary intake time-trend, the levels of PCDD/Fs and PCBs have been 

decreasing in breast milk. Figure 4 illustrates the time-trends of WHOPCDD/F-TEqs and 

WHOPCB-TEqs in breast milk samples from Sweden between 1972 and 2002 (Norén and 

Meironyté 2000, Leeuwen and Malisch 2002), and of I-TEqs from Germany between 1984 and 

1997 (WHO 1989, Jensen and Slorach 1991, Liem et al. 1996 ,EC 1999). The decrease of 

WHOPCDD/F-TEq and WHOPCB-TEq concentrations during the last 30 years in Sweden has been 
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about 80%, being annually 2.7% (Norén and Meironyté 2000). In Germany the total decrease in 

the given period of I-TEq was 62%, i.e. about 4.8% decline per year. 

Table 5 lists the annual declines of I-TEq or WHOPCDD/F-TEq from different countries. 

On average, the annual decline was 4.0% (median 4.1%) ranging from 1% in Ukraine to 6.6% in 

Brazil. No regional or sampling period differences were observed from those annual declines in 

table 5. 

In Swedish breast milk samples from 1967 to 1997 the concentrations of PCBs initially 

increased, peaking in 1972 and have been decreasing since that time. The total decrease of PCBs 

from 1972 was about 70% which was annually 2.8% corresponding to the annual decrease of 

WHOPCDD/F-TEq in the same breast milk samples (Norén and Meironyté 2000). Between the 

second and third WHO coordinated breast milk studies the concentrations of marker PCBs 

decreased on average by 3.9% ranging from 0.9% in Russia to 6.4% in Norway (countries 

participating in both studies were: Croatia, Czech Republic, Hungary, Norway, Russia, Slovakia 

Republic, Spain, The Netherlands, and Ukraine) (WHO 1996, Leeuwen and Malisch 2002).

Table 5.
Annual decline (%) of concentration of I-TEq or WHOPCDD/F-TEq from different countries along 
with the most recent estimations of concentrations of I-TEq or WHOPCDD/F-TEq (pg/g fat) in 
breast milk in those countries, which did not provide samples to the third round of WHO 
coordinated breast milk studies. 
Country I-TEq or WHOPCDD/F-TEq (year) Annual decline % Reference 
Albania 4.3a (1992) - Liem et al. 1996 

Austria 11.9a (1992) 6 (1986-1992) WHO 1989, Liem et al. 1996 

Belgium 27.4a (1992) 4.8 (1986-1992) WHO 1989, Liem et al. 1996 

Brazil  6.6 (1992-2001) Paumgartten et al. 2000, Leeuwen and Malisch 2002 

Canada 16.2a (1992) 3 (1981-1992) Ryan et al. 1993, Liem et al. 1996 

China 3.1b (1994) - Schecter et al. 1994a 

Croatia  4.7 (1992-2001) Liem et al. 1996, Leeuwen and Malisch 2002 

Czech Republic  5.9 (1992-2001) Liem et al. 1996, Leeuwen and Malisch 2002 

Denmark 15.2a (1992) 2.3 (1986-1992) Jensen and Slorach 1991, Liem et al. 1996 

Hungary  2.8 (1986-2001) WHO 1989, Leeuwen and Malisch 2002 

Japan 18.8b (1995) 4.5 (1980-1995) Jensen and Slorach 1991, Iida et al. 1999 

Kazahkstan 22.6b (1996) - Petreas et al. 1996 

Lithuania 16.7b (1993) - Becher et al. 1995 

The Netherlands  5.1 (1985-2001) Jensen and Slorach 1991, Leeuwen and Malisch 2002 

New Zealand  4.1 (1986-2001) WHO 1989, Leeuwen and Malisch 2002 

Norway  4.1 (1986-2001) WHO 1989, Leeuwen and Malisch 2002 

Russia  3.5 (1992-2001) Liem et al. 1996, Leeuwen and Malisch 2002 

Slovakia  1.2 (1992-2001) Liem et al. 1996, Leeuwen and Malisch 2002 

Spain  2.9 (1990-2001) Gonzalez et al. 1996, Leeuwen and Malisch 2002 

UK 26.4b (1993) 5.5 (1987-1993) Wearne et al. 1996 

Ukraine  1 (1992-2001) Liem et al. 1996, Leeuwen and Malisch 2002 

USA 18.8b (1990) - Schecter et al. 1990 
a I-TEq, b WHOPCDD/F-TEq 
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PCDD/Fs and PCBs in adipose tissue and serum 

 Table 6 lists recent average human adipose tissue and serum fat concentrations of sum of 

PCDD/Fs, WHOPCDD/F-TEq, PCB 126, PCB 153, marker PCBs, and WHOPCB-TEq from 

different countries. These studies do not include occupationally or accidentally exposed subjects 

but are based on random sampling of the general population. The high correlation of 2,3,7,8-

TCDD and other PCDD/F congeners between serum and adipose tissue of the same individual 

makes it possible to use both matrices if one wishes to assess the human body burden of 

PCDD/Fs (Patterson et al. 1988, Schecter et al. 1991). PCBs are included in table 6 irrespective 

of the claim by Whitcomp et al. (2005) who stated that using serum concentrations of OCs for 

exposure assessment of young women may result in divergence from the use of adipose tissue 

concentrations, at least if linear dependency between matrixes is assumed. These workers 

reported linear correlation coefficient (r > 0.6) between lipid adjusted serum and fat 

concentrations of PCB congeners: 138, 153, 180, 188, 194, and 206. 

Human exposure to PCDD/Fs and PCBs starts already before birth during pregnancy, since 

PCDD/Fs and PCBs are transferred from mother to fetus via the placenta. Placenta PCDD/F 

concentrations corresponded in the study of Abraham et al. (1998) with the concentrations in 

breast milk, but concentrations of PCBs in placenta were on average only 30% of the 

corresponding breast milk concentrations. In a study from Åland, Finland, the concentrations of 

PCB congeners PCB 118, PCB 138, PCB 153, and PCB 180 were two to three fold lower in cord 

blood than in venous blood of delivering mothers (Hagmar et al. 1998). A similar result was 

reported in a Swedish study where the sum concentration of 15 PCB congeners in cord blood 

plasma was 41% lower than the corresponding concentration in maternal blood plasma (Meironyt

Guvenius et al. 2003). Analysis of PCDD/Fs and PCBs from infants and children have rarely been 

performed due to obvious ethical reasons. From Germany there exist two studies of adipose tissue 

levels of PCDD/Fs in infants; in the first one, infants aged 3.8-23 months exhibited a concentration 

range from 2.1 to 22 pg I-TEq/g fat (Beck et al. 1994), and in the second study of 3 stillborns and 

17 infants (0.43-44 weeks of age) had PCDD/F concentrations from 1.55 to 29.6 pg I-TEq/g fat, in 

their adipose tissues (Kreuzer et al. 1997). In Dallas, Texas, the concentrations of WHOPCDD/F-TEq 

in the whole blood in children from 0-14 years ranged between 4.12 and 5.58 pg/g fat and this was 

about 20% of the concentration measured in the whole blood of adults in the same area (22.3 pg/g 

fat) (Schecter et al. 2003). 

Many studies have reported that concentrations of PCDD/Fs and PCBs increase with the 

age of the subject (Päpke 1998, Sjödin et al. 2000,  Covaci et al. 2002, Costabeber and 
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Emanuelli 2003, Wicklund Glynn et al. 2003, Harden et al. 2004, Kim et al. 2005). Therefore 

the concentrations listed in table 6 must be interpreted with caution since the mean age of the 

subjects has varied between studies. The mean concentration of WHOPCDD/F-TEq in Europe was 

29.5 pg/g fat in the study populations with a mean age of 52 years. There were three studies 

from Spain in which the mean age was 50 years and the mean WHOPCDD/F-TEq concentration 

was 20.6 pg/g fat (Wingfors et al. 2000, Bocio et al. 2004). This was a very similar 

concentration to that measured in Germany (18.8 pg WHOPCDD/F-TEq/g fat) five years earlier in 

a population with a mean age of only 37 years (Päpke 1998). In older populations from Sweden, 

Belgium, and France (mean age 59.6 years) the WHOPCDD/F-TEq concentration was 42 pg/g fat. 

Concentrations of the sum of PCDD/Fs are available only from five studies in Europe – they 

have reported a mean concentration of 777 pg/g fat (mean age 53 years). 

PCB 153 is one of the most commonly measured PCB congeners in all studies due to its 

abundance in all kinds of matrices. In recent human adipose and serum fat samples from 

Europe, the average concentration of PCB 153 was 232 ng/g fat (mean age of the study 

populations was 53 years) (Table 6). The marker PCB concentrations ranged from 389 to 855 

ng/g fat with a mean value of 606 ng/g fat. The WHOPCB-TEq mean concentration is based only 

on three reported concentrations from Sweden, Belgium, and Spain, and the average 

concentration was 37.8 pg/g fat (Wingfors et al. 2000, Koppen et al. 2002). 

From the USA, there are recent reports of PCDD/F concentrations from the year 2002 

with the WHOPCDD/F-TEq concentration of 19.3 pg/g fat, and the sum of PCDD/F concentrations 

of 505 pg/g fat (Schecter et al. 2003). 

The mean concentrations in the Far-East, in India, Korea, and Japan, were lower than the 

concentrations found in Europe, 13.0 pg WHOPCDD/F-TEq/g fat, sum of PCDD/Fs 511 pg/g fat, 

and 13.1 pg WHOPCB-TEq/g fat, but the study populations were also younger than the 

populations examined in Europe, table 6 (Kumar et al. 2001, Choi et al. 2002, Kim et al. 2005).  

The lowest human adipose or serum fat concentrations of PCDD/Fs and PCBs so far 

reported originate from Australia in 2002 (Harden et al. 2002). The WHOPCDD/F-TEq and 

WHOPCB-TEq concentrations were 6.9 and 4.0 pg/g fat, respectively.  

The highly PCB contaminated human adipose or serum fat tissues in Uelen, Russia and 

Greenland Inuit populations were due to consumption of meat and blubber of marine mammals 

which themselves had a high PCB body burden (Sandanger et al. 2003, Dewailly et al. 1999).  

 The main exposure of the general population comes from food, especially food of animal 

origin, but still no relation of adipose tissue PCDD/F concentrations and daily dietary dioxin 
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intake or tissue PCB concentrations and alimentary habits have been found in France and Spain, 

respectively. (Arfi et al. 2001, Costabeber and Emanuelli 2003). On the other hand, it has been 

shown that consumption of Baltic Sea fish leads to a high contribution of the dioxin congener 

2,3,4,7,8-PeCDF (Svensson et al. 1991), and also PCB concentrations in serum have been 

reported to correlate positively with consumption of fatty fish in the Baltic Sea region (Grimvall 

et al. 1997, Sjödin et al. 2000, Wicklund Glynn et al. 2003).  

 As the majority of human exposure to PCDD/Fs originates from fat of animal origin, 

Welge et al. (1993) postulated that vegetarians should have lower body burdens of PCDD/Fs 

compared to non-vegetarians. This presumption was not confirmed, since I-TEq concentrations 

in the blood of both groups were very similar, around 33 pg/g fat. The similarities of PCDD/F 

concentrations in vegetarians and non-vegetarians were explained by the higher consumption of 

dairy products by vegetarians, which would compensate for part of the PCDD/F intake 

originating from meat and fish in non-vegetarians (Welge et al. 1993).  

The congeners contributing the most to the sum of PCDD/Fs and WHOPCDD/F-TEqs in 

adipose tissue or serum fat are depicted in figure 5. The contribution of congeners OCDD, 

1,2,3,4,6,7,8-HpCDD, 1,2,3,6,7,8-HxCDD, and 2,3,4,7,8-PeCDF to the sum of PCDD/Fs was 

on an average 92%. There were little differences between depicted areas in these contributions 

to the sum of PCDD/Fs. Four congeners, 2,3,4,7,8-PeCDF, 1,2,3,7,8-PeCDD, and 1,2,3,6,7,8-

HxCDD, and 2,3,7,8-TCDD accounted for on average 87% of the WHOPCDD/F-TEq profile in 

adipose tissue or serum fat samples in the depicted areas in figure 5. The contribution of these 

four congeners was largest in Sweden and lowest in the USA, 92% and 83%, respectively. The 

consumption of Baltic fatty fish might explain why congener 2,3,4,7,8-PeCDF contributed more 

to the WHOPCDD/F-TEq profile in the average Swedish population compared to other areas, as it 

does in Swedish fishermen (Svensson et al. 1991). In Europe, the congener 1,2,3,7,8-PeCDD 

was the most prevalent congener in WHOPCDD/F-TEq profile followed by 2,3,4,7,8-PeCDF, 

which originates also from milk products in addition to fish products. A quite different profile 

has been reported from the USA, where the contribution of 2,3,4,7,8-PeCDF to WHOPCDD/F-TEq

profile was only 15% instead of about 30% in the Europe and Far-East and 40% in Sweden.



Table 6.

Recent adipose tissue and serum fat concentrations of sum of PCDD/Fs, WHOPCDD/F-TEq, PCB 126, PCB 153, marker PCBs, and WHOPCDD/F-

TEq from different countries. 

Country, study period Age of subjects, 
mean and range 

Sum of PCDD/Fs 
pg/g fat 

WHOPCDD/F-
TEq 

pg/g fat 

PCB 126 
pg/g fat 

PCB 153 
ng/g fat 

Marker PCB 
ng/g fat 

WHOPCB-TEq 
Pg/g fat 

Reference 

Finland, mid 1990s 30 (19-40)a - - - 56 - - Hagmar et al. 1998 

Sweden, unknown 68 804 32.8 180 300 778 44.3 Wingfors et al. 2000 
Sweden, late 1990s 63b(40-75) - - - 296 675  Wicklund Glynn et al. 2000 
Sweden, 1996-1997 63a (54-75) - - - 223 - - Wicklund Glynn et al. 2003 

Sweden, 2001 52b (33-79) - - - 241 - - Wallin et al. 2003 
Latvia, 1993 48b (24-79) - - - 403 - - Sjödin et al. 2000 

Germany, 1996* 37 (18-71) 403 18.8     Päpke 1998 
Belgium, 1999 58a (50-65) 999 48 102 168 389 23.7 Koppen et al. 2002 
Belgium, 2000 47 (19-77) - - - 211 504 - Covaci et al. 2002 
France, 1999* 53 (30-94) 497 45.1 - - - - Arfi et al. 2001 

Spain, unknown 51 1180 33.0 220 300 855 45.5 Wingfors et al. 2000 
Spain, 1996-1997 51 (15-87) - - - 121 432 - Costabeber and Emanuelli 2003 

Spain, 2002 58 (19-94) - 11.1 - - - - Bocio et al. 2004 
Spain, 2003 41 (19-62) - 17.8 - - - - Bocio et al. 2004 

Uelen/Russia, 2001 37 (20-70) - - 1200 744 1410 - Sandanger et al. 2003 
Greenland, 1992-1994 60 - - - 1689 4242 - Dewailly et al. 1999 

USA, 2002 Adults 505 19.3 - - - - Schecter et al. 2003 
India, 2000 (20-69) 550 14.4 125 - - 14.4 Kumar et al. 2001 

Korea, 2001* 43 (21-63) 813 12.8 - 64 - 9.6 Kim et al. 2005 
Japan, 2000 (40-50) 171 11.9 72 - - 15.3 Choi et al. 2002 

Australia, 2002 (<16->60) - 6.9 18.6 - - 4 Harden et al. 2004 
a only women, b only men, * results originally as I-TEqs and here re-calculated as WHOPCDD/F-TEqs 

36
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In the USA congeners, originating mostly from meat, 1,2,3,7,8-PeCDD, 2,3,7,8-TCDD, and 

1,2,3,6,7,8-HxCDD contributed more to the WHOPCDD/F-TEq profile than 2,3,4,7,8-PeCDF 

(Wingfors et al. 2000, Päpke 1998, Koppen et al. 2002, Arfi et al. 2001, Schecter et al. 2003, 

Kumar et al. 2001, Choi et al. 2002, Kim et al. 2005). Similar patterns to the WHOPCDD/F-TEq

profile as that found in USA have been reported also from Canada (Schecter et al. 1994b). 

Figure 6 depicts the relative contribution of selected PCB congeners to the sum of these 

particular PCBs and to the WHOPCB-TEq. There were minor differences between the Swedish 

and the average European profiles of PCBs. Congener PCB 153 was the main contributor in the 

adipose tissue or serum samples in all areas followed by PCB 138 and PCB 180. The 

contribution of PCB 153 was clearly more dominant in samples from the Inuit population when 

compared to other areas (see Fig 6, A, Uelen/Russia). On the other hand, the contributions of 

PCB 180 and PCB 170 were lower in Inuit population than in Swedish or European populations. 

These differences in PCB contributions between northern and southern populations might be 

due to different occurrence of various PCB congeners in the foodstuffs consumed by these 

populations. Eighty percent or more of the WHOPCB-TEq concentration has been reported to be 

due to a contribution of congeners PCB 126, PCB 156, and PCB 118 (Fig 6, B). Again the 

difference between Sweden and Southern Europe was not so evident, but in the Far East, the 

contribution of PCB 126 dominated the WHOPCB-TEq profile. 

Time-trend of PCDD/Fs and PCBs in adipose tissue and serum 

Similar declining trends in human adipose and serum fat concentrations as those found 

in breast milk have been reported from several countries. Figure 7 illustrates the time-trends of 

PCDD/F-TEqs between 1980 and 2002 from Germany, USA, and Japan (Päpke 1998, Schecter 

et al. 2003, Choi et al. 2002). The annual decline of PCDD/F- TEq in Germany and Japan has 

been about 4%, which is very close to the decline in breast milk in these countries. In the USA, 

the decline of WHOPCDD/F-TEq is not so clear with increasing concentrations reported in studies 

from the years 1996 and 2002. Nevertheless between mid 1990s and the early 2000s the decline 

of WHOPCDD/F-TEq has been about 15% (Schecter et al. 2003). 

Declining time-trends of PCB concentrations in adipose tissue or in serum fat in the 

USA are more clear than the corresponding PCDD/F trends. The concentrations of congener 

PCB 153 declined from 1985-1989 to 2000-2002 by 61% (about 4% annually) from 90 ng/g 
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serum fat to 35 ng/g (Sjödin et al. 2004). Another study from the USA has indicated that the 

concentration of PCB congener 126 declined by about 88% between 1985 and 1995 (Aylward et 

al. 2002). Also in a study of Swedish men, the decline of serum PCB 153 concentration was on 

average 34% (3% annually) during the time period 1991-2001 (Wallin et al. 2003), which is 

similar to WHOPCDD/F-TEq decline reported in Swedish breast milk (Norén and Meironyté 

2000). In Tarragona, Spain, there was an average 41% reduction of WHOPCDD/F-TEq in human 

plasma samples (10% annually); in the adipose tissue samples the reduction was 70% (18% 

annually), both of which follow the decline of PCDD/F daily intake in the same district (Bocio 

et al. 2004).

Fig 7. Time-trend in 1980-2002 of human adipose tissue or serum fat PCDD/F-

TEq concentrations in Germany (striped bars) (Päpke 1998), in the USA (white 

bars) (Schecter et al. 2003), and in Japan (black bars) (Choi et al. 2002). 
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Fig 5. Adipose tissue or serum fat congener profile of (A) PCDD/Fs and (B) WHOPCDD/F-TEqs in Sweden, Europe, USA, and Far-East. 

Calculated from the data by: Wingfors et al. 2000, Päpke 1998, Koppen et al. 2002, Arfi et al. 2001, Schecter et al. 2003, Kumar et al. 

2001, Choi et al. 2002, Kim et al. 2005. 
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Fig 6. Adipose tissue or serum fat congener profile of  (A) certain PCBs and (B) WHOPCB-TEqs in Uelen/Russia, Sweden, Europe, 

and Far-East. Calculated from the data by: Wingfors et al. 2000, Wicklund Glynn et al. 2000, Wicklund Glynn et al. 2003, Sjödin et 

al. 2000, Grimvall et al. 1997, Covaci et al. 2002, Koppen et al. 2002, Costabeber and Emanuelli 2003, Sandanger et al. 2003, Kumar 

et al. 2001, Choi et al. 2002. 
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2. AIMS OF THE STUDY 

 The aims of this study were to: 

1. Assess the average intake of PCDD/Fs and PCBs of the general population in Finland, with 

the emphasis on estimating the contribution of different foods to the intake. 

2. Analyse the average adipose tissue concentrations of PCDD/Fs and PCBs in the general 

population in Finland and to determine whether differences in concentrations occur in three 

geographical areas. 

3. Determine the concentrations of PCDD/Fs and PCBs in breast milk in two areas in Finland 

and to evaluate temporal changes in the concentrations in breast milk. 

4. Compare the intake of PCDD/Fs and PCBs and occurrence of these contaminants in human 

tissues to EU and other countries. 

5. Study, if there is a population in Finland, which experience high exposure to PCDD/Fs and 

PCBs.

6. Study the differences in the PCDD/F and PCB congener profiles between the exposure (diet) 

and human tissues in order to evaluate the bioaccumulation efficiencies of different 

congeners.   
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1. ABSTRACT 

Samples of cow milk, pork, beef, eggs, rainbow trout, flours and vegetables were 

analyzed for 17 polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) and 36 

polychlorinated biphenyls (PCB). Daily dietary intake of PCDD/Fs as toxic equivalent (I-TEq) 

and PCBs (PCB-TEq) was assessed using food consumption data from a 24-hour dietary recall 

study for 2862 Finnish adults. The calculated intake of PCDD/F was 46 pg I-TEq day-1. The 

current level was about half of the earlier estimation of intake in Finland made in 1992. The 

assessed PCB intake was 53 pg PCB-TEq day-1. Thus, the total intake of PCDD/Fs and PCBs 

was 100 pg TEq day-1 (1.3 pg TEq kg-1 b.w. day-1), which is within the range of tolerable daily 

intake (TDI) proposed by the WHO (1-4 pg TEq kg-1 b.w. day-1).
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2. INTRODUCTION

In spring 1999, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were 

discovered in Belgian chicken and eggs. Subsequently this contamination event was expanded to 

cover all foods of animal origin in Belgium. It was subsequently reported that the point 

introduction of a polychlorinated biphenyl (PCB) containing oil into the production of animal 

feed in Belgium led to a contamination of part of the food chain of animal origin (Bernard et al. 

1999). Public alarm at this incident in Belgium launched or accelerated the pace of national 

studies into the dioxin content in foods and the intake of dioxins via the food chain in different 

European countries. 

In Finland, the intake of PCDD/Fs was first estimated in 1992 (Hallikainen et al. 1995) 

using measured concentrations of PCDD/Fs in cow milk, egg, meat, Baltic herring and rainbow 

trout samples and a 3-day food consumption questionnaire for adults (aged from 25-64 years) in 

1992 (Vartiainen et al. 1993). The authors estimated the total PCDD/F daily intake to be 95 pg 

Nordic toxic-equivalents (N-TEq) or 1.6 pg N-TEq kg-1 body weight using 60 kg as average 

weight of adult population. Fish and fish products accounted for 60% of the daily intake 

followed by milk and dairy products (31%), eggs (3%) and meat and meat products (1.4%) 

(Hallikainen and Vartiainen 1997). 

This study reports the results of current PCDD/F and PCB concentrations in 1998-2000 

for cow milk, pork, beef, eggs, rainbow trout, flours and vegetables, which combined with new 

food consumption data in 1997 for average adults (National Public Health Institute 1997), 

allowed estimation of the intake of PCDD/Fs of average adult Finnish population. In addition, 

for the first time, PCB-TEq intake in Finland was assessed. The contribution of each food and 

food group was also revised. 

3. MATERIALS AND METHODS

Concentrations of PCDD/Fs and PCBs in foods

Representative samples of cow milk, pork, beef, eggs, rainbow trout, flour and vegetables 

were collected encompassing the Finnish food supply and analysed for PCDD/F and PCB 

content. Five pooled cow milk samples (three individual samples in each pool) were collected 

from five dairies around Finland. These dairies represented  ~50% of all cow milk production in 
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Finland. Six pork tenderloin and five beef tenderloin samples were collected from two of the 

largest slaughterhouse chains in Finland covering all the major production areas and representing 

~80% of the total production in Finland. The samples were pooled by production areas (5-24 

individual samples in each pool) by weighing equally sized samples from each subsample. 

Pooled egg samples were collected from five henhouses in South-Western Finland. Each egg 

pool consisted of eight to nine individual eggs. Two years old rainbow trouts were collected 

from eight different fish farms in southern Finland. Altogether 40 individual rainbow trout 

samples were analysed in eight pools (five individual samples in each pool). Domestic leafy 

vegetables (three different kinds of lettuces and cabbage), fruit vegetables (cucumber, tomato, 

onion and sweet pepper) and potatoes, 200g of each individual item, were purchased from a 

supermarket in the province of Kuopio. Also flours (rye and wheat) in 1 kg packages were 

bought from a supermarket but the origin of the flour remained undetermined. All the samples 

were collected between 1998 and 2000. 

The concentrations of 17 toxic PCDD/Fs (10 PCDF, seven PCDD) congeners of three 

non-ortho (IUPAC 77, 126, 169), eight mono-ortho (IUPAC 105, 114, 118, 123, 156, 157, 167, 

189), and of 25 other (IUPAC 18, 28, 33, 47, 49, 51, 52, 60, 66, 74, 99, 101, 110, 122, 128, 138, 

141, 153, 170, 180, 183, 187, 194, 206, 209) PCB congeners, the total sum of PCDD/Fs 

(ΣPCDD/F) and PCBs (ΣPCB), and toxic equivalents, I-TEqs (PCB-TEqs, for PCBs) were 

determined (NATO/CCMS 1988, Ahlborg et al. 1994). 

All homogenized samples were spiked with 115 pg 13C-labelled PCDD/F standards 

(seventeen 2,3,7,8-chlorinated PCDD/F congeners), with 100 pg 13C-labelled non-ortho PCB 

standards (PCB 77, 126, 169), and with 960 pg 13C-labelled PCB standards (PCB 30 [12C-

labelled], 80, 101, 105, 138, 153, 156, 180 and 194 Cambridge Isotope Laboratories). Cow 

milk's fat was extracted with diethyl ether-hexane, fat from eggs with diethyl ether and hexane, 

and fat from pork, beef and rainbow trout with toluene for 24 h using Soxhlet apparatus. The fat 

content was determined gravimetrically. All the samples were defatted in a silica gel column and 

initially purified on activated carbon column (Carbopack C, 60/80 mesh) containing Celite 

(Merck 2693) to separate PCDD/Fs from PCBs. Both fractions were further cleaned with an 

activated alumina column (Merck 1097, standardized, activity level II-III). The separated PCB 

fraction was further fractionated, after having been analyzed for mono- and di-ortho PCB 

congeners on another activated carbon column (without Celite) in order to separate the non-ortho

PCBs. The quantitation was performed by selective ion recording using a VG 70-250 SE (VG 

Analytical, UK) mass spectrometer (resolution 10 000) equipped with a HP 6890 gas 
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chromatograph with fused silica capillary column (DB-DIOXIN, 60 m, 0.25 mm, 0.15 μm). The 

laboratory reagent and equipment blank samples were treated and analyzed by the same method as 

the actual samples, one blank for every five samples. In cow milk, pork and beef samples, the limits 

of determination (LOD) for PCDD/Fs, non-ortho PCBs, and other PCBs were 0.1-1, 0.1, and 10 pg 

g-1, respectively, and in rainbow trout samples 0.01-0.1, 0.01, and 1 pg g-1, respectively. In 

vegetable and flour samples, LODs were 0.005-0.05, 0.005, and 0.05 pg g-1, respectively. PCDD/F, 

non-ortho PCB, and other PCB LODs for eggs were 0.5-5, 1, and 10 pg g-1, respectively. In the 

calculations of TEqs, results below the LOD were considered as zero. Concentrations in cow milk, 

eggs, pork and beef samples were calculated on a fat basis, in other samples on a wet weight (w.w.) 

basis. Recoveries for internal standards were >60% for all congeners. 

The laboratory has participated in several international quality control studies for the 

analysis of PCDD/Fs, and PCBs. The matrixes in these studies have included cow milk, human milk, 

human serum and fish. (Yrjänheikki 1991, Rymen 1994, Liem et al. 1996, WHO/EHEC 1996). The 

laboratory is also an accredited testing laboratory (No T77) in Finland (EN 17025). The scope of 

accreditation includes PCDD/Fs, PCBs, and non-ortho PCBs from milk and tissue samples. 

Food consumption data

The food and food group consumption data used in the intake calculations consist of the 

average consumption figures taken from the 1997 Dietary Survey of Finnish Adults (National 

Public Health Institute 1998). The method of 24-h dietary recall was applied in this national 

survey of the adult population from five selected areas, aged 25-64 (n=2862). In the dietary 

survey, the average consumption (g day-1) of each food item was calculated. The food items 

which were relevant for intake estimations of PCDD/F and PCB were aggregated into food 

groups (table 4). The number of individual food items was 54 for milk and milk products, three 

for eggs, 28 for fish, 45 for meat, 29 for flour, and 43 for potatoes and vegetables. 

Estimation of average daily intakes of PCDD/Fs and PCBs

Average daily intakes of PCDD/Fs and PCBs were estimated by multiplying the 

measured concentrations of PCDD/F and PCB toxic equivalents by the average daily 

consumption of the respective food. Intakes for PCDD/Fs and PCBs were calculated separately. 

For Baltic herring, data were used that included 1200 herring samples from the Baltic Sea (data 

partly published, Vartiainen et al. 1997). The PCB-TEq data for Baltic herring were incomplete 
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because a major part of the concentrations for congeners IUPAC 114, 123, 157, 167, 170 and 

189 was not available. The I-TEq and PCB-TEq used for other fish were estimations based on 

the unpublished data from Finland. 

The intake results were reported as pg toxic equivalents per day (pg TEq day-1) or as pg 

toxic equivalents kg-1 body weight per day (pg TEq kg-1 b.w. day-1). The body weight used in these 

calculations was 76 kg, which was the average body weight of the adult population participating in 

the 1997 Dietary Survey of Finnish Adults (National Public Health Institute 1998). 

4. RESULTS

The mean concentrations of seven toxic PCDDs and 10 PCDFs for foods are presented in 

table 1 including  PCDD/F and I-TEq results. The results for non-ortho (three congeners), 

mono-ortho (eight) and other PCBs (25) are presented in table 2 along with  PCB and PCB-

TEq results. The fat contents in the cows' milk, eggs, pork, beef and rainbow trout were 3.2, 9.7, 

5.9, 6.6 and 8.3%, respectively. 

Table 3 lists the congeners that contributed to TEqs by >5 % and their contribution is 

presented for the most relevant foods. Although samples of Baltic herring were not analysed 

here, the contribution of congeners to TEqs in Baltic herrings are added to table 3. The I-TEq 

contribution pattern in different foods varied extensively for the different foods. In Baltic 

herrings, rainbow trouts, eggs and cow's milk 2,3,4,7,8-pentachloro dibenzofuran (2,3,4,7,8-PF) 

was the most dominant congener, while in beef and pork samples 1,2,3,6,7,8-hexachloro 

dibenzo-p-dioxin (1,2,3,6,7,8-HD) was the most dominant congener. The secondary congener 

contributing most significantly to I-TEq varied greatly for the different foods. It was 2,3,7,8- 

tetrachloro dibenzofuran (2,3,7,8-TCDF) in rainbow trout samples, 1,2,3,7,8-pentachloro 

dibenzo-p-dioxin (1,2,3,7,8-PD) in Baltic herring, beef and pork samples and 1,2,3,6,7,8-HD in 

egg and cow milk samples. In PCB-TEq, the situation was different. In all samples, excluding 

eggs, IUPAC126 was the most dominating congener followed by IUPAC118, which was the 

most dominating congener in egg samples. 

In rainbow trout and egg samples, PCDFs contributed most extensively to  PCDD/F 

(table 1) and from the individual congeners 2,3,7,8-TCDF and 2,3,4,7,8-PF were dominating in 

rainbow trout and 1,2,3,4,6,7,8-heptachloro dibenzofuran (1,2,3,4,6,7,8-F) in egg samples. In all 

other food samples, PCDDs dominated the  PCDD/F and the higher chlorinated PCDDs, 

1,2,3,4,6,7,8-heptachloro dibenzo-p-dioxin (1,2,3,4,6,7,8-D) and octachloro dibenzo-p-dioxin 
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(OCDD), were the most abundant. In PCBs, the group "other-PCBs" was the most dominating 

group accounting for >84 % of  PCB in all food groups. With respect to the individual 

congeners IUPAC 101, 110, 118, 153, 138 and 180 had the strongest impact on  PCBs. In beef 

and pork samples, congeners IUPAC 51 and 47 also contributed significantly to  PCB.

The daily consumption of different food and food groups, and the concentrations and 

intakes of PCDD/Fs and PCBs as TEqs in Finland are presented in table 4. In all other food 

groups excluding eggs, and meat and meat products PCB-TEqs contributed more strongly to 

total TEq intake than to I-TEq. In herring samples, PCB-TEq was underestimated because in part 

of the samples all of the PCB congeners were not measured. Therefore the daily intake of PCB-

TEq was clearly an underestimation with respect to Baltic herrings. 



 

Table 1. Polychlorinated dibenzo-p-dioxins (seven PCDD congeners), dibenzofurans (10 PCDF congeners), sum of PCDD/Fs (  PCDD/Fs) and 

toxic equivalents (I-TEqs) as pg g-1 in food samples in Finland, 1998-2000. 

Food item 
n

Analytes 

Rainbow trout 
8

Meana (SD)

Eggs 
5

Meanb (SD) 

Beef
5

Meanb (SD) 

Cow milk 
5

Meanb (SD)

Pork 
6

Meanb (SD) 

Leafy vegetablesc

4
Meana (SD)

Flourd

2
Meana (SD) 

Potatoa

1
Meana

Fruit vegetablese

4
Meana (SD)

PCDD 0.41 (0.16) 6.6 (8.4) 13 (14) 1.6 (1.0) 4.4 (1.6) 0.2 (0.18) 0.5 (0.36) 0. 083 0.003 (0.006) 
PCDF 2.7 (0.96) 19 (42) 0.72 (0.52) 0.88 (0.42) 1.0 (1.4) 0.047 (0.088) 0.008 (0.011) nd nd 
Σ PCDD/F 3.1 (1.1) 26 (40) 14 (14) 2.5 (1.0) 5.4 (1.8) 0.24 (0.25) 0.51 (0.37) 0. 083 0.003 (0.006) 
I-TEq 0.74 (0.29) 0.52 (0.44) 0.29 (0.24) 0.12 (0.02) 0.051 (0.023) 0.01 (0.02) 0.00094 (0.00065) 0.00025  0.00003 (0.00006) 

nd, <Limit of determination (LOD) 
a Wet weight (w.w.) basis. 
b Fat basis. 
c Three different kinds of lettuces and cabbage. 
d Rye and wheat. 
e Cucumber, tomato, onion and sweet pepper. 

Table 2. Polychlorinated biphenyls (three non-ortho-PCB, eight mono-ortho-PCB, and 25 other PCB congeners), sum of PCBs (  PCBs) and toxic 

equivalents (PCB-TEqs) as pg g-1 in food samples in Finland, 1998-2000. 

Food item 
N

Analytes 

Rainbow trout 
8

Meana (SD)

Eggs 
5

Meanb (SD)

Beef
5

Meanb (SD) 

Cow milk 
5

Meanb (SD)

Pork 
6

Meanb (SD) 

Leafy vegetablesc

4
Meana (SD)

Flourd

2
Meana (SD)

Potato 
1

Meana

Fruit vegetablese

4
Meana (SD)

Non-ortho-PCBs 45 (14) 3.2 (6.3) 4.2 (1.9) 2.1 (1.1) 1.9 (0.78) 1.3 (2.2) 0.17 (0.021) nd 0.0037 (0.0043) 
Mono-ortho-PCBs 3 100 (1 100) 730 (430) 530 (250) 410 (110) 60 (27) 34 (50) 1.4 (1.9) 1.6 0.33 (0.28) 
Other-PCBs 17 000 (6 200) 5 100 (2 300) 5 400 (2 700) 2 200 (740) 1 800 (230) 390 (550) 38 (14) 23 3.7 (2.5) 
Σ PCB 21 000 (7 400) 5 800 (2 300) 5 900 (3 000) 2 600 (840) 1 800 (220) 420 (600) 39 (16) 24 4.1 (2.8) 
PCB-TEq 1.5 (0.48) 0.12 (0.12) 0.31 (0.15) 0.22 (0.078) 0.024 (0.012) 0.038 (0.058) 0.00022 (0.00018) 0.00016 0.000036 (0.000031) 

nd, <Limit of determination (LOD) 
a Wet weight (w.w.) basis. 
b Fat basis. 
c Three different kinds of lettuces and cabbage. 
d Rye and wheat. 
e Cucumber, tomato, onion and sweet pepper. 
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Table 3. Contibution (%) of single congeners to I-TEqs and PCB-TEqs in different food 

samples. Only congeners contributing at least 5% to TEqs are shown. The two most 

dominating congeners are shaded. 

Dioxin Baltic herring Rainbow trout Eggs Beef Cow milk Pork 
2,3,7,8-TCDF  22     
2,3,4,7,8-PF 68 50 51 12 70  

1,2,3,4,6,7,8-F   16   14 
       

2,3,7,8-TCDD 7 12     
1,2,3,7,8-PD 13 11  19 23 

1,2,3,6,7,8-HD   20 47 7 39 
1,2,3,4,6,7,8-D    10 5 11 

OCDD      9 
% of I-TEq 88 96 87 87 82 96 

PCB       
IUPAC126 42 67 9 63 68 45 
IUPAC169      7 
IUPAC105 8  15    
IUPAC118 17 13 49 13 12 22 
IUPAC156 18 7 18 8 9 15 
IUPAC170    11  5 

% of PCB-TEq 85 87 91 95 89 95 

5. DISCUSSION

PCDD/F and PCB occurrence data

I-TEq and PCB-TEq concentrations for rainbow trouts, 0.74 pg g-1 w.w. and 1.5 pg g-1,

respectively, were moderate when one considers that rainbow trout is a fatty fish. Two explanations 

can be provided for the low concentrations (1) all rainbow trouts were very young (2 years of age) 

and (2) they were all farmed trouts and they had been fed with artificial fodder. Two-year-old 

trouts were chosen for the study because this is the age farmed trouts are normally harvested. 

A decline of 50% was observed from 1.8 in 1993 (Hallikainen et al. 1995) to 0.74, in the 

I-TEq concentration of rainbow trout samples in Finland. This current value is now in the same 

range as the concentration of rainbow trout in Germany (Malisch 1998). 

In cows' milk from 1991 (Vartiainen and Hallikainen 1994) to 1998 the decline in 

concentration of I-TEq was from 0.99 to 0.12 pg I-TEq g-1 fat. In Germany and The Netherlands, 

the concentrations in cow's milk were six to 10 times higher than in Finland, respectively (Liem 

and Theelen 1997, Malisch 1998). The concentrations may have declined in cows' milk in 

Finland due to the decrease in deposition of PCDD/Fs onto grassland from the atmosphere. 
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Similarly to cows' milk, concentration of I-TEq also in eggs has declined during the 

1990s from 1.6 to 0.52 pg I-TEq g-1 fat. In Germany and The Netherlands, the concentrations in 

eggs were three to four times higher than in Finland (Liem and Theelen 1997, Malisch 1998).

Table 4. Daily consumption of food and food groups, and concentrations and intakes of 

polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs) and polychlorinated biphenyls (PCBs) 

as toxic equivalents (TEqs) in Finland. 

Food group Consumption,  
g day-1

(g fat day-1)
PCDD/F 

(pg I-TEq g-1)
PCB

(pg PCB-TEq g-1)

Daily intake, 
PCDD/F

(pg I-TEq) 

Daily intake, 
PCB 

(pg PCB-TEq) 

Daily intake, 
total 

(pg TEq) 
Milk, high fat 40 (1.3) 0.12 b 0.22 b 0.16 0.29 0.45 
Milk, fat <1.6% 170 (2.6) 0.12 b 0.22 b 0.32 0.58 0.91 
Milk products 51 (16) 0.12 b 0.22 b 2.0 3.6 5.6 
Butter 8 (6.4) 0.12 b 0.22 b 0.79 1.4 2.2 
Butter based 
mixtures 

4 (2.6) 0.12 b 0.22 b 0.32 0.58 0.91 

Milk and dairy 
products 

270 (29)   3.6 6.5 10 

Eggs 19 (1.7) 0.52 b 0.12 b 0.89 0.21 1.1 
Herring 3 8.0 a 7.9 a 24 24 48 
Rainbow trout 6.5 0.74 a 1.5 a 4.8 9.6 14 
Other fish 19 0.5 a 0.5 a 9.5 9.5 19 
Fish and fish 
products 

29   38 43 81 

Beef 23 (2.1) 0.29 b 0.31 b 0.62 0.65 1.3 
Pork 33 (5.0) 0.051 b 0.024 b 0.26 0.12 0.38 
Other meat, 
sausages

62 (14) 0.17 b 0.17 b 2.4 2.3 4.8 

Meat and meat 
products 

120 (21)   3.3 3.1 6.4 

Flour 160 0.00094 a 0.00022 a 0.15 0.035 0.19 
Potato 110 0.00025 a 0.00016 a 0.028 0.017 0.045 
Leafy 
vegetables 

17 0.01 a 0.038 a 0.18 0.65 0.82 

Fruit vegetables 82 0.00003 a 0.000036 a 0.0025 0.0029 0.0054 
Others 370   0.36 0.70 1.1 
Total intake 
pg TEq day-1

   46 53 100 

a TEqs as pg g-1 w.w. 
b TEqs as pg g-1 fat. 

I-TEq concentrations in pork have decreased from the 1991 value of 0.29 (Vartiainen and 

Hallikainen 1994) to 0.051 pg I-TEq g-1 fat. The opposite situation was discovered with beef, 

where the values increased from 0.018 to 0.29 pg I-TEq g-1 fat. In Germany and The 

Netherlands, the concentrations in pork and beef were two to 10 times higher than those found in 

Finland (Liem and Theelen 1997, Malisch 1998). It was very difficult to detect any time trend in 

these figures in Finland. Both values are low probably because pigs as well as beef cattle are 

slaughtered when they are still very young. 
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The concentrations of I-TEqs and PCB-TEqs in flour, potato and vegetable samples were 

both virtually negligible and their impact on intake was very small. It is very difficult to compare 

the concentrations of vegetables between different countries because of the heterogenity of the 

measured items in each country. The measured concentrations in Finland were very low when 

compared to Spain or Germany (Malisch 1998, Domingo et al. 1999). Only the I-TEq 

concentration of leafy vegetables, 0.01 pg g-1 w.w., was in the same range as reported in the 

study from Germany (Malisch 1998). 

Intake of PCDD/Fs and PCBs

The intake of PCDD/Fs declined from 95 pg N-TEq (Hallikainen et al. 1995) to 46 pg I-

TEq between 1992 and 1999 (N-TEq and I-TEq toxic equivalency factors are almost identical). 

Two obvious reasons for this decline were found. First, the lower concentrations of I-TEqs in 

cows' milk and eggs. Second, the consumption of eggs, fish and milk has also diminished 

compared to the previous dietary survey. 

To estimate the impact of new occurrence and new consumption data to the intake of 

PCDD/Fs, the intake of PCDD/Fs was calculated with new concentrations of PCDD/Fs 

combined with the old food consumption data. With this kind of procedure, the intake was 

calculated to be 70 pg I-TEq day-1. It is concluded that the changes in consumption data and 

concentrations have both affected almost equally the intake of PCDD/Fs. 

The intake of PCB-TEqs, 53 pg PCB-TEq day-1, was clearly underestimated in this study 

because PCB-TEq concentration data for Baltic herring were incomplete. The total intake of 

TEqs was 100 pg TEq day-1 (1.3 pg TEq kg-1 b.w. day-1), which is in the range of the tolerable 

daily intake (TDI), 1-4 pg TEq kg-1 b.w. day-1, given by WHO (van den Berg et al. 1998). 

The average intake of PCDD/Fs in Europe has been reported to be between 42 and 210 

pg I-TEq day-1 (Liem and Theelen 1997, Becher et al. 1998, Harrison et al. 1998, Malisch 1998, 

Domingo et al. 1999, Zanotto et al. 1999). Both the lowest and the highest intakes have been 

measured in the Mediterranean around Venice, Italy (42 pg I-TEq day-1) and in Spain (210 pg I-

TEq day-1) (Domingo et al. 1999, Zanotto et al. 1999). In Western Europe (The Netherlands, 

Germany, UK), the intake has been calculated to vary between 61 and 90 pg I-TEq day-1 (Liem 

and Theelen 1997, Harrison et al. 1998, Malisch 1998). In the northern parts of Europe in 

addition to Finland, there is a current estimation available for the daily intake of PCDD/Fs for 

Norway where it varied between 50.6 and 84.6 pg I-TEq day-1 (Becher et al. 1998). The PCDD/F 

intake in the USA was estimated to be 41 pg TEq day-1 (US EPA 2000). In Japan, the estimated 
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intake of PCDD/Fs was equivalent to European intakes, ~70 pg I-TEq day-1 (Yoshida et al. 

2000). The lowest intake of PCDD/Fs has been reported from New Zealand, 14.5 pg I-TEq day-1

for the average population (Buckland et al. 1998). 

The recent PCB-TEq intake estimations are available from UK, USA, Norway and New 

Zealand. The lowest intake for PCB-TEqs was also found in New Zealand, 12.2 PCB-TEqs day-

1, followed by the USA (24 PCB-TEqs), UK (54 PCB-TEqs) and Norway, where the intake was 

estimated to be between 137 and 190 pg PCB-TEq day-1.

Time trends of PCDD/F intake have been studied in the UK, The Netherlands and 

Germany (Liem and Theelen 1997, Harrison et al. 1998, Malisch 1998). The trends for the 

intakes have been declining in all of these studies. In the UK, the intake of PCDD/Fs between 

1982 and 1992 decreased from 4.1 to 1.5 pg I-TEq kg-1 b.w. day-1. Simultaneously, the daily 

intake of PCB-TEq also declined from 2.7 to 0.9 pg PCB-TEq kg-1 b.w. (Harrison et al. 1998). A 

decline of almost 40% in the intake of PCDD/Fs was observed in The Netherlands between 1991 

and 1997, when the daily intake decreased from 115 to 73 pg I-TEq (Liem and Theelen 1997). In 

Germany, the time trend results showed that the intake in 1993-96 was about one-half of the 

intake calculated between 1986 and 1991, from 127 to 61 pg I-TEq day-1 (1.82-0.88 pg I-TEq kg-

1 b.w. day-1) (Malisch 1998). 

The contribution of fish in Finland increased from 60 to 82%, indicating that fish is 

clearly the most important contributor to PCDD/F intake in Finland. In the dietary method used 

in the FINDIET 1997 survey, the fish consumption can be estimated lower than by other dietary 

methods and this further emphasizes the impact of fish to the intake. The contribution of milk 

and dairy products had clearly diminished, from 31 to 8% because of the decreased I-TEq 

concentration and reduced consumption. 

In the Venetian and Norwegian studies, fish and fish products contributed to the PCDD/F 

intakes as much as in the Finnish study. In Venice, the proportion varied from 42 to 50% and in 

Norway from 28 to 43% (Becher et al. 1998, Zanotto et al. 1999). In the UK, Germany, The 

Netherlands, the USA and New Zealand the main source of PCDD/Fs are meat and meat 

products and milk and dairy products, the proportion of both groups being ~30% (Liem and 

Theelen 1997, Buckland et al. 1998, Harrison et al. 1998, Malisch 1998, US EPA 2000). The 

proportion of fish and fish products in these countries varied between 1 and 20%. The impact of 

vegetables on the intakes of PCDD/Fs have been considered as negligible or insignificant in 

many studies, but recently in Spain the contribution of vegetables has been estimated as being 

noteworthy (Domingo et al. 1999). Taking the impact of vegetables into consideration in the 

intake calculations, Domingo et al. concluded the intake in Catalonia to be 210 pg I-TEq day-1. If 
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one excluded vegetables from the calculations, then the intake would have been 117 pg I-TEq 

day-1. Lovett et al. (1997) concluded that the increase in intake of PCBs and PCDD/Fs resulting 

from eating fruits and vegetables was unlikely to >3% for PCBs and 8% for PCDD/Fs, of the 

average daily intakes of these contaminants from all food sources. 

Table 5 shows the percentage exposure for PCDD/F from the most important food 

sources, and daily intake of PCDD/Fs in different countries. It reveals that geographically the 

countries nearest to Finland i.e. Germany and Norway, have the most similar intakes as Finland, 

61.3 and 51 pg TEq day-1, respectively. The Western European countries, The Netherlands and 

UK can be grouped with each other with 73 and 90 pg TEq day-1 intakes. The daily intake of 

PCDD/Fs in Finland was ~3 times higher than the intakes in New Zealand (14.5 pg I-TEq). 

In this study, the TEq intakes have been calculated with the concentration results where the 

non-detected results were considered as zeros. If the intakes of PCDD/Fs and PCBs were 

calculated with these results replaced by LODs, the PCDD/F intake would be 65 pg I-TEq day-1

and PCB intake 54 pg PCB-TEq day-1. This shows the crucial effect of handling the non-detected 

values when the concentrations of studied substances are very near to the limit of determination 

(LOD). 

6.CONCLUSIONS

In this study, the updated PCDD/F intake calculations revealed ~50% decrease in daily I-

TEq intake in the average Finnish population. The main reason for this decrease was the lower 

concentrations of PCDD/Fs in cows' milk and eggs and also the lower consumption of milk, eggs 

and fish. This study shows that the contribution of fish to the intake of PCDD/F has become 

more dominant compared to the previous study in Finland. 

The estimated daily intake of PCB-TEq was close to I-TEq intake, but the data for PCBs 

was not totally comprehensive, thus in the future the PCB occurrence data in foods must be 

completed in order to obtain a better estimate for PCB-TEq intake. The intake and trend for I-

TEq in Finland is very consistent with other European countries. The total intake of PCDD/Fs 

and PCBs, 1.3 pg TEq kg-1 b.w. day-1, is within the range of tolerable daily intake (TDI) 

provided by the WHO. 
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Table 5. Percentage exposure of PCDD/F from the most important food sources, and daily 

intake of PCDD/Fs in different countries.

Country 
Milk and 

dairy
products 

Meat and 
meat 

products 

Fish and 
fish 

products 
Eggs Others 

PCDD/F 
daily intake 
(pg I-TEq) 

Reference 

Spain 16 10 15 2 57 210 Domingo et al. (1999) 
USA 29 39 20 3 9 41 US EPA (2000) 
Italy (Venice) 29-53 3-11 42-50 2-10 - 15-130 Zanotto et al. (1999) 
UK 25 31 8 5 31 90* Harrison et al. (1998) 
Norway 8-13 6-10 28-43 4-7 27-54 51-85 Becher et al. (1998) 
The Netherlands 46 23 3 4 24 73 Liem and Theelen (1997) 
Germany 31 23 17 8 21 61.3 Malisch (1998) 
New Zealand 16 36 12 3 33 15 Buckland et al. (1998) 
Finland 1992 31 1.4 60 3 - 95 Hallikainen et al. (1995) 
Finland 1999 8 7 82 2 1 46 present study 
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1. ABSTRACT

We have measured the concentrations of polychlorinated dibenzo-p-dioxins (PCDD/F), 

polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDE) in 10 market 

baskets consisting of almost 4000 individual food samples representing 228 different food items, 

and also in the total diet basket. Lower bound concentrations of PCDD/Fs ranged between 0.0057 

and 5.6 pg/g fresh weight in the market baskets and the corresponding values for PCBs from 39 to 

25,000 pg/g. The fish basket contributed most to the concentrations of dioxins and PCBs, and also 

to concentrations of PBDEs in which the lower bound range was from 0.82 to 850 pg/g. We also 

assessed the average daily intakes of these substances by the Finnish adult population. The average 

daily intake of sum of PCDD/Fs and PCBs as WHO toxic equivalents was assessed to be 115 pg 

which was 1.5 pg WHO-TEq/kg body weight using an average mean weight of 76 kg for the 

general population in Finland. The contribution of fish to the intake of PCDD/Fs was between 94% 

and 72%, depending on whether lower or upper bound concentrations were used. With respect to 

PCBs, the contribution of fish was 80%. The calculated intake of PBDEs of 44 ng/day was 

comparable to intake assessments from other countries. Fish also contributed most to the PBDE 
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intake, but there was some other source of PBDEs that distinguishes the exposure to PBDEs from 

exposure to PCDD/Fs and PCBs. This additional source seemed to be found in the market basket 

that included beverages, spices, and sweets. 

2. INTRODUCTION

More than 90% of the average human intake of polychlorinated dibenzo-p-dioxins and 

polychlorinated dibenzofurans (PCDD/F, dioxins) and polychlorinated biphenyls (PCBs) 

originates from food, especially food of animal origin (Liem et al., 2000). In a risk assessment of 

dioxins and dioxin-like PCBs in the diet, the Scientific Committee for Food (SCF) of the 

European Commission assessed a tolerable weekly intake (TWI) of 14 pg/kg body weight (bw) 

for these chemicals as toxic equivalents (WHO-TEq), according to the WHO toxic equivalency 

factor (TEF) scheme (European Commission, 2001; Van den Berg et al., 1998). Exposure 

estimates, made by SCF, indicated that a proportion of the European population has a dietary 

intake of dioxins and dioxin-like PCBs which is in excess of the TWI. 

In our previous study we concluded that at the end of the 1990s the exposure of the 

Finnish population to dioxins was only about 50% of their exposure at the beginning of the 

decade (Kiviranta et al., 2001). In that survey we used the Selective Study of Individual 

Foodstuffs (SSIF) approach combined with food consumption data from a 24-h dietary recall 

study for 2862 Finnish adults (National Public Health Institute,1998). The average dioxin intake, 

using former Ahlborg and NATO TEFs (Ahlborg et al., 1994; NATO/CCMS, 1988), was 

calculated to be 46 pg TEq/day, and the assessed PCB intake was 53 pg PCB-TEq/day. Thus the 

total intake of dioxins and dioxin-like PCBs was 100 pg TEq/day. On average, weekly intake of 

these chemicals in Finland was then assessed to be 9.2 pg TEq/kg bw and this was below the 

Commission's recommendation. 

In this study, the Agricultural Research Centre of Finland composed an average Finnish 

market basket diet and the National Public Health Institute, Laboratory of Chemistry, analyzed 

the diet for dioxins and PCBs, and also for polybrominated diphenyl ethers (PBDEs). The 

compositions and consumption of the market baskets were based on the same Dietary Survey of 

Finnish Adults (National Public Health Institute,1998) as used in our previous study. Thus we 

were able to compare intake assessments of dioxins and dioxin-like PCBs between these two 

methods; Market Basket Method  (MBM) and SIFF-method. The intake assessment of PBDEs 

was conducted for the first time in Finland, with our main interest focussed on the origin and 

level of adult population exposure to PBDEs. 
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3. MATERIALS AND METHODS 

Food consumption data and composition of the market baskets

The food and food group consumption data used in the composition of the market baskets 

and in the intake calculations consist of the average consumption figures taken from the 1997 

Dietary Survey of Finnish Adults (National Public Health Institute, 1998). In this 24-h recall 

study the whole adult population, sampled from five major Finnish provinces and cities, aged 25-

64, was included (n=2862). 

Ten individual market baskets were created: (1) liquid milk products; (2) solid milk 

products; (3) fish; (4) meat and eggs; (5) fats; (6) cereal products; (7) potato products; (8) 

vegetables; (9) fruits and berries; (10) beverages, spices, sweets etc. In addition, a total diet 

basket was created by mixing individual market baskets based on the consumption proportion of 

each individual market basket in the total average diet. Alcoholic beverages were omitted from 

the market baskets and also from the total diet basket. Table 1 shows the average daily 

consumption of market baskets, and the main items within the basket. Market baskets included 

all food items whose average daily consumption exceeded 0.5 g. A total of 228 different food 

items was included, with 3,988 individual samples (177 kg in total weight) being combined. In 

the market basket, the amount of each food item was obtained from the consumption data and the 

amount of each sample within a food item from market share data obtained from A.C.Nielsen 

Finland. Sample collection was carried out during a period of April 1997 and June 1999 in order 

to collect each product at its peak season. Of the samples 39.9% were collected from 

supermarkets, 38.7% directly from manufacturers, 11.2% from wholesalers, 6.3% from 

producers, and 3.9% from farmer markets. 

Preparation of food samples for analysis of PCDD/Fs, PCBs, and PBDEs

Pooling of food samples into 10 market baskets and to the total diet basket was undertaken 

in the Agricultural Research Centre of Finland, where measurements of the fat content of market 

baskets were conducted. Due to the lengthy collection period, the purchased food samples were 

stored mainly frozen at - 25°C before pooling into their respective market basket. 
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Table 1.

Market baskets, their average daily consumption, g/d (percentage of total daily consumption), 

and their main items (percentage in a basket).

Market basket Consumption g/d (%) Main items (%) 
(1) Liquid milk products 427 (21) Milk (71) 

Sour milk (15) 
Yogurt (11) 

(2) Solid milk products 32.5 (1.6) Cheese (94) 
(3) Fish 27.4 (1.4) Salmon and rainbow trout (29) 

Tuna and saithe (19) 
Baltic herring (11) 
Vendace (8) 

(4) Meat and eggs 132 (6.5) Processed meat products (31) 
Beef (20) 
Pork (19) 
Poultry (13) 
Eggs (13) 

(5) Fats 35.7 (1.8) Margarines (43) 
Butter (22) 
Butter-oil mixtures (16) 
Vegetable oils (13) 

(6) Cereal products 181 (9.0) Bread (48) 
Flour and other cereals (43) 

(7) Potato products 121 (6.0) Potato (97) 
(8) Vegetables 117 (5.8) Tomato (20) 

Carrot (15) 
Cucumber (12) 
Onion (9) 

(9) Fruits and berries 221 (11) Citrus fruits (32) 
Other fresh fruits (28) 
Whole juices (24) 
Berries (12) 

(10) Beverages, spices, sweets 725 (36) Coffee and tea (80) 
Beverages and juices (14) 
Sugars and honey (3) 

Total 2020 (100)  

The fat content of all market baskets, except basket 10, and the total diet basket was determined 

by diethyl ether extraction after acid hydrolysis. The fat content was determined gravimetrically. 

All market baskets, with the exception of basket 10 were freeze dried before transporting to the 

laboratory of chemistry in the National Public Health Institute.

Analysis of PCDD/Fs, PCBs, and PBDEs

The occurrence of 17 PCDD/F (toxic) congeners, of three non-ortho (PCB 77, 126, and 

169), eight mono-ortho (PCB 105, 114, 118, 123, 156, 157, 167, and 189), of 23 (PCB 18, 28, 

33, 49, 52, 60, 66, 74, 99, 101, 110, 122, 128, 138, 141, 153, 170, 180, 183, 187, 194, 206, and 

209) other PCB congeners, and of five PBDE congeners (PBDE 47, 99, 100, 153, and 154) were 
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measured. For PCDD/Fs, toxic equivalents (TEq) were calculated with two different sets of toxic 

equivalency factors (TEF), the NATO factors (NATO/CCMS, 1988) gave I-TEqs, and the 

factors recommended by WHO in 1998 (Van den Berg et al., 1998) gave WHOPCDD/F-TEqs. For 

PCBs, TEqs were also calculated with two sets of TEFs, factors by Ahlborg et al. (1994) gave 

PCB-TEqs and factors by WHO gave WHOPCB-TEqs.

Samples were spiked with 16 13C-labeled PCDD/F standards (2,3,7,8-chlorinated 

PCDD/F congeners), with three 13C-labeled non-ortho PCB standards (PCB 77, 126, and 169), 

13 13C-labeled other PCB standards (PCB 30 [12C-labeled], 80, 101, 105, 118, 138, 153, 156, 

157, 170, 180, 194 and 209), and with two 13C-labeled PBDE standards (PBDE 77 and 126). 

Samples of market baskets 1 to 9 and the total diet basket were extracted with toluene for 24 h 

using the Soxhlet apparatus. Sample of market basket 10, beverages, spices, sweets etc., was first 

filtered and the filtrate was then extracted with toluene in a separation funnel. The same toluene 

was used for extraction of the precipitate of the filtration in a Soxhlet apparatus. All the samples 

were defatted in a silica gel column containing acidic and neutral layers of silica, and all analytes 

were eluted with dichloromethane (DCM)/cyclohexane (c-hexane) (1:1). PCDD/Fs were 

separated from PCBs and PBDEs on activated carbon column (Carbopack C, 60/80 mesh) 

containing Celite (Merck 2693). The first fraction including PCBs and PBDEs was eluted with 

DCM:c-hexane (1:1) following a back elution of the second fraction (PCDD/Fs) with toluene. 

Eluents from both of the fractions were evaporated using nonane as a keeper and then fractions 

were further cleaned by passing through an activated alumina column (Merck 1097). The 

PCDD/F fraction was eluted from the alumina column with 20% DCM in n-hexane and recovery 

standards (13C 1,2,3,4-TCDD and 13C 1,2,3,7,8,9-HxCDD) were added to the fraction before 

DCM and n-hexane were replaced by 10-15 μl of nonane. The PCB-PBDE fraction was eluted 

from the alumina column with 2% DCM in n-hexane, and the fraction was further fractionated, 

after changing the eluent to n-hexane and transferring to another activated carbon column 

(without Celite) in order to separate the non-ortho PCBs from other PCBs and PBDEs. DCM 

(50%) in n-hexane was used to elute other PCBs and PBDEs, and non-ortho PCBs were back 

eluted with toluene. Recovery standards, PCB 159 for other PCBs and PBDEs, and 13C PCB 60 

for non-ortho PCBs were added prior to analysis; for non-ortho PCBs toluene was replaced by 

10-15 μl of nonane. The quantitation was performed by selective ion recording using a VG 70-

250 SE (VG Analytical, UK) mass spectrometer (resolution 10,000) equipped with a HP 6890 

gas chromatograph with a fused silica capillary column (DB-DIOXIN, 60 m, 0.25 mm, 0.15 

μm). Two microliters were injected into a split-splitless injector at 270°C.  The temperature 
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programs for PCDD/Fs, non-ortho-PCBs, mono-ortho- and other PCBs , and PBDEs were: start, 

140°C (4 min), rate 20°C/min to 180°C (0 min), rate 2°C/min to 270°C (36 min); start, 140°C (4 

min), rate 20°C/min to 200°C (0 min), rate 10°C/min to 270°C (12 min); start, 60°C (3 min), rate 

20°C/min to 200°C (0 min), rate 4°C/min to 270°C (14 min); start, 100°C (2 min), rate 25°C/min 

to 240°C (0 min), rate 4°C/min to 300°C (25 min), respectively. Limits of quantitation (LOQ) 

for PCDD/Fs, non-ortho PCBs, mono-ortho- and other PCBs, and PBDEs varied between 0.0007 

and 0.63, 0.0007 and 0.13, 0.048 and 3.2, 0.035 and 13 pg/g fw, respectively, depending on each 

individual congener and on the individual market basket. Recoveries for internal standards were 

more than 50% for all congeners. Fresh weight concentrations were calculated with both lower 

bound and upper bound methods. In the lower bound method, the results of congeners with 

concentrations below LOQ were designated as nil, while in the upper bound method they were 

denoted as the LOQ. 

Quality control and assurance

The laboratory reagent and equipment blank samples were treated and analyzed with the 

same method as the actual samples, one blank for every five samples. Fish oil is used as an 

internal quality control sample in the laboratory, and the random errors within the laboratory for 

WHOPCDD/F-TEq, WHOPCB-TEq, and sum of PBDEs are 5.7%, 4.6%, and 4.3%, respectively. 

The laboratory has participated in several international quality control studies for the analysis of 

PCDD/Fs, and PCBs. The matrices in these studies have included milk, meat, fat and fish 

samples. (IUPAC, 1995, 1998, 2000; Lindström et al., 2000; Becher et al., 2001; Småstuen Haug 

et al., 2002). When taking the systematic error obtained from these studies into account, the 

uncertainty of  WHOPCDD/F-TEq and WHOPCB-TEq results were 9.2% and 13.1%, respectively. 

The laboratory of chemistry in the National Public Health Institute is an accredited testing 

laboratory (No T077) in Finland (current standard: EN ISO/IEC 17025). The scope of 

accreditation includes PCDD/Fs, non-ortho PCBs, mono-ortho- and other PCBs, and PBDEs 

from environmental samples. 

Intake calculations

In the intake calculations, the average daily consumption of the food baskets was 

multiplied with the corresponding concentrations. Daily intakes (pg/day) for PCDD/Fs, PCBs, 
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and PBDEs were calculated on a fresh weight basis as a sum of the individual baskets and from 

the total diet basket. Intakes were calculated with both lower bound and upper bound 

concentrations. When calculating daily intakes per kg body weight (pg/kg bw), the average 

weight of 76 kg, which represents the average weight of the population participating in the 1997 

Dietary Survey (National Public Health Institute, 1998), was used. In that kind of study it can be 

assumed that even as many as every third subject has underreported the daily food intake, which 

is a common phenomenon in national dietary surveys (Hirvonen et al., 1997). The underreporters 

tend to claim a higher consumption of recommended food items, like vegetables, but lower 

consumption of less favourable food items such as spread fats. Thus, the average food intake 

estimated by individual dietary recalls is lower than the actual habitual intake.

4. RESULTS

The concentrations, as pg/g fresh weight (fw), of selected sets of PCDD/Fs and PCBs, 

corresponding toxic equivalents, and concentrations of PBDEs in 10 market baskets and in the total 

diet basket are presented in Table 2. Both, lower and upper bound concentrations were calculated.  

The maximum concentration of the sum of PCDD/Fs was detected in the fish basket 5.6 

pg/g fw followed by fats (3.0), and meat and eggs basket (0.55). The lowest concentration 

occurred in liquid milk products 0.0057 pg/g fw. Also in TEqs, the fish basket (1.8 pg/g of I-TEq 

or 2.0 pg/g WHOPCDD/F-TEq) dominated since its concentration was over 150 or 200 times 

higher than in the next biggest basket, fats (0.011 pg/g of I-TEq or 0.0088 pg/g WHOPCDD/F-

TEq). In the baskets, meat and eggs, fats, cereal products, potato products, vegetables, fruit and 

berries, the most abundant congeners were octachloro dibenzo-p-dioxin (OCDD), 1,2,3,4,6,7,8-

heptachloro dibenzofuran (1,2,3,4,6,7,8-HpCDF), and 1,2,3,4,6,7,8-heptachloro dibenzo-p-

dioxin (1,2,3,4,6,7,8-HpCDD). In the two milk product baskets, the most abundant congeners 

were 1,2,3,6,7,8-hexachloro dibenzo-p-dioxin (1,2,3,6,7,8-HxCDD) and 1,2,3,4,6,7,8-HpCDD. 

In the fish basket, the majority of the PCDD/F congeners could be quantified, with 2,3,4,7,8-

pentachloro dibenzofuran (2,3,4,7,8-PeCDF) and 2,3,7,8-tetrachloro dibenzofuran (2,3,7,8-

TCDF) being the most abundant congeners. Since the quantified congeners in most of the market 

baskets were highly chlorinated compounds with low TEF-values, the difference in TEqs 

between fish and other baskets was larger than the difference in the sum of PCDD/Fs. It also 

meant that the upper bound TEqs in baskets were from 3 to as much as 1250 times higher than 

the lower bound TEqs. The congener profiles in the total diet basket in Fig. 1 illustrates the 
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average Finnish exposure pattern to dioxins. The profile of the sum of PCDD/Fs was dominated 

by OCDD (60%) and the next abundant congeners were: 2,3,4,7,8-PeCDF, 2,3,7,8-TCDF, 

1,2,3,4,6,7,8-HpCDD, and 1,2,3,6,7,8-HxCDD. In the TEq profiles, 2,3,4,7,8-PeCDF accounted 

for 65% with congeners 2,3,7,8-tetrachloro dibenzo-p-dioxin (2,3,7,8-TCDD) and 1,2,3,7,8-

pentachloro dibenzo-p-dioxin (1,2,3,7,8-PeCDD) being the next abundant congeners. 

The fish basket also showed the highest concentrations of PCBs in every subset of 

congeners. The maximum concentration of the sum of PCBs was 25,000 pg/g fw followed by fats 

(750), and solid milk products basket (740). The lowest concentration was measured in the potato 

products basket 39 pg/g. The TEqs in the fish basket (1.6 pg/g of PCB-TEq or 1.5 pg/g WHOPCB-

TEq) were 35 times higher than concentrations in the next highest basket, fats (0.046 pg/g of PCB-

TEq or 0.043 pg/g WHOPCB-TEq). The majority of PCB congeners exceeded the LOQ values in all 

baskets. The three and four chlorine substituted PCBs were more abundant than the higher 

chlorinated congeners in the following baskets; liquid milk products, fats, cereal products, potato 

products, fruits and berries, and beverages, spices, sweets, but the most abundant PCBs in baskets; 

solid milk products, fish, meat and eggs, and also in vegetables were penta, hexa and hepta 

chlorinated congeners: PCB 101, 110, 118, 138, 153, 170, and 180. For the PCBs the TEqs 

calculated either with upper or lower bound concentrations did not differ from each other. The 

lower bound TEqs of PCBs were higher than respective PCDD/F TEqs by a factor ranging from 

1.5 to 220 in all other baskets except in the fish and the total diet basket. When comparing upper 

bound TEqs between dioxins and PCBs, only in the baskets with liquid milk products and 

vegetables did the PCB TEqs exceed the dioxin TEqs. The congener profiles in the total diet basket 

describe the average Finnish exposure pattern to PCBs, Fig. 2. Congeners PCB 153, 138, 110, 118, 

99, 180, 101 dominated the sum of PCBs profile with coverage of 65%. In the TEq profiles, three 

congeners; PCB 126, 118, and 156 accounted for 82-89% of the profile.



Table 2. 

Concentrations of PCDDs, PCDFs, dioxin toxic equivalents, non-ortho-PCBs, mono-ortho-PCBs, other PCBs, PCB toxic equivalents, PBDEs, 

and fat percentages of 10 market baskets and total diet basket as pg/g fresh weight.

Analyte group, pg/g Market baskets Total diet  

(1)
Liquid 
milk 
products 

(2)  
Solid milk 
products 

(3)
Fish 

(4)
Meat and 
eggs 

(5)  
Fats

(6)
Cereal 
products 

(7)
Potato
products 

(8)
Vegetables 

(9)
Fruits and 
berries 

(10)  
Beverages, 
spices, sweets 

basket 

Fat% 2.0 21 6.4 11 79 2.1 0.34 0.90 1.3  3.5 
PCDD [7] 0.0043 (2) 

0.018 
0.056 (2) 
0.25 

0.91 (7) 
0.91 

0.50 (2) 
0.54 

3.0 (3) 
3.3 

0.28 (2) 
0.30 

0.031 (1) 
0.038 

0.051 (2) 
0.057 

0.12 (2) 
0.13 

0.00076 (1) 
0.011 

0.19 (6) 
0.19 

PCDF [10] 0.0014 (1) 
0.019 

ND (0) 
0.27 

4.7 (7) 
4.7 

0.049 (3) 
0.17 

ND (0) 
1.2 

0.032 (4) 
0.091 

ND (0) 
0.022 

0.15 (4) 
0.16 

0.014 (3) 
0.041 

0.0096 (1) 
0.022 

0.058 (3) 
0.10 

Sum of PCDD/Fs 0.0057 
0.037 

0.056 
0.52 

5.6 
5.6 

0.55 
0.71 

3.0 
4.5 

0.31 
0.39 

0.031 
0.059 

0.21 
0.22 

0.14 
0.17 

0.010 
0.033 

0.25 
0.29 

I-TEq 0.00093 
0.0031 

0.0027 
0.042 

1.8 
1.8 

0.0082 
0.026 

0.011 
0.19 

0.0043 
0.013 

0.000031 
0.0033 

0.0012 
0.0042 

0.00083 
0.0052 

0.00017 
0.0021 

0.027 
0.029 

WHOPCDD/F-TEq 0.00093 
0.0036 

0.0027 
0.049 

2.0 
2.0 

0.0078 
0.029 

0.0088 
0.22 

0.0041 
0.015 

0.0000031 
0.0039 

0.0010 
0.0047 

0.00073 
0.0059 

0.00017 
0.0025 

0.029 
0.030 

Non-ortho-PCB [3] 0.11 (3) 
0.11 

1.1 (3) 
1.1 

34 (3) 
34 

0.59 (3) 
0.59 

0.76 (2) 
0.88 

0.80 (2) 
0.81 

0.080 (2) 
0.082 

0.52 (3) 
0.52 

0.39 (2) 
0.39 

0.0024 (1) 
0.0038 

0.76 (3) 
0.76 

Mono-ortho-PCB [8] 7.2 (8) 
7.2 

89 (8) 
89

3600 (8) 
3600 

52 (8) 
52 

110 (5) 
120 

24 (6) 
24

1.3 (4) 
1.5 

14 (8) 
14 

4.0 (4) 
4.3 

1.1 (2) 
1.6 

69 (8) 
69 

Other PCB [23] 64 (20) 
64 

650 (20) 
650 

22,000 (23) 
22,000 

410 (22) 
410 

640 (13) 
680 

380 (20) 
380 

38 (20) 
38 

250 (23) 
250 

51 (19) 
51 

78 (19) 
79 

540 (22) 
540 

Sum of PCBs 71 
71 

740 
740 

25,000 
25,000 

470 
470 

750 
790 

400 
400 

39 
40 

260 
260 

55 
56 

79 
80 

610 
610 

PCB-TEq 0.0043 
0.0043 

0.043 
0.043 

1.6 
1.6 

0.024 
0.024 

0.046 
0.049 

0.0071 
0.0073 

0.00076 
0.00085 

0.0092 
0.0092 

0.0021 
0.0022 

0.00046 
0.00056 

0.030 
0.030 

WHOPCB-TEq 0.0040 
0.0040 

0.039 
0.039 

1.5 
1.5 

0.021 
0.021 

0.043 
0.046 

0.0062 
0.0064 

0.00067 
0.00076 

0.0068 
0.0068 

0.0018 
0.0019 

0.00041 
0.00051 

0.028 
0.028 

Sum of PBDEs [5] 0.82 (1) 
2.0 

34 (3) 
40

850 (5) 
850 

13 (4) 
15 

180 (2) 
220 

15 (5) 
15

1.3 (4) 
1.4 

17 (5) 
17 

3.8 (3) 
4.2 

5.4 (3) 
5.5 

43 (5) 
43 

Lower bound concentrations shown in bold and non-bold font represents the corresponding upper bound concentrations. The number of analysed congeners in brackets and 
the number of congeners exceeding the LOQ concentrations in parenthesis for each analyte group. 
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Fig 1. Percentages of PCDD/F congeners in the total diet basket. (A) Percentages from the sum 
of PCDD/Fs (B) Percentages from toxic equivalents (I-TEq: black bars; WHOPCDD/F-TEq: white 
bars). Congeners: 1D: 2,3,7,8-TCDD; 2D: 1,2,3,7,8-PeCDD; 3D: 1,2,3,4,7,8-HxCDD; 4D: 
1,2,3,6,7,8-HxCDD; 5D: 1,2,3,7,8,9-HxCDD; 6D: 1,2,3,4,6,7,8-HpCDD; 7D: OCDD; 1F: 
2,3,7,8-TCDF; 2F: 1,2,3,7,8-PeCDF; 3F: 2,3,4,7,8-PeCDF; 4F: 1,2,3,4,7,8-HxCDF; 5F: 
1,2,3,6,7,8-HxCDF; 6F: 2,3,4,6,7,8-HxCDF; 7F: 1,2,3,7,8,9-HxCDF; 8F: 1,2,3,4,6,7,8-HpCDF; 
9F: 1,2,3,4,7,8,9-HpCDF; 10F: OCDF. 

Fig. 2. Percentages of PCB congeners in the total diet basket. (A) Percentages from the sum of 

PCBs. (B) Percentages from toxic equivalents (PCB-TEq: black bars; WHOPCB-TEq: white 

bars).
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The concentration of the sum of PBDEs ranged from 0.82 to 850 pg/g fw, and similarly 

to PCDD/Fs and PCBs, the fish basket had the highest concentration of PBDEs. The congener 

profile of PBDEs in the total diet basket is illustrated in Fig. 3. The main contributor to the 

profile was PBDE 47, followed by congeners PBDE 99 and 100, which was also the case in the 

following baskets; fish, potato products, fruits and berries, and beverages, spices, sweets. In all 

other baskets, the main contributor to the profile was PBDE 99. 

Fig. 3. Percentages of PBDE congeners in the total diet basket. 

The average daily intakes of the sum of PCDD/Fs and PCBs, the corresponding toxic 

equivalents, and of the sum of PBDEs are presented in Table 3. Intakes calculated with lower 

bound concentrations were higher in the total diet basket than in the sum of the individual 

baskets. The sum of PCDD/Fs intake was 500 pg/day in the total diet basket this being 9% 

higher than the intake calculated from the sum of individual baskets (460 pg). In dioxin TEqs, 

the difference was not so evident in I-TEqs 55 versus 53 pg/day and in WHOPCDD/F-TEqs 58 

versus 57 pg/day, respectively. The difference in lower bound intakes between the total diet 

basket and the sum of individual baskets was the largest, 19%, in the sum of PCBs, i.e. either 

1200 or 1010 ng/day, respectively. In PCB-TEq and WHOPCB-TEq, the difference was about 9% 

(60 versus 55 and 56 versus 51 pg/day, respectively). Upper bound sum of PCBs, PCB-TEq, and 

WHOPCB-TEq intakes in the total diet basket and in the sum of the individual baskets were 

similar to lower bound intakes. For dioxins, upper bound intakes calculated from the sum of 
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individual baskets were higher than the corresponding intake from the total diet basket. The 

difference in the sum of PCDD/Fs was 5%, in I-TEq 17%, and in WHOPCDD/F-TEq 25%. The 

lower and upper bound intakes of the sum of PBDEs were similar, around 44 ng/day.  

The contribution of fish to daily intake was overwhelming. In the lower bound intake of 

WHOPCDD/F-TEq, the fish basket accounted for 95% of the daily intake and with WHOPCB-TEq

the intake was 80%. When calculating shares in the upper bound intakes, fish accounted for 71% 

of the dioxin TEq intake while the contribution to the PCB TEqs remained at 80%. In the sum of 

PCDD/Fs the major contributors to daily intake were fish (30%), fats (24%), meat and eggs 

(16%), and cereal products (12%). In addition to fish, three other major contributors to the sum 

of PCBs were cereal products (7%), meat and eggs (6%), and beverages, spices, sweets (6%). 

Over half (53%) of the sum of PBDEs intake came from the fish basket, followed by fats (17%), 

beverages, spices, sweets (9%), and cereal products (6%). 

5. DISCUSSION

Lower bound I-TEq intake in the sum of individual baskets in this study (53 pg/day) was 

15% higher than the corresponding intake in our previous study with the SSIF-method (46 

pg/day) (Kiviranta et al. 2001). The corresponding upper bound intake in these two studies were 

more comparable (68 pg I-TEq/day  versus 65 pg/day, respectively). In PCB-TEqs lower and 

upper bound intakes were comparable between both studies (55 and 53, and 56 and 54 pg PCB-

TEq/day, respectively).

In this study, the main contributor, i.e. fish, accounted for 94% of the lower bound dioxin I-

TEq intake while in the previous study the contribution of fish was 82%. The contribution of milk 

products and meat and eggs to the lower bound intake of I-TEqs was 0.93 and 2.0% in this study 

compared to 8 and 9% in the previous study. Using the upper bound I-TEq values, the 

contributions of different kind of foodstuffs were alike between the studies (73, 4%, 5%, and 18% 

for fish, milk products, meat and eggs, and others, respectively in this study versus 59%, 15%, 

13%, and 9%, respectively, in the previous study). The contribution of the different kinds of 

foodstuffs to lower or upper bound PCB-TEq intake between the studies were rather similar and 

comparable (80%, 6%, 6%, and 8% for fish, milk products, meat and eggs, and others, respectively 

in this study versus 81%, 12%, 6%, and 1%, respectively in the previous study). The differences in 

lower bound I-TEq and in percentages of fish, dairy, and meat products of dioxin intake between 

our two studies are mainly due to the contribution of fish. In this study, the fish basket I-TEq 
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concentration was 1.8 pg/g, while the corresponding concentration (weighed by fish species 

consumption) in our previous study would be 1.3 pg/g. In addition, in the dairy and meat products 

baskets, the pooling of a large amount of different food items into the basket seemed to cause a 

critical dilution of low chlorinated dioxin analytes (1,2,3,7,8-PeCDD and 2,3,4,7,8-PeCDF) leading 

to lower I-TEq concentrations in these baskets compared to the corresponding food groups in our 

previous study. The PCB concentrations were much higher compared to the dioxin concentrations, 

and therefore there were only minor differences in the concentrations of PCB TEqs and the 

contributions of different food groups to the daily intake between our two studies. 

The total diet basket seems to be the most reliable choice to assess the daily intake of 

these contaminants. Especially with respect to dioxin intakes, the numerous congeners with 

concentrations below LOQ in the individual baskets result in an underestimation of the lower 

bound intakes and an overestimation of the upper bound intakes. 

Table 4 provides an overview of the average daily dietary intakes of dioxin- and PCB 

TEqs of adult populations from a number of countries. In addition, the food groups that 

contribute most to the intake of dioxins are presented. It is a difficult task to compare the results 

of intake estimations between countries because there are notable differences in the analytical 

methods e.g. upper bound versus lower bound concentrations used and set of TEFs utilized. 

There are differences between studies in collection methods and number of foods analysed, and 

differences in the means to study food consumpion. The daily intake of dioxins ranged between 

29 pg I-TEq in Norway (SCOOP, 2000) and 104 pg WHOPCDD/F-TEq in the USA (Schecter et al., 

2001), and of PCBs from 31 pg WHOPCB-TEq in Sweden (Lind et al., 2002) to 110 PCB-TEq in 

Norway. The recent Finnish TEq estimates of daily intakes (46-61 pg in dioxins and 51-60 in 

PCBs) were within these ranges reported from other countries. The Finnish daily intake of 

WHOPCDD/F-TEq together with WHOPCB-TEq per body weight (bw) was 1.5 pg/kg bw in this 

study which is at the lower end of the tolerable daily intake (TDI) range set by WHO, 1-4 pg 

TEq/kg bw (Van Leeuwen and Younes, 2000). None of the reported daily intakes in Table 4 

exceeded the WHO TDI upper range value. The TWI of TEqs in Finland was 10.5 pg WHO-

TEq/kg bw which is also below the highest recommended TWI value of 14 pg WHO-TEq/kg bw 

given by EU (EC/SCF 2001). In the future, analyses using distributional information for 

consumption data are needed in order to assess the percentage of Finns exceeding the TWI.  

Depending on the method used in the calculations, in Finland fish accounted for from 

63% up to 94 % of the daily intake of dioxins. A rather similar food contribution profile exists in 

Japan where 71% of the intake comes from fish (Tsutsumi et al., 2001). Fish are also the major 
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source of dioxin intake in Norway, Sweden, and Italy, but there exist a common trend in central 

and southern Europe for the dairy and meat/poultry food groups to be the most significant food 

groups in the intake of dioxins. That was also the case with the USA. The contribution of the 

food group “other” is very difficult to compare between the countries because of the large 

differences in food groups analysed in individual studies. 

Intake estimations of PBDEs have been reported from Canada (Ryan and Patry, 2001), 

Sweden (Lind et al., 2002), the United Kingdom (Wijesekera et al., 2002), and the Netherlands 

(Winter-Sorkina et al., 2003). In Canada, the daily intake was estimated to be 44 ng, which is 

similar to the results of this study. The food group which contributed most to the daily intake 

was different in Canada, 70% came from meat products, 6% from dairy products, and only 3% 

from fish. The corresponding contributions in this study were 4%, 3% and 55%, respectively. In 

Sweden the daily intake of PBDEs has been assessed to be 31 ng. The contribution of fish to the 

intake in Sweden was similar to that reported in this study about 58%, and dairy and meat 

products accounted for about 10% in Sweden. If we exclude cereals, potato products, fruits and 

vegetables, and beverages from the intake calculations of PBDEs from our study, the daily intake 

would be 33 ng, which is quite close to the value in the Swedish study, which did not evaluate 

these food groups. The contribution (9%) of the food group beverages, spices and sweets 

suggests that in PBDE intake there might be relevant exposure sources other than animal 

products. In the UK, the average daily lower bound intake was assessed to be 90.5 ng, and it was 

estimated that this would contribute 73% of the overall daily exposure. The lower bound daily 

intake of PBDEs in the Netherlands was estimated to be 13 ng, while the medium bound was 

assessed to be 185 ng (Winter-Sorkina et al., 2003). The difference between the intake estimates 

in the Netherlands was due to large number of congeners below the detection limits and the 

relatively high detection limits of some samples. 

6. CONCLUSIONS

Two different methods to assess dioxin and PCB intakes, i.e. either by analyzing food baskets 

(MBM-method) or by analyzing separate food items (SIFF-method), gave quite similar results. 

This implies that on average, the exposure in Finland is rather stable. 

The assessed average daily TEq intake, 1.5 pg/kg bw, was at the lower end of the 

tolerable daily intake (TDI) range for PCDD/Fs and PCBs set by WHO (1-4 pg WHO-TEq/kg 
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bw), and the assessed weekly intake, 10.5 pg WHO-TEq/kg bw was below the highest 

recommended weekly intake value of 14 pg WHO-TEq/kg bw given by EU.  

The intake of PBDEs were assessed for the first time in Finland and these were comparable 

to intakes in Canada and Sweden. The contribution profile of PBDEs suggested that there might be 

a difference in human exposure sources of PBDEs when compared to dioxins and PCBs.



Table 3.

Average intakes of PCDD/Fs, dioxin toxic equivalents, PCBs, PCB toxic equivalents, and PBDEs from 10 market baskets and total diet

basket as pg/day.

Market baskets Intake, pg/day Intake, pg/day Intake, pg/day 
 Sum of PCDD/Fs I-TEq WHOPCDD/F-TEq Sum of PCBs x 103 PCB-TEq WHOPCB-TEq Sum of PBDEs  x 103

(1) Liquid milk 
products 

2.4 (0.53) 
16 (2.6) 

0.40 (0.76) 
1.3 (2.0) 

0.40 (0.7)
1.5 (2.0) 

30 (3.0)
30 (3.0) 

1.8 (3.3)
1.8 (3.3) 

1.7 (3.4)
1.7 (3.4) 

0.35 (0.8)
0.86 (1.9) 

(2) Solid milk 
products 

1.8 (0.40) 
17 (2.8) 

0.089 (0.17)
1.4 (2.0) 

0.089 (0.16)
1.6 (2.1) 

24 (2.4)
24 (2.4) 

1.4 (2.5)
1.4 (2.5) 

1.3 (2.5)
1.3 (2.5) 

1.1 (2.6)
1.3 (2.9) 

(3) Fish 150 (33)
150 (25) 

50 (94)
50 (73) 

54 (95)
54 (71) 

690 (68)
690 (68) 

44 (80)
44 (79) 

41 (80)
41 (80) 

23 (55)
23 (52) 

(4) Meat and eggs 72 (16)
94 (16) 

1.1 (2.0)
3.4 (5.0) 

1.0 (1.8)
3.9 (5.2) 

62 (6.1)
62 (6.1) 

3.1 (5.7)
3.1 (5.6) 

2.8 (5.6)
2.8 (5.5) 

1.8 (4.2)
2.0 (4.5) 

(5) Fats 110 (23)
160 (26) 

0.41 (0.77)
6.7 (9.8) 

0.31 (0.55)
7.7 (10) 

27 (2.6)
28 (2.8) 

1.6 (3.0)
1.8 (3.2) 

1.5 (3.0)
1.6 (3.2) 

6.5 (15)
7.9 (18) 

(6) Cereal 
products 

56 (12) 
70 (12) 

0.78 (1.5)
2.3 (3.4) 

0.74 (1.3)
2.6 (3.5) 

73 (7.2)
73 (7.2) 

1.3 (2.3)
1.3 (2.4) 

1.1 (2.2)
1.2 (2.3) 

2.8 (6.6)
2.8 (6.2) 

(7) Potato 
products 

3.7 (0.81)
7.2 (1.2) 

0.0037 (0.0071)
0.40 (0.59) 

0.00037 (0.00066)
0.47 (0.62) 

4.8 (0.47)
4.8 (0.47) 

0.092 (0.17)
0.10 (0.19) 

0.081 (0.16)
0.092 (0.18) 

0.16 (0.4)
0.17 (0.4) 

(8) Vegetables 24 (5.3)
26 (4.2) 

0.14 (0.26)
0.50 (0.73) 

0.12 (0.21)
0.55 (0.73) 

31 (3.1)
31 (3.0) 

1.1 (1.9)
1.1 (1.9) 

0.80 (1.6)
0.80 (1.6) 

1.9 (4.5) 
1.9 (4.3) 

(9) Fruits and 
berries 

31 (6.7) 
38 (6.3) 

0.18 (0.35)
1.15 (1.7) 

0.16 (0.29)
1.3 (1.7) 

12 (1.2)
12 (1.2) 

0.53 (0.82)
0.48 (0.87) 

0.39 (0.77) 
0.42 (0.82) 

0.85 (2.0)
0.93 (2.1) 

(10) Beverages, 
spices, sweets 

7.5 (1.6)
24 (4.0) 

0.12 (0.24)
1.5 (2.3) 

0.12 (0.22)
1.8 (2.4) 

58 (5.7)
58 (5.7) 

0.33 (0.6)
0.40 (0.73) 

0.30 (0.59)
0.37 (0.73) 

3.9 (9.2)
4.0 (8.8) 

Sum of baskets 460
610 

53
68 

57
75 

1010
1010 

55
56 

51
51 

43
45

Total diet basket 500
580 

55
58 

58
60 

1200
1200 

60
60 

56
56 

44
44

Intakes with lower bound concentrations are shown in bold and non-bold fonts represent the corresponding upper bound intakes. Percentage of a basket of the intake in 
parenthesis. 
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Table 4. 
Average daily intakes of dioxin TEqs, PCB TEqs as pg and (pg/kg bw), and contributions of different food groups to the dioxin exposure.

Country, study period Daily intakes, pg,  (pg/kg bw) % contribution of foods from dioxins  Ref. 

 I-TEq WHOPCDD/F-TEq PCB-TEq WHOPCB-TEq Methoda Dairy Meat, poultry Eggs Fish Otherb

Finland, 1999 55 (0.72) 58 (0.76) 60 (0.79) 56 (0.74) 0 2 2c  94 2 This study 
Finland, 1999 58 (0.76) 60 (0.79) 60 (0.79) 56 (0.74) LOQ 14 5c  72 9 This study 
Finland, 1999 46 (0.61)  53 (0.70)  0 8 7 2 82 1 Kiviranta et al., 2001 
Finland, 1999 61 (1.01)  51 (0.84)  LOQ 16 6 4 63 11 SCOOP, 2000 
Japan, 2000  82 (1.64)  79  (1.59) 0.5*LOQ 2 12c  71 15 Tsutsumi et al., 2001 
Norway, 1997 29  110  LOQ 22 14 12 46 6 SCOOP, 2000 
Korea, 1999 30 (0.51)    unknown 1 4 5 39 51 Kim et al., 2000 
Belgium, 2001  65   0 30 31  39  Focant et al., 2002 
Sweden, 1999  44 (0.62)  31 (0.43) 0.5*LOQ 19 15 1 36 29 Lind et al., 2002 
Sweden, 1999 68 (1.06)  63 (0.85)  LOQ 19 31 2 34 14 SCOOP, 2000 
Italy, 1996 45 (0.74)    0.5*LOQ 26 32 7 35  SCOOP, 2000 
Spain, 2000 78 95   0.5*LOQ 27 13 2 30 28 Llobet et al., 2003 
China, 2000  72   unknown 16 35 21 28  Wu et al., 2002 
France, 1999 97 (1.45)    LOQ 33 13 2 26 26 SCOOP, 2000 
Germany, 1998 51 (0.73)    0.5* LOQ 39 30 11 11 9 SCOOP, 2000 
The Netherlands, 1999  45 (0.65)  46 (0.58) 0 24 21 5 10 40 Freijer et al., 2001 
The Netherlands, 1991 82  81  LOQ 39 20 4 2 35 SCOOP, 2000 
The United Kingdom, 2001  (0.4)  (0.5) LOQ 44 18 1 6 31 FSA report 38/03 
The United Kingdom, 1992 88 (1.26)  57 (0.81)  LOQ 25 20 4 6 45 SCOOP, 2000 
USA, 1995 29 104 (1.66)  42 (0.67) 0.5*LOQ 29 30 7 6 28 Schecter et al., 2001 

amethod of denoting concentrations of unquantified congeners in intake calculations: 0=lower bound, 0.5*LOQ=medium bound, LOQ=upper bound 
bother  = e.g. cereals and cereal products, vegetables, fruit, vegetable fats and oils 
cincludes meat, poultry, and eggs 7
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1. ABSTRACT

Baltic herring samples caught from the Baltic Sea during the spring periods of 1993-94 

and 1999 were analysed for polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated 

dibenzofurans (PCDF), and polychlorinated biphenyls (PCB). For analyses, 1570 individual 

herring were combined to 120 pools. Correlations between concentrations of congeners 

1,2,3,7,8-PeCDD, 1,2,3,7,8-PeCDF, 2,3,4,7,8-PeCDF, and 2,3,4,6,7,8-HxCDF, and age of 

herring were the strongest (r > 0.8) followed by correlations between PCB congeners PCB 105, 

118, 126, 156, 169 and 180 (r > 0.7), and age of herring. Due to higher fat percentage in herring 

in the Gulf of Bothnia the concentrations of PCDD/Fs and PCBs on fresh weight (fw) basis were 

higher than in herring in the Gulf of Finland. The concentrations of WHOPCDD/F-TEQs ranged 

from 1 to 27 pg/g fw, depending on the age and catchment area of herring, and concentrations of 

WHOPCB-TEQs reached 32 pg/g fw. Between the two studied time points no clear downward 

trend in concentrations was observed. 

2. INTRODUCTION

Fish and fish products play a significant role in the Finnish dietary intake of 

polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans (PCDD/F; dioxins), and 
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polychlorinated biphenyls (PCB). If one considers the PCDD/F intake, then fish and fish 

products accounted for 82%, and Baltic herring (Clupea harengus L.) alone 52% of the total 

intake. For PCBs, the contributions were similar although the data were not fully consistent 

(Kiviranta et al., 2001). In November 2001, the EU Council set maximum levels for PCDD/Fs in 

foodstuffs (EU, 2001), which will come into force on 1 July 2002. For fish and fishery products, 

the limit was set at 4 pg toxic equivalents (WHOPCDD/F-TEQ) per gram of fresh weight (fw). 

Finland and Sweden were granted an exception to this value until 2006. 

The total catch of Baltic herring by professional fishermen in Finland during the 1990s 

ranged from 51 000 to 98 000 tonnes of which about 25% was processed for human 

consumption, with the rest being used as feed for fur animals. The main catchment area was the 

southern part of the Gulf of Bothnia, the Bothnian Sea, which accounted for about 70% of the 

catch. About one third of the total catch was caught during the main spawning season in May-

June (Finnish Game and Fisheries Research Institute, 2000, 2001). 

Baltic herring populations in the Gulf of Finland and in the Gulf of Bothnia have 

distinctive characteristics which might affect the prevailing levels of PCDD/Fs and PCBs. Fat 

percentage varies substantially in populations throughout the year being highest in the autumn, 

and at its minimum in the spring during the main spawning season (Plorinja et al., 1975). The 

behaviour of the herring population in the Gulf of Finland differs from that of the shoals in the 

Gulf of Bothnia with respect to migration. Herring in the Gulf of Bothnia have a low migratory 

behaviour and can therefore be considered to be stationary fish. In the Gulf of Finland, young 

herring move within a limited area, whereas some of the sexually mature herring migrate over 

considerable distances as far as the southern Baltic Sea (Parmanne, 1990). The stock of cod 

(Gadus morhua L.), which is the main predator of sprat (Sprattus sprattus L.) and herring, has 

decreased in the Baltic Sea since the 1980's (ICES, 2001). This has led to an increase in numbers 

of sprat. Sprat compete with herring for food supplies and thus, the growth of herring has been 

retarded in the Gulf of Finland. This decline is evident when mean weight of herring in age 

groups is plotted as a function of time (Fig. 1). Another explanation for diminished growth of 

herring in the Gulf of Finland might be the temporal decline in the water salinity which may 

affect the amount, composition and availability of zooplankton suitable for herring (Lankov and 

Raid, 1997). No such major decline in growth of herring has taken place in the Gulf of Bothnia 

(ICES, 2001), where changes in salinity, zooplankton and in the abundance of cod and sprat have 

been less extensive than in the Gulf of Finland.
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Fig 1. Mean weight of Baltic herring at age groups in Baltic Sea proper and the Gulf 

of Finland, and in the Bothnian Sea, southern part of the Gulf of Bothnia, from 1980 

to 2000. (Data from ICES, 2001) 

Prevailing levels of organochlorine pesticides and PCBs in Baltic Sea have been 

monitored intensively since the late 1960s, and a continuous decline of several organochlorines, 

including PCBs, in Baltic herring from 1978 to 1995 has been reported (Bignert et al., 1998). 

Consistent data for PCDD/Fs in Baltic herring is currently missing, but some clues can be 

derived from studies in which eggs of herring-consuming sea-birds have been studied (Odsjö et 

al., 1997; Schramm et al., 1997). In these studies, a downward trend in PCDD/F concentrations 

has been detected in guillemot (Uria aalge) eggs from the beginning of the 1970s to 1994, and a 

similar trend has been reported in herring gull (Larus argentatus) eggs from 1988 to 1993. The 

declining trends in all of the above studies were most intensive during the late 1970s and during 

the 1980s, but have started to level off at the beginning of the 1990s. 

In this study of PCDD/Fs and PCBs in herring, the following main tasks were 

undertaken: (a) to determine the age correlation of concentrations; (b) to assess possible 

differences in concentrations between the Gulf of Finland and the Gulf of Bothnia; (c) to 

evaluate the time trend of concentrations during the 1990s. 
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3. MATERIALS AND METHODS 

Herring sampling and pooling

Altogether 1573 Baltic herring were collected from 11 locations of the Baltic Sea during 

most vigorous spawning season of the fish (beginning of May to mid-June) in 1993-94 and 1999 

(Fig. 2). In 1993-94 herring were caught mainly from the Gulf of Finland and only one 

catchment area was located in the Gulf of Bothnia. Weight (w) and length (l) of individual fish 

were measured and a condition factor (Cf) was calculated according to the equation: 

 Cf = w  l-3 * 100 (g cm-3)

Otoliths of herring were taken for age determination, n = 1194, in 1993-94 (ICES, 1998). 

Age was not determined in 1999 from otoliths, instead data (herring weight as function of age) 

from ICES (Fig. 1) were used for estimation of herring age. 

Herring from 1993 to 1994 were pooled into 100 pools. The main determinants for 

pooling were age (2, 3, 4, 5, 6, 7, 8, 10, 12, 14, and over 15 years old), gender, catchment area 

(six areas, Fig. 2). Herring caught from the Gulf of Bothnia consisted of older herring (over 8 

years), whereas the Gulf of Finland herring represented all age groups. Selective sampling on 

large herring in age groups 8 to >15 years resulted in non-randomized samples. These samples 

were collected in order to assess the maximum concentrations of PCDD/Fs and PCBs in Baltic 

herring and to compare concentrations in the Gulf of Finland and the Gulf of Bothnia. Pooling of 

herring (20 pools) caught in 1999 was based on two determinants: catchment area (nine areas, 

Fig. 2) and herring length (below 18.5 cm were "small" and over that "large"). Herring pools 

from catchment areas 8, 10, and 11 contained small and large herring from the Gulf of Finland 

(there was double sampling in area 10) and pools from areas 1, 2, 3, 5, and 6 consisted of small 

and large herring from the Gulf of Bothnia. In one area, Korsnäs, pooling was not done and the 

results are presented as an average of small and large herring. Numbers of individual herring in 

all pools varied from 1 to 34.
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Fig 2. Catchment areas of Baltic herring in two sampling periods 1993-94 and 1999. 

Analysis of PCDD/Fs and PCBs

Fats from cleaned (head, fins and gut removed), pooled, freeze-dried, and homogenized 

herring were Soxhlet extracted using toluene and the fat contents were determined gravimetrically. 

A previously described method was used for purification of samples and fractionation of PCDD/Fs, 

PCBs and non-ortho PCBs (co-PCB, co-planar PCB) (Kiviranta et al., 1999). 
13C-labeled internal PCDD/F standards (16 2,3,7,8-chlorinated PCDD/F congeners) were 

used for determination of the concentrations of 17 toxic PCDD/Fs. Toxic equivalents (TEQ) for 

PCDD/Fs were calculated with two different sets of toxic equivalency factors (TEF), the NATO 

factors (NATO/CCMS, 1988) gave I-TEQs, and the factors recommended by WHO in 1998 (van 

der Berg et al., 1998) for the WHOPCDD/F-TEQ. Limits of determination (LOD) for PCDD/Fs 

were isomer dependent, and varied between 0.1 and 1 pg/g fat, and between 0.005 and 0.05 pg/g 

fw. In the calculations of TEQs, concentrations below LODs were considered as zero. 

In 1993 co-PCBs (PCB 77, 126, and 169) were determined with corresponding 13C-

labeled internal standards. Other 13C-labeled PCBs (PCB 80, 101, 153, 180), and PCB 30 were 

used to determine 13 other congeners (PCB 8, 18, 28/31, 52, 80, 101, 105, 118, 138, 153, 156, 
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180 and 181). In 1994 one additional co-PCB (PCB 81) and 21 additional other PCBs (PCB 33, 49, 

51, 60, 66, 74, 99, 110, 114, 122, 123, 128, 141, 157, 167, 170, 183, 187, 189, 194, 206) were 

determined. Two PCBs were excluded from the set of 1993, (PCB 8 and 181). For herring caught 

in 1999, four additional 13C-labeled internal standards (PCB 105, 138, 156, 194) were used in the 

analysis of other PCBs. Congeners measured were the same as in 1994, except that PCB 81 was 

excluded, and two other congeners (PCB 47 and 209) were included in the set of PCBs analysed. 

TEQs for PCBs were calculated with two different sets of TEFs, factors by Ahlborg et al. (1994) 

gave PCB-TEQs and factors by WHO gave WHOPCB-TEQs (van der Berg et al., 1998). LODs for 

co-PCBs and other PCBs were 3 pg/g, and 0.2 ng/g fat, respectively, and 0.15 pg/g, and 0.01 ng/g 

fw. In the calculations of TEQs results below LODs were considered as zero. 

The laboratory reagent and equipment blank samples were treated and analyzed by the 

same method as the actual samples, one blank for every five samples. Recoveries for internal 

standards ranged between 60 and 110%. 

The laboratory of chemistry in the National Public Health Institute has participated in 

several international quality control studies for the analysis of PCDD/Fs, and PCBs in fish 

samples (IUPAC, 1995; IUPAC, 1998; IUPAC, 2000; Lindström et al., 2000; Becher et al., 

2001). Since 1996, the laboratory has been an accredited testing laboratory (No. T077) in 

Finland (current standard: EN ISO/IEC 17025). The scope of accreditation includes PCDD/Fs, 

PCBs, and co-PCBs from tissue samples. 

Statistical Analysis

Statistical analyses were carried out by means of SPSS software (for Windows, release 

9.0.1). Before the statistical tests, all results were transformed to a natural logarithm (ln) scale in 

order to ensure that the concentrations are as normally distributed as possible. Two tailed 

Pearson's correlation analysis was used to determine if the studied correlations were statistically 

significant. For comparisons of two groups, the Mann-Whitney U nonparametric test was used to 

test the statistical significances of the differences of concentrations between groups. One way 

analysis of variance (ANOVA) or Kruskal-Wallis H test were used to compare the differences of 

concentrations between multiple groups. 
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4. RESULTS AND DISCUSSION

No significant sex-related differences in PCDD/F or PCB concentrations were found 

(either calculated per fresh weight or fat) in herring. Similarly, there were no significant 

differences in the concentrations between the catchment areas in the Gulf of Finland, or in the 

Gulf of Bothnia. 

PCDD/F and PCB concentrations in 1993-94

Concentrations of PCDD/Fs, marker-, and PCB-congeners with dioxin-like toxicity along 

with fat percentages, weights, lengths, and Cfs of herring caught in 1993-94 are presented 

according to age groups in Tables 1 and 2. In age groups 2-7, the fat percentage varied between 

0.41 and 4.8, and the differences between ages were not statistically significant. Therefore the 

proportional differences between age groups in concentrations on a fresh weight and on fat basis 

were negligible. Weight and length increased significantly in age groups 2-4 years, but in groups 

older than 4 years no significant differences existed. This implies that the assessment of a 

herring's age based on its size is very difficult. 

All PCDD congeners, and penta-, and hexachlorinated PCDFs (except for 1,2,3,7,8,9-

HxCDF) were bioaccumulating in herring in age groups 2-7 (Table 1). Correlations for fresh 

weight were linear and the strongest correlations (r > 0.8) were measured for 1,2,3,7,8-PeCDD, 

1,2,3,7,8-PeCDF, 2,3,4,7,8-PeCDF, and 2,3,4,6,7,8-HxCDF. For these congeners, concentration 

differences between age groups were most evident. Although significant, the correlations 

between concentrations of 1,2,3,7,8,9-HxCDD, 1,2,3,4,6,7,8-HpCDD, and OCDD and age were 

poor (r < 0.5). The strongest correlation with age was noted for 2,3,4,7,8-PeCDF (r = 0.92) 

followed by both I-TEQ and WHOPCDD/F-TEQ (r = 0.90). To evaluate herring TEQ in fresh 

weight according to age, the first-degree equation for the linear line fit was calculated (y = 0.962 

x - 0.77 for I-TEQ, and y = 1.08 x - 0.845 for WHOPCDD/F-TEQ). A rule of thumb was created: 

every year of a herring's life led a rise of one TEQ unit on fresh weight basis. 

All PCB congeners (except for PCB 28/31 and 77) showed bioaccumulation, although to 

a lesser extent than dioxins (Table 2). The strongest correlations with age had congeners PCB 

105, 118, 126, 156, 169 and 180 (r > 0.7), whereas the marker congeners (PCB 52, 101, 138, and 

153) that do not contribute to TEQs had lower correlations (r < 0.6). PCB 169 showed the 

strongest correlation with age (r = 0.89) followed by PCB 180 (r = 0.88). No rule of thumb for 



Table 1.
Medians (range) of fat percentages, weights, lengths, condition factors (Cf), concentrations (pg/g fw and pg/g fat ) of PCDD/Fs and toxic 
equivalents of PCDD/Fs in different age groups of Baltic herring, caught in 1993-94 in the Gulf of Finland and in the Gulf of Bothnia.

 Gulf of Finland Gulf of Bothnia 
Age 2 3 4 5 6 7 8-> 15 8-> 15 
Amount pools 10 17 17 10 10 10 9 9 
Fat% 2.6 (1.3-3.7)a 1.8 (0.41-3.3) a 1.9 (0.61-4.8) a 1.9 (1.1-3.2) a 1.7 (0.99-3.5) a 1.9 (0.49-3.4) a 5.6 (1.8-9.2)* 11 (7.7-14) 
Weight 16 (13-16) a 19 (14-29)b 26 (22-34)c 28 (23-29)c 30 (23-35) c 31 (23-35) c 150 (96-250) 160 (58-360) 
Length 13.7 (13.2-14.1) a 14.6 (13.6-17.3) b 16.9 (16.5-17.7) c 16.9 (16.7-17.4) c 17.5 (16.8-18.3) c 17.4 (16.8-18.1) c 28.0 (23.7-32.4) 29.0 (20.7-36.4) 
Cf 0.58 (0.56-0.69) a 0.58 (0.52-0.7) a 0.57 (0.48-0.65) a 0.55 (0.49-0.61) a 0.56 (0.48-0.63) a 0.56 (0.46-0.68) a 0.71 (0.62-0.77) 0.7 (0.62-0.74) 
2378-TCDD 0.11 (ND-0.15)a

4.1 (ND-7.0) a
0.14 (0.051-0.31) a, b

8.2 (4.0-20)b
0.19 (0.11-0.52)b, c

10 (4.5-32) b, c
0.29 (0.15-0.44)c, d

15 (8.0-24) b, c
0.33 (0.25-0.76) d

17 (11-55) c
0.31 (0.087-0.51)c,d

18 (7.2-21)c
0.88 (0.59-1.2)* 
17 (9.6-32) 

1.7 (0.81-3.5) 
17 (9.1-29) 

12378-PeCDD 0.26 (0.19-0.45) a

13 (7.0-17)a
0.45 (0.28-0.79) b 

24 (13-68)b
0.65 (0.47-1.4)c

38 (16-84) b, c
1.2 (0.71-1.5) d

64 (28-110) c, d
1.4 (1.2-2.5) d

84 (38-180) d
1.4 (0.77-2.8)d

82 (41-160) d
4.0 (2.3-6.2) 
74 (35-190) 

4.9 (1.4-7.5) 
59 (15-61) 

123478-HxCDD 0.013 (ND-0.042) a

0.57 (ND-1.8) a
0.022 (ND-0.067) a

1.7 (ND-7.7) a, b
0.013 (ND-0.083) a, b

0.53 (ND-4.4) a, b, c
0.07 (0.013-0.14)b

3.9 (0.54-8.1)b, c
0.095 (0.031-0.14)b

4.4 (0.88-10) c
0.075 (0.049-0.12) b

4.7 (2.0-12)c
0.18 (ND-0.35) 
3.2 (ND-6.7) 

0.36 (0.078-0.75) 
3.4 (0.87-6.0) 

123678-HxCDD 0.35 (0.24-0.68) a

15 (6.9-25) a
0.51 (0.27-1.1) a

30 (11-75)b
0.65 (0.38-1.8) a, b

42 (14-110)b
1.5 (0.53-2.3) b, c

71 (24-170) b, c
1.3 (0.47-3.8)c

65 (31-270) b, c
1.5 (0.61-2.9) c

93 (28-150) c
3.1 (1.4-8.2) 
60 (18-230) 

3.4 (ND-6.7) 
43 (ND-54) 

123789-HxCDD 0.036 (0.019-0.1)a,b

1.6 (0.59-2.1) a
0.028 (0.006-0.1)b

1.7 (0.2-7.3) a
0.064 (0.02-0.11)a, b

2.9 (0.76-6.9) a
0.099 (0.024-0.14) a

5.7 (1.2-9.6) a
0.10 (ND-0.25) a

5.9 (ND-18) a
0.065 (0.03-0.13)a,b

4.3 (1.4-21) a
0.029 (ND-0.18) 
0.62 (ND-3.2) 

0.17 (ND-0.69) 
1.5 (ND-5.6) 

1234678-
HpCDD 

0.12 (0.052-0.23) a

4.8 (1.8-9.4) a
0.15 (0.05-0.88) a, b

11 (1.9-53) a, b
0.17 (0.089-2.8) a, b

13 (2.4-140) a, b
0.28 (0.11-1.2) a, b

13 (4.0-74) a, b
0.25 (0.13-1.2) a, b

16 (5.6-87) a, b
0.48 (0.11-1.2)b

22 (11-140) b ND 0.20 (ND-0.92) 
1.7 (ND-11) 

OCDD 0.29 (ND-0.98) a

17 (ND-31) a
0.60 (ND-3.6) a

34 (ND-230) a, b
0.62 (0.18-13) a

41 (5.8-640) a, b
0.81 (0.25-7.2) a

37 (10-470) a, b
0.78 (0.29-6.5) a

38 (14-450) a, b
1.8 (0.25-6.5) a

80 (27-450)b
0.62 (0.35-1.1)* 
9.3 (3.8-50) 

2.0 (0.50-7.5) 
16 (3.9-97) 

Dioxins 1.4 (0.66-2.2) a

60 (24-84) a
2.6 (0.72-5.7) a,  b

150 (36-420)b
2.3 (1.6-18)b, c

170 (45-860) b, c
4.6 (1.9-12) b, c

210 (78-800) b, c
4.7 (3.1-11) c

280 (120-810) b, c
5.4 (1.9-12)c

320 (120-920)c
8.9 (5.2-16) 
170 (78-500) 

18 (4.8-24) 
160 (54-240) 

2378-TCDF 1.8 (0.90-2.4) a

69 (37-85) a
1.3 (0.32-2.5) a

75 (38-110) a
1.5 (0.27-3.1) a

72 (31-100) a
1.4 (0.59-2.9) a

80 (43-95) a
1.3 (0.59-3.1) a

74 (40-87) a
0.64 (0.26-2.6) a

56 (21-95) a
4.1 (1.1-6.2)* 
72 (54-93) 

9.6 (6.5-14) 
84 (71-130) 

12378-PeCDF 0.23 (0.18-0.38) a

10 (6.4-18) a
0.35 (0.24-0.55)a

22 (12-57) b
0.62 (0.36-1.0) b

32 (19-59)c
0.83 (0.62-1.3) b, c

46 (33-81) c, d
1.1 (0.90-1.9) c

68 (37-110) d
0.91 (0.063-1.9)b, c

59 (13-97) c, d
1.6 (0.99-4.0)* 
27 (18-75) 

4.9 (0.54-38) 
47 (6.0-340) 

23478-PeCDF 1.5 (1.2-2.0) a

63 (42-94) a
2.5 (1.6-3.3) b

120 (81-380) b
3.7 (2.0-5.1) c

200 (100-330) b, c
5.5 (4.4-8.1) d

320 (190-480) c, d
8.2 (7.3-9.7) e

440 (220-850) d
8.0 (4.9-15)e

490 (260-1010) d
25 (12-30)* 
460 (190-1400) 

36 (12-55) 
280 (130-440) 

123478-HxCDF 0.12 (0.043-0.79) a, b

4.7 (1.8-29) a
0.11 (0.045-0.19) a

5.9 (2.2-21) a
0.25 (0.073-0.62) a,b

12 (3.7-44) a, b
0.28 (0.17-0.53) a, b

17 (7.6-25) a, b
0.41 (0.24-2.0) a, b

23 (6.6-68) b
0.37 (0.16-1.2) a, b

23 (8.9-60) b
0.36 (ND-0.84)* 
5.4 (ND-18) 

0.99 (ND-3.1) 
9.4 (ND-25) 

123678-HxCDF 0.09 (0.057-0.46) a

4.0 (1.8-13) a
0.17 (0.08-0.27) a, b

9.6 (4.4-27) a, b
0.22 (0.07-0.35)a,b,c

12 (4.9-20) a, b
0.40 (0.095-1.1)a,b,c

20 (7.6-51) b
0.50 (0.075-2.6) c

33 (3.5-88) b
0.48 (0.034-0.96)c

34 (2.0-80) b
1.1 (0.35-2.3) 
16 (5.9-130) 

2.0 (0.25-5.0) 
23 (2.8-40) 

234678-HxCDF 0.17 (0.09-0.25) a

6.3 (3.3-12) a
0.28 (0.13-0.42)b

16 (6.4-38) b
0.40 (0.17-0.66)c

19 (12-41) b, c
0.65 (0.35-0.98) d

35 (19-50) c, d
0.86 (0.69-1.3) d

44 (24-94) d
0.66 (0.41-1.5) d

43 (21-96) d
1.3 (0.80-2.5)* 
23 (12-93) 

3.0 (ND-5.8) 
34 (ND-47) 

1234678-HpCDF 0.21 (0.12-0.45) a

9.7 (3.6-17) a
0.24 (0.11-0.60) a

19 (4.8-52) a
0.24 (0.12-0.65) a

11 (3.5-48) a
0.31 (0.11-0.63) a

15 (6.2-30) a
0.27 (0.14-0.78) a

17 (5.9-57) a
0.28 (0.13-0.59) a

17 (7.3-93) a ND ND 

OCDF 0.07 (ND-0.36) a

2.6 (ND-11) a
0.091 (ND-0.36) a

5.0 (ND-39) a
0.055 (ND-0.35) a

3.0 (ND-20) a
0.057 (ND-0.27) a

2.9 (ND-17) a
0.082 (ND-0.23) a

4.6 (ND-15) a
0.15 (ND-0.41) a

5.7 (ND-82) a ND ND 
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Table 1 (continued) 
Gulf of Finland Gulf of Bothnia

Furans 4.7 (2.8-5.4) a

170 (110-220) a
5.1 (2.7-7.2) a

280 (160-660) b
7.0 (3.3-11) b

380 (220-570) b, c
9.9 (6.6-14) b, c

560 (340-700) c, d
13 (11-20) c

700 (390-1300) d
12 (7.1-20) c

740 (430-1500) d
33 (19-40)* 
600 (340-1800) 

57 (21-110) 
440 (230-970) 

Sum of PCDD/Fs 6.0 (3.7-7.3) a

240 (130-280) a
7.8 (3.5-11) a, b

400 (191-950) b
10 (4.9-25) b, c

570 (270-1200) b, c
15 (8.6-22) c, d

790 (440-1500)c, d
18 (15-26) d

940 (510-1900)d
19 (9.0-31)d

1030 (550-2400) d
43 (24-55)* 
780 (430-2300) 

67 (26-130) 
680 (290-1100) 

I-TEQ 1.4 (0.93-1.5) a

50 (34-72) a
1.9 (1.1-2.5) b

110 (59-270) b
2.7 (1.5-3.7) c

150 (77-240) b, c
4.3 (3.0-5.7) d

240 (130-350) c, d
5.6 (5.0-7.7) e

310 (160-570) d
5.5 (3.2-10)d, e

330 (180-650) d
16 (8.6-21)* 
310 (140-880) 

24 (8.3-39) 
190 (92-310) 

WHOPCDD/F-TEQ 1.5 (1.0-1.7) a

57 (38-79) a
2.2 (1.3-2.8) b

120 (65-300) b
3.0 (1.7-4.2) c

170 (86-280) b, c
4.8 (3.3-6.4) d

270 (150-400) c, d
6.3 (5.6-8.9) e

350 (180-650) d
6.2 (3. 6-11)d, e

370 (200-740) d
18 (9.8-24)* 
340 (160-970) 

27 (9.0-42) 
220 (100-340) 

Statistical significance of concentration differences between age groups 2-7 (tested with one-way ANOVA, significant level p < 0.05) are distinguished by different letter as 
superscript. Differences between concentrations of age groups 8-> 15 were tested separately from age groups 2-7, and statistically significant differences (tested with 
Mann-Whitney U test, significant level p < 0.05) are denoted here with an asterisk. 
ND = concentration below LOD 
Concentrations of 1,2,3,7,8,9-HxCDF and 1,2,3,4,7,8,9-HpCDF were all below LOD 
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Table 2
Medians (range) of concentrations as ng/g fw and as ng/g fat of PCBs and as pg/g fw and as pg/g fat of co-PCBs and toxic equivalents of PCBs in 
different age groups of Baltic herring, caught in 1993-1994 in the Gulf of Finland and in the Gulf of Bothnia.
 Gulf of Finland       Gulf of Bothnia 
Age 2 3 4 5 6 7 8-> 15 8-> 15
Amount pools 10 17 17 10 10 10 9 9 
PCB 28/31 0.44 (0.023-0.76)a, b

16 (1.3-27) a, b
0.067 (0.017-0.66) a

4.2 (1.0-41) a
0.71 (0.07-1.3) a, b

35 (3.8-68) a, b, c
0.71 (0.048-1.1) a, b

32 (4.5-66) a, b, c
0.63 (0.056-1.7)a,b

30 (3.7-83) a,b, c 
0.56 (0.026-1.2)a,b

30 (2.2-42) a, b, c
1.5 (0.55-2.9)* 
28 (22-43)* 

4.5 (2.8-6.1) 
38 (33-54) 

PCB 52 0.68 (0.39-1.2) a, b

30 (18-39) a
0.69 (0.22-1.1) a

37 (16-60) a
1.4 (0.65-2.2) a, b

73 (40-130) b
1.6 (0.74-2.8) a, b

76 (37-130) b
1.3 (0.72-2.9) a, b

72 (53-190) b
1.2 (0.28-2.6) a, b

69 (36-120) b
6.1 (2.3-7.1)* 
97 (77-130)* 

17 (10-21) 
150 (130-180) 

PCB 101 1.3 (1.0-2.0) a

57 (39-80) a
1.9 (0.015-2.4 ) a

110 (3.7-160) a, b
2.6 (1.5-4.4) a

130 (87-260) b, c
2.6 (1.7-3.9) a

150 (110-220) b, c
2.8 (2.0-5.5) a

160 (110-260) b, c
4.0 (1.3-6.6) a

240 (130-380) c
22 (15-27)* 
360 (270-1100) 

41 (27-57) 
350 (310-470) 

PCB 138 3.1 (2.5-4.9) a

140 (89-190) a, c
4.4 (2.9-6.4) a

270 (130-800) a, b
5.2 (2.6-9.6) a

230 (110-830)b, c
4.1 (2.9-5.7) a

180 (140-510) a, b
5.3 (4.1-9.4) a

280 (160-940) a, b
9.3 (4.4-19) b

610 (250-1300) b,c
36 (20-44)* 
500 (370-2000)* 

83 (48-110) 
780 (600-960) 

PCB 153 0.96 (0.68-1.4) a

39 (25-72) a
1.0 (0.63-1.9) a

65 (31-250) a, b
1.3 (0.59-3.0) a, b

60 (27-270) a, b
0.87 (0.69-1.1) a

41 (32-99) a
1.1 (0.86-2.4) a, b

62 (33-240) a, b
2.0 (0.96-6.2) b

120 (56-390) b
23 (15-57)* 
370 (300-3100)* 

70 (41-87) 
640 (520-740) 

PCB 180 0.28 (0.22-0.32) a

11 (7.2-17) a
0.43 (0.3-0.5) b

23 (14-72)b
0.55 (0.41-0.66)c

28 (13-68) b
0.62 (0.53-0.79) c, d

34 (24-62) b, c
0.75 (0.66-1.0) d, e

43 (28-93) b, c
1.0 (0.5-1.8) e

61 (30-110) c
17 (8.7-31)* 
310 (130-910) 

39 (25-54) 
370 (290-570) 

Sum of  
Marker PCBs 

7.1 (5.2-10) a

290 (200-400) a
9.0 (4.9-11) a, b

490 (280-1200)b
12 (6.9-19) b, c

510 (310-1600) b, c
11 (8.3-14) a, b

560 (390-990) a, b, c
13 (9.3-18) b, c

640 (420-1600) b, c
18 (9.7-36) c

1200 (550-2200) c
120 (64-130)* 

1800 (1200-7200)* 
260 (150-310) 

2200 (1900-2800) 
PCB 77 22 (9.4-34) a

970 (590-1200) a
18 (5.3-26) a

970 (290-1600) a
22 (10-46) a

1100 (540-6700) a
24 (9.3-38) a

1200 (840-1800) a
28 (14-48) a

1200 (1050-2400) a
26 (8.3-39) a

1300 (840-7100) a
78 (9.7-130)* 
1500 (170-2200) 

120 (68-160) 
1030 (760-1400) 

PCB 81 NA NA NA NA NA NA 350 (130-550)* 
5800 (2900-9300) 

730 (490-900) 
6400 (5800-7400) 

PCB 126 8.2 (5.8-11) a

340 (270-440) a
11 (6.0-24) a, b

580 (340-1500) b
14 (ND-24)b, c

710 (ND-940) b
17 (13-24)c, d

1000 (680-1500) b, c
22 (18-33)d

1200 (830-2000) c
22 (16-45)d

1300 (700-5050) c
94 (48-160) 
1800 (730-2600)* 

110 (69-140) 
940 (810-1300) 

PCB 169 1.8 (1.2-3.1) a

76 (48-140) a
2.8 (2.1-4.3)b

160 (97-570) b
5.0 (ND-22)c

250 (ND-1300) b, c
7.6 (5.9-11)c, d

440 (270-620)c, d
11 (9.4-13)d

580 (350-1000)d
12 (6.1-20)d

680 (300-3200) d
39 (20-59) 
740 (300-2100) 

45 (30-77) 
410 (330-630) 

PCB 123 NA NA NA NA NA NA 3.9 (1.7-7.0) 
64 (33-220)* 

4.0 (2.5-6.7) 
35 (30-55) 

PCB 118 1.1 (0.80-2.8) a

54 (23-88) a
1.8 (0.87-2.5) a, b

100 (58-230) b
1.6 (0.95-5.1) a, b

100 (46-160) b
2.4 (1.3-3.8) b, c

130 (95-160) b, c
2.7 (1.8-4.9) b, c

130 (99-310) b, c
3.3 (1.9-6.3) c

160 (120-580) c
28 (17-44)* 
440 (330-2400) 

40 (27-64) 
350 (300-520) 

PCB 114 NA NA NA NA NA NA 0.69 (0.33-1.6) 
13 (6.9-49)* 

0.78 (0.55-1.3) 
7.2 (6.2-11) 

PCB 105 0.46 (0.31-1.2) a

23 (9.0-39) a
0.78 (0.60-1.2) a, b

41 (25-280) b
0.86 (0.4-2.2)b

47 (18-110) b
1.5 (0.94-2.6)c

87 (58-120) b, c
1.7 (1.3-3.4)c

89 (64-150)c
1.5 (1.3-3.3)c

91 (60-270) c
16 (6.9-30) 
280 (130-1030)* 

14 (9.3-25) 
120 (110-210) 

PCB 167 NA NA NA NA NA  NA 1.3 (0.66-2.4)* 
21 (12-70) 

2.5 (1.4-3.1) 
22 (18-30) 

PCB 156 0.071 (0.051-0.1)a

3.1 (2.0-3.9) a
0.1 (0.073-0.14) a, b

5.8 (3.0-18)b
0.17 (0.092-0.23)b, c

8.6 (3.9-18) b, c
0.27 (0.12-0.41) c, d

17 (5.5-26) c, d
0.31 (0.2-0.46)d

18 (8.0-33) c, d
0.31 (0.15-4.6) d

23 (7.4-200) d
4.7 (2.6-6.9)* 
94 (43-240) 

9.6 (5.4-13) 
87 (70-110) 

PCB 157 NA NA NA NA NA NA 1.0 (0.51-1.5)* 
17 (8.7-54) 

1.4 (0.89-2.2) 
13 (11-18) 
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Table 2 (continued)
 Gulf of Finland Gulf of Bothnia
PCB 170 NA NA NA NA NA NA 5.1 (2.8-8.9)* 

96 (40-360) 
13 (7.8-17) 
120 (97-190) 

PCB 189 NA NA NA NA NA NA 0.44 (0.26-0.84)* 
9.1 (4.4-16) 

1.2 (0.67-1.6) 
12 (8.7-18) 

Sum of PCBs1 9.4 (6.9-12) a

370 (270-530) a
12 (7.1-14) a, b

640 (380-1700) b
15 (9.6-23) b, c

790 (470-1800) b
15 (11-21) b, c

810 (580-1300) b, c
18 (13-27) c, d

890 (600-2100) b, c
24 (14-45) d

1600 (840-3100) c
280 (140-350)* 

4300 (2700-16000) 
490 (310-630) 

4300 (3700-5500) 
PCB-TEQ2 1.1 (0.77-1.4) a

44 (35-59) a
1.4 (0.88-2.8) a

79 (46-220) b
1.9 (0.22-3.0) a, b

96 (36-120) b
2.3 (1.8-3.3) b, c

140 (94-190) b, c
2.9 (2.4-4.5) c

160 (110-260) c
3.0 (2.2-6.0) c

190 (100-640) c
17 (9.8-30)* 
320 (200-860) 

25 (16-34) 
230 (190-280) 

WHOPCB-TEQ3 1.0 (0.77-1.4) a

43 (35-59) a
1.4 (0.87-2.8) a, b

78 (46-220) b
1.9 (0.2-3.0) a, b

95 (33-120) b
2.2 (1.7-3.3) b, c

140 (93-190) b, c
2.8 (2.4-4.5) c

160 (110-260) c
3.0 (2.2-6.0) c

190 (100-640) c
16 (9.4-29)* 
310 (190-820) 

23 (15-32) 
210 (180-270) 

Statistical significance of concentration differences in age groups 2-7 (tested with one-way ANOVA, significant level p < 0.05) are distinguished by different letter as superscript. 
Differences between concentrations of age groups 8-> 15 were tested separately from age groups 2-7, and statistically significant differences (tested with Mann-Whitney U test, 
significant level p < 0.05) are denoted here with an asterisk. 
ND = concentration below LOD. 
NA = not analysed. 
1 sum of 16 congeners in age groups 2-7 and sum of 36 congeners in age groups 8-> 15. 
2 incomplete PCB-TEq in age groups 2-7. 
3 incomplete WHOPCB-TEq in age groups 2-7.
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PCB-TEQ and WHOPCB-TEQ was defined because seven PCB congeners contributing TEQs 

were not measured in 1993. 

The results of the age groups 8 to > 15 years (Tables 1 and 2) were combined because of 

the selective sampling and the small number of large-sized herring in the pools. The fat 

percentage of herring in the Gulf of Finland was significantly lower than in the Gulf of Bothnia. 

There was no significant difference in weight, length, or Cf between the catchment areas. 

Concentrations in fresh weight in herring in the Gulf of Bothnia were higher than in the Gulf of 

Finland, partly due to their higher fat content. It was expected that differences in fat percentages 

would solely explain concentration differences in fresh weight basis. However, the 

concentrations on a fat basis were not equal. Especially in the marker PCBs, PCB 28/31, 52, 138, 

and 153 also the fat concentrations in the Gulf of Bothnia were significantly higher than in the 

Gulf of Finland. The concentrating effect of the lower amount of fat was most evident with 

congeners which bioaccumulated best, i.e. 1,2,3,7,8-PeCDD, 2,3,4,7,8-PeCDF, and PCB 169. 

Possible heavier exposure to some of PCDD/F and PCB congeners in the Gulf of Bothnia and/or 

differences in feeding habits of large herring might explain their higher concentrations also in 

fat. Herring feed mainly on zooplankton, but the older herring have a diet which also contains 

crustaceans and small fish, living in the upper trophic level. It is not known whether the large 

herring in the Gulf of Bothnia feed more frequently on crustaceans and small fish than large 

herring in the Gulf of Finland. The concentrations in these large herring must be considered as 

extreme values because of the method of sampling. Total WHO-TEQ in old herring reached 

value 34 pg/g fw in the Gulf of Finland, and 50 pg/g fw in the Gulf of Bothnia. The contribution 

of PCDD/Fs and PCBs to the total TEq was equal in both catchment area. 
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PCDD/F and PCB concentrations in 1999

In 1999 herring were caught in nine locations along the Finnish Baltic Sea coastline (Fig. 

2). The concentrations of PCDD/Fs, marker PCBs, and PCB congeners with dioxin-like toxicity 

are illustrated in Tables 3 and 4, and data on fat percentages, weights, lengths, and Cfs are 

included in Table 3. The ages of small and large herring in 1999 were obtained from the data of 

ICES (Fig. 1) using average weights of herring. It must be kept in mind that ages here are crude 

estimates since the variation of sizes within an age group is considerable wide. Fish from the 

catchment area number 6, Kustavi, are usually grouped together with fish in the Gulf of Finland 

in the herring stock assessments (ICES, 2001), but here results of Kustavi were included in the 

Gulf of Bothnia herring on the basis of their fat percentages (3.6% in small herring and 5.1% in 

large herring). 

Almost all fresh weight and fat concentrations of PCDD/Fs and PCBs in large herring 

were higher than in small herring in the Gulf of Finland but the differences were not significant. 

A similar finding was noted also with the 1993-1994 data (Tables 1 and 2), where the 

concentrations only seldom were significantly different in age groups over 4 years. The situation 

in the Gulf of Bothnia was different. Excluding those PCDD/Fs and PCBs which showed low 

bioaccumulation, the concentrations (fresh weight and fat basis) in large herring were 

significantly higher than in small herring. Some of this clear difference in concentrations 

between small and large herring in the Gulf of Bothnia can be explained by the greater gap in 

weights between small and large herring in the Gulf of Bothnia compared to the Gulf of Finland. 

Another explanation was also: small and large herring in the Gulf of Finland have similar 

feeding characteristics consuming mainly on zooplankton, but in the Gulf of Bothnia large 

herring feed relatively more on crustaceans and small fish, and hence are exposed to higher 

amounts of PCDD/Fs and PCBs. 

The greater exposure of large herring to PCDD/Fs and PCBs in the Gulf of Bothnia was 

supported by the differences of concentrations in small and large herring between the Gulf of 

Finland and the Gulf of Bothnia. In small herring, the fresh weight concentrations of PCDD/Fs 

and PCBs (Tables 3 and 4) were almost the same irrespective of whether they were caught in the 

Gulf of Finland or the Gulf of Bothnia, in spite of lower fat percentage in the Gulf of Finland 

herring. The lower percentages of fat in small herring from the Gulf of Finland resulted in fat 

based concentrations, which were twice or even more as high as concentrations in small herring 

in the Gulf of Bothnia. The concentrations (fresh weight and fat basis) in the small herring 



Table 3. 
Medians (range) of fat percentages, weights, lengths, condition factors (Cf), concentrations (pg/g fw and pg/g fat) of PCDD/Fs and toxic equivalents of 
PCDD/Fs in small and large Baltic herring, caught in 1999 in the Gulf of Finland and in the Gulf of Bothnia.

 Gulf of Finland  Gulf of Finland  Gulf of Bothnia 
 Small herring  Small herring Large herring  Small herring Large herring 
 1993-1994  1999 1999  1999 1999 
Age 5.5 (5-6)  5.5 (4.5-6)1 9.3 (9-10) 1  4.5 (4-5) 1 7.8 (5.5-9) 1

Number of pools 20  4 4  5 5 
Fat% 1.8 (0.99-3.5) 2.0 (1.5-2.9)** 2.4 (2.1-3.8)*** 4.9 (3.6-5.1) 4.9 (4.0-7.2) 
Weight 29 (23-35) 32 (27-33) ‡ 47 (44-54) 31 (29-33) ‡‡ 54 (41-56) 
Length 17.2 (16.7-18.3) 17.6 (17.1-17.9) ‡ 20.1 (19.8-20.7) 17.4 (17.1-17.5) ‡‡ 20.7 (19.7-20.8) 
Cf 0.56 (0.48-0.63)  0.58 (0.53-0.6) 0.59 (0.54-0.61)  0.6 (0.56-0.65) 0.6 (0.52-0.63) 
2378-TCDD 0.32 (0.15-0.76) 

16 (8.0-55) 
0.3 (0.23-0.38) 
14 (13-16)** 

0.34 (0.29-0.82) 
15 (13-22) 

0.4 (0.35-0.46) ‡‡

8.2 (6.8-13) ‡‡
0.74 (0.66-1.2) 
17 (9.2-24) 

12378-PeCDD 1.3 (0.71-2.5) 
68 (28-180) 

1.2 (0.86-1.4) 
60 (41-66)** 

1.5 (1.4-2.6)***
64 (59-73) 

1.4 (1.2-1. 5) ‡‡

29 (24-35) ‡‡
3.9 (2.3-4.0) 
79 (33-86) 

123478-HxCDD 0.082 (0.013-0.14)* 
4.1 (0.54-10) 

0.14 (0.13-0.15) ‡

7.1 (5.3-8.8)** 
0.19 (0.16-0.33) 
8.5 (6.7-9.1) 

0.18 (0.15-0.2) ‡‡

4.0 (2.9-4.7) 
0.31 (0.26-0.54) 
7.4 (3.6-11) 

123678-HxCDD 1.4 (0.47-3.8) 
66 (24-270) 

1.5 (0.89-2.0) 
74 (48-91)** 

2.2 (1.4-3.3)***
90 ( 59-100) 

1.9 (1.5-2.0) ‡‡

42 (35-47) ‡‡
5.4 (3.3-5.4) 
110 (46-120) 

123789-HxCDD 0.099 (ND-0.25)* 
5.8 (0.13-18) 

0.15 (0.14-0.18)** ‡

8.2 (5.2-9.2) 
0.21 (0.18-0.58) 
9.4 (7.9-15) 

0.31 (0.16-0.58) 
6.0 (4.3-14) 

0.47 (0.27-1.1) 
9.3 (3.8-23) 

1234678-HpCDD 0.28 (0.11-1.2)* 
14 (4.0-87)* 

0.11 (0.094-0.13) 
5.2 (4.1-7.0)** 

0.14 (0.12-0.2) 
5.7 (5.3-6.0) 

0.12 (0.11-0.14) ‡‡

2.5 (2.2-3.8) ‡‡
0.19 (0.15-0.37) 
3.9 (2.6-7.3) 

OCDD 0.78 (0.25-7.2)* 
38 (10-470)* 

 0.15 (0.086-0.19) 
7.2 (3.8-11) 

0.18 (0.079-0.38) 
6.0 (3.9-15) 

 0.1 (0.056-0.33) 
2.1 (1.3-9.0) 

0.19 (0.099-0.57) 
3.7 (2.5-11) 

Dioxins 4.6 (1.9-12) 
240 (78-810) 

3.6 (2.5-4.3) 
180 (120-200)** 

4.7 (3.8-7.9)***
210 (160-220) 

4.4 (4.1-4.8) ‡‡

93 (79-120) ‡‡
12 (7.2-13) 
240 (100-260) 

2378-TCDF 1.4 (0.59-3.1) 
76 (40-95) 

 1.7 (0.84-2.5) 
82 (55-86) 

1.9 (1.7-3.9) 
81 (80-100) 

 4.5 (1.8-5.2) 
94 (35-120) 

4.2 (2.9-5.8) 
92 (40-110) 

12378-PeCDF 1.0 (0.62-1.9) 
52 (33-110) 

1.3 (0.89-1.6) 
60 (56-64)** 

1.5 (1.4-3.1) 
68 (62-82) 

1.7 (1.4-1.9) ‡‡

37 (27-52) 
3.0 (2.4-4.9) 
75 (33-95) 

23478-PeCDF 7.4 (4.4-9.7)* 
390 (190-850) 

10 (7.3-12) 
480 (400-510)** 

13 (11-25)***
570 (460-650) 

12 (11-14) ‡‡

270 (230-360) ‡‡
36 (24-39) 
740 (340-800) 

123478-HxCDF 0.33 (0.17-2.0) 
20 (6.6-68) 

0.39 (0.32-0.52) 
20 (18-21)** 

0.51 (0.46-0.93)***
22 (19-27) 

0.54 (0.38-0.58) ‡‡

11 (9.3-16) ‡‡
0.98 (0.86-1.7) 
24 (12-33) 
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Table 3 (continued)
Gulf of Finland Gulf of Finland Gulf of Bothnia

Small herring Small herring Large herring Small herring Large herring 
1993-1994 1999 1999 1999 1999 

123678-HxCDF 0.42 (0.075-2.6) 
23 (3.5-88) 

0.6 (0.44-0.79) 
28 (28-32)** 

0.8 (0.73-1.4) 
35 (31-40) 

0.62 (0.52-0.83) ‡‡

13 (12-23) ‡‡
1.4 (1.2-2.4) 
32 (19-46) 

234678-HxCDF 0.75 (0.35-1.3)* 
41 (19-94)* 

0.49 (0.32-0.56) 
22 (19-26)** 

0.59 (0.52-1.1) 
27 (21-31) 

0.48 (0.4-0.65) ‡‡

9.9 (9.3-17) ‡‡
1.1 (0.96-1.8) 
24 (15-36) 

123789-HxCDF ND 0.024 (ND-0.034) 
1.1 (ND-1.5) 

0.041 (0.032-0.075) 
1.8 (1.4-2.0) 

0.032 (0-0.055) ‡‡

0.65 (0-1.1) 
0.078 (0.045-0.11) 
1.8 (0.63-2.2) 

1234678-HpCDF 0.28 (0.11-0.78)* 
16 (5.9-57)* 

 0.1 (0.057-0.16) 
4.7 (2.6-9.0)** 

0.13 (0.074-0.26) 
4.6 (3.2-11) 

 0.089 (0.071-0.12) 
2.2 (1.5-2.4) 

0.14 (0.067-0.28) 
3.0 (0.94-5.4) 

1234789-HpCDF ND  0.006 (ND-0.03) 
0.27 (ND-1.0) 

0.017 (ND-0.019) 
0.74 (ND-0.91) 

 0.14 (ND-0.042) 
0.28 (ND-0.86) 

0.029 (ND-0.064) 
0.64 (ND-1.3) 

OCDF 0.066 (0.015-0.27) 
3.5 (1.3-17) 

 ND ND  ND ND 

Furans 12 (6.6-20) 
620 (340-1300) 

15 (10-18)** 
690 (620-730)** 

18 (16-35)***
820 (690-930) 

20 (19-20) ‡‡

410 (380-560) ‡‡
47 (33-56) 
990 (460-1100) 

Sum of PCDD/Fs 18 (8. 6-26) 
830 (440-1900) 

19 (13-21)** 
880 (740-920)** 

23 (20-43)***
1030 (870-1100) 

24 (23-25) ‡‡

500 (460-670) ‡‡
58 (40-68) 
1200 (560-1300) 

I-TEQ 5.1 (3.0-7.7) 
260 (130-570) 

6.6 (4.7-7.5)** 
320 (260-330)** 

8.1 (7.1-16)***
360 (300-410) 

8.0 (7.7-8.6) ‡‡

170 (160-230) ‡‡
23 (15-25) 
460 (210-500) 

WHOPCDD/F-TEQ 5.7 (3.3-8.9) 
290 (150-650) 

7.2 (5.1-8.2)** 
350 (280-360)** 

8.8 (7.8-17)***
400 (340-450) 

8.7 (8.4-9.2) ‡‡

180 (170-250) ‡‡
24 (16-27) 
500 (230-540) 

To assess time trend, concentrations of five and six year old herring from the Gulf of Finland in 1993-1994 were added in the table on the basis of the similarity of 
their weights and lengths with small herring in 1999. Statistical significances of concentration differences (Mann-Whitney U test, significance level p < 0.05) between 
small herring in 1993-1994 and in 1999 are denoted here as (*); between groups small herring in the Gulf of Finland and in the Gulf of Bothnia as (**), and between 
groups large herring in the Gulf of Finland and in the Gulf of Bothnia as (***). Significances of difference of concentrations (Mann-Whitney U test, p < 0.05) 
between small and large herring in 1999 in the Gulf of Finland are denoted here as (‡); and between small and large herring in the Gulf of Bothnia as (‡‡).
ND = concentration below LOD. 
1 age estimation based on data from ICES 2001. 
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Table 4.  
Medians (range) of concentrations as ng/g fw and as ng/g fat of PCBs and as pg/g fw and as pg/g fat of co-PCBs and toxic 
equivalents of PCBs in different age groups of Baltic herring, caught in 1999 in the Gulf of Finland and in the Gulf of Bothnia.

 Gulf of Finland  Gulf of Finland  Gulf of Bothnia 
 Small herring  Small herring Large herring  Small herring Large herring 
 1993-1994  1999 1999  1999 1999 
PCB 28/31 0.63 (0.048-1.7) 

32 (3.7-83) 
 0.63 (0.41-0.71) 

29 (24-31) 
0.64 (0.56-1.2) 
29 (23-33) 

 0.85 (0.66-1.1) 
17 (14-30) 

1.2 (0.89-1.7) 
20 (18-33) 

PCB 52 1.3 (0.72-2.9) 
73 (37-190)* 

0.9 (0.63-1.1)** 
41 (37-50)** 

1.0 (0.78-2.3) 
44 (38-60) 

1.3 (0.95-1.4) ‡‡

25 (19-40) ‡‡
2.2 (1.7-3.9) 
44 (34-77) 

PCB 101 2.7 (1.7-5.5)* 
150 (110-260) 

4.0 (3.3-5.1) 
220 (140-220) ** 

5.6 (4.4-8.8)*** 
230 (220-240) 

4.3 (3.9-4.5) ‡‡

89 (79-130) ‡‡
11 (8.5-15) 
220 (120-280) 

PCB 138 4.3 (2.9-9.4)* 
240 (140-940) * 

11 (11-15) ‡

650 (380-700) ** 
17 (16-27) 
700 (660-860) 

9.9 (8.4-13) ‡‡

220 (170-350) ‡‡
29 (23-36) 
590 (350-710) 

PCB 153 0.97 (0.69-2.4)* 
54 (32-240) * 

15 (14-21) 
870 (530-930) ** 

22 (21-35) 
920 (850-1100) 

13 (12-17) ‡‡

320 (240-480) ‡‡
46 (33-53) 
960 (480-1100) 

PCB 180 0.7 (0.53-1.0)* 
37 (24-93) * 

5.0 (4.2-5.5) ‡

250 (190-280) ** 
6.6 (6.1-13) 
300 (250-340) 

5.1 (4.3-6.8) 
120 (87-170) 

16 (0.91-17) 
340 (23-370) 

Sum of  
Marker PCBs 

11 (8.3-18)* 
600 (390-1600) * 

37 (33-49) ‡

2100 (1300-2200) ** 
52 (50-87) 
2200 (2060-2600) 

34 (30-43) ‡‡

820 (610-1200) ‡‡
110 (69-130) 
2200 (1200-2500) 

PCB 77 27 (9.3-48) 
1200 (840-2400) 

26 (19-30) 
1300 (820-1600) ** 

30 (22-44) 
1200 (1100-1300) 

33 (20-39) ‡‡

720 (400-930) 
47 (37-63) 
1000 (520-1300) 

PCB 126 20 (13-33) 
1040 (680-2000) 

23 (18-29) 
1200 (820-1300) ** 

30 (25-48)*** 
1200 (1200-1300) 

26 (19-31) ‡‡

570 (370-740) 
54 (37-74) 
1300 (520-1500) 

PCB 169 9.7 (5.9-13) 
480 (270-1000) 

9.7 (8.8-12) ‡

510 (370-580) ** 
15 (13-23)*** 
590 (550-820) 

10 (8.9-12) ‡‡

230 (180-300) ‡‡
34 (22-39) 
680 (310-850) 

PCB 123 NA 0.62 (0.6-0.94) 
37 (21-41) ** 

0.95 (0.85-1.3) 
37 (34-49) 

0.5 (0.4-0.62) ‡‡

11 (8.1-17) ‡‡
1.2 (1.1-2.0) 
27 (15-40) 

PCB 118 2.5 (1.3-4.9)* 
130 (95-310) * 

6.5 (5.7-11) 
380 (210-440) ** 

9.4 (8.7-14) 
370 (360-480) 

5.0 (4.1-6.4) ‡‡

110 (84-180) ‡‡
14 (11-22) 
290 (170-420) 

PCB 114 NA 0.12 (0.1-0.18) 
6.4 (4.2-8.0) ** 

0.17 (0.14-0.26) 
6.9 (5.9-8.3) 

0.096 (0.079-0.12) ‡‡

2.1 (1.6-3.3) ‡‡
0.25 (0.21-0.4) 
5.3 (3.2-7.8) 

PCB 105 1.7 (0.94-3.4) 
88 (58-140) 

2.0 (1.8-3.0) 
120 (64-130) ** 

3.2 (2.4-3.8) 
120 (100-150) 

1.5 (1.4-1.9) ‡‡

35 (27-51) ‡‡
4.3 (3.1-5.8) 
88 (51-110) 

PCB 167 NA 0.24 (0.22-0.3) ‡

13 (8.6-14) **†
0.4 (0.35-0.58) 
16 (15-18) 

0.26 (0.23-0.33) ‡‡

6.3 (4.7-7.9) ‡‡
0.71 (0.46-0.9) 
14 (6.5-18) 
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Table 4 (continued)
 Gulf of Finland Gulf of Finland Gulf of Bothnia
 Small herring Small herring Large herring Small herring Large herring 
 1993-1994 1999 1999 1999 1999 
PCB 156 0.29 (0.12-0.45)* 

17 (5.5-33) * 
1.0 (0.89-1.3) 
59 (33-59) ** 

1.5 (1.2-2.1) 
57 (52-74) 

0.89 (0.72-1.0) ‡‡

19 (15-28) ‡‡
2.7 (2.0-3.2) 
55 (29-63) 

PCB 157 NA 0.28 (0.19-0.4) 
17 (6.6-17) ** 

0.35 (0.32-0.45)*** 
14 (12-17) 

0.19 (0.13-0.24) ‡‡

3.8 (2.7-6.1) ‡‡
0.51 (0.38-0.73) 
10 (7.2-14) 

PCB 170 NA 2.9 (2.5-3.4) 
150 (110-160) ** 

3.2 (3.0-7.5)*** 
140 (130-200) 

2.9 (2.4-4.1) ‡‡

79 (49-84) ‡‡
7.9 (5.7-10) 
160 (110-200) 

PCB 189 NA 0.12 (0.096-0.15) 
5.7 (5.1-6.4) ** 

0.14 (0.11-0.3) 
6.6 (4.7-8.0) 

0.11 (0.08-0.16) ‡‡

2.4 (1.6-4.3) ‡‡
0.32 (0.26-0.44) 
6.8 (3.7-8.7) 

Sum of  PCBs1
16 (11-27) 
870 (580-2100) 

69 (60-91) ‡

3900 (2400-4000) ** 
94 (92-160) 
4040 (3800-4600) 

71 (54-77) ‡‡

1500 (1100-2100) ‡‡
180 (130-140) 
3700 (2100-4600) 

PCB-TEQ1
2.7 (1.7-4.5) 
150 (94-260) 

4.4 (3.6-5.8) 
240 (150-260) ** 

5.7 (5.4-9.3) 
250 (230-270) 

4.5 (3.9-4.7) ‡‡

93 (78-130) ‡‡
11 (8.0-14) 
220 (110-280) 

WHOPCB-TEQ1
2.7 (1.7-4.5) 
140 (93-260) 

4.0 (3.3-5.4) 
220 (140-240) ** 

5.4 (5.0-8.4) 
230 (220-250) 

4.1 (3.5-4.4) ‡‡

83 (68-120) ‡‡
9.5 (7.1-13) 
210 (99-250) 

To assess time trend, concentrations of five and six year old herring from the Gulf of Finland in 1993-94 are added in the table on the basis of the 
similarity of their weights and lengths with small herring in 1999. Statistical significances of concentration differences (Mann-Whitney U test, 
significance level p < 0.05) between small herring in 1993-1994 and in 1999 are denoted here as (*); between groups small herring in the Gulf of 
Finland and in the Gulf of Bothnia as (**), and between groups large herring in the Gulf of Finland and in the Gulf of Bothnia as (***). Significances 
of difference of results (Mann-Whitney U test, p < 0.05) between small and large herring in 1999 in the Gulf of Finland are denoted here as (‡); and 
between small and large herring in the Gulf of Bothnia as (‡‡).
1 Statistical significance between small herring in 1993-1994 and 1999 in the Gulf of Finland not tested because of the different number of congeners 
measured.
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indicated that these fish probably feed on zooplankton in both sea regions, and exposure to 

PCDD/Fs and PCBs was equal or slightly greater in the Gulf of Finland. In large herring most of 

the fresh weight and fat concentrations of PCDD/Fs and PCBs (Tables 3 and 4) in the Gulf of 

Bothnia were greater than in the Gulf of Finland. This may be due to the different feeding habits 

of large herring in the Gulf of Bothnia. 

The median value of total WHO-TEQ in small herring from the Gulf of Finland was 11 pg/g 

fw, and in large herring it increased to 14 pg/g. In the Gulf of Bothnia, median values in small and 

large herring were 13, and 34 pg/g fw, respectively. PCBs accounted for 37% of the toxic 

equivalents in the Gulf of Finland, but their contribution decreased to 30% in the Gulf of Bothnia. 

In the catchment area Korsnäs, from where two samples of mixed herring were analysed, 

the concentration of WHOPCDD/F-TEQ was 15 pg/g fw with the concentration of WHOPCB-TEQ 

being 5.8 pg/g fw. These values corresponded well with the average of small and large herring in 

the Gulf of Bothnia.
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Comparability of the results with other studies

Concentrations of PCDD/Fs and PCBs in this study were not compared to previously 

published studies because the methodology of sample collection and sample preparation were 

dissimilar. For example, Bignert et al. (1998) have collected most of their material in the autumn 

when the fat percentages in herring are very different from the values obtained in spring. In 

addition they skinned the herring prior to analysis, thus their herring samples were so different 

from ours that the comparison of results would be misleading. In this study we have analysed 

herring in the form they are sold for human consumption. 

Time-trends of PCDD/Fs and PCBs

To obtain time-trends of PCDD/Fs and PCBs in herring, concentrations of age groups 5 

and 6 were extracted from the data in 1993-1994 and are shown separately in the Tables 3 and 4. 

The basis for selection of these age groups was similarity of weights and lengths between these 

groups and small herring in 1999. Time-trend assessment was possible only with small herring in 

the Gulf of Finland. 

PCDD/F concentrations (Table 3) present in the small herring in the Gulf of Finland in 

1993-1994 and 1999 indicated that concentrations have not been decreasing during this time 

period. Since age was not determined by otoliths of herring in 1999, there is a possibility that 

small herring in 1999 were older than those assessed in Table 3. In Fig. 1 it can be observed that 

the size of herring in the Gulf of Finland has declined between 1993 and 1999, and this shrinkage 

as a function of time might obscure the possible downward trend in herring exposure to PCDD/Fs. 

Since no downward trend was evident, the rule of thumb of TEQs, based on 1993-1994 results, 

could be tested with the 1999 results. With the reservation that the age estimation of 1999 herring 

was only indicative, the measured I-TEQ and WHOPCDD/F-TEQ values in the Gulf of Finland, 6.6 

and 7.2 pg/g fw, respectively, corresponded quite well with the values estimated with the rule of 

thumb, 4.9 and 5.6 pg/g. Also the actual I-TEQ and WHOPCDD/F-TEQ values determined, i. e. 8.1 

and 8.8 pg/g fw, respectively for large herring in the Gulf of Finland corresponded quite well with 

estimated values, 8.8 and 9.9 pg/g, respectively. This suggested that the rule of thumb is still 

applicable when assessing TEQ concentrations in the Gulf of Finland. 

Differences in PCB concentrations (Table 4) of the small herring in the Gulf of Finland 

between 1993-1994 and 1999 gave contradictory information about time trends of PCBs. The 

results for the purely co-planar PCBs (PCB 77, 126 and 169) suggested, as with the PCDD/Fs, that 
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there has not been any decreasing trend during this time period. For some of the other PCBs, the 

time-trend of concentrations even seemed to be increasing. These results do not agree with earlier 

results about the PCB time-trends in Baltic Sea fauna reported by other study groups (Odsjö et al., 

1997; Bignert et al., 1998). The fact that PCB analytic methods have advanced from 1993-1994 to 

1999, for example there is now an increased number of standards (allowing at least one internal 

standard per each chlorination degree of PCBs), suggests that some of the results of other PCBs in 

1993-1994 herring might be systematically too low. 

If time-trends of PCDD/Fs and PCBs are evaluated through contributions to total TEQs 

there exist two possible scenarios. Either exposure to PCDD/Fs has increased or exposure to PCBs 

has continued to decrease as stated by Bignert et al. (1998), because the contribution of PCBs to 

total TEQ have dropped from 50% in 1993-1994 to 30-37% in 1999. 

Congener profiles of PCDD/Fs and PCBs

In Fig. 3 median percentage profiles of PCDD/F congeners from the sum of PCDD/Fs and 

from toxic equivalents are shown. The dominating congener in both profiles was 2,3,4,7,8-PeCDF 

followed by 2,3,7,8-TCDF, 1,2,3,7,8-PeCDF, 1,2,3,7,8-PeCDD, 1,2,3,6,7,8-HxCDD and OCDD in 

the sum of PCDD/Fs profile, and 2,3,7,8-TCDD and 1,2,3,7,8-PeCDD in the toxic equivalent 

profiles. Similar profiles of Baltic herring, and herring caught from the North Sea have been reported 

by Rappe et al. (1989). The PCDD/F profiles in Baltic herring were similar to those measured from 

seafood, in particular anchovy and mackerel, in the Adriatic Sea (Bayarri et al., 2001). 

Percentages of PCB congeners from sum of PCBs and from toxic equivalents in herring 

caught in 1999 are shown in Fig. 4. Congener profiles were consistent irrespective of the herring's 

age, sampling area or time. The dominant congeners in the profiles from sum of PCBs were PCB 

153, 138, 118, 180, 101, 110. In profiles of toxic equivalent, the dominant congeners were PCB 

126, 118, and 156. The PCB profile of anchovy, reported by Bayarri et al. (2001), greatly 

resembled the herring profiles found here, although the set of measured PCBs was not fully 

consistent. 
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Fig 3. Median percentages of PCDD/F congeners in Baltic herring in the 
1990's. (A) Percentages from sum of PCDDs (black bars) and PCDFs (white 
bars), and (B) percentages from toxic equivalents (I-TEQ: black bars; 
WHOPCDD/F-TEQ: white bars). 
Congeners: 1D: 2,3,7,8-TCDD; 2D: 1,2,3,7,8-PeCDD; 3D: 1,2,3,4,7,8-
HxCDD; 4D: 1,2,3,6,7,8-HxCDD; 5D: 1,2,3,7,8,9-HxCDD; 6D: 1,2,3,4,6,7,8-
HpCDD; 7D: OCDD; 1F: 2,3,7,8-TCDF; 2F: 1,2,3,7,8-PeCDF; 3F: 2,3,4,7,8-
PeCDF; 4F: 1,2,3,4,7,8-HxCDF; 5F: 1,2,3,6,7,8-HxCDF; 6F: 2,3,4,6,7,8-
HxCDF; 7F: 1,2,3,7,8,9-HxCDF; 8F: 1,2,3,4,6,7,8-HpCDF; 9F: 1,2,3,4,7,8,9-
HpCDF; 10F: OCDF.

The source of exposure of herring to PCDD/Fs and PCBs, air-zooplankton versus 

sediments-zooplankton or sediments-crustacean, remained obscure. PCDD/F congeners in 

zooplankton, and in sediments in open sea areas and in areas without additional sources both 

originate from air deposits (Rappe et al., 1989; Kjeller and Rappe, 1995), and because of that it is 

impossible to assess the origin of PCDD/Fs in zooplankton. In the eastern Gulf of Finland, there 

are many major point sources of PCDD/Fs, especially 1,2,3,4,6,7,8-HpCDF and OCDF (Verta et 

al., 1999). Herring caught in this particular area did not have higher concentrations of PCDD/Fs, 

and the profiles of those herring did not express increased percentages of 1,2,3,4,6,7,8-HpCDF or 
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OCDF. However this result does not exclude exposure via sediment, since those two major 

congeners in this point source do not bioaccumulate in herring. 

Fig. 4. Median percentages of PCB congeners in Baltic herring in 1999. (A) Percentages from 
sum of PCBs, and (B) percentages from toxic equivalents (PCB-TEQ: black bars; WHOPCB-TEQ: 
white bars). Congeners in A, left to right: PCB 77, 126, 169, 18, 28/31, 33, 47, 49, 51, 52, 60, 66, 
74, 99, 101, 105, 110, 114, 118, 122, 123, 128, 138, 141, 153, 156, 157, 167, 170, 180, 183, 187, 
189, 194, 206, and 209. 

5. CONCLUSIONS AND HUMAN EXPOSURE

Concentrations in herring measured in 1993-1994 in the Gulf of Finland showed a clear 

age dependency of PCDD/Fs. A rule of thumb was that there was one unit increase of TEQ 

concentration for every year of a herring's life. This was found to be valid also with herring 

sampled in 1999. For PCBs no such a rule could be produced because of the missing data in 1993-

1994 of congeners contributing to toxic equivalents. The higher fat percentage in herring and 

hence higher concentrations on a fresh weight basis in the Gulf of Bothnia limits the use of the 

rule of thumb to the herring caught from the Gulf of Finland. In small herring, the differences in 

fat percentage were the main reason for the differences in concentrations on a fresh weight basis. 
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With large herring it was concluded that the exposure source of PCDD/Fs and PCBs in the Gulf of 

Bothnia differs from exposure in the Gulf of Finland. Based on two time points, 1993-1994 and 

1999, the concentrations of PCDD/Fs and PCBs in herring in the Gulf of Finland did not reveal 

any clear decline. 

On average the consumption of herring in the Finnish population varies between 800 to 

1100 g per year as filleted weight (Finnish Game and Fisheries Research Institute, 2000; Kiviranta 

et al., 2001), but the assessment of the exposure of Finns to PCDD/Fs and PCBs via herring is 

quite difficult. There is no reliable information about the size or age distribution of consumed 

herring, and data on concentrations of harmful substances in herring in seasons other than spring 

are missing. Also proper age or size correlation data on PCDD/Fs and PCBs from the Gulf of 

Bothnia is currently missing. The age of herring for human consumption usually is 3-6 years or 

older. Hence, according to the rule of thumb created in this study, concentrations in a major 

fraction of the herring used by Finns as food, will exceed the limit value of 4 pg WHOPCDD/F-

TEQ/g set by EU. 
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1. ABSTRACT

We measured adipose tissue concentrations of polychlorinated dibenzo-p-dioxins, 

dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs) in 420 general Finns living in 

southern Finland. The mean (median) concentrations of WHOPCDD/F-TEQ and WHOPCB-TEQ were 

29.0 (24.1) and 20.7 (16.7) pg g-1 fat, respectively. The concentrations clearly correlated with age. 

Expressing the concentrations as a function of subject’s ages revealed that the exposure of Finns 

has declined over the last 30 years. A downward gradient was found in the concentrations from 

the Baltic Sea coast to inland areas in Finland, and this was assessed to be due to consumption of 

the Baltic Sea fish, especially Baltic herring. Linear regression models for natural logarithm 

WHOPCDD/F-TEq, natural logarithm WHOPCB-TEq, and natural logarithm WHOtotal-TEq, explained 
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70%, 69%, and 72% of the variability, respectively. Age, lactation, place of residence, and fish 

consumption frequencies were significant predictors in the models. 

2. INTRODUCTION

The objective of this study was to determine the occurrence of polychlorinated dibenzo-p-

dioxins and dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs) in the general adult 

Finnish population. The source of PCDD/Fs and PCBs is food, especially food of animal origin. In 

Finland, most of human exposure can be traced to consumption of fish, especially fatty Baltic Sea 

fish (Kiviranta et al., 2001). Therefore in this study we paid special attention to the fish 

consumption habits of our subjects. 

A decreasing gradient of PCDD/F and PCB concentrations from the Baltic Sea coast to 

inland areas has been described in mothers’ milk samples, which were collected during the late 

1980s (Vartiainen et al., 1997). The purpose of this study was to investigate if a similar decreasing 

concentration gradient could be seen in the average population body burdens. An exposure model 

would be a valuable tool in epidemiological studies to assess the exposure to PCDD/Fs and PCBs. 

The development of such a model would mean that the exposure of the population, even at the 

individual level, could be assessed, without actually measuring concentrations with expensive and 

time-consuming methods. We assessed linear regression models for toxic equivalents of PCDD/Fs 

(WHOPCDD/F-TEQ), PCBs (WHOPCB-TEQ), and the sum of these two parameters (WHOtotal-TEQ).

The models were also validated with concentration results of a reference population comparable to 

the original study population. 

3. MATERIALS AND METHODS

Subjects

PCDD/Fs and PCBs were determined from appendicitis patients who were chosen as 

controls in our case-control study of soft tissue sarcoma in 1997-1999 (Tuomisto et al., 2004). The 

concentrations were measured from a total of 420 subjects. The place of residence of all but three 

subjects, was southern Finland. They were operated in university, central, district or municipality 

hospitals in Espoo, Helsinki, Hyvinkää, Joensuu, Jyväskylä, Kotka, Kuopio, Lahti, Lappeenranta, 

Pori, Seinäjoki, Tampere, Turku, and Vaasa. The concentration data obtained from these subjects 

were used to depict concentrations in men and women of different ages and age groups, in 
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different classified subgroups of subjects, and to assess the average concentrations of PCDD/Fs 

and PCBs in the Finnish population. Concentration data served also as source for composing 

models to assess the exposure of Finns to the analytes of interest. The subjects were asked to 

complete a questionnaire about their intake of foods and about relevant demographic features and 

their lifestyle. 

The study subjects were classified by two different criteria: the age of the subjects (  46 

years and > 46 years) and the place of residence (coastal area [Kotka, Pori, Seinäjoki, Turku, 

Vaasa], capital area [Espoo, Helsinki, Hyvinkää], and inland area [Joensuu, Jyväskylä, Kuopio, 

Lahti, Lappeenranta, Tampere]). Table 1 depicts the age, the body mass index (BMI), the number 

of children and duration of lactation in women, and the fish consumption statistics for all subjects 

as well as in the classified subgroups. Detailed questions about subjects’ fish consumption habits 

including favoured fish species were asked. 

The exposure models obtained from the concentration data of appendicitis patients were 

validated with the data obtained from the soft tissue sarcoma case patients (n = 148) (Tuomisto et 

al., 2004). The dioxin concentrations in cases and controls did not differ from each other as was 

described in the previous sarcoma study. 

Informed consent was obtained from all patients in writing before the operation. The study 

was approved by the Ethics Committees of the National Public Health Institute and the hospitals 

involved. 

Exposure assessment 

The concentrations of the 17 toxic PCDD/F congeners (Table 2) and of the 36 PCB 

congeners (Table 3) were measured from fat of a subcutaneous tissue sample (0.3-1.5 g of fat) 

which was obtained during an appendectomy or sarcoma operation. The toxic equivalents 

(WHOPCDD/F-TEQ and WHOPCB-TEQ) were calculated with the sets of toxic equivalency factors 

(TEF), recommended by WHO in 1998 (Van den Berg et al., 1998). 

Fat from tissue sample was extracted with toluene for 18-24 hours using the Soxhlet 

apparatus. The fat content was determined gravimetrically after changing the solvent to hexane 

using nonane as a keeper. Fat sample was spiked with a set of 13C-labeled internal standards: 

sixteen 2,3,7,8-chlorinated PCDD/F congeners, three non-ortho PCBs (PCB 77, 126, 169), and 

nine other PCBs (PCB 30 [12C-labeled], 80, 101, 105, 138, 153, 156, 180, 194). 
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The sample was defatted in a silica gel column containing acidic and neutral layers of 

silica, and all analytes were eluted with dichloromethane (DCM):cyclohexane (c-hexane) (1:1). 

PCDD/Fs were separated from PCBs on activated carbon column (Carbopack C, 60/80 mesh) 

containing Celite (Merck 2693). The first fraction including PCBs was eluted with DCM:c-hexane 

(1:1) following a back elution of the second fraction (PCDD/Fs) with toluene. Eluents from both 

of the fractions were evaporated using nonane as a keeper and then fractions in n-hexane were 

further cleaned by passing them through an activated alumina column (Merck 1097). The PCDD/F 

fraction was eluted from the alumina column with 20% DCM in n-hexane and recovery standards 

(13C 1,2,3,4-TCDD and 13C 1,2,3,7,8,9-HxCDD) were added to the fraction before DCM and n-

hexane were replaced by 10-15 μl of nonane. The PCB fraction was eluted from the alumina 

column with 2% DCM in n-hexane, and the fraction, after changing the eluent to n-hexane, was 

transferred to another activated carbon column (without Celite) in order to separate the non-ortho

PCBs from other PCBs. DCM (50%) in n-hexane was used to elute other PCBs while non-ortho

PCBs were back eluted with toluene. Recovery standards, PCB 159 for other PCBs and 13C PCB 

60 for non-ortho PCBs were added prior to analysis; the solvent for other PCBs (DCM:n-hexane,

1:1) was replaced by 300 μl of n-hexane, for non-ortho PCBs toluene was replaced by 10-15 μl of 

nonane. The quantitation was performed by selective ion recording mode using a VG 70-250 SE 

(VG Analytical, UK) mass spectrometer (resolution 10,000) equipped with a HP 6890 gas 

chromatograph with a fused silica capillary column (DB-DIOXIN, 60 m, 0.25 mm, 0.15 μm). Two 

μl were injected into a split-splitless injector at 270°C. The temperature programs for PCDD/Fs, 

non-ortho-PCBs, and other PCBs were: 

start, 140°C (4 min), rate 20°C min-1 to 180°C (0 min), rate 2°C min-1 to 270°C (36 min); 

start, 140°C (4 min), rate 20°C min-1 to 200°C (0 min), rate 10°C min-1 to 270°C (12 min); 

start, 60°C (3 min), rate 20°C min-1 to 200°C (0 min), rate 4°C min-1 to 270°C (14 min);  

respectively. 

Limits of quantitation (LOQ) for PCDD/Fs and non-ortho PCBs varied between 0.1-5 and 

1-5 pg g-1 fat, respectively, and for other PCBs between 0.02-0.1 ng g-1 fat, depending on each 

individual congener. Recoveries for internal standards were more than 50% for all congeners. 

Concentrations were calculated with lower bound method in which the results of congeners with 

concentrations below the LOQ were designated as nil.



Table 1. Descriptive statistics of the study subjects.
_______________________________________________________________________________________________________________________________________________ 

       Age subgroups   _________   Area   _______ 
   All subjects n = 420  46 years n = 225 > 46 years n = 195 Coastal n = 147  Capital n = 104  Inland n = 166 
_______________________________________________________________________________________________________________________________________________ 
Age (years)  44,44,15,(13-81)  32,32,8.3,(13-46)  58,55,8.0,(46-81) 42,38,16,(13-73)** 42,42,15,(16-78) 47,49,15,(17-81) 
BMI (kg m-2)  26,25,3.8,(18-39)  25,24,3.7,(18-39)* 27,26,3.5,(20-39) 25,25,3.6,(18-39)  25,25,3.4,(19-39) 26,26,4.0,(19-39) 
Female (%)  51   50   53   47   51   57 
No. of children of women 1.8, 2.0, (0-7)  1.2, 1.0, (0-4)*  2.2, 2.0, (0-7)  1.4, 1.5, (0-4)**  1.7, 2.0, (0-5)  2.1, 2.0, (0-7) 
Total lactation, months 8.2, 5.0, 11, (0-72) 7.2, 0, 13, (0-72)  8.9, 6.0, 10, (0-72) 7.8, 4.0, 12, (0-72) 7.9, 5.0, 11, (0-45) 8.6, 5.0, 12, (0-72) 
Questinnaire returned (%) 77   74   81   84   74   72 
Fish consumption, times per month 
All fish   4.9,4.0, (0.5-24) 4.6,4.0, (0.5-24) 5.3,4.0, (0.5-24) 5.0,4.0, (0.5-24) 5.2,4.0, (0.5-24) 4.7,4.0, (0.5-16)
Baltic herring  1.2,0.5, (0.5-16) 0.9,0.5, (0-16)* 1.5,0.5, (0-16) 1.5,0.5, (0-16) 1.0,0.5, (0-4) 1.1,0.5, (0-8)
Farmed trout or salmon 2.0,2.0, (0.5-16) 1.7,2.0, (0-16)* 2.3,2.0, (0-16) 2.0,2.0, (0-16) 2.2,2.0, (0-16) 1.8,2.0, (0-8)
Other fisha  2.2,1.5, (0.5-15) 2.4,1.5, (0.5-15) 2.1,0.5, (0.5-15) 2.1,1.5, (0.5-12) 2.4,1.5, (0.5-15) 2.3,1.5, (0.5-15)

Mean, median, SD and (range) of age, body mass index (BMI), and total lactation. Mean, median, and (range) of number of chidren of women. The consumption frequency, 
mean, median and (range), of different types of fish per month. 
*Significantly different compared with the > 46 years group (p < 0.05 by independent samples T-test) 
** Significant difference between groups (p < 0.05 by one-way ANOVA) 
a Consists of pike, perch, burbot, pike perch, vendace, whitefish, bream, roach, frozen fish, canned fish and shrimps 
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Table 2.

Mean, median, SD, and (range) of PCDD/F concentrations and WHOPCDD/F-TEQs as pg g-1 fat in 

adipose tissue samples (n = 420) from general population in Finland.
_________________________________________________________________________________________________ 

Congener  Mean, median, SD, (range)  % of sum of congeners % of WHOPCDD/F-TEQ 
_________________________________________________________________________________________________ 
2,3,7,8-TCDD  2.55, 2.02, 1.84, (0.157–16.4)  0.650   9.03 
1,2,3,7,8-PeCDD  7.61, 6.21, 5.42, (0.986–43.2)  1.89   26.2 
1,2,3,4,7,8-HxCDD 2.73, 2.42, 1.58, (nq–12.1)   0.684   1.04 
1,2,3,6,7,8-HxCDD 44.3, 40.2, 23.7, (5.10–148)  11.3   16.9 
1,2,3,7,8,9-HxCDD 4.17, 3.72, 2.35, (nq–13.8)   1.04   1.66 
1,2,3,4,6,7,8-HpCDD 40.8, 33.1, 29.3, (nq–222)   9.57   1.67 
OCDD   263, 227, 169, (37.7–1730)  62.8   0.113 

2,3,7,8-TCDF  1.07, 0.747, 1.24, (nq–18.3)  0.274   0.379 
1,2,3,7,8-PeCDF  0.551, 0.380, 0.625, (nq–5.91)  0.138   0.094 
2,3,4,7,8-PeCDF  24.2, 18.2, 20.2, (2.30–165)  5.98   38.7 
1,2,3,4,7,8-HxCDF 4.34, 3.71, 2.66, (0.774–19.7)  1.11   1.67 
1,2,3,6,7,8-HxCDF 4.00, 3.35, 2.61, (0.663–22.8)  1.01   1.47 
2,3,4,6,7,8-HxCDF 1.53, 1.22, 1.11, (nq–6.93)   0.380   0.580 
1,2,3,7,8,9-HxCDF 0.052, nq, 0.110, (nq–0.658)  0.014   0.022 
1,2,3,4,6,7,8-HpCDF 10.6, 7.97, 10.7, (nq–148)   2.79   0.486 
1,2,3,4,7,8,9-HpCDF 0.057, nq, 0.180, (nq–1.88)  0.014   0.002 
OCDF   1.26, nq, 6.76, (nq–81.9)   0.373   0.0008 

Sum of PCDD/Fs  413, 364, 230, (78.0–2080) 

WHOPCDD/F-TEQ  29.0, 24.1, 19.7, (3.64–153) 
_________________________________________________________________________________________ 
Percentages of congeners of the sum of PCDD/Fs and of WHOPCDD/F-TEQ are also shown. 
Abbreviations: HpCDD, heptachlorodibenzo-p-dioxin; HpCDF, heptachlorodibenzofuran; HxCDD, 
hexachlorodibenzo-p-dioxin; HxCDF, hexachlorodibenzofuran; nq, below limit of quantitation; OCDD, 
octachlorodibenzo-p-dioxin; OCDF, octachlorodibenzofuran; PeCDD, pentachlorodibenzo-p-dioxin; PeCDF, 
pentachlorodibenzofuran; TCDD, tetrachlorodibenzo-p-dioxin; TCDF, tetrachlorodibenzofuran; WHOPCDD/F-TEQ, 
WHO toxic equivalency factors for PCDD/Fs. 

Quality control and assurance 

Fat samples were analyzed during and after the collection period 1997-1999. All analytical 

work was performed blind such that the chemistry laboratory knew only the code of the sample. 

The laboratory reagent and equipment blank samples were treated and analyzed with the same 

method as the actual samples, one blank for every eight to ten samples. Quality assurance of 

analysis was performed in two separate ways: a) two preformulated pools of human fat with 

different concentrations of PCDD/Fs [10.6 (n = 35) and 40.2 (n = 33) pg g-1 (WHOPCDD/F-TEQ in 

fat)] and PCBs [4.72 and 24.2 pg g-1 (WHOPCB-TEQ), respectively] were always run with each lot 

of samples and b) 36 individual fat samples with WHOPCDD/F-TEQs ranging from 6.9 to 116 pg g-1

and WHOPCB-TEQs from 4.6 to 95 pg g-1 were analyzed in duplicate. The coefficients of variation 

(CV) for WHOPCDD/F-TEQ in preformulated pools were 5.1% and 5.7%, respectively and for 
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WHOPCB-TEQ 12% and 9.0%, respectively. In duplicate analysis the CV was 6.2% for 

WHOPCDD/F-TEQ and 18% for WHOPCB-TEQ. 

The laboratory has successfully participated in several international quality control studies 

for the analysis of PCDD/Fs, and PCBs. Matrices in these studies have included cow milk, human 

milk and human serum. (Yrjänheikki, 1991; Rymen, 1994; WHO, 1996; Lindström et al., 2000). 

The laboratory of chemistry in the National Public Health Institute is an accredited testing 

laboratory (No T077) in Finland (EN ISO/IEC 17025). The scope of accreditation includes 

PCDD/Fs, non-ortho PCBs, and other PCBs from human tissue samples. 

Statistical Analysis 

Statistical analyses were carried out by means of SPSS software (for Windows, release 

10.1.3). Before the statistical tests, all concentrations were transformed to a natural logarithm (ln) 

scale in order to ensure the normal distribution of concentrations. For comparisons of two groups 

either the Mann-Whitney U nonparametric test or the independent samples T-test was used to test 

the statistical significances of the differences of concentrations/variables between two groups. One 

way analysis of variance (ANOVA) or Kruskal-Wallis H test were used to compare the 

differences of concentrations/variables between multiple groups and age as covariate was added to 

analysis of variance because there was a suspected dependence of concentrations and age. The 

differences with p < 0.05 were considered to be statistically significant. 

Linear regression models for dependent variables: ln WHOPCDD/F-TEQ, ln WHOPCB-TEQ, 

and their sum; ln WHOtotal-TEQ, were established. Continuous predictor variables in the models 

were: age (year), BMI (kg m-2), lactation (months), and fish consumption frequencies (times per 

month). Binary variables in the models were: living in the capital area (no/yes) and living in the 

inland area (no/yes). 

4. RESULTS

Demographics and fish consumption 

The average age of all study subjects was 44 years; in the groups classified by age the 

average ages were 32 (32 median) and 58 (55 median) years, respectively. The average age of the 

inland area group was higher than in the other groups (Table 1). There was no age difference 

between men and women. 
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The average BMI of all study subjects was 26 (25 median) kg m-2 with the BMI being 

significantly higher in the older population. There was no geographical difference in the BMI. 

With respect to all study subjects, men had significantly higher BMI than women, this being 

attributable to the higher BMI in younger men than women. Also in two places of residence, 

coastal and capital area, men had higher BMI than women. 

The number of children borne by women was on average 1.8 (2.0 median), and the number 

of children was significantly higher in the older population than the younger. There was a 

significant difference in number of children born in the different places of residence with most 

being born in the inland area. Lactation lasted on average for 8.2 months (5.0 median) and there 

were no significant differences in lactation between age subgroups or places of residence. 

About two thirds (66%) of our subjects consumed fish once a week or more. The fish 

consumption was on average four to five times per month and the difference between the 

subgroups of different ages and places of residence was not significant. Baltic herring and farmed 

trout or salmon were consumed significantly more often in the age subgroup > 46 years than in 

subgroup  46 years, and there was a trend that the fish group which consisted of other fish, was 

consumed more by the younger population. Thus younger subjects consumed significantly more 

frozen fish products and shrimps, which were included in the other fish group. Baltic herring was 

consumed more in the coastal area than in the other areas, but this trend was not statistically 

significant (Table 1). Only in the capital area was the monthly consumption of farmed trout or 

salmon significantly higher in women than in men. Otherwise there was no difference in fish 

consumption between genders. 
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Table 3.

Mean, median, SD, and (range) of PCB concentrations and WHOPCB-TEQs in adipose tissue 

samples (n = 420) from general population in Finland. 
_______________________________________________________________________________________________ 

Congener  Mean, median, SD, (range)  % of sum of congeners % of WHOPCB-TEQ 
_______________________________________________________________________________________________ 
Non-ortho-PCBs a

PCB 77   16.5, 10.9, 30.6, (nq–505)   0.0040   0.009 
PCB 126  75.2, 52.7, 75.0, (nq–817)   0.015   35.1 
PCB 169  67.4, 54.5, 51.7, (nq–399)   0.013   3.33 

Other PCBs b

PCB 18   0.441, 0.278, 0.546, (nq–4.35)  0.133 
PCB 28/31  4.61, 2.75, 6.92, (nq–99.5)   1.08 
PCB 33   0.267, 0.134, 0.444, (nq–5.02)  0.076 
PCB 47   0.455, 0.386, 0.348, (nq–0.412)  0.123 
PCB 49   0.172, 0.125, 0.199, (nq–2.72)  0.050 
PCB 51   0.021, 0.014, 0.033, (nq–0.429)  0.0067 
PCB 52   0.784, 0.606, 0.779, (0.053–8.54)  0.209 
PCB 60   0.674, 0.445, 1.23, (0.022–21.8)  0.137 
PCB 66   1.89, 1.25, 3.76, (0.240–70.8)  0.393 
PCB 74   8.63, 6.87, 7.77, (1.55–115)  1.77 
PCB 99   10.4, 7.71, 13.4, (0.283–216)  2.02 
PCB 101  1.40, 1.06, 2.02, (nq–36.2)   0.316 
PCB 105  4.21, 3.31, 3.54, (0.525–28.7)  0.814   2.04 
PCB 110  0.534, 0.344, 0.875, (nq–12.6)  0.130 
PCB 114  1.00, 0.800, 0.754, (0.114–4.88)  0.195   2.46 
PCB 118  19.9, 15.2, 16.9, (2.14–134)  3.84   9.57 
PCB 122  0.001, nq, 0.006, (nq-0.086)  0.0004 
PCB 123  0.835, 0.518, 1.75, (0.027–33.1)  0.150   0.355 
PCB 128  1.20, 0.986, 0.949, (0.082–7.98)  0.254 
PCB 138  74.7, 62.7, 52.9, (9.08–461)  14.9 
PCB 141  0.273, 0.172, 0.394, (nq–5.44)  0.068 
PCB 153  135, 116, 94.9, (16.8–958)   26.8 
PCB 156  16.2, 13.7, 11.9, (0.293–82.3)  3.14   40.2 
PCB 157  2.27, 1.93, 1.63, (0.204–10.9)  0.441   5.64 
PCB 167  2.29, 1.80, 1.85, (0.213–11.6)  0.437   0.109 
PCB 170  53.9, 48.3, 35.2, (5.80–313)  10.8 
PCB 180  106, 94.9, 74.8, (11.3–833)  20.9 
PCB 183  10.8, 8.64, 7.57, (1.38–64.9)  2.22 
PCB 187  23.0, 19.9, 16.2, (2.17–142)  4.56 
PCB 189  2.17, 1.91, 1.43, (0.187–9.60)  0.431   1.13 
PCB 194  15.3, 13.8, 10.4, (1.23–81.9)  3.01 
PCB 206  2.03, 1.77, 1.45, (0.175–9.04)  0.401 
PCB 209  0.716, 0.468, 0.711, (0.029–6.35)  0.146 

Sum of marker PCBsb 343, 294, 235, (43.4–2,360) 
Sum of PCBsb  502, 437, 338, (63.2–3,240) 

WHOPCB-TEQa  20.7, 16.7, 15.7, (2.46–129) 
_________________________________________________________________________________________ 
Percentages of congeners of the sum of congeners and of WHOPCB-TEQ are also shown. 
Abbreviations: nq, below limit of quantitation; PCB, polychlorinated biphenyl; WHOPCB-TEQ, WHO toxic 
equivalency factors for PCBs. 
a = concentrations are given in pg g-1 fat.  
b = concentrations are given in ng g-1 fat. 



Fig. 1. Percentages of PCDD/F congeners in tissue samples of average Finnish. A: percentages from sum of PCDD/Fs, 

and B: percentages from WHOPCDD/F-TEQ. Congeners: (1D) 2,3,7,8-TCDD; (2D) 1,2,3,7,8-PeCDD; (3D) 1,2,3,4,7,8-

HxCDD; (4D) 1,2,3,6,7,8-HxCDD; (5D) 1,2,3,7,8,9-HxCDD; (6D) 1,2,3,4,6,7,8-HpCDD; (7D) OCDD; (1F) 2,3,7,8-

TCDF; (2F) 1,2,3,7,8-PeCDF; (3F) 2,3,4,7,8-PeCDF; (4F) 1,2,3,4,7,8-HxCDF; (5F) 1,2,3,6,7,8-HxCDF; (6F) 

2,3,4,6,7,8-HxCDF; (7F) 1,2,3,7,8,9-HxCDF; (8F) 1,2,3,4,6,7,8-HpCDF; (9F) 1,2,3,4,7,8,9-HpCDF and (10F) OCDF. 
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Fig. 2. Percentages of PCB congeners in tissue samples of the general Finnish population. (A) percentages from sum of 

PCBs, and (B) percentages from WHOPCB-TEQ.

A

10
5

28
/3

1

9974

19
418

7
18

311
8

15
6

13
8

17
0

18
0

15
3

0

5

10

15

20

25

30

35

40

45

Congeners

Pe
rc

en
ta

ge

B

18
9

16
7

15
7

15
6

12
3

11
8

11
4

10
516

9

12
6

770

5

10

15

20

25

30

35

40

45

Congeners

Pe
rc

en
ta

ge

115



116 

Concentrations of PCDD/Fs and PCBs 

The mean and median concentrations, standard deviations, and ranges of PCDD/Fs and 

PCBs along with sums of congeners and TEQs in all subjects are summarized in Tables 2 and 3. 

The mean and median WHOPCDD/F-TEQ concentrations were 29.0 and 24.1 pg g-1 fat, respectively, 

and the congeners contributing most to the WHOPCDD/F-TEQ were in ranked order; 2,3,4,7,8-

PeCDF, 1,2,3,7,8-PeCDD, 1,2,3,6,7,8-HxCDD, and 2,3,7,8-TCDD (sum contribution 91%). On 

the other hand, the congeners contributing the most to the sum of congener’s mean and median 

concentrations (413 and 364 pg g-1 fat) were OCDD, 1,2,3,4,6,7,8-HpCDD, 1,2,3,6,7,8-HxCDD, 

and 2,3,4,7,8-PeCDF (Fig. 1). The mean and median WHOPCB-TEQ concentrations were 20.7 and 

16.7 pg g-1 fat, respectively, and the mean and median PCB sum concentrations 502 and 437 ng g-1

fat, respectively. In Fig. 2 the contributions of PCB congeners to sum of PCBs and to the 

WHOPCB-TEQ are depicted. Congeners PCB 153, 180, 138, and 170 were the most abundant 

congeners of the sum of PCBs, while PCB 156, 126, 118, and 157 dominated the congener 

profiles of WHOPCB-TEQ (91%). 

The age dependence of TEQ concentrations is illustrated in Figs. 3 and 4. The correlation 

of age and WHOPCDD/F-TEQ was r = 0.71, for age and WHOPCB-TEQ r = 0.67. The increase of 

WHOPCDD/F-TEQ concentration by age was best explained by the exponential function: y = 5.4071 

e0.0338 x. With respect to WHOPCB-TEQ, the function was y = 3.3201 e0.0363 x. The concentrations of 

men and women did not differ from each other in all subjects (p < 0.49 for WHOPCDD/F-TEQ, and 

p < 0.07 for WHOPCB-TEQ). In the age groups between 36 and 65 years, there was a pattern that 

the concentrations were lower in women than men, but only in the age group 36-40 years was this 

difference statistically significant. 

Concentrations, standard deviations, and ranges of the most abundant PCDD/Fs and PCBs 

along with sums of congeners and TEqs in the different subgroups are summarized in Tables 4 and 

5. The WHOPCDD/F-TEQ in the age group < 46 years was 17.2 pg g-1 fat (15.7 median) which was 

significantly lower than the corresponding concentration in the older population, 42.7 pg g-1 fat 

(39.5 median). The concentrations of all selected congeners were significantly lower in younger 

people. The covariate analysis of variance indicated that the age difference between the places of 

residence (Table 1) did affect the concentrations to the extent that the comparison between areas 

was not feasible. This was also the case with selected PCB congeners. Also the PCB 

concentrations were significantly lower in the younger population than in the older, e.g. the 

average WHOPCB-TEQ was 11.8 pg g-1 fat (10.3 median) in the younger population and 30.9 pg 

(26.6 median) in the older population. 
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In order to compare the concentrations between places of residence, we adjusted for age 

for every congener’s concentration to the entire study population. In this way, age adjusted mean 

and median concentrations of the most abundant PCDD/Fs and PCBs along with sums of 

congeners and TEQs in different areas are summarized in Table 6. In the age adjusted 

concentrations of PCDD/Fs, congeners 2,3,4,7,8-PeCDF, 2,3,7,8-TCDD, and 1,2,3,7,8-PeCDD 

showed the highest decreasing gradient of concentrations from the coastal area to inland area, 

while for the congeners 1,2,3,4,6,7,8-HpCDD and OCDD there was hardly any appreciable 

decreasing gradient in their concentrations. All selected PCB age adjusted concentrations showed 

a decreasing gradient, being highest in the coastal area and lowest in inland area.

Regression models of PCDD/Fs and PCBs 

The summary of the regression analyses conducted to determine predictors of the variance 

of natural logarithms of WHOPCDD/F-TEQ, WHOPCB-TEQ, and WHOtotal-TEQ is shown in Table 7. 

The models explained 70%, 69%, and 72% of the variance of the dependents, respectively. Age, 

lactation, living in the inland area, and Baltic herring and farmed trout/salmon consumption 

frequency predictors were significant regression predictors in all models. Age was the most 

important predictor with a contribution of at least 64% in all models. In each of these three 

models, the normal distribution of residuals was verified with normal probability plots. Variance 

inflation factors (VIF) showed no multicollinearity between predictors in any of the models. 

To validate the obtained regression models, we used the WHOPCDD/F-TEQ, WHOPCB-TEQ, 

and WHOtotal-TEQ data from soft tissue sarcoma case patients. Useful data was obtained from 102 

cases out of 148. In Fig. 5 the measured concentrations are shown with a ln scale as a function of 

the modelled concentrations. The correlations coefficients between modelled and measured 

concentrations for ln WHOPCDD/F-TEQ, ln WHOPCB-TEQ, and ln WHOtotal-TEQ were 0.81, 0.74, 

and 0.80, respectively. 



Fig. 3. WHOPCDD/F-TEQ concentrations in Finnish tissue samples as a function of the age of the subject (n = 420). In the 

inset median concentrations in age groups: (1) 16-20; (2) 21-25; (3) 26-30; (4) 31-35; (5) 36-40; (6) 41-45; (7) 46-50; (8) 

51-55; (9) 56-60; (10) 61-65; (11) 66-70 and (12) 71-80 years. 
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Fig. 4. WHOPCB-TEQ concentrations in Finnish tissue samples as a function of the age of subject (n = 420). In the inset: 

median concentrations in age groups: (1) 16-20; (2) 21-25; (3) 26-30; (4) 31-35; (5) 36-40; (6) 41-45; (7) 46-50; (8) 51-55; 

(9) 56-60; (10) 61-65; (11) 66-70; (12) 71-80 years. 
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5. DISCUSSION

Demographics and fish consumption 

With respect to their BMI values and fish consumption habits, the subjects in this study 

represented the general Finnish population. The mean and median BMI were similar to BMIs 

measured in the recent Finnish adult health study (Helakorpi et al., 2003) in which the proportion of 

subjects with BMI exceeding 25 kg m-2 was 50%. Also the higher BMI in young men versus women 

was reported in that study (Helakorpi et al., 2003). The proportions of subjects who had consumed fish 

at least once in the previous week was similar in both studies, 66% in this study and 72% in the 

Finnish adult health study. Although there were no statistical significances between the differences in 

fish species consumed in places of residence, it is likely that there was greater consumption of Baltic 

herring in the coastal area due to the proximity of this fish source. 

Concentrations of PCDD/Fs and PCBs  

Adipose tissue PCDD/F and PCB concentrations measured in this study showed that average 

exposure in Finland to these contaminants was similar to those recently reported in Belgium, France, 

Germany, Spain, Sweden, and US (Päpke, 1998; Wicklund Glynn et al., 2000; Wingfors et al., 2000; 

Arfi et al., 2001; Covaci et al., 2002; Koppen et al., 2002; Costabeber and Emanuelli, 2003; Schecter 

et al. 2003; Wicklund Glynn et al., 2003;) (Table 8). In India (Kumar et al., 2001) and Japan (Choi et 

al., 2002) the reported concentrations were slightly lower than those detected in Finland. However in 

the general Inuit populations in Greenland and Uelen/Russia, due to their consumption of meat and 

blubber of marine mammals, the PCB body burdens were about ten times higher than in the general 

population in Finland (Dewailly et al., 1999; Sandanger et al., 2003). The exposure of professional 

fishermen in Finland, especially Baltic Sea fishermen, to PCDD/Fs and PCBs was about four times as 

high as the general population (Kiviranta et al., 2002). PCB concentrations measured in fishermen in 

Latvia and Sweden were also higher than in the general population in Finland (Sjödin et al., 2000), but 

somewhat lower than in Finnish Baltic Sea fishermen. 

Similar PCDD/F congener profiles as in this study have been reported in other studies in the 

1990s (Päpke, 1998; Arfi et al., 2001; Kumar et al., 2001; Choi et al., 2002). In US and Canada the 

OCDD/F profile differs from the one in Finland. In WHOPCDD/F-TEQ profile the contributions of 

2,3,7,8-TCDD, 1,2,3,7,8-PeCDD, and 1,2,3,6,7,8-HxCDD to profile exceed the contribution of 

2,3,4,7,8-PeCDF, which is the main contributor in Finnish profile (Schecter et al., 1994; Schecter et 
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al., 2003). Although the comparison of PCB congener profiles between studies is difficult due to the 

different numbers of measured congeners, the dominant congeners reported in most studies are the 

same (PCB 153, 180, 138, and 170), as in this study. 

The concentrations of PCDD/Fs increased with ages of the subjects. If the half-life of 

congeners in humans is in the order of 7-8 years, then at a constant exposure this would mean that the 

body burden of a person would increase until about 40 years of age, and then achieve a steady state. At 

the population level, we did not detect this kind of upward convex curve probably indicating a 

previous higher exposure. The decreasing time trend of PCDD/F and PCB concentrations in human 

samples have been frequently reported (Päpke, 1998; Kiviranta et al., 1999; Norén and Meironyte, 

2000; He et al., 2001; Choi et al., 2002). The higher TEQ concentrations in men than in women in the 

age groups between 36 and 50 years may be explained by two obvious reasons. First, men in the age 

range of interest had higher BMI, which might correlate with higher intake of dietary fat, and hence 

higher exposure to PCDD/F and PCBs than in women. Second, breast-feeding results in a decreased 

body burden of PCDD/Fs and PCBs in women (Abraham et al., 1998; Päpke, 1998; Kiviranta et al., 

1999). The decreasing gradient of PCDD/F and PCB concentrations from the coast of the Baltic Sea to 

inland area in Finland was reported in Finnish mother’s milk samples collected in 1987 (Vartiainen et 

al., 1997). In order to investigate if this decreasing gradient would be present also in the general 

population concentrations, we classified the subjects according to place of residence. Coastal and 

inland groups were obvious groups based on the earlier mother's milk study. Although the capital area 

is located on the coastline of the Gulf of Finland in the Baltic Sea, we classified it as an intermediate 

group between coastal and inland areas. This was based on the fact that there has been a considerable 

internal emigration from inland areas to the capital area over the last 50 years. Therefore the 

population in the capital area is a mixture of coastal and inland area populations with respect to their 

PCDD/F and PCB exposure. When concentrations of PCDD/Fs and PCBs were age adjusted, this 

gradient of decreasing concentrations from coast to inland area was seen for all selected PCB 

congeners and also for certain PCDD/F congeners. This can be explained by the fact that most of the 

average exposure of Finns to PCDD/Fs and PCBs originates from fish, especially from Baltic herring 

(Kiviranta et al. 2003), and in this study Baltic herring was consumed most frequently in the coastal 

area, although not statistically significantly. Also the concentrations of PCDD/Fs and PCBs are higher 

in the Baltic Sea in most of the fish species when compared to the same fish species in inland areas, 

also resulting in higher population exposure to these contaminants in the coastal area. The failure to 

detect any clear decreasing gradient of exposure for 1,2,3,4,6,7,8-HpCDD and OCDD from the coastal 



Table 4.

Mean, median, SD, and (range) concentrations of selected PCDD/Fs and WHOPCDD/F-TEQs as pg g-1 fat in adipose tissue samples in age and 

regional subgroups of general population in Finland.   
__________________________________________________________________________________________________________________________________________________________ 
Congener          Age subgroups  ________      Area    ____________
   < 46 years n = 225  > 46 years n = 195  Coastal n = 147   Capital n = 104   Inland n = 166  

 _________________________________________________________________________________________________________________________________________________________
__
2,3,7,8-TCDD 1.59, 1.37, 0.926, (0.157–6.56)* 3.66, 3.23, 2.00, (0.794–16.4) 2.64, 1.95, 2.13, (0.551–16.4)** 2.39, 2.12, 1.52, (0.478–8.85) 2.57, 2.04, 1.76, (0.157–8.98) 
1,2,3,7,8-PeCDD 4.44, 4.05, 2.45, (0.986–17.6)* 11.3, 9.92, 5.60, (3.72–43.2) 7.87, 5.75, 6.37, (1.38–43.2)** 6.73, 5.70, 4.39, (1.56–25.6) 7.98, 6.90, 5.09, (0.986–27.0) 
1,2,3,6,7,8-HxCDD 30.5, 28.1, 16.2, (5.10–113)* 60.1, 56.2, 20.9, (24.3–148) 44.9, 39.7, 26.3, (5.10–148)** 40.9, 36.8, 22.4, (8.48–134) 45.9, 45.9, 22.0, (5.37–109) 
1,2,3,4,6,7,8-HpCDD30.2, 26.7, 18.6, (nq–107)* 53.0, 47.5, 34.2, (8.08–222) 38.1, 30.4, 25.6, (5.35–140)** 40.5, 34.6, 30.6, (3.37–206) 43.4, 35.1, 31.6, (nq–222) 
OCDD  217, 180, 124, (37.7–950)* 316, 261, 197, (68.7–1730) 257, 212, 161, (57.9–1090)** 254, 222, 157, (37.7–1030) 275, 237, 184, (67.8–1730) 

2,3,4,7,8-PeCDF 12.9, 10.5, 8.77, (2.30–60.9)* 37.2, 33.0, 21.7, (8.09–165) 27.5, 19.0, 24.3, (2.30–165)** 21.8, 16.2, 17.2, (2.86–106) 22.9, 18.6, 17.6, (2.32–112) 

Sum of PCDD/Fs 321, 290, 165, (78.0–1270)* 519, 456, 249, (163–2080)  408, 371, 221, (103–1450)** 392, 341, 220, (78.0–1420) 430, 380, 244, (109–2080) 

WHOPCDD/F-TEQ 17.2, 15.7, 9.26, (3.64–67.7)* 42.7, 39.5, 19.8, (13.4–153) 31.0, 22.9, 23.1, (4.92–153)** 26.2, 22.7, 17.1, (5.77–102) 29.2, 25.3, 18.0, (3.64–102) 
____________________________________________________________________________________________________________________________________________________ 
Abbreviations: HpCDD, heptachlorodibenzo-p-dioxm; HxCDD, hexachlorodibenzo-p-dioxin; nq, below limit of quantitation; OCDD, octachlorodibenzo-p-dioxin; PeCDD, pentachlorodibenzo-
p-dioxin; PeCDF, pentachlorodibenzofuran; TCDD, tetrachlorodibenzo-p-dioxin; WHOPCDD/F-TEQ, WHO toxic equivalency factors for PCDD/Fs. 
*Significantly different compared with the > 46 years group (p < 0.05 by independent samples T-test) 
** Age as a covariate significantly effects the concentration in different areas (covariate analysis of variance), and therefore areas are not comparable. 
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Table 5.

Mean, median, SD, and (range) concentrations of selected PCBs and WHOPCB-TEQs in adipose tissue samples in age and regional subgroups of general 

population in Finland. 
__________________________________________________________________________________________________________________________________________________________ 

Congener         Age subgroups         Area     _____
  < 46 years n = 225  > 46 years n = 195  Coastal n = 147   Capital n = 104   Inland n = 166 
__________________________________________________________________________________________________________________________________________________________
______ 
Non-ortho-PCBs a

PCB 126 40.9, 35.2, 27.7, (nq–170)* 115, 93.8, 91.3, (15.3–817) 81.3, 52.8, 88.5, (12.2–817)** 72.5, 51.1, 66.1, (11.9–454) 72.0, 56.1, 67.5, (nq–541) 
PCB 169 39.0, 32.1, 25.8, (nq–169)* 100, 86.2, 54.8, (36.4–399) 75.2, 55.1, 63.9, (5.63–399)** 63.6, 55.2, 45.4, (8.04–259) 63.4, 54.3, 42.5, (nq–295) 

Other PCBs b

PCB 118 11.8, 9.98, 8.13, (2.14–49.0)* 29.3, 25.4, 19.4, (4.19–134) 21.6, 15.4, 18.8, (3.24–100)** 20.2, 15.3, 18.2, (2.69–134) 18.4, 14.3, 14.3, (2.14–106) 
PCB 138 47.5, 42.7, 25.8, (9.08–167)* 106, 92.7, 58.5, (10.3–461) 81.6, 58.3, 67.1, (9.08–461)** 71.7, 62.9, 45.9, (9.89–244) 71.0, 64.8, 41.8, (11.2–251) 
PCB 153 85.9, 78.1, 46.9, (16.8–290)* 192, 165, 104, (30.2–958)  146, 107, 123, (16.8–958)** 131, 114, 82.0, (20.2–433)  129, 122, 70.8, (19.1–423) 
PCB 156 9.51, 7.86, 6.13, (0.293–43.0)* 24.0, 21.6, 12.3, (0.795–82.3) 17.6, 13.4, 14.9, (1.78–82.3)** 15.1, 12.6, 10.5, (0.795–47.0) 15.9, 14.5, 9.51, (0.293–49.3) 
PCB 157 1.34, 1.06, 0.866, (0.204–5.71)* 3.33, 2.94, 1.66, (0.530–10.9) 2.48, 1.91, 2.06, (0.243–10.9)** 2.12, 1.81, 1.40, (0.315–6.04) 2.19, 2.10, 1.32, (0.204–6.54) 
PCB 170 34.5, 29.5, 21.3, (5.80–132)* 76.2, 68.6, 34.8, (12.2–313) 56.1, 45.7, 42.8, (5.80–313)** 50.8, 44.1, 31.1, (7.32–146) 54.1, 51.1, 30.0, (7.49–157) 
PCB 180 65.7, 55.8, 40.3, (11.3–254)* 152, 135, 78.6, (23.8–833)  111, 88.7, 96.3, (11.3–833)** 101, 86.8, 62.7, (14.2–277) 105, 100, 58.9, (13.5–337) 

Sum of  
marker PCBsb 216, 190, 118, (43.4–744)* 488, 423, 251, (83.8–2360) 368, 280, 302, (43.4–2360)** 331, 296, 204, (48.4–1110) 329, 307, 180, (53.0–1080) 

Sum of PCBsb 317, 282, 175, (63.2–1110)* 716, 622, 354, (124–3240)  540, 414, 433, (63.2–3240)** 482, 437, 294, (73.5–1590) 485, 460, 260, (79.2–1530) 

WHOPCB-TEQa 11.8, 10.3, 6.93, (2.46–43.1)* 30.9, 26.6, 16.8, (7.89–129) 22.4, 16.3, 19.3, (2.89–129)** 19.7, 16.4, 14.2, (3.00–92.8) 19.9, 17.4, 12.9, (2.46–86.5) 
__________________________________________________________________________________________________________________________________________________________ 
Abbreviations: nq, below limit of quantitation; PCB, polychlorinated biphenyl; WHOPCB-TEQ, WHO toxic equivalency factors for PCBs. 
*Significantly different compared with the > 46 years group (p < 0.05 by independent samples T-test) 

** Age as a covariate significantly effects the concentration in different areas (covariate analysis of variance), and therefore areas are not comparable. 
a = concentrations are given in pg g-1 fat. 
b = concentrations are given in ng g-1 fat
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Table 6.

Mean and median age adjusted concentrations of selected PCDD/Fs, WHOPCDD/F-TEQs, PCBs, and WHOPCB-TEQs in adipose 

tissue samples in regional subgroups of average population in Finland.   
_____________________________________________________________________________________________________________________________________ 
Congener    Area    Congener    Area   
   Coastal  Capital  Inland     Coastal  Capital  Inland 
   n = 147  n = 104  n = 166     n = 147  n = 104  n = 166 
_____________________________________________________________________________________________________________________________________ 
PCDD/Fsa        Non-ortho-PCBs a

2,3,7,8-TCDD  2.77, 2.55 2.55, 2.34 2.34, 2.04 PCB 126  82.5, 71.8 80.1, 73.5 65.5, 57.7 
1,2,3,7,8-PeCDD  8.30, 7.55 7.22, 6.71 7.24, 6.69 PCB 169  80.0, 72.5 69.4, 66.9 58.5, 54.4 
1,2,3,6,7,8-HxCDD 47.7, 44.3 43.6, 40.2 42.6, 40.6 
1,2,3,4,6,7,8-HpCDD 39.7, 36.0 44.0, 38.4 40.7, 34.9 Other PCBs b

OCDD   277, 248  268, 230  262, 233  PCB 118  23.0, 20.7 21.1, 18.8 16.7, 15.2 
         PCB 138  86.5, 81.8 74.3, 68.3 64.9, 62.8 
2,3,4,7,8-PeCDF  28.8, 26.5 24.1, 22.9 20.4, 18.7 PCB 153  155, 141  137, 129  118, 112 
         PCB 156  18.6, 16.6 15.7, 15.1 14.5, 13.7
Sum of toxic congeners 435, 406  417, 373  407, 362  PCB 157  2.64, 2.43 2.23, 2.13 1.99, 1.86
         PCB 170  60.5, 54.4 53.2, 52.2 49.5, 47.9
WHOPCDD/F-TEQ  32.6, 30.1 28.5, 27.2 26.4, 24.4 PCB 180  120, 105  106, 104  96.2, 90.4 

         Sum of marker PCBsb 392, 359  345, 326  302, 288 
         Sum of PCBsb 574, 524  502, 476  445, 425 

         WHOPCB-TEQa 23.4, 21.6 21.1, 19.5 18.1, 17.4 
_____________________________________________________________________________________________________________________________________ 
Abbreviations: HpCDD, heptachlorodibenzo-p-dioxin; HxCDD, hexachlorodibenzo-p-dioxin; nq, below limit of quantitation; OCDD, octachlorodibenzo-p-
dioxin; PeCDD, pentachlorodibenzo-p-dioxin; PeCDF, pentachlorodibenzofuran; PCB, polychlorinated biphenyl; TCDD, tetrachlorodibenzo-p-dioxin; 
WHOPCB-TEQ, WHO toxic equivalency factors for PCBs; WHOPCDD/F-TEQ, WHO toxic equivalency factors for PCDD/Fs.
a = concentrations are given in pg g-1 fat. 
b = concentrations are given in ng g-1 fat.detect any clear decreasing gradient 
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Table 7.
Predictors of the variance of natural logarithms of WHOPCDD/F-TEQ, WHOPCB-TEQ, and 
total WHO-TEQ for population in Finland.
___________________________________________________________________________ 
Predictor variable     Parameter estimate SE  p-Value
_________________________________________________________________________________________ 
Dependent variable: ln WHOPCDD/F-TEQ 
Constant       1.73   0.15 < 0.0001 
Age (years)      0.0348   0.002 < 0.0001 
BMI (kg m-2)      - 0.00354  0.006 < 0.54 
Lactation (months)     - 0.0106   0.002 < 0.0001 
Living in the capital area (no/yes)    - 0.089   0.053 < 0.093 
Living in the inland area (no/yes)    - 0.116   0.048 < 0.015  
Consumption of baltic herring (times per month)  0.037   0.014 < 0.009 
Consumption of farmed trout or salmon (times per month) 0.0374   0.012 < 0.002 
Consumption of other fish (times per month)   0.0087   0.008 < 0.25 
ln WHOPCDD/F-TEQ model percentage r2 = 0.70 

Dependent variable: ln WHOPCB-TEQ  
Constant       1.19   0.16 < 0.0001 
Age (years)      0.037   0.002 < 0.0001 
BMI (kg m-2)      - 0.0017   0.006 < 0.79 
Lactation (months)     - 0.0101   0.002 < 0.0001 
Living in the capital area (no/yes)    - 0.0196   0.059 < 0.074 
Living in the inland area (no/yes)    - 0.145   0.053 < 0.007  
Consumption of baltic herring (times per month)  0.0377   0.016 < 0.017 
Consumption of farmed trout or salmon (times per month) 0.0504   0.013 < 0.0001 
Consumption of other fish (times per month)   - 0.0000987  0.008 < 0.99 
ln WHOPCB-TEQ model percentage r2 = 0.69 

Dependent variable: ln WHOtotal-TEQ 
Constant       2.19   0.15 < 0.0001 
Age (years)      0.0357   0.002 < 0.0001 
BMI (kg m-2)      - 0.00304  0.006 < 0.60 
Lactation (months)     - 0.0104   0.002 < 0.0001 
Living in the capital area (no/yes)    - 0.0573   0.053 < 0.28 
Living in the inland area (no/yes)    - 0.126   0.047 < 0.008  
Consumption of baltic herring (times per month)  0.0368   0.014 < 0.009 
Consumption of farmed trout or salmon (times per month) 0.0422   0.012 < 0.001 
Consumption of other fish (times per month)   - 0.00492  0.020 < 0.51 
ln WHOtotal-TEQ model percentage r2 = 0.72
___________________________________________________________________________
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Fig. 5.
Measured concentrations as functions of modelled concentrations: (A) ln WHOPCDD/F-TEQ; (B) ln WHOPCB-TEQ; and (C) 
ln WHOtotal-TEQ.
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Table 8.
Adipose and serum fat concentrations of sum of PCDD/Fs, WHOPCDD/F-TEQ, PCB 126, PCB 153, PCB 180, markes PCBs, and WHOPCB-TEQ

in various countries during 1990s.

________________________________________________________________________________________________________________________ 
Adipose tissue studies: 
Origin   Finland  Spain  Japan  Belgium  India  France  Sweden  Greenland Germany 
Year of sampling 1997-1099 1996-1997 2000  2000  2000  1999  Unknown 1992-1994 1996 
Number of samples 420  123  10  20  21  16  28  26  139 
Mean age of subjects 44 (13-81) 51 (15-87) 40-50  47 (19-77) 20-69  53 (30-94) 68  60  37 (18-71) 
Population  Men/women Men/women Men/women Men/women Men/women Men/women Men/women Men/women Men/women 
Sum of PCDD/Fsa 413    171    550  490  804    403 
WHOPCDD/F-TEQa 29.0    11.9    14.4  35.6  32.8    16.1 
PCB126a  75.2    72    125    180     
PCB153b  135  121    211      300  1689   
PCB180b  106  134    105      200  1147   
marker PCBsb  343  432          778  4242   
WHOPCB-TEQa  20.7    15.3    14.4         
Reference  this study Costabeber and Choi et al. Covaci et al. Kumar et al. Arfi et al. Wingfors et al. Dewailly et al. Päpke 
     Emanuelli (2003)(2002)  (2002)  (2001)  (2001)  (2000)  (1999)  (1998) 
 ________________________________________________________________________________________________________________________________________________ 
Serum/blood studies: 
Origin   Finland  Sweden  Uelen/Russia Belgium  Sweden  Latvia  Sweden  Åland/Finland US 
Year of sampling 1997  1996-1997 2001  1999  1991  1993  late 1990s mid 1990s 2002 
Number of samples 47  205  50  200  43  67  120  30  249 
Age of subjects  58 (27-77) 63 (50-74) 37 (20-70) 58 (50-65) 42 (23-69) 48 (24-79) 63 (40-75) 30 (19-40) adults 
Population  Fishermen Women  Men/women Women  Fishermen Fishermen Men  Women  Men/women 
Sum of PCDD/Fsa 1700      999          505   
WHOPCDD/F-TEQa 180      48          19.3 
PCB126a  300    1200  102         
PCB153b  600  223  744  168  360  403  296  56 
PCB180b  370  152  220  104  233  194  218  32 
marker PCBsb  1460    1410  389      675   
WHOPCB-TEQa  89      23.7         
Reference  Kiviranta et al. Wicklund Glynn Sandanger et al. Koppen et al. Sjödin et al. Sjödin et al. Wicklund Glynn Hagmar et al. Schecter et al. 
   (2002)  et al. (2003) (2003)  (2002)  (2000)  (2000)  et al. (2000) (1998)  (2003) 
________________________________________________________________________________________________________________________________________________ 
a = concentrations are given in pg g-1 fat. 
b = concentrations are given in ng g-1 fat
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area to the inland area is also in line with the previous consideration that fish are not the source of 

these congeners (Kiviranta et al., 2003). However fish are the source of 2,3,4,7,8-PeCDF, 2,3,7,8-

TCDD, 1,2,3,7,8-PeCDD, and also 1,2,3,6,7,8-HxCDD. For those congeners, the decreasing 

gradient of concentrations from coast to inland area was most clearly evident. 

Regression models of PCDD/Fs and PCBs 

In the regression models the goal was to develop a suitable model to assess a population 

body burden of PCDD/Fs and PCBs in order to avoid measuring those concentrations with 

expensive and time-consuming methods. According to previous and this present study, the predictor 

variables were chosen according to the criteria that these variables would contribute most to the 

Finnish body burdens of PCDD/Fs and PCBs, and that they would be easy to enquire from a 

questionnaire. Age, weight, length, lactation, place of residence, and fish consumption frequencies 

fulfilled those criteria. The analysis showed that age was the most significant predictor in all three 

models, but also lactation, place of residence, and frequency of consumption of Baltic herring and 

farmed trout or salmon were significant variables in the models. The correlations between modelled 

and measured concentrations for TEQs were quite satisfactory. On the individual basis, the models 

failed most often to assess the concentrations of older people. Changes in food habits and also 

changes in PCDD/F and PCB concentrations in food items throughout the years are most evident in 

older subjects, resulting in more scattering between the modelled and measured concentrations. 

6. CONCLUSION

We found that the body burdens of PCDD/Fs and PCBs in Finland were at the same levels 

as other countries in Europe, and there existed a downward trend in concentrations from coastal to 

inland areas. This decreasing trend in concentrations was most likely a result from consumption of 

more contaminated fish from the Baltic Sea in the coastal area compared to the inland area. The 

age dependence of concentrations was shown to be strong. Concentrations as a function of age 

also revealed that the exposure of Finns to PCDD/Fs and PCBs has declined over the last 30 years. 

By asking subjects age, height, weight, place of residence, and fish consumption frequencies it 

would be possible to obtain an estimate of their PCDD/F and PCB TEQ body burdens. 
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1. ABSTRACT

Word Health Organization, WHO/EURO, has coordinated two rounds of follow-up 

studies on levels of  PCDDs, PCDFs, and PCBs in human milk which were analyzed as two 

pooled samples from each participating country, one from urban and the other one from rural 

area. Finland has taken part to both of those studies and we are now reporting results of all the -

second round randomly sampled human milk samples (84 samples) from Southern (20) and 

Eastern (64) Finland. The levels of PCDD/Fs and PCBs in human milk in Southern Finland were 

considerably higher than in Eastern Finland. The level of PCDD/Fs in human milk in Southern 

Finland was the same as in the Central Europe but the level in Eastern Finland was similar to 

levels in Norway and eastern parts of Europe. The concentrations of PCDD/Fs and PCBs showed 

a significant decrease from 1987 to 1994. Declining of PCDD/Fs and PCBs was 36 and 49 % in 

primiparae mothers= milk, respectively. This decrease in concentrations of PCDD/F and PCB 

was slightly greater in Eastern than in Southern Finland. 

2. INTRODUCTION

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/F) are globally distributed 

toxic chemicals  in the environment and were found in human milk in the 1980s [1,2]. Food is 

the main source of PCDD/Fs and polychlorinated biphenyls (PCB) in humans [3]. In Finland, 

meat, milk and milk products  were quite clean of PCDD/Fs but sometimes eggs contained 
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PCDD/Fs, because the feed of poultry had contained fish products [4]. The Baltic Sea is highly 

contaminated with PCDD/Fs and PCBs causing also contamination of Baltic herring and salmon 

[5]. PCB concentrations in Finnish food have been reported to be low, except for Baltic fish, on 

average 32 g/kg in beef, 11 g/kg in pork, 9 g/kg in chicken, 29 g/kg in eggs, and 0.21 pg/kg 

in milk containing 1.9% fat [6]. The total intake of PCDD/Fs as international toxic equivalent (I-

TEq) in Finland was assumed to be about 94 pg/day per person [7] and total PCB intake 1.64 

g/day per person [6].  

The decrease of concentrations of PCDD/Fs between 1986 and 1993 in human blood and 

milk has been reported from Germany and the Netherlands [8,9]. Concentrations of PCBs have 

also been diminishing but not as clearly as concentrations of PCDD/Fs [9]. The studies conclude 

that measures taken to reduce the PCDD/F and PCB emissions to the environment have resulted 

in a reduction of human body burdens of these compounds.       

WHO/EURO has coordinated two rounds of follow-up studies on levels of PCDDs, 

PCDFs and PCBs in human milk. Finland participated in both of them [10,11]. The objectives in 

this study are to describe the concentrations of PCDD/Fs and PCBs in human milk in two areas 

in Finland between 1992 and 1994, and to evaluate the time trend of the concentrations of 

PCDD/Fs and PCBs between 1987 and 1994. 

3. METHODS

Sample Collection

 The study was part of a follow-up study coordinated by WHO/EURO on levels of 

PCDDs, PCDFs and PCBs in human milk. In Finland, we carried out a larger population-based 

study in two geographic areas, in Helsinki, the capital, and in Kuopio and its surroundings, 

which is located approximately 400 km north-east from Helsinki. All consecutive women giving 

birth were recruited from one of the maternity clinics in Helsinki and from the maternity clinic of 

Kuopio University Hospital between March 1992 and August 1994, in WHO/EURO study 

between April 1992 and August 1993. The study population who collected and returned the milk 

sample constituted a total of 84 mothers, 20  (24 % of the total number) in Helsinki and 64 (76 

%, respectively) in Kuopio. In the urban and rural areas 14 and 28 mothers were primiparae, 

respectively. In the rural area, human milk sample from a mother nursing her thirteenth child 

was found, and in the urban area a sample from a mother nursing her fourth child. The study 

population is described in Table 1.
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Table 1.
Number of mothers, ages of mothers and fat contents of human milk in urban (N=20) and rural 
(N=64) areas of Finland between 1992-1994. Numbers in the panel indicate the number of child 
mother was nursing. 1./(WHO) indicates that mother was primipara between 20-30 years and she 
had lived in the community at least the five last years (the pooled sample of these mothers was 
included in the WHO/EURO study).
____________________________________________________________________________________________ 
mother/parity 

1. 1./(WHO) 2. 3. 4. 6 13. 
____________________________________________________________________________________________ 
Urban area, Helsinki
Number of mothers 

14 10 3 2 1 -  - 
Age of mothers
mean ± s.d. 27.9 ± 4.6 27.0 ± 3.1 25.3 ± 0.6 32.5 34 
range  19-36 23-32 25-26 31-34  
Fat content of human milk
mean ± s.d. 3.75 ± 1.52 3.91 ± 1.03 4.62 ± 1.06 3.64 3.31 -  - 
range  0.63 - 6.61 1.82 - 5.13 3.71 - 5.78 2.73 - 4.55 - -  - 

Rural area, Kuopio and surroundings
Number of mothers

28 23 19 11  4 1 1 
Age of mothers
mean ± s.d.  27.0 ± 4.7 25.4 ± 2.6 29.5 ± 4.7 33.5 ± 3.3 32.0 ± 0.8 32 42 
range  18-39 18-30 23-44 27-38 31-33 
Fat content of human milk
mean ± s.d. 3.88 ± 0.99 3.99 ± 1.05 4.36 ± 1.61 4.01 ± 1.31 4.18 ± 1.05 5.13 3.57 
range  1.58 - 5.93 1.58 - 5.93 1.36 - 7.74 1.12 - 5.94 2.72 - 5.21 - - 
____________________________________________________________________________________________ 

Determination of PCDDs, PCDFs, and PCBs

 The concentrations of 17 toxic PCDD/Fs, of three non-ortho (IUPAC 77, 126, and 169) 

PCB congeners, of five mono-ortho (IUPAC 105, 114, 118, 156 and 157) PCB congeners, and of 

28 di-ortho (IUPAC 18, 28, 33, 47, 49, 51, 52, 60, 66, 74, 99, 101, 110, 122, 123, 128, 138, 141, 

153, 167, 170, 180, 183, 187, 189, 194, 206 and 209) PCB congeners, the total sum of PCDD/F 

( PCDD/F) and PCB ( PCB) congeners, and toxic equivalents, I-TEqs (TEqs, for PCBs) of  

them were determined from human milk samples. About 40 ml of each human milk sample, 

equivalent to 1.2 g fat, was spiked with 115 pg of  13C-labeled PCDD and PCDF standards 

(seventeen 2,3,7,8-chlorinated PCDD/F congeners), with 100 pg of  13C-labeled non-ortho PCB 

standards (PCB 77, 126, and 169), and with 9600 pg of 13C-labeled  PCB standards (PCB 30 [12C-

labeled], 80, 101, 153, 180, Cambridge Isotope Laboratories). Milk fat was extracted with diethyl 

ether/hexane and the fat content determined. The extract was defatted in a silica gel column and 

initially purified on activated carbon column (Carbopack C, 60/80 mesh) containing Celite (Merck 
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2693) to separate PCDD/Fs from PCBs and both fractions further cleaned with an activated 

alumina column (Merck 1097, standardized, activity level II-III). The separated PCB fraction was 

further purified, after having  analyzed for mono- and di-ortho PCB congeners, on another 

activated carbon column (without Celite) and the non-ortho PCBs were also analyzed with high 

resolution mass spectrometer equipped with a fused silica capillary column (DB-DIOXIN, 60 m, 

0.25 mm, 0.15 m). The quantitation was performed by selective ion recording using a VG 70-250 

SE (VG Analytical, UK) mass spectrometer (resolution 10,000). The levels of 17 most toxic 

PCDD/Fs were expressed in TCDD toxic equivalents (I-TEq) calculated by using the international 

toxic equivalency factors [12]. Toxic equivalency factors used for PCBs were  0.1 for PCB 126, 

0.01 for PCB 169, 0.0005 for PCBs 77, 114, 156, and 157, 0.0001 for PCBs 105, 118, 123, 170 

and 189, and 0.00001 for PCB 167 [13].  The laboratory reagent and equipment blank samples 

were treated and analyzed by the same method as the actual samples, one blank for every five 

samples. Detection limits for the different  PCDD/F congeners were 0.1 - 1.0 pg/g in fat  and for 

the different PCB congeners 1-10 pg/g fat. Recoveries for internal standards were more than 60% 

for all congeners. The laboratory has participated successfully in international quality control 

studies for the analysis of  PCDDs and PCDFs in cow milk samples organized by EU/BCR-project 

in 1993 [14, 15]. Laboratory is also an accredited testing laboratory (No T77) in Finland (SFS-EN 

45001 and ISO/IEC Guide 25). The scope of accreditation includes PCDD/Fs, PCBs, and non-

ortho PCBs from human milk. Statistical analysis was carried out by means of SPSS (for 

Windows, version 6.1.3). Mann-Whitney U nonparametric test was used to test the statistical 

significance of results. 

4. RESULTS

Fat, PCDD/F, and PCB contents of human milk

 Fat content in human milk of primiparae was on average 3.75% in the urban and 3.88% 

in the rural area (Table 1). In this study data are given on fat basis, as PCDD/Fs and PCBs are 

conventionally reported.  PCDD/F concentrations as I-TEqs were between 4.90 pg/g fat (thirth 

child in rural area)  and 34.4 pg/g fat (primipara, in urban area), and PCDD/F concentrations 

were between 51.6 pg/g fat (second child in rural area) and 559 pg/g fat (primipara in urban 

area) (Tables 2a and 2b). PCB concentrations ranged from 52.6 (second child in rural area) to 

464 ng/g fat (primipara in urban area), and TEqs were between 2.37  (second child in rural area) 

and 32.8 pg/g fat  (primipara in urban area) (Tables 3a and 3b). The average PCDD/F and 
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PCB concentrations of all primiparae were in the urban area 381 pg/g and 296 ng/g fat, 

respectively, and in the rural area 217 pg/g and 198 ng/g fat, respectively. The average I-TEqs 

and TEqs of all primiparae were in the urban area 19.9 pg/g and 18.5 pg/g fat, respectively, and 

in the rural area 13.6 pg/g and 11.6 pg/g fat, respectively. 

Table 2a.
PCDD/F concentrations and I-TEqs (mean  ±  standard deviation and range as pg/g fat) in the 
mother's milk from the urban area in Finland, in 1992-94. Asterisks indicate a statistically 
significant difference to the rural area (*p<0.01, **p<0.005, ***p<0.001). 1,2,3,7,8,9-Cl6DF and 
1,2,3,4,7,8,9-Cl7DF were below the detection limits. Other conditions as in Table 1. 
_______________________________________________________________________________________________ 
congener       1. 1./(WHO) 2. 3.     4. 
_______________________________________________________________________________________________ 
2,3,7,8-Cl4DF  1.93 ± 0.74*** 1.83 ± 0.62***  1.34 ± 0.2  2.64  1.47 

0.99 - 3.31 0.99 - 2.79 1.22 - 1.57 2.39 - 2.89 
2,3,7,8-Cl4DD   2.66 ± 1.46 2.48 ± 1.24 1.88 ± 0.61 2.87    1.03  

1.11 - 5.81 1.35 - 5.2 1.37 - 2.54 2.72 - 3.02 
1,2,3,7,8-Cl5DF  0.79 ± 0.44* 0.73 ± 0.47 0.61 ± 0.2  0.99 0.88  

<0.1 - 1.39 <0.1 - 1.27 0.48 - 0.83 0.89 - 1.09 
2,3,4,7,8-Cl5DF  16.3 ± 7.0* 17.0 ± 6.13** 7.95 ± 3.25 15.2 7.08  

5.2 - 27.7 7.9 - 24.8 5.15 - 11.5 12.2 - 18.2 
1,2,3,7,8-Cl5DD  6.22 ± 2.16* 6.61 ± 1.67** 3.9 ± 1.15 5.56 2.01  

2.23 - 9.71 3.95 - 8.64 2.57 - 4.57 5.31 - 5.8 
1,2,3,4,7,8-Cl6DF  4.91 ± 1.55 5.13 ± 1.0 2.81 ± 0.81 3.81 2.41  

2.45 - 8.15 4.01 - 6.75 2.0 - 3.63 3.14 - 4.48 
1,2,3,6,7,8-Cl6DF  3.44 ± 1.54 3.34 ± 1.42 2.37 ± 0.67 3.26 2.07 

1.34 - 6.59 1.34 - 6.3 1.93 - 3.14 2.63 - 3.88 
2,3,4,6,7,8-Cl6DF  1.88 ± 0.88  1.91 ± 0.91 1.19 ± 0.49 1.95  1.21  

0.91 - 4.0 1.0 - 4.0 0.89 - 1.75 1.59 - 2.31 
1,2,3,4,7,8-Cl6DD 2.69 ± 1.33 2.68 ± 1.34 1.68 ± 0.34  2.21 1.09 

1.22 - 5.91 1.33 - 5.91 1.32 - 2.0 2.02 - 2.4 
1,2,3,6,7,8-Cl6DD 33.2 ± 8.94 34.3 ± 6.34** 22.8 ± 4.49  26.9  11.7  

15.2 - 49.9 26.7 - 46.9 19.9 - 27.9 26.4 - 27.4 
1,2,3,7,8,9-Cl6DD 3.03 ± 3.0 2.61 ± 3.12 2.98 ± 0.63 4.3 1.72  

0.96 - 9.68 0.95 - 9.68  2.29 - 3.53 3.92 - 4.68 
1,2,3,4,6,7,8-Cl7DDF 9.79 ± 7.86 7.83 ± 7.43 11.8 ± 2.84 17.9 16.6  

1.35 ± 25.8 1.35 - 25.8 9.6 - 15.0 16.4 - 19.5 
1,2,3,4,6,7,8-Cl7DD 51.7 ± 25.8*** 53.8 ± 25.0*** 24.9 ± 10.9 47.5 21.6  

15.1 - 110 27.5 - 110 13.6 - 35.4 40.1 - 54.9 
OCDF   11.7 ± 9.2*** 12.9 ± 10.6** 9.03 ± 4.22 9.87  11.5 

<1 - 29.9 <1 - 29.9 5.92 - 13.8 9.41 - 10.3 
OCDD   230 ± 80.9*** 251 ± 63.4*** 102 ± 56.2 177 127 

58.0 - 349 177 - 349 66.4 - 167 161 - 194 
 
3 PCDD/F  381 ± 120*** 404 ± 94.9*** 197 ± 83.4 323 210 

128 - 559 267 - 559 140 - 293 292 - 353 
I-TEq   19.9 ± 7.42* 20.4 ± 6.01** 11.8 ± 2.95 18.7 8.31 

7.7 - 34.4 12.3 - 29.0  8.92 - 14.8 16.6 - 20.7 
_______________________________________________________________________________________________ 
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Table 2b.
PCDD/F concentrations and I-TEqs (mean + standard deviation and range as pg/g fat) in the 

mother's milk from the surroundings of the rural area in Finland,in 1992-94. 1,2,3,7,8,9-Cl6DF

ans 1,2,3,4,7,8,9-Cl7DF were below the detection limits. Other conditions as in Table 1. 
_____________________________________________________________________________________________________ 
congener       1. 1./(WHO) 2. 3.  4. 6. 13.  
_____________________________________________________________________________________________________ 
2,3,7,8-Cl4DF   0.49 ± 0.44  0.43 ± 0.44  0.5 ± 0.33  0.74 ± 0.42  0.67 ± 0.25 1.44 0.9  

<0.1 - 1.8 <0.1 - 1.8 <0.1 - 1.30 0.25 - 1.81 0.4 - 0.95  
2,3,7,8-Cl4DD   1.71 ± 0.68  1.7 ± 0.69 1.03 ± 0.33 1.61 ± 0.52   1.08 ± 0.2  0.88 0.99  

0.4 - 3.03 0.4 - 3.03 0.24 - 1.5 0.91 - 2.42 0.87 - 1.34 
1,2,3,7,8-Cl5DF  0.33 ± 0.42 0.33 ± 0.45 0.15 ± 0.23  0.23 ± 0.21 0.2 ± 0.16 0.3 0.2  

<0.1 - 1.39 <0.1 - 1.4 <0.1 - 0.92 <0.1 - 0.54  <0.1 - 0.38  
2,3,4,7,8-Cl5DF  10.1 ± 4.65 9.51 ± 2.85 7.27 ± 2.74 9.32 ± 3.18 7.01 ± 1.4 5.05 3.66  

3.24 -25.7 3.25 - 15.5 1.23 - 12.6 4.05 - 15.5 5.03 - 8.2  
1,2,3,7,8-Cl5DD  4.36 ± 1.56 4.25 ± 1.31 3.0 ± 1.05  3.56 ± 1.05 2.94 ± 0.52 1.35 2.36  

1.67 - 7.09 1.67 - 6.35 0.47 - 4.91 1.31 - 5.52 2.25 - 3.5 
1,2,3,4,7,8-Cl6DF  3.94 ± 1.85 4.12 ± 1.73 2.1 ± 1.0 2.31 ± 1.07 2.16 ± 0.58  0.6 1.39  

0.79 - 7.42 1.66 - 7.42 <0.1 - 3.77 0.48 - 4.29 1.55 - 2.85 
1,2,3,6,7,8-Cl6DF  2.8 ± 1.15 2.78 ± 0.85 1.66 ± 0.77 2.04 ± 0.89 1.47 ± 0.3 0.62 1.05  

0.8 - 6.27 0.95 - 4.21 <0.1 - 3.02 0.61 - 3.9 1.3 - 1.91 
2,3,4,6,7,8-Cl6DF  1.28 ± 0.92  1.28 ± 0.9 0.64 ± 0.41 0.91 ± 0.46  0.74 ± 0.37  0.43 0.48  

<0.1 - 2.98 <0.1 - 2.71 <0.1 - 1.37 0.29 - 1.88 0.21 - 1.06 
1,2,3,4,7,8-Cl6DD 1.87 ± 0.95 1.94 ± 0.94 1.04 ± 0.65 1.27 ± 0.54 0.76 ± 0.66 <0.1 0.72 

<0.1 - 3.76 <0.1 - 3.76 <0.1 - 2.2 <0.1 - 2.11 <0.1 - 1.39 
1,2,3,6,7,8-Cl6DD 26.9 ± 8.16 26.3 ± 5.49 23.4 ± 7.69  26.7 ± 8.61  17.0 ± 2.46 4.24 13.4  

10.3 - 47.9 17.5 - 39.4 5.63- 37.6 9.62 - 43.6 13.4 ± 19.0 
1,2,3,7,8,9-Cl6DD 2.19 ± 1.63 2.09 ± 1.45 2.1 ± 1.5 2.4 ± 2.24 2.01 ± 1.07 <0.1 1.94   

<0.1 - 5.51 <0.1 - 5.02  <0.1 - 4.09 <0.1 - 7.22 0.48 - 2.9 
1,2,3,4,6,7,8-Cl7DF 5.99 ± 4.09 6.3 ± 4.25 4.19 ± 3.37 5.64 ± 4.18 5.48 ± 1.33 1.32 7.29  

1.3 ± 19.2 2.52 - 19.2 <0.1 - 11.5 0.49 - 13.1 4.25 - 7.28 
1,2,3,4,6,7,8-Cl7DD 28.3 ± 11.3 28.6 ± 12.0 22.6 ± 9.98 26.6 ± 9.87 27.6 ± 6.29 7.55 14.9  

9.35 - 62.8 9.35 - 62.8 8.04 - 47.6 10.0 - 40.9 18.8 - 32.9 
OCDF   <1 ± 1.47 <1 ± 1.6 <1 <1  <1 ± 1.31 <1 <1  

<1 - 7.49 <1 - 7.49    <1 - 2.62 
OCDD   126 ± 55.7 129 ± 58.3 114 ± 43.3 126 ± 61.9 120 ± 31.1 47.4 62.3  

62.7 - 310  62.7 - 310 36.0 - 223 43.5 - 259 82.4 - 157 

3 PCDD/F  217 ± 76.5 219 ± 77.3 184 ± 59.8 210 ± 84.4 191 ± 35.1 71.3 112 
118 - 455 122 - 455 51.6 - 305 72.5 - 390 145 - 225 

I-TEq   13.6 ± 4.57 13.0 ± 3.21 9.7 ± 3.06 12.1 ± 3.48 9.0 ± 1.33 4.97 6.28  
6.06 - 26.0 6.06 - 18.4 1.77 - 14.1 4.9 - 17.7 7.03 - 9.81 

_____________________________________________________________________________________________________  
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Table 3a.
PCB concentrations and TEqs (mean  ±  standard deviation and range, ng/g fat) of non- and 

mono-ortho PCB congeners and of the di-ortho congeners which showed the highest 

concentrations of PCBs in the mother's milk from the urban area in Finland, in 1992-94. Asteriks 

indicate significant difference to the rural area (*p<0.01, **p<0.005, ***p<0.001). Other 

conditions as in Table 1. 
__________________________________________________________________________________________ 

congener       1. 1./(WHO) 2. 3. 4. 
____________________________________________________________________________________________ 
PCB 77a   47.4 ± 38.8***  44.1 ± 42.3***  32.3 ± 14.6  77.0  25.5 

<1 - 134 <1 - 134 20.9 - 48.9 73.1 - 81.0 
PCB 126a  89.7 ± 41.7***  90.1 ± 36.0*** 50.1 ± 5.62 100   31.9  

29.8 - 173 47.4 - 155 45.7 - 56.4 86.5 - 113 
PCB 169a   38.5 ± 13.0*** 40.6 ± 11.2*** 24.4 ± 9.47  33.7 15.5  

13.1 - 58.5 24.3 - 58.5 14.0 - 32.5 32.6 - 34.9 
PCB 105b  3.75 ± 1.88 3.9 ± 1.68 1.78 ± 0.21  4.64  1.21  

0.86 - 6.9 1.94 - 5.9 1.58 - 2.0 3.51 - 5.78 
PCB 114b  0.61 ± 0.28 0.64 ± 0.24 0.38 ± 0.06  0.64  0.19  

0.17 - 1.09 0.36 - 0.98 0.32 - 0.43 0.48 - 0.79 
PCB 118b  17.7 ± 9.59 18.1 ± 8.81 9.91 ± 1.57 20.1 6.34  

4.74 - 34.9 8.27 - 32.2 8.14 - 11.2 14.9 - 25.3 
PCB 156b  7.83 ± 2.66 8.14 ± 1.99 5.21 ± 2.03 7.04  2.41 

2.35 - 12.6 5.23 - 11.0 2.93 - 6.8 6.65 - 7.43 
PCB 157b  1.32 ± 0.46** 1.41 ± 0.33*** 0.76 ± 0.25 1.14  0.37 

0.38 - 2.08 0.9 - 1.86 0.48 - 0.91 1.02 - 1.27 
PCB 28   2.39 ± 1.77 2.58 ± 1.7 1.46 ± 2.53 0.36  1.99 

0.2 - 5.9 0.43 - 5.9 <0.001 - 4.38 <0.001- 0.71 
PCB 74   11.2 ± 5.67*** 11.6 ± 4.32*** 6.61 ± 1.84 15.0 2.57 

2.18 - 23.0 7.51 - 20.2 4.68 - 8.34 14.6 - 15.4 
PCB 99   11.1 ± 5.36*** 12.0 ± 5.16*** 6.06 ± 1.89 10.7  3.32  

2.54 - 22.9 5.95 - 22.9 4.7 - 8.21 8.06 - 13.4 
PCB 153  92.3 ± 33.7** 96.1 ± 27.0*** 54.0 ± 19.8 77.0 34.0  

24.3 - 148 60.3 - 137  32.0 - 70.3 65.3 - 88.7 
PCB 138  56.8 ± 22.9*** 59.7 ± 19.4*** 32.6 ± 10.1 50.4 18.7  

14.2 ± 92.5 36.5 - 85.5 23.6 - 43.5 39.9 - 61.0 
PCB 180  39.2 ± 11.8 42.6 ± 8.0** 22.4 ± 10.7 29.2 14.5 

9.85 - 60.5 29.9 - 60.5 10.5 - 31.2 29.2 - 29.2 
PCB 170  19.5 ± 5.92 20.6 ± 4.33 12.5 ± 5.8 15.8 7.15 

5.31 - 30.0 14.8 - 30.0 6.27 - 17.8 15.7 - 16.0 
PCB 187  12.3 ± 4.25 13.4 ± 3.3** 5.8 ± 2.54 9.18 4.83 

2.46 - 19.9 8.84 - 19.9 2.88 - 7.48 8.64 - 9.72 
PCB 183   6.05 ± 2.28** 6.64 ± 1.85*** 2.99 ± 1.17 4.41 2.23 

1.14 - 10.6 4.39 - 10.6 1.78 - 4.12 3.5 - 5.32 
PCB 194   3.49 ± 1.07* 3.5 ± 0.82** 2.71 ± 1.45 3.62 2.28 

1.16 - 5.3 2.31 - 4.69 1.19 - 4.08 3.35 - 3.89 
3 PCB    296 ± 108** 312 ± 85.3*** 170 ± 48.6 275 106 

73.8 - 464 200 - 442 115 - 207 256 - 295 
TEqc   18.5 ± 7.48** 18.9 ± 6.13** 10.9 ± 2.33 18.9 6.34 

5.68 - 32.8 10.8 - 29.4 8.47 - 13.1 16.6 - 21.2 
____________________________________________________________________________________________ 
aNon-ortho-substituted PCBs, given as pg/g fat 
bMono-ortho-substituted PCBs 
c given as pg/g fat 
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Table 3b.
PCB concentrations and TEqs (mean + standard deviation and range, ng/g fat) of non- and 
mono-ortho PCB congeners and of the di-ortho congeners which showed the highest 
concentrations of PCBs in the mother's milk from the surroundings of the rural area from 
Finland, in 1992-94. Conditions as in Table 1 and 3a.  
_____________________________________________________________________________________________________ 
congener 1. 1./(WHO) 2. 3. 4. 6. 13.  
_____________________________________________________________________________________________________ 
PCB 77a  1.74 ± 2.41 1.79 ± 2.47 1.62 ± 3.33  3.87 ± 5.59  5.27 ± 2.77 <1 2.73  

<1 - 9.44 <1 - 9.44 <1 - 12.1 <1 - 17.6 2.15 - 8.68 
PCB 126a 42.9 ± 18.6  40.6 ± 16.1 29.6 ± 14.9 43.0 ± 15.4   38.0 ± 4.95 34.4 31.6  

10.5 - 87.4 10.5 - 70.8 <1 - 56.2 18.5 - 67.6 31.6 - 43.4 
PCB 169a 23.7 ± 18.5 22.0 ± 17.9 16.8 ± 8.48  19.7 ± 6.57 13.5 ± 4.03  11.2 8.48  

5.64 - 98.0 5.64 - 98.0 <1 - 37.9 8.01 - 29.4 8.16 - 17.1 
PCB 105b 2.35 ± 1.12 2.37 ± 1.1 1.51 ± 0.59  1.8 ± 0.7  1.48 ± 0.2 1.36 1.45  

0.47 - 5.27 0.47 - 5.27 0.45 - 2.61 1.06 - 3.34 1.25 - 1.72 
PCB 114b 0.5 ± 0.23 0.49 ± 0.2 0.28 ± 0.1  0.37 ± 0.11  0.24 ± 0.05 0.16 0.15  

0.14 - 1.08 0.14 - 0.93 0.05 - 0.47 0.16 - 0.59 0.18 - 0.31 
PCB 118b 11.1 ± 4.59 11.2 ± 4.49 6.88 ± 2.48 8.34 ± 2.76 6.87 ± 0.89 5.63 5.36  

3.14 - 22.3 3.14 - 22.3 1.25 - 10.4 4.0 - 13.3 6.04 - 7.88 
PCB 156b 6.46 ± 3.64 6.03 ± 3.0 5.65 ± 3.11 6.11 ± 3.42  3.87 ± 1.02 1.34 2.71  

1.81 - 17.8 1.81 - 13.8 1.08 - 13.0 1.88 - 13.9 2.85 - 5.26 
PCB 157b 0.84 ± 0.46 0.77 ± 0.31 0.67 ± 0.29 0.8 ± 0.35  0.51 ± 0.11 0.24 0.37  

0.25 - 2.57 0.25 - 1.43 0.13 - 1.11 0.26 - 1.54 0.43 - 0.68 
PCB 28  4.04 ± 4.1 4.23 ± 4.36 2.0 ± 1.91 2.2 ± 2.8  2.05 ± 0.5 <0.001 1.95  

0.21 - 23.1 0.25 - 23.1 <0.001 - 6.61 <0.001 - 8.2 1.53 - 2.7 
PCB 74  5.84 ± 2.24 5.82 ± 1.94 3.91 ± 1.44 4.22 ± 1.88 3.46 ± 0.41 1.54 1.79  

2.06 - 10.5 2.41 - 8.95 0.39 - 5.98 1.52 - 8.72 2.99 - 3.98 
PCB 99  5.62 ± 2.42  5.91 ± 2.34 3.99 ± 1.76 3.51 ± 1.01  3.02 ± 1.15 2.3 3.09  

1.84 - 10.8 2.19 - 10.8 0.72 - 8.08 1.87 - 5.42 1.99 - 4.65 
PCB 153 57.7 ± 24.9 55.3 ± 22.4 55.8 ± 26.9 49.5 ± 19.9 36.9 ± 9.68 15.9 26.6  

18.2 - 110 22.4 - 110  10.6 - 115 23.0 - 83.1 25.0 - 48.0 
PCB 138 32.4 ± 12.7 31.6 ± 12.2 32.0 ± 15.2 26.9 ± 10.2 23.0 ± 7.53 9.22 20.0  

9.04 ± 59.5 12.7 - 59.5 5.21 - 68.4 11.7 - 44.4 12.4 - 28.5 
PCB 180 31.9 ± 17.5 29.2 ± 15.2 38.8 ± 26.9 34.5 ± 12.6 21.5 ± 4.66 12.4 15.2  

10.8 - 78.5 10.8 - 68.2 9.18 - 116 19.1 - 63.3 17.7 - 28.1 
PCB 170 17.2 ± 9.93 15.9 ± 8.98 20.1 ± 13.8 18.1 ± 8.03 10.9 ± 2.15 5.42 8.12  

5.92 - 42.7 5.92 - 42.6 4.5 - 59.7 9.14 - 37.9 9.47 - 14.1 
PCB 187 9.26 ± 4.43 8.66 ± 3.79 9.26 ± 4.16 8.87 ± 2.32 5.61 ± 1.7 4.63 4.16  

2.85 - 21.0 2.85 - 17.0 3.39 - 22.3 7.01 - 13.5 3.86 - 7.75 
PCB 183  3.91 ± 1.7 3.77 ± 1.49 4.8 ± 2.15 3.8 ± 0.93 2.87 ± 0.5 2.02 2.83  

1.62 - 8.73 1.62 - 7.58 1.72 - 9.44 2.24 - 5.34 2.34 - 3.51 
PCB 194  2.52 ± 1.55 2.24 ± 1.3 3.44 ± 2.61 3.21 ± 1.1 2.01 ± 0.67 1.66 2.01  

0.78 - 7.04 0.78 - 5.83 0.66 - 10.5 2.15 - 5.76 1.48 - 2.9 

3 PCB   198 ± 80.8 190 ± 71.9 194 ± 94.5 177 ± 63.3 129 ± 25.8 66.6 100  
75.7 - 371 80.4 - 352 52.6 - 409 91.9 - 301 103 - 162 

TEqc  11.6 ± 5.03 11.0 ± 4.16 9.37 ± 3.77 11.1 ± 4.06 8.24 ± 1.27 5.72 6.41 
3.86 - 26.3 3.86 - 20.3 2.37 - 17.9 4.54 - 19.1 7.24 - 10.1 

_____________________________________________________________________________________________________ 
aNon-ortho-substituted PCBs, given as pg/g fat. 
bMono-ortho-substituted PCBs 
c given as pg/g fat
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Geographical Aspects

 When expressed as PCDD/F, primiparae human milk concentrations were significantly 

higher in the urban area than in the rural area resulting from the fact that concentrations of the 

congeners which contribute mostly to PCDD/F were statistically significantly higher in the 

urban area than in the rural area. The concentrations of the congeners which contribute mostly to 

I-TEqs were only moderately higher in urban area than rural area. Consequently, the PCDD/F I-

TEqs  concentrations were higher in the urban than in rural area in primiparae but statistically 

less significantly than PCDD/F (Table 2). PCB and TEq concentrations were significantly 

higher among urban than rural primiparae (see Table 3). 

Correlation between PCDD/F and PCB concentrations

 The correlations between I-TEq and PCB concentrations among primiparae mother 

milk samples in the urban and rural area are shown in Fig. 1. The linear regression correlation 

coefficient (R) for the primiparae mother milk was 0.87 (0.91 in the urban and 0.76 in the rural 

area). R value for all milk samples was 0.82 (0.93 in the urban and 0.70 in the rural area).

Fig. 1. Correlation between ΣPCB and PCDD/F (as I-TEq) concentrations in 

human milk. Primiparae of all milk samples included.  

Time trends of PCDD/F and PCB concentrations 

The concentrations of PCDD/Fs and PCBs (primiparae mothers) in this study are 

compared in Figure 2. with those found in 1987 in Finland  [16]. Average decreases in 
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primiparae concentrations of PCDD/Fs and PCBs between 1987 and 1994 were 36 and 49%, 

respectively. Decreases of PCDD/Fs in urban and rural areas were 27 and 45%, respectively, and 

of PCBs 47 and 52%, respectively. The decreases of toxic equivalents of PCDD/F in urban and 

rural areas were 24 and 32%, respectively, and the corresponding values for PCB toxic 

equivalents were 50 and 56%, respectively. The changes of congeners 1,2,3,7,8-Cl5DF,

1,2,3,4,7,8-Cl6DF, OCDF and PCB 77 are excluded from the examination above due to low 

levels of congeners or analytical differences between years 1987 and 1994. 

5. DISCUSSION

 Ages of the mothers and milk fat contents did not differ statistically significantly from 

each other when comparing urban and rural primiparae mothers in this study. Furthermore,  ages 

and milk fat contents in this study did not differ statistically from those in our previous study 

[16]. This makes it possible to compare the concentrations and time trend of concentrations of 

PCDD/Fs and PCBs in primiparae mother milk of urban and rural areas between 1987 and 1994. 

 The difference between urban and rural concentrations of  PCDD/Fs and PCBs in 

primiparae mother milk remained when comparing current results with 1987 results. In fact, the 

differences in concentrations between areas have expanded. When the rural concentrations of 

3PCDD/F, I-TEq, 3PCB and TEq were 90, 76, 80, and 73%, respectively, of the concentrations 

in urban area in 1987, the current percentages are 57, 68, 67 and 63, respectively.  

 Like in 1987, the correlation between I-TEq and 3PCB concentrations in 1994 was 

statistically significant (linear correlation coefficient R = 0.82; p < 0.0001)  in the whole material 

and especially significant (R = 0.93; p < 0.0001) when examining the primiparae mothers in the 

urban area. These high correlation values give further confidence to the hypothesis that the 

sources of PCDD/Fs and PCBs are the same in Finland. 

 The well documented [1,2,16,17] decrease of PCDD/F and PCB concentrations in human 

milk with the increasing number of children was observed also in this study, though the 

concentrations of mothers having their third child exceeded the concentrations of mothers having 

their second child. This was most probably because of the low numbers of mothers nursing their 

third child, in this study. The lowest PCDD/F and PCB levels were found in Eastern Finland in milk 

of the mother who was breast-feeding her sixth child, 4.97 pg I-TEq/g fat and 5.72 pg TEq/g fat. 
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Fig. 2. PCDD/F and PCB concentrations for Finnish primiparae human 

milk samples in 1994 in percents when compared to 1987 concentrations. 

 WHO/EURO analyzed two pooled Finnish human milk samples in the second round of 

WHO-coordinated exposure study [11]. Milk samples were the same as in this study marked as 

1./(WHO). Pooling for WHO study was performed by us on volume basis. The average I-TEqs 

analyzed in this study (20.4 pg/g fat for urban area and 13.0 pg/g fat for rural area) are in good 

agreement with those values measured in the WHO study (21.5 pg/g fat for urban area and 12.0 

pg/g fat for rural area) [11]. Also the sums of marker PCBs (IUPAC 28, 52, 101, 138, 153 and 

180) as ng/g fat in this study (192 and 127, for urban and rural area, respectively) are similar to 

those values measured in the WHO/EURO study (189 and 134, for urban and rural area, 
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respectively). However the concentrations of non-ortho PCBs in this study differ considerably 

from those measured from the pooled samples in the second round of WHO-coordinated 

exposure study [11].

 Primiparae mother milk I-TEq values of Helsinki (19.9 pg I-TEq/g fat) were similar to 

those measured in Europe (Belgium, Germany, The Netherlands and Spain), while values of 

Kuopio area (13.6 pg I-TEq/g fat) were similar to values measured in Norway, Austria and 

eastern parts of Europe.  

 The decrease of concentrations of PCDD/Fs between 1986 and 1993 in human blood and 

milk has been reported from Germany and the Netherlands [8,9]. There is a specific uncertainty 

about the declining of concentrations of PCBs in human milk in the Central Europe [9] though 

the duplicate diet study showed a significant decline in the dietary exposure to PCBs in the 

period 1978-1994 [18]. In this study, the decrease of PCDD/Fs and PCBs in primiparae 

mothers= milk was found to be 36% and 49%, respectively, when compared to the 

concentrations of the primiparae mothers= milk in 1987 [16]. The declining of PCDD/Fs and 

PCBs seems to be  greater in rural (45 and 52%, respectively) than in urban (27 and 47%, 

respectively) area. In the WHO/EURO study there was a value 2.2% reported for the annual 

percentual decrease of dioxin levels (in pg I-TEq/g fat) in Finland, in between 1988-1993 [11]. 

That annual decrease was based on the results of two different laboratories [10,11]. The 

estimation of 5-6% for annual declining of PCDD/Fs in this study is based on the results of the 

same laboratory with similar methods. The differences between annual decrease can be 

explained with the differences of analytical methods. In Europe the declining of PCDD/Fs and 

PCBs in humans have been connected to measures taken to reduce PCDD/F and PCB emissions 

from industry [8,9]. There is not data available for the time trends of PCDD/Fs and PCBs in 

Finnish food between 1987-1994 and therefore the cause of the possible decrease of 

concentrations of PCDD/Fs and PCBs in human milk is unclear. In Finland, only one small 

municipal incinerator is functioning in comparison with the hundreds in Central Europe, but the 

prevailing winds may also carry their emissions towards Finland. Since 40% of the total SO2

deposit in Finland comes via the air from Central Europe, it may be assumed that also a major 

proportion of the total PCDD/F load is carried by the wind from other parts of Europe. This 

proportion most probably has decreased. 
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1. ABSTRACT 

We measured plasma concentrations of polychlorinated dibenzo-p-dioxins and 

dibenzofurans (PCDD/Fs), and polychlorinated biphenyls (PCBs) in fishermen from the Finnish 

Baltic Sea area and fishermen fishing in inland lakes. The concentrations clearly correlated with 

the frequency of fish meals and consumption of Baltic fatty fish. The body burden of PCDD/Fs 

reached the median level of 170 pg/g toxic equivalents (I-TEq) in fat for Baltic Sea fishermen, 

with the maximum being 420 pg/g. Results for 2,3,7,8-tetrachlorodibenzo-p-dioxin (range = 4.9-

110 pg/g fat) showed that lifetime exposure in a population consuming much Baltic fatty fish can 

reach the levels of exposures seen in Seveso, Italy, in 1976. After we summed the PCB-TEqs, 

the total median exposure of Baltic Sea fishermen increased to 290 pg/g TEq in fat, and the 

highest concentration was 880 pg/g. There was a noted individual variation in fishermen's 

PCDD/F congener patterns, and it was possible to associate this variation with congener patterns 

of PCDD/Fs in the fish species that the fisherman reported they had consumed. Linear regression 

models for ln WHOPCDD/F-TEq, ln WHOPCB-TEq, and ln total WHO-TEq, from the World Health 

Organization, explained 48%, 60%, and 53% of the variability, respectively. Age was the only 

significant predictor of ln WHOPCDD/F-TEq, whereas age, amount of fish eaten, and place of 

residence were significant predictors of ln WHOPCB-TEq, and ln total WHO-TEq. 
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2. INTRODUCTION 

Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) and polychlorinated 

biphenyls (PCBs) are fat-soluble pollutants, persistent in the environment, and because many of 

them are resistant to metabolism, they can bioaccumulate. They are present in human food and 

are considered potential health hazards. 

In Finland in the early 1990s, the contributions of different foodstuffs to the PCDD/F 

intake were estimated (1), and fish and fish products were determined to be responsible for 63% 

of the daily PCDD/F intake. The impact of fish and fish products on the intake of PCDD/Fs was 

considerably higher in Finland than in many other countries (2). A re-evaluation of the PCDD/F 

daily intake in Finland was conducted in 2000 (3). The contribution of fish and fish products to 

the daily PCDD/F intake had risen to 80%, mainly because of the decrease in the concentrations 

of these pollutants in cow milk and eggs. 

About 75% of the total fish catch in Finland comes from the Baltic Sea, with Baltic 

herring representing the major catch (4). Fatty fishes such as Baltic herring and salmon have 

been found to be contaminated with PCDD/Fs and PCBs (5, 6). PCDD/Fs accumulate in herring 

at the rate 1 pg/g toxic equivalents (I-TEq) per year, wet weight (ww) basis (6), so herring used 

for human consumption carry a body burden of 5-8 pg/g I-TEq on a ww basis. In nonfatty fishes 

(e.g., pike, pike perch, perch, bream), the concentrations of PCDD/Fs on a ww basis have been 

below 1 pg/g I-TEq, and concentrations in nonfatty fishes in the Baltic Sea are slightly higher 

than in the inland lakes (7-9).

Individuals consuming fish frequently may be at risk of increasing their body burden 

levels of PCDD/Fs and PCBs. The risk is especially high in persons eating Baltic fatty fish. One 

distinct group that has a high consumption of fish is professional fishermen. In Sweden, study 

groups have found that Baltic Sea fishermen with high consumption of fish can be exposed to 

high levels of PCDD/Fs and PCBs (10-13). In 1998 there were 2,948 registered professional 

fishermen in the Baltic Sea area in Finland, of whom 1,071 were full-time fishermen. In the 

inland areas of Finland, there were 1,192 fishermen, of whom 230 were full-time fishermen (14).

In this study, we analysed blood samples from a sample of Finnish Baltic Sea and inland 

fishermen for PCDD/Fs and PCBs to relate the body burden levels of these environmental 

contaminants to fish consumption frequencies and to the fish species consumed. We published 

preliminary PCDD/F-TEq data from this study previously (15), and now we provide the 

complete congener-specific data for PCDD/Fs and PCBs, along with a more detailed description 
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of the study population. In addition, we used regression analyses to identify significant 

predictors of the variability of toxic equivalents of PCDD/Fs and PCBs. 

3. MATERIALS AND METHODS 

Subject selection and data collection 

Forty-seven male fishermen who had registered at the Employment and Economic 

Development Centre for southeast Finland volunteered for the study in 1997. These men were 

living on the southeastern coast of the Gulf of Finland and in the area to the north along the 

River Kymijoki. The study group subjects were asked to complete a questionnaire about their 

intake of foods and about the relevant demographic features of their lifestyle (Table 1). 

The study group was classified using two different criteria according to information 

obtained from the questionnaires: the frequency of fish meals consumed and place of residence. 

Twenty-six fishermen were designated as exposed fishermen because they ate fish at least twice 

per week. The other fishermen (n = 21) ate fish meals once or less per week. Two groups were 

assigned based on a place of residence: the coastal group (n = 25) and the Kuusankoski group (n

= 22; Figure 1). The average distances of these groups from the coast of the Gulf of Finland were 

6 km and 45 km, respectively. The coastal fishermen can be regarded as sea-area fishermen, and 

the Kuusankoski subjects as inland fishermen. To obtain more information about their fish 

consumption, we asked the study subjects to rank their preference for different fish species. 

Seven fish species or group of fish species were available in this ranking: Baltic herring; 

cultivated rainbow trout; Baltic salmon; imported salmon; vendace; group consisting of pike, 

pike perch, perch, and bream; and frozen or canned fish. 

All subjects signed informed consents, and Ethical Committee of the National Public 

Health Institute the approved the design of the study. 

Blood sampling and laboratory analysis 

After subjects fasted for 12 hr, 250 mL of venous blood was drawn from each subject 

into centrifuge tubes that did not contain anticoagulants or a serum separator. The samples were 

allowed to clot for at least 40 min, and then were centrifuged for 20 min. The serums were 

transferred into glass vials and coded; the codes were broken only after the results had been 

calculated. 
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We analysed 17 toxic PCDD/Fs and 36 PCBs from each serum sample using a method 

described previously (16). Proteins from serum were precipitated with ethyl alcohol and 

ammonium sulfate. Fat was extracted with hexane, and fat content was determined 

gravimetrically. The analyzing method involved multiple cleanup steps, and finally high 

resolution mass spectrometry was used for quantification. All the results were reported on a fat 

basis, and limits of determination (LOD) for PCDD/Fs, non-ortho PCBs and other PCBs were 

0.5-5, 1.5, and 50 pg/g, respectively, depending on the isomer studied. Recoveries for internal 

standards were more than 60% for all congeners. We calculated toxic equivalents (TEq) for 

PCDD/Fs and PCBs using the following toxic equivalency factors (TEF): the North Atlantic 

Treaty Organization (NATO) factors for PCDD/Fs (I-TEq) (17), factors by Ahlborg et al. (18)

for PCBs (PCB-TEq), and factors recommended by the World Health Organization (WHO) in 

1998 for both PCDD/Fs and PCBs (WHOPCDD/F-TEq and WHOPCB-TEq, respectively) (19). In 

the calculations of toxic equivalents, results below the LOD were considered zero. In addition to 

concentration data of PCDD/Fs and PCBs, we studied the impact of fish species eaten most 

frequently by comparing congener profiles of individual fisherman with profiles originating from 

the fish species consumed most. 

Our laboratory has participated in several international quality control studies for the 

analysis of PCDD/Fs, and PCBs. Matrixes in these studies have included cow milk, human milk, 

human serum, and fish. (20-22). The laboratory is an accredited testing laboratory (No T077) in 

Finland [European Standard/International Organization for Standardization/International 

Electrotechnical Commission (EN ISO/IEC) 17025]. The scope of accreditation includes 

PCDD/Fs, PCBs, and non-ortho PCBs from serum samples. 

Statistical analysis 

We performed statiatical analysis with SPSS software (Windows, release 9.0.1; SPSS 

Inc., Chicago, IL, USA). WE used the Mann-Whitney U nonparametric test to test the statistical 

significance of the differences in concentration results. We tested proportional differences in fish 

consumption frequencies, preferences in fish species consumed, and differences in use of other 

food items with either the 2 test or the Fisher exact test between classified subgroups.  

Linear regression models for dependent variables -WHOPCDD/F-TEq, WHOPCB-TEq, and 

sum of these (total WHO-TEq) - were established. Predictor variables in the models were age 

(year), body mass index (BMI, kg/m2), amount of fish eaten (kg/week), and place of residence. 
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Before to the regression analyses were done, all the toxic equivalents were transformed to the 

natural logarithm (ln) scale. The categorical predictor variable "amount of fish eaten" was 

transformed as a weighted continuous factor which was also transformed to the natural logarithm 

scale. In weighting fish amount, the average fish meal portion size, fish consumption frequency, 

preference in fish species consumption, and average PCDD/F and PCB TEq-concentrations of fish 

species were used. The predictor variable "place of residence" was used as categorical variable.

Table 1.
Mean, median, and (range) of age, BMI, and length of time of residence for fishermen and 
classified fishermen subgroups.
_____________________________________________________________________________ 
    Fish consumption frequency  Place of residence  
  All subjects exposed fishermen other fishermen coast  Kuusankoski  
Characteristics n = 47  n = 26   n = 21  n = 25  n =22 
Age (years) 58, 59 (27-77) 60, 60 (27-77)  56, 59 (42-73) 58, 59 (27-76) 58, 60 (42-77) 
BMI  27, 26 (23-36) 27, 27 (23-35)  27, 26 (23-36) 28, 27 (23-36) 27, 26 (23-33) 
Time at present 
residence (years) 45, 50 (4-77) 43, 51 (4-77)  47, 47 (9-73) 47, 50 (6-73) 42, 49 (4-77) 
____________________________________________________________________________________________ 

4. RESULTS 

Demographics and fish consumption 

The average age of the 47 study subjects was 58 years; in the groups classified by fish 

consumption frequency and place of residence, average ages were almost identical, and the 

differences were not statistically significant. Also BMI (27 kg/m2 for all subjects) and time of 

residence (45 years for all subjects) were very similar between groups, and the differences were 

not statistically significant (Table 1). 

In the group of exposed fishermen, the subjects ate fish at least twice per week; in the 

other fishermen group, the frequency of fish consumption was once or less per week. When we 

compared the fish consumption frequency by place of residence (i.e., the coastal group vs. the 

Kuusankoski group), the 2 test did not reach statistically significant difference, (p < 0.334). A 

slightly larger proportion of subjects in the coastal group (15 of 25) ate fish at least twice a week 

compared with the Kuusankoski group (11 of 22). 
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Fig 1. Study area showing fishermen subgroups according to place of residence. 

Table 2 summarizes the ranked results of the two most favoured fish species or group of 

fish species in classified subgroups of subjects. In the subgroups created according to fish 

consumption frequency, the proportions of primary and secondary fishes were not statistically 
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significantly different according to Fisher’s exact test. For the coastal and Kuusankoski groups, 

there were statistically significant differences between proportions of fish species in both 

primary and secondary fishes (p < 0.003 and p < 0.001, respectively). In the coastal group, Baltic 

herring or salmon was the primary fish species being consumed by 10 subjects, but no subjects 

in the Kuusankoski group chose these species as the primary species. For secondary fish species, 

vendace was the dominant in the Kuusankoski group (14 subjects), whereas no subjects in the 

coastal group ranked vendace as their primary or secondary fish. No subjects ranked imported 

salmon or frozen or canned fish as being within the two most favoured fish species. 

Consumption frequency patterns of milk, milk products, and meat and current and past 

smoking patterns were very similar among the classified subgroups and were not statistically 

significantly different (data not shown).

Serum levels of PCDD/Fs and PCBs 

Mean levels, median levels, and ranges of 17 toxic PCDD/Fs and TEqs in all 47 subjects 

and in classified subgroups are summarized in Table 3. The overall median and mean I-TEq 

concentrations were 120 and 150 pg/g fat, respectively. The four congeners contributing the 

most to TEq median (mean) concentrations in fat were in ranked order: 1) 2,3,4,7,8-

pentachlorodibenzofuran [2,3,4,7,8-PeCDF; 45.5 (50) pg/g I-TEq]; 2) 1,2,3,7,8-

pentachlorodibenzo-p-dioxin [1,2,3,7,8-PeCDD; [26.5 (31) pg/g I-TEq]; 3) 1,2,3,6,7,8- 

hexachlorodibenzo-p-dioxin [1,2,3,6,7,8-HxCDD; 24 (30) pg/g I-TEq]; and 4) 2,3,7,8-

tetrachlorodibenzo-p-dioxin [2,3,7,8-TCDD; 13 (19) pg/g I-TEq]. 

More frequent fish consumption produced higher median concentrations for all PCDD/F 

congeners, and the differences between exposed (median = 170 pg/g) and other fishermen 

(median = 87 pg/g) I-TEqs were statistically significant (p < 0.05). In the exposed fishermen 

group, 2,3,7,8-TCDD concentrations were as high as 110 pg/g, and I-TEq concentrations reached 

levels up to 420 pg/g. The coastal group fishermen were significantly more exposed to dioxins 

compared with the Kuusankoski group. One distinctive exception to this trend was the 

concentration of 1,2,3,6,7,8-HxCDD, because concentrations in Kuusankoski group were higher 

than in coastal group (270 vs. 210 pg/g fat, respectively). 

Sum concentrations of 36 PCB congeners, along with individual congener concentrations 

and PCB toxic equivalents, are presented in Table 4. Mean and median sum PCB concentrations 

in all 47 fishermen were 2,100 and 1,400 ng/g fat, respectively, with the maximum value being 
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8,700 ng/g. The median PCB-TEq level (80 pg/g fat; mean = 110 pg/g fat) was slightly smaller 

than that in PCDD/Fs, but it did achieve values as high as 460 pg/g fat. The four main congeners 

accounting for 75% of the median sum PCB concentration were International Union of Pure 

Applied Chemistry (IUPAC) 138, 153, 170, and 180. The most dominant non-ortho-PCB was 

IUPAC 126, ranging from 35 to 1,500 pg/g fat in all subjects. 

More frequent fish consumption produced greater concentrations of all PCB congeners, 

and PCB-TEq mean and median values were 130 and 120 pg/g fat, respectively. Place of 

residence produced an even bigger difference between the subgroups than the classification by 

fish consumption. The median PCB-TEq value in the coastal group (140 pg/g) was over twice 

that in the Kuusankoski group (65 pg/g), and for IUPAC 153, the difference in concentration 

between the groups was about 3-fold (800 vs. 280 ng/g fat, respectively). 

The ratio between sum concentrations of PCBs and I-TEq in all subjects was about 

14,200:1. In subgroups according to fish consumption, the ratio was comparable to the value in all 

subjects, but in subgroups according to place of residence, the ratio in the coastal group was 

16,400:1 (ranging from 8,100:1 to 25,800:1), and the ratio in the Kuusankoski group was 11,300:1 

(ranging from 6,000:1 to 14,900:1); this difference was statistically significant (p < 0.001). A 

similar difference was observed when the proportion of PCB-TEq was calculated from the total 

TEq. In the coastal group, PCB-TEq contributed 44% of the total TEq (320 pg/g fat), whereas in 

the Kuusankoski group, PCB-TEq accounted for 35% of  the total TEq (186 pg/g fat). In both 

groups classified by fish consumption, the contribution of PCB-TEq to total TEq was 42%. 

Figure 2 illustrates the impact of fish species consumed on the congener profile of an 

individual fisherman, the congener profiles of three fish species (Baltic herring/salmon, pike, and 

bream) and three fishermen. All three fishermen reported that they consumed solely or mostly 

the respective fish species. 

Table 5 summarizes the regression analyses conducted to determine predictors of the 

variance of natural logarithms of WHOPCDD/F-TEq, WHOPCB-TEq, and total WHO-TEq. Age was 

the only significant regression predictor of ln WHOPCDD/F-TEq, and the whole model explained 

48% of the variance of ln WHOPCDD/F-TEq. Age and the amount of fish consumed were the most 

important predictors, with contributions of 22.5% and 19.3%, respectively. Place of residence, 

age, and amount of fish consumed were significant regression predictors of both ln WHOPCB-

TEq and ln total WHO-TEq. For PCBs, the most important predictor was place of residence, 

with a 35.4% contribution, followed by age, with a 17.7% contribution. The most important 
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predictors of variance for ln total WHO-TEq were the same as those for ln WHOPCDD/F-TEq - 

age and amount of fish consumed - with the contributions being 21.5% and 23.6%, respectively. 

In each of these three models, the normal distribution of residuals was verified with normal 

probability plots. Variance inflation factors (VIF) showed no multicollinearity between 

predictors in any of these three models. 



Table 2. 

Ranking frequencies of the two most favored fish species in subgroups of fishermen.
_____________________________________________________________________________________________________________________ 

      Fish consumption frequency    Place of residence  
     Exposed fishermen Other fishermen  Coast    Kuusankoski  
Ranking of fish species   n = 26   n = 21   n = 25    n = 22

_______________________________________________________________________________________________________________ 
Primary fish (n)
Baltic herring    5   4   9    0 
Baltic salmon    1   0   1    0 
Cultivated rainbow trout   4   5   5    4 
Pike, pike perch, perch, bream  16   10   10    16 
Vendace     0   2   0    2 
Secondary fish (n)
Baltic herring    5   4   6    3 
Baltic salmon    2   2   3    1 
Cultivated rainbow trout   5   4   7    2 
Pike, pike perch, perch, bream  6   5   9    2 
Vendace     8   6   0    14 
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Table 3.

Mean, median, and (range) of PCDD and PCDF congeners and TEqs in blood samples for fishermen according to subgroupsa.
________________________________________________________________________________________________________________________________

        Fish consumption frequency   Place of residence  

   All subjects   Exposed fishermen Other fishermen  Coast   Kuusankoski 

Congener  n = 47    n = 26   n = 21   n = 25   n = 22  _____

2,3,7,8- TCDF  7.4, 5.6 (ND-30)   8.8, 7.1 (1.1-30)  5.6, 4.4 (ND-18)  8.4, 7.0 (0.57-30)  6.2, 4.3 (ND-24) 
1,2,3,7,8- PeCDF  3.5, 2.6 (ND-33)   4.0, 3.0 (ND-33)  3.0, 2.4 (ND-11)  2.5, 2.9 (ND-8.7)  4.8, 2.5 (ND-33) 
2,3,4,7,8- PeCDF  100, 91 (22-280)   120, 120 (39-280)* 82, 61 (22-260)  130, 130 (37-280)** 71, 57 (22-220) 
1,2,3,4,7,8- HxCDF 22, 17 (5.3-84)   24, 20 (6.0-84)  18, 16 (5.3-39)  24, 21 (8.3-69)**  19, 15 (5.3-84) 
1,2,3,6,7,8- HxCDF 24, 19 (5.2-100)   27, 21 (7.1-100)  19, 15 (5.2-42)  25, 21 (7.1-53)  22, 15 (5.2-100) 
2,3,4,6,7,8- HxCDF 7.5, 6.3 (1.1-35)   8.9, 7.1 (1.1-35)*  5.7, 4.5 (1.9-14)  8.0, 6.8 (2.8-21)  7.0, 5.1 (1.1-35) 
1,2,3,7,8,9- HxCDF 1.2, 0.50 (ND-10)  1.5, 0.52 (ND-10) 0.88, 0.36 (ND-4.3) 1.9, 0.99 (ND-10)** 0.46, 0.28 (ND-3.9) 
1,2,3,4,6,7,8-HpCDF 75, 43 (11-1,100)   98, 42 (11-1,100)  47, 44 (17-92)  100, 52 (14-1,100) 47, 33 (11-160) 
1,2,3,4,7,8,9-HpCDF 0.23, ND (ND-5.0)  0.31, ND (ND-5.0) 0.12, ND (ND-1.4) ND, ND**  0.490, ND (ND-5.0) 
OCDF   42, ND (ND-1,900)  74, ND (ND-1,900) 1.2, ND (ND-11)  76.5, ND (ND-1,900)** 1.8, ND (ND-11) 
2,3,7,8- TCDD  19, 13 (2.7-110)   25, 19 (4.9-110)*  11, 10 (2.7-32)  27, 21 (4.1-110)** 9.5, 7.3 (2.7-27) 
1,2,3,7,8- PeCDD 62, 53 (9.1-180)   79, 76 (15-180)*  42, 34 (9.1-140)  78, 78 (22-180)** 44, 34 (9.1-150) 
1,2,3,4,7,8- HxCDD 8.3, 7.6 (ND-31)   8.8, 7.7 (ND-31)  7.6, 7.2 (ND-23)  7.5, 7.0 (ND-23)  9.2, 7.6 (ND-31) 
1,2,3,6,7,8- HxCDD 300, 240 (46-1,700)  370, 290 (46-1,700)* 220, 190 (74-640) 260, 210 (46-650) 360, 270 (74-1,700) 
1,2,3,7,8,9- HxCDD 73, 46 (ND-320)   82, 59 (ND-320)  62, 36 (12-290)  87, 53 (ND-320)  56, 39 (12-160) 
1,2,3,4,6,7,8- HpCDD 120, 110 (21-340)  120, 120 (21-340) 120, 110 (43-330) 140, 110 (44-330) 110, 95 (21-340) 
OCDD   800, 610 (230-2,900)  790, 780 (230-2,900) 810, 600 (290-2,600) 830, 630 (310-2,600) 770, 600 (230-2,900) 
Sum of toxic congeners 
   1,700, 1,400 (580-5,800)  1,800, 1,600 (580-5,800) 1,500, 1,100 (630-4,100) 1,800, 1,500 (580-4,600) 1,500, 1,200 (630-5,800)
I-TEq   150, 120 (30-420)  180, 170 (51-420)* 110, 87 (30-280)  180, 170 (62-420)** 120, 92 (30-350) 
WHOPCDD/F-TEq  180, 150 (34-500)  220, 210 (58-500)* 130, 100 (34-340) 220, 210 (75-500)** 140, 110 (34-420) __
Abbreviations: HpCDD, heptachlorodibenzo-p-dioxin; HpCDF, heptachlorodibenzofuran; HxCDD, hexachlorodibenzo-p-dioxin; HxCDF, hexachlorodibenzofuran; I-TEq, 
NATO toxic equivalency factors; ND, below limit of determination; OCDD, octachlorodibenzo-p-dioxin; OCDF, octachlorodibenzofuran; PeCDD, pentachlorodibenzo-p-
dioxin; PeCDF, pentachlorodibenzofuran; TCDD, tetrachlorodibenzo-p-dioxin; TCDF, tetrachlorodibenzofuran; WHOPCDD/F-TEq, WHO toxic equivalency factors for 
PCDD/Fs. aConcentrations are given in pg/g fat. *Significantly different compared with the other fishermen group (p < 0.05 by Mann-Whitney U-test). **Significantly 
different compared with the Kuusankoski place of residence group (p < 0.05 by Mann-Whitney U-test). 
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Table 4. 

 Mean, median, and (range) of non-ortho-PCBsa, other PCBsb, and TEqsa in blood samples for fishermen and the various subgroups.
_________________________________________________________________________________________________________________________ 

       Fish consumption frequency   Place of residence  
Congener  All subjects  Exposed fishermen Other fishermen  Coast  Kuusankoski 
IUPAC no.  n = 47   n = 26   n = 21   n = 25  n = 22  
Non-ortho-PCBs 
77   63, 55 (ND-190)  77, 68 (13-190)*  45, 37 (ND-100)  79, 68 (28-190)** 44, 30 (ND-150) 
126   300, 230 (35-1,500) 360, 260 (49-1,500)* 240, 150 (35-950) 430, 360 (61-1,500)** 160, 150 (35-330) 
169   160, 130 (50-490) 190, 180 (72-490)* 130, 100 (50-280) 190, 190 (67-490) 130, 110 (50-300) 
Other PCBs 
18   0.88, 0.53 (ND-3.7) 0.94, 0.52 (ND-3.7) 0.82, 0.53 (ND-3.3) 0.54, 0.23 (ND-2.4)** 1.3, 0.90 (ND-3.7) 
28/31   13, 9.5 (0.24-94)  15, 10 (0.54-94)  9.9, 4.4 (0.24-36)  17, 13 (0.24-94) 8.0, 5.8 (0.54-33) 
33   1.0, 0.13 (ND-4.4) 1.1, 0.43 (ND-4.4) 0.92, 0.045 (ND-4.1) 0.72, ND (ND-3.5) 1.4, 0.76 (ND-4.4) 
47   1.1, 0.90 (ND-6.8) 1.4, 1.1 (ND-6.8)  0.85, 0.78 (0.11-2.3) 1.3, 1.2 (ND-6.8) 0.91, 0.78 (0.19-2.3) 
49   0.66, 0.53 (ND-2.0) 0.71, 0.56 (ND-2.0) 0.60, 0.48 (ND-2.0) 0.43, 0.41 (ND-1.3)** 0.93, 0.82 (0.063-2.0) 
51   0.063, 0.034 (ND-0.23) 0.068, 0.043 (ND-0.22) 0.056, 0.028 (ND-0.23) 0.035, ND (ND-0.17)** 0.095, 0.078 (ND-0.23) 
52   2.2, 1.6 (ND-14)  2.5, 1.9 (0.69-14)* 1.9, 1.3 (ND-11)  2.3, 1.6 (ND-14) 2.1, 1.7 (0.67-11) 
60   2.8, 1.5 (0.20-35)  3.7, 1.6 (0.54-35)  1.6, 1.0 (0.20-5.8) 4.2, 2.8 (0.33-35)** 1.2, 0.93 (0.20-3.6) 
66   16, 5.1 (0.54-200) 22, 6.8 (1.6-200)  8.2, 3.5 (0.54-35)  27, 19 (2.1-200)** 3.4, 2.6 (0.54-11) 
74   55, 36 (4.7-460)  72, 41 (9.4-460)  34, 23 (4.7-110)  87, 56 (17-460)** 18, 15 (4.7-51) 
99   59, 34 (6.0-290)  74, 53 (8.2-290)*  40, 28 (6.0-140)  90, 82 (22-290)** 24, 21 (6.0-57) 
101   4.7, 3.7 (0.27-26)  5.8, 4.7 (0.27-26)* 3.5, 3.1 (0.42-13)  6.4, 5.2 (0.87-26)** 2.9, 3.0 (0.27-6.5) 
105   31, 22 (2.7-150)  38, 27 (4.2-150)*  21, 11 (2.7-84)  47, 39 (5.7-150)** 12, 10 (2.7-23) 
110   3.0, 2.5 (0.21-13)  3.6, 2.9 (0.40-13)* 2.3, 1.7 (0.21-8.0) 4.0, 3.8 (0.94-13)** 1.9, 1.9 (0.21-3.4) 
114   5.7, 4.0 (0.81-22)  6.9, 6.0 (1.3-22)*  4.2, 2.6 (0.81-11)  8.4, 8.1 (1.9-22)** 2.6, 2.4 (0.81-5.9) 
118   150, 110 (16-730) 180, 140 (24-730)* 110, 59 (16-410)  220, 180 (45-730)** 66, 58 (16-120) 
122   ND, ND   ND, ND   ND, ND   ND, ND  ND, ND 
123   6.2, 4.1 (0.56-25)  7.6, 5.5 (0.70-25)* 4.5, 2.6 (0.56-17)  9.5, 8.7 (1.0-25)** 2.5, 2.4 (0.56-5.1) 
128   4.5, 2.4 (ND-20)  5.8, 4.6 (ND-20)* 2.9, 1.1 (ND-14)  7.9, 6.9 (1.1-20)** 0.61, 0.22 (ND-3.3) 
138   320, 210 (41-1,600) 400, 340 (77-1,600)* 220, 180 (41-660) 450, 400 (140-1,600)** 160, 150 (41-420) 
141   1.4, 0.97 (ND-6.3) 1.7, 1.2 (ND-6.3)* 0.90, 0.69 (ND-5.5) 1.9, 1.4 (ND-6.3)** 0.73, 0.69 (ND-1.6) 
153   600, 380 (87-2,600) 740, 590 (180-2,600)* 430, 290 (87-1,400) 860, 800 (240-2,600)** 310, 280 (87-840) 
156   58, 50 (14-230)  70, 63 (22-230)*  43, 40 (14-89)  72, 71 (23-230)** 42, 39 (14-120) 
157   11, 7.9 (2.0-45)  13, 11 (3.2-45)*  8.0, 6.5 (2.0-22)  15, 15 (4.1-45)** 6.0, 6.0 (2.0-16) 
167   17, 14 (2.4-81)  20, 18 (4.1-81)*  12, 9.4 (2.4-35)  24, 21 (6.2-81)** 9.0, 8.8 (2.4-21) 
170   190, 160 (48-670) 220, 200 (79-670)* 140, 130 (48-270) 220, 200 (87-670)** 140, 130 (48-390) 
180   370, 300 (84-1,200) 440, 370 (130-1,200)* 280, 230 (84-620) 470, 460 (190-1,200)** 260, 230 (84-750) 
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183   37, 25 (4.5-150)  45, 35 (11-150)*  26, 21 (4.5-80)  49, 46 (15-150)** 22, 20 (4.5-54) 
187   83, 65 (15-340)  100, 100 (29-340)* 57, 48 (15-130)  110, 110 (38-340)** 57, 48 (15-160) 
189   7.2, 6.4 (1.8-24)  8.5, 7.7 (2.6-24)*  5.5, 4.3 (1.8-11)  8.8, 9.1 (3.8-24)** 5.3, 4.3 (1.8-14) 
194   44, 41 (12-140)  51, 47 (18-140)*  34, 30 (12-57)  52, 50 (22-140)** 34, 29 (12-88) 
206   7.4, 6.0 (1.8-22)  8.7, 7.9 (3.2-22)*  5.8, 5.1 (1.8-12)  9.7, 9.4 (4.1-22)** 4.8, 4.7 (1.8-10) 
209   3.6, 3.4 (0.95-9.0) 4.1, 3.8 (0.95-9.0)* 3.0, 2.6 (1.2-6.5)  4.2, 4.0 (1.5-9.0)** 2.9, 2.9 (0.95-5.7) 
Sum of PCBs  2,100, 1,400 (360-8,700) 2,600, 2,200 (680-8,700)* 1,500, 1,200 (360-4,200) 2,900, 2,700 (950-8,700)**1,200, 1,200 (360-3,100) 
PCB-TEq  110, 80 (21-460)  130, 120 (30-460)* 81, 68 (21-230)  140, 140 (45-460)** 66, 65 (21-150) 
WHOPCB-TEq  89, 66 (17-400)  110, 96 (22-400)* 67, 52 (17-200)  120, 110 (34-400)** 51, 50 (17-110)_________
ND, below limit of determination. 
a Concentrations are given in pg/g fat. b Concentrations are given in ng/g fat * Significantly different compared with the other fishermen group (p < 0.05 by Mann-Whitney 
U-test). ** Significantly different compared with the Kuusankoski place of residence group (p < 0.05 by Mann-Whitney U-test). 
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5. DISCUSSION 

Because the median age and distributions of ages among classified subgroups were so 

similar, we did not adjust the concentrations of PCDD/Fs and PCBs for age. The mean time of 

residence at the current address in the subgroups was also so long that each person would have 

adopted the local exposure pattern to PCDD/Fs and PCBs via their living habits. All persons 

with time of residence  9 years had been living in the same area earlier only at a different 

address. 

Results of this study clearly associated higher body burden of PCDD/Fs and PCBs with 

higher intake of fish. Consuming fish at least twice a week resulted in plasma concentrations of 

PCDD/Fs over five times those found in a corresponding nonfisherman population in Finland 

(15). Fishermen who reported eating fish once a week or less also had elevated blood levels of 

PCDD/Fs and PCBs. Between the exposed fishermen and other fisherman subgroups, there was 

no difference in the species of fish consumed; therefore, the difference between these groups 

must be assumed to derive solely from the frequency of fish consumption. When the fishermen 

were grouped according to place of residence, the frequency of fish consumption did not have a 

critical effect on concentrations of PCDD/Fs and PCBs, although subjects in the coastal group 

ate fish more frequently than subjects in the Kuusankoski group. The species of fish consumed 

had a more critical effect because subjects in the coastal group ate fatty Baltic fish species more 

frequently than did subjects in the Kuusankoski group. Also, the consumption of rainbow trout 

by the coastal group was more frequent than by the Kuusankoski group, and one must bear in 

mind that in the Baltic sea, fishes in the class "pike" also have a higher content of PCDD/Fs and 

PCBs in their tissues compared with inland lakes "pikes" (7, 8).

The ratio between sum concentrations of PCBs and I-TEq in the coastal group was 

statistically significantly different from the corresponding ratio in the Kuusankoski group. This 

could be a result of the relatively more severe contamination of Baltic fish by PCBs than of fish 

in inland lakes. Furthermore, this ratio between the sum concentrations of PCB and I-TEq varied 

significantly within groups, from 8,100:1 to 25,800:1 in the coastal group and from 6,000:1 to 

14,900:1 in the Kuusankoski group. Because the correlation between PCB congener IUPAC 153 

and the sum concentrations of PCBs was almost 1, the use of IUPAC 153 as an indicator of 

dioxin TEqs can produce misleading results. 

When we compared I-TEq congener patterns, we discovered individual differences. 

Because the role of fish is profound with respect to the fishermen's intake of PCDD/Fs, and 
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because there were no statistically significant differences in other food consumption habits or 

smoking habits between the classified subgroups, we hypothesized that these differences in the I-

TEq congener patterns were caused by consumption of different fish species. If a

Fig 2.Congener I-TEq profiles of individual fishermen and profiles of fish species that each 

fisherman reported he prefers to consume. Congeners: 1: 2,3,7,8-TCDD; 2: 1,2,3,7,8-PeCDD; 3: 

1,2,3,4,7,8-HxCDD; 4: 1,2,3,6,7,8-HxCDD; 5: 1,2,3,7,8,9-HxCDD; 6: 1,2,3,4,6,7,8-HpCDD; 7: 

OCDD; 8: 2,3,7,8-TCDF; 9: 1,2,3,7,8-PeCDF; 10: 2,3,4,7,8-PeCDF; 11: 1,2,3,4,7,8-HxCDF; 12: 

1,2,3,6,7,8-HxCDF; 13: 2,3,4,6,7,8-HxCDF; 14: 1,2,3,7,8,9-HxCDF; 15: 1,2,3,4,6,7,8-HpCDF; 

16: 1,2,3,4,7,8,9-HpCDF; 17: OCDF. 
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fisherman reported that he was consuming mainly one kind of fish species, it was often possible 

to detect a similar I-TEq congener profile in his fasting blood sample. Figure 2 shows that only 

the congener 2,3,7,8-tetrachlorodibenzofuran (2,3,7,8-TCDF) was missing from the fishermen's 

profiles. This is a result of rapid metabolism of this congener in humans. Almost half of the 

fishermen in the Kuusankoski group fish from a lake famous for its bream catches. Examination 

of I-TEq congener pattern reveals that 1,2,3,6,7,8-HxCDD is the main congener in bream, which 

might explain why the 1,2,3,6,7,8-HxCDD concentrations in the Kuusankoski group were higher 

than in coastal group, in contrast to the general trend. It was not possible to discern a similar 

effect when studying PCB congener patterns (i.e., the consumption of a certain fish species by 

one individual fisherman was not reflected in his blood PCB congener profile). 

PCDD/F concentrations (in all subjects, 120 pg I-TEq/g in fat) assayed in this study are 

comparable to body burdens found in Swedish Baltic fishermen of the same age (12). Therefore, 

fishermen in Finland and all around the Baltic Sea area can accumulate via their diet dioxin body 

burdens that are comparable to the concentrations found in Seveso, Italy, after the accidental 

release of 2,3,7,8-TCDD. In our study 2,3,7,8-TCDD concentrations rose up to 110 pg/g fat, 

which is at the same level found in Seveso B zone (23). The PCDD/F concentrations found in 

this study were somewhat higher than those found in Canada among the Inuits (39.6-56.7 pg/g I-

TEq in fat) (24, 25). The PCDD/F concentrations in frequent consumers of fish from the Great 

Lakes in the United States (26) also showed considerably lower levels (13.9-19.6 pg/g I_TEq in 

fat) than those found in the present study. 

In this study,  the median value for 36 PCB congeners was 1,400 ng/g fat, ranging up to 

8,700 ng/g in the coastal area in those fishermen eating fish at least twice a week. In Swedish 

studies, the range of PCBs has been from 1,600 to 5,300 ng/g fat, but in those studies the number 

of congeners is not comparable to those in our study (12, 13). The values for one of the main 

congeners of PCBs, IUPAC 153, are about the same in the Swedish studies (280-1,700 ng/g fat) 

as in our study (87-2,600 ng/g fat). In our study, the lower end of the PCB range comes from the 

inland lake fishermen; therefore, it would be better to compare the coastal group results from our 

study with the Swedish results. The range of IUPAC 153 in the coastal group from our study was 

from 240 to 2,600 ng/g fat, which is almost identical to concentrations measured in Sweden. The 

dominant congener in PCB-TEq is IUPAC 126. In our study, the concentrations of IUPAC 126 

were slightly lower (median = 230 pg/g fat for all subjects and 360 pg/g fat for the coastal group) 

than those found in Sweden (from 560 to 1,050 pg/g fat) (12). In contrast to PCDD/Fs, the PCB 

concentration levels in Canada seem to be somewhat higher than those in our study. Ryan et al. 
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(25) reported the sum PCB concentration for 11 congeners to be 6,000 ng/g fat and the 

concentration for IUPAC 126 to be 619 pg/g fat. The mean concentration of 20 PCBs in adult 

Inuits living in Nunavik was reported to be 4,000 ng/g, ranging up to 9,870 ng/g, and levels of 

IUPAC 153 ranged from 240 to 3,070 ng/g fat (24).

We used only four predictor variables in the linear regression analyses of ln WHOPCDD/F-

TEq, ln WHOPCB-TEq, and ln total WHO-TEq. Using more variables with these 47 subjects 

would have increased the predictability of the models, but it would have reduced the model's 

generalization and limited the model’s use with other Finnish fishermen samples. Age was the 

only significant predictor in all three models. The amount of fish consumed was the second 

dominating predictor of variance of ln WHOPCDD/F-TEq in contrast to the predictor of variance of 

ln WHOPCB-TEq, which was place of residence. This might be caused by differences in dioxin 

congener profiles among fish species, because fish species eaten was taken into account when 

weighted fish amounts were calculated. We detected no difference in PCB profiles among fish 

species similar to that seen in dioxin profiles. This might explain why place of residence, not 

consumption of fish, was the second dominating predictor of variance of ln WHOPCB-TEq. 

In conclusion, we found that in Finland, fish consumption can cause elevated levels of 

PCDD/Fs and PCBs. Especially high levels of these contaminants can result from consumption 

of fatty Baltic fish. It was possible to determine the type of fish species that an individual 

fisherman consumed most from his blood I-TEq congener pattern. 



Table 5.
Predictors of the variance of natural logarithms of WHOPCDD/F-TEq, WHOPCB-TEq, and total WHO-TEq for Finnish fishermen.
______________________ _______________________________________________________________________ 
Predictor variable    Parameter estimate  SE  p-Value   
Dependent variable: ln WHOPCDD/F-TEq 
Constant     2.4    0.67  < 0.001 
Age     0.028    0.007  < 0.0001 
BMI     0.034    0.021  < 0.12 
Amount of fish consumed   0.12    0.064  < 0.062 
Place of residence   0.26    0.18  < 0.14    
ln WHOPCDD/F-TEq model percentage r2=0.48 
Dependent variable: ln WHOPCB-TEq 
Constant     1.9    0.65  < 0.005 
Age     0.027    0.006  < 0.0001 
BMI     0.021    0.02  < 0.31 
Amount of fish consumed   0.15    0.062  < 0.02 
Place of residence   0.53    0.17  < 0.003    
ln WHOPCDD/F-TEq model percentage r2=0.60 
Dependent variable: ln total WHO-TEq 
Constant     2.9    0.65  < 0.0001 
Age     0.027    0.006  < 0.0001 
BMI     0.030    0.021  < 0.16 
Amount of fish consumed   0.13    0.062  < 0.041 
Place of residence   0.35    0.17  < 0.05    
ln total WHO-TEq model percentage r2=0.53          
____________________________________________________________________________________
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CHAPTER 8 

GENERAL DISCUSSION 

1. GENERAL ADULT INTAKE OF PCDD/Fs AND PCBs

 On average, the Finnish adult daily intake of PCDD/Fs was 60 pg or 0.79 pg WHO-

TEq/kg bw, being very similar to other European intakes. The calculation methods selected had a 

major impact in assessments of the intake of PCDD/Fs. If we chose to use SIFF method and 

lower bound concentrations of congeners in foodstuffs and I-TEFs for the calculations of TEqs, 

then the daily intake was 46 pg I-TEq or 0.61 pg I-TEq/kg bw. The use MBM-method and upper 

bound concentrations and WHOPCDD/F-TEFs resulted in intake assessments of 75 pg WHOPCDD/F-

TEq or 0.99 pg WHOPCDD/F-TEq/kg bw. When using upper bound concentrations of PCDD/Fs in 

foodstuffs and the same set of TEFs, then the PCDD/F intake would increase by 22-29%, when 

compared to the use of lower bound concentrations. 

With respect to PCB TEqs, the difference between lower and upper bound intake 

assessments was less than 2%, irrespective of the TEF set used. The intake of PCBs was similar 

to PCDD/F intake, being on average 0.74 pg TEq/kg bw/day. This was somewhat less than has 

been assessed elsewhere in Europe. 

Total adult exposure in Finland to PCDD/Fs and PCBs via the diet was hence assessed to 

be on average 116 pg/day or 1.5 pg TEq/kg bw/day, for a person weighing 76 kg. This intake as 

well as the maximum, upper bound, daily intake of PCDD/Fs and PCBs (1.8 pg WHO-TEq/kg 

bw/day), was below the EU SCF  TDI of 2 pg WHO-TEq/kg bw/day (European Commission 

2001), though the margin was quite narrow, and it can be assumed that a considerable portion of 

the Finnish population exceed this TDI.  It was not possible to assess the proportion of the 

Finnish population exceeding EU SCF’s TDI in this study since that would require data on 

individual based intake assessments including all age-classes. 

Finland is one of those countries where the consumption of fish is high compared to 

many other European countries (Welch et al. 2002), about 15 kg/person/year 

(http://www.rktl.fi/www/uploads/pdf/taskutilasto2004.pdf). Nevertheless, high consumption of 

fish together with the fact that the origin of a considerable part of the fish originate from the 

Baltic Sea which is contaminated with PCDD/Fs and PCBs explain the high contribution of fish 

and fish products to the intake of PCDD/Fs and PCBs. Depending on the calculation method 

(lower- or upper bound) the contribution of fish accounted for 60% to 95% of the PCDD/F 
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intake. The contribution of Baltic herring alone to the intake was 50%. The lower or upper 

bound contributions from milk products were 1% to 15%, respectively, and the contribution of 

meat and eggs was from 2% to 17%, respectively. Fish also contributed the main part to the PCB 

intake, accounting for 80%. 

A similar decrease in PCDD/F intake, as in other countries worldwide, could be detected 

when comparing Finnish intake assessments from the beginning of 1990s to the assessments at 

the end of 1990s. Hallikainen and Vartiainen (1997) reported the daily intake of PCDD/Fs to be 

95 pg N-TEq which was comparable to lower bound I-TEq estimate of 46 pg I-TEq/day obtained 

with the SSIF-method in this study. Hence, we detected an annual decrease of 6%, which was 

close to other reported decreases in the intake of PCDD/Fs (see CHAPTER 1, Fig. 2). The 

decline of dietary intakes of PCDD/Fs and PCBs in Finland was probably affected by two 

equally important reasons. First the concentrations in foodstuffs, especially in cow’s milk and 

eggs, had been declining. Secondly, the consumption habits of Finnish people have been 

changed to favour less fatty products, especially with regards to milk, cheese, and meat products. 

This changing of diets to consumption of less fatty foods has continued since the above studies 

(Helakorpi et al. 2004). In the future, dietary habit changes may be more crucial in reducing the 

PCDD/F and PCB intakes rather than changes in concentrations of PCDD/Fs and PCBs actually 

present in the foodstuffs. A decrease in the concentrations of PCDD/Fs and PCBs in fish 

products would be the most effective way to diminish Finnish exposure to these contaminants. 

However, the concentrations in Baltic herring, which can be used as a proxy to domestic wild 

fish, have not been decreasing during the last decade, according to this study and a more recent 

report (Hallikainen et al. 2004, Isosaari et al. 2005). The control measures taken by the EU 

Commission to decrease the PCDD/F and PCB concentrations in feedstuffs (EC 2002) will 

probably decrease the concentrations in cultivated fish and eggs, but a similar dramatic decrease 

as occured during the 1990s cannot be anticipated.   

Since fish are the main source of PCDD/Fs and PCBs in Finland one way to reduce the 

exposure to these contaminants is to advice people to avoid eating fish. However this is not 

recommended in Finland. Instead there is a recommendation given by the National Nutrition 

Council and the National Food Agency (http://www.elintarvikevirasto.fi/english/ -> Press 

releases 2004) to consume fish at least twice a week but alternating the fish species in the diet 

(Annex 1). There are specific recommendations to eat large Baltic herring or wild salmon only 

once or twice a month in order to avoid excessive exposure to PCDD/Fs and PCBs. This also 

applies to consumption of pike in order to avoid exposure to mercury. In their global assessment 
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of organic contaminants in farmed salmon, Hites et al. (2004) and later Foran et al. (2005) 

concluded that in order to diminish the risk of cancer, farmed salmon should not be eaten more 

than once per month. This risk assessment by Hites et al. was challenged by Tuomisto et al. 

(2004) who conducted a risk-benefit analysis for eating farmed salmon. It was concluded that by 

following the recommendations of Hites et al., the number of cancer deaths would decrease by 

40 cases per year, but the number of cardiac deaths would increase by over 5000 cases per year 

in Europe. This would be due to a decrease in the intakes of omega-3 fatty acids. In addition to 

healthy fatty acids, fish contain several vitamins, minerals, and are also a protein-rich food 

source. Fish are a particularly good source of vitamin D for the elderly population in Finland. 

Instead of losing the beneficial health effects by not using fish (because it is contaminated) we 

should further diminish the European and global releases of PCDD/Fs and PCBs in order to 

lower the concentrations of these contaminants in the marine environment. One way to decrease 

the concentrations of PCDD/Fs and PCBs in the Baltic fish for human consumption would be 

more efficient exploitation of herring stocks and a transition to utilizing smaller herring in the 

manufacture of prepared fish dishes.     

2. ADIPOSE TISSUE CONCENTRATIONS OF PCDD/Fs AND PCBs IN THE GENERAL 

POPULATION  

 Since the concentrations of PCDD/Fs and PCBs in this study correlated with the age of 

the subject, an adjustment according to age had to be done before any comparisons between 

countries, studies or time periods could be made. Also the sample collection period should be the 

same, due to the decreases occurring in exposure to and the adipose tissue concentrations of 

PCDD/Fs and PCBs. When taking the age and sample collection period into account, the 

concentrations of PCDD/Fs and PCBs in Finland were very similar to concentrations reported in 

other European countries, as can be seen from figures 1 and 2 depicting TEq concentrations in 

six, and PCB 153 concentrations in four European countries, respectively. 
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Fig 1. Mean TEq concentrations in six European countries at the end of 1990s and at 

the beginning of 2000 (mean age of studied population). Data from: CHAPTER 5 

(Table 4), Päpke 1998, Wingfors et al. 2000, Bocio et al. 2004, Arfi et al. 2001, 

Koppen et al. 2002.     

Fig 2. Mean PCB-congener PCB 153 concentrations in different countries in Europe 

at the end of 1990s and at the beginning of 2000 countries (mean age of studied 

population). Data from: CHAPTER 5 (Table 5), Costabeber and Emanuelli 2003, 

Wingfors et al. 2000, Koppen et al. 2002, Covaci et al. 2002, Wicklund Glynn et al. 

2000, Wicklund Glynn et al. 2003, Wallin et al. 2003. 
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A decrease in the concentrations of PCDD/Fs and PCBs from coastal to inland areas, 

similar to breast milk samples in 1994, was detected in adipose tissue samples of the general 

population in Finland. With the older population, the decrease was more pronounced towards 

inland areas when compared with the younger population. This was consistent with the results 

from breast milk samples in 2000 (Leeuwen and Malisch 2002) failing to confirm any 

differences in concentrations between Helsinki area and Kuopio. Also the food frequency 

questionnaire from the general population revealed that younger population’s fish consumption 

around Finland was already quite uniform with respect to frequency of fish and fish species 

consumed. Among the older population, Baltic herring (as well as other Baltic fish species) was 

consumed more in coastal areas when compared to inland areas, and this is the explaination for 

the more pronounced decline in adipose tissue concentrations between areas. 

It was not possible to determine the annual decrease in the exposure of Finnish 

population to PCDD/Fs and PCBs from the adipose tissue data available. Nevertheless, at the 

population level the PCDD/F concentrations did not follow the upward convex curve, reaching 

steady state at about the age of 40 years, which would be the case if the exposure had been 

stable. This indicates that the exposure has decreased during recent decades.

3. PCDD/Fs AND PCBs IN BREAST MILK 

 The estimated annual declines in PCDD/F and PCB TEqs in Finnish breast milk samples 

during the time period between 1987 and 1994 were 4% and 8%, respectively. This was in line 

with the reported decreases in breast milk samples worldwide and was also comparable to the 

annual decrease in PCDD/F intake (6%) in Finland reported in the present study. The paper of 

the third round of WHO breast milk studies described the most recent analysis of pooled breast 

milk concentrations from the year 2000 (Leeuwen and Malisch 2002). The average Finnish 

WHOPCDD/F-TEq concentration in breast milk was 9.4 pg/g fat which is 85% of the average 

concentration in Western Europe. The concentration of WHOPCB-TEq, 5.9 pg/g fat, was at the 

lower end of WHOPCB-TEq concentrations in Western Europe, representing 57% of the average 

Western European concentrations. The time-trend between 1987 and 2000 in Finland (see Fig 3) 

suggested an annual decrease of 5% and 6% of WHOPCDD/F-TEq and WHOPCB-TEq, 

respectively.  

A decrease in breast milk PCDD/F and PCB concentrations from the capital area to 

inland (Kuopio) area was found in the 1994 study confirming an earlier study in 1987 

(Vartiainen et al. 1997). By the year 2000, this regional difference no longer existed. One 
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explanation might be that in 1987 and still at the beginning of 1990s, the fish consumed in 

capital area included more Baltic herring or other Baltic fish than fish consumed in the Kuopio 

area, resulting in higher concentrations of PCDD/Fs and PCBs in breast milk of mothers in the 

capital area. Since the mid 1990s, the fish consumption habits in the two areas have converged. 

This change depicts the increasing consumption of cultivated salmon imported from Norway (in 

1992 the imported amount of Norwegian cultivated salmon was 0.1 million kg, while in 2000 it 

was already 6.6 million kg (Finnish custom statistics 2004, received by phone from the Finnish 

Game and Fisheries Research Institute)). It is assumed that young women prefer to use cultivated 

salmon fillet or frozen ready fish meals instead of Baltic herring or other fish species. 

For the year 2000 the intakes of exclusively breast feeding infants were calculated to be 

53 and 33 pg/kg bw/day of WHOPCDD/F-TEq and WHOPCB-TEq, respectively, presuming an 

infant weight of 5 kg and a daily consumption of 800 ml of breast milk with 3.5% fat. Thus the 

total exposure of an infant would exceed the TDI proposed by EU SCF, by a factor of 40. This is 

at the lower end when compared to the corresponding values in other countries. Since the TDI 

suggestion is based on lifelong exposure, it is probable that this relatively short period of high 

exposure to PCDD/Fs and should not cause hazardous health effects to infants. Instead, because 

of the many beneficial health effects of breast milk, breast feeding has been encouraged by the 

WHO (WHO 2000). 
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Fig 3. Time-trend of WHOPCDD/F-TEqs (diamonds) and WHOPCB-TEqs (open squares) 

as pg/g fat in breast milk in Finland between 1987 and 2000. Results from 1987 and 

1994 from this study, results from 1995 are unpublished data, results from 1997 partly 

published by Hölttä et al. (2001), results from 1999 published by Alaluusua et al. 

(2002), and results from 2000 published by Leeuwen and Malisch (2002).  

4. PCDD/Fs AND PCBs IN A SAMPLE OF FISHERMEN 

 A pilot study of 47 professional fishermen, population anticipated to be highly exposed to 

these environmental pollutants, was conducted, because the previous intake studies of PCDD/Fs 

and PCBs had indicated that fish are the major source of these agents in Finland. Of the studied 

fishermen 55% consumed fish at least once a week, compared to 40% of Finnish males in 

general. The fishermen preferred to consume wild fish more often than the general population. 

Fishermen’s serum fat concentrations of PCDD/Fs and PCBs were 2 to 4 times higher than those 

of the general population men of the same age (Fig. 4). The concentrations were higher in the 

Baltic Sea fishermen compared to inland lake fishermen. This was attributable to the fact that 

they ate more Baltic wild fish, which are more contaminated with PCDD/Fs and PCBs in 

comparison with inland lake fish (Hallikainen et al. 2004). High exposures of fishermen 
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populations have been reported from Sweden, with respect to Swedish Baltic Sea fishermen, and 

from North America, with respect to sport anglers fishing in the Great Lakes (Svensson et al. 1991, 

Svensson et al. 1995, Sjödin et al. 2000, Cole et al. 1997, Anderson et al. 1998, He et al. 2001).
      

Fig 4. Median year class (CHAPTERS 5 and 7) concentrations of A: WHOPCDD/F-TEq,

and B: WHOPCB-TEq in fishermen (dots) and in general population men of the same age 

in Finland (crosses). 
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5. CONGENER OCCURRENCE AND ACCUMULATION 

Figures 5 to 8 depict the congener profiles of PCDD/Fs and PCBs as percentages of the 

total concentrations and as percentages of the WHO-TEqs in market baskets representing the 

exposure of a general population in Finland. In addition, profiles of PCDD/F and PCB in 

deposition between 1997 and 2004 are illustrated in figures 5 to 8 (unpublished data from joint 

research between The Finnish Environment Institute and KTL). Deposition of PCDD/Fs and PCBs 

will contribute to the exposure of population directly via non-animal origin foodstuffs, cereals, 

vegetables, fruits and berries etc. in which the profiles of PCDD/Fs and PCBs were quite similar to 

corresponding deposition profiles. Higher chlorinated PCDD/Fs dominated the concentration 

profiles, while in PCBs the lower chlorinated congeners expressed relatively high contribution to 

the profile. Different bioaccumulation properties of PCDD/F and PCB congeners in food chains 

resulted in differences in congener profiles in animal origin foodstuffs when compared to non-

animal origin foodstuffs. Tetra and penta chlorinated PCDD/Fs expressed higher accumulation 

efficiency than the hepta and octa chlorinated congeners. Especially in many fish species these 

lower chlorinated PCDD/Fs: 2,3,4,7,8-PeCDF, 2,3,7,8-TCDF, 1,2,3,7,8-PeCDD, and 2,3,7,8-

TCDD bioaccumulate efficiently. The total diet WHOPCDD/F-TEq profile resembled very much the 

corresponding profile in Baltic herring, salmon, and rainbow trout. The contribution of the fish 

basket to the total basket was the largest due to the high concentrations of contaminants in fish. 

OCDD dominated the concentration based profile due to OCDD load from non-animal origin 

foodstuffs and also because the occurrence of OCDD in pork meat, poultry, and eggs was 

abundant. With PCBs, due to their different bioaccumulation potencies, the congener abundance 

pattern changed from lower chlorinated congeners towards higher chlorinated compounds. The 

most abundant congeners in the total diet were PCB 153, 138, 118, and 180. 

Comparison of the average Finnish exposure profiles of PCDD/Fs with the corresponding 

profiles in adipose tissue or serum samples in different subgroups of Finnish population (Fig 9 and 

10) revealed that dioxins bioaccumulate more efficiently from the food into humans than furans do. 

Especially the higher chlorinated dioxin congeners (hexa to octa substituted) made a higher 

contribution to the PCDD/F profile in human samples than in the total diet. On the contrary, the 

contribution of all ten furans diminished when moving from the total diet to human samples. The 

stronger contributions of dioxin than furan congeners in PCDD/F profiles as one moved from the 

total diet to the general population was in accordance with the reported half-lives of PCDD/Fs in 

humans (Flesch-Janys et al. 1996, Liem and Theelen 1997). In almost all chlorination patterns, 

dioxin congeners have been reported to have longer half-lives than the corresponding furan 
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congeners. One exception does exist, the half-life of 2,3,4,7,8-PeCDF have been reported to be 9.9 

or 19.6 years by Liem and Theelen (1997) and Flesch-Janys et al. (1996), respectively, while the 

corresponding half-life of dioxin congener 1,2,3,7,8-PeCDD were 8.6 or 15.7 years, respectively. 

On the basis of half-life of 2,3,4,7,8-PeCDF, one would have expected it to make a considerable 

addition to the contribution of this congener in the profile in general population. 

The contributions of the different PCDD/F congeners in profiles in young women (breast 

milk samples) and general population (adipose tissue samples) were very similar. Only with 

congener 2,3,4,7,8-PeCDF was the contribution slightly lower within young women. This might 

be due to their lower consumption of fish as compared to the general population. It was expected 

that the contribution of 2,3,4,7,8-PeCDF would be the highest among fishermen, but this proved 

not to be the case (Fig 9 and 10). It transpired that our sample of fishermen was not optimal for 

the purpose of comparing average contributions of different PCDD/F congeners between 

fishermen and other population subgroups. There were only 46 fishermen in the study 

(CHAPTER 7) and half of them were inland lake fishermen, mostly fishing from the same lake. 

By chance, a relatively large proportion of the inland lake fishermen preferred bream over other 

fish species and therefore congeners contributing the most in bream, 1,2,3,7,8-PeCDD and 

1,2,3,6,7,8-HxCDD, also contributed relatively strongly in average fishermen profile (Fig 9 and 

10). The crucial effect of fish species mainly consumed on congener profiles in an individual 

was reported in CHAPTER 7. Some of the individual fishermen in the study reported that they 

consumed exclusively or at least mostly one species of fish. The congener profiles of those 

individual fishermen were very similar to the profiles measured in the fish in the corresponding 

areas. We have further, still unpublished, data from professional Baltic Sea fishermen, and in 

that data the contribution of 2,3,4,7,8-PeCDF exceeds the corresponding contribution in other 

population subgroups. 
   



Fig 5. Congener profiles of PCDD/Fs as concentration basis in deposition and in Finnish diet. Profiles: I=Total diet, II=Animal origin market 

baskets, III=Non-animal origin market baskets, IV=Average deposition profile in Finland during 1997-2004. Congeners: 1D: 2,3,7,8-TCDD; 

2D: 1,2,3,7,8-PeCDD; 3D: 1,2,3,4,7,8-HxCDD; 4D: 1,2,3,6,7,8-HxCDD; 5D: 1,2,3,7,8,9-HxCDD; 6D: 1,2,3,4,6,7,8-HpCDD; 7D: OCDD; 1F:

2,3,7,8-TCDF; 2F: 1,2,3,7,8-PeCDF; 3F: 2,3,4,7,8-PeCDF; 4F: 1,2,3,4,7,8-HxCDF; 5F: 1,2,3,6,7,8-HxCDF; 6F: 2,3,4,6,7,8-HxCDF; 7F:

1,2,3,7,8,9-HxCDF; 8F: 1,2,3,4,6,7,8-HpCDF; 9F: 1,2,3,4,7,8,9-HpCDF; 10F: OCDF. (Market basket data from CHAPTER 3, deposition data

from joint research between The Finnish Environment Institute and KTL). 
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Fig 6. Congener profiles of PCDD/Fs as WHOPCDD/F-TEq basis in deposition and in Finnish diet.. Profiles: I=Total diet, II=Animal origin market 

baskets, III=Non-animal origin market baskets, IV=Average deposition profile in Finland during 1997-2004. Congeners: 1D: 2,3,7,8-TCDD; 

2D: 1,2,3,7,8-PeCDD; 3D: 1,2,3,4,7,8-HxCDD; 4D: 1,2,3,6,7,8-HxCDD; 5D: 1,2,3,7,8,9-HxCDD; 6D: 1,2,3,4,6,7,8-HpCDD; 7D: OCDD; 1F:

2,3,7,8-TCDF; 2F: 1,2,3,7,8-PeCDF; 3F: 2,3,4,7,8-PeCDF; 4F: 1,2,3,4,7,8-HxCDF; 5F: 1,2,3,6,7,8-HxCDF; 6F: 2,3,4,6,7,8-HxCDF; 7F:

1,2,3,7,8,9-HxCDF; 8F: 1,2,3,4,6,7,8-HpCDF; 9F: 1,2,3,4,7,8,9-HpCDF; 10F: OCDF. (Market basket data from CHAPTER 3, deposition data

from joint research between The Finnish Environment Institute and KTL). 
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Fig 7. Congener profiles of PCBs as concentration basis in deposition and in Finnish diet. Profiles: I=Total diet, II=Animal origin market

baskets, III=Non-animal origin market baskets, IV=Average deposition profile in Finland during 1997-2004. (Market basket data from 

CHAPTER 3, deposition data from joint research between The Finnish Environment Institute and KTL). 
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Fig 8. Congener profiles of PCBs as WHOPCB-TEq basis in deposition and in Finnish diet. Profiles: I=Total diet, II=Animal origin market 

baskets, III=Non-animal origin market baskets, IV=Average deposition profile in Finland during 1997-2004. (Market basket data from 

CHAPTER 3, deposition data from joint research between The Finnish Environment Institute and KTL). 
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Fig 9. Average congener profiles of PCDD/Fs as concentration basis in the average Finnish diet and in different human samples. Profiles:

I=Total diet, II=General Finnish population, and III=Inland lake and Baltic Sea fishermen. Congeners: 1D: 2,3,7,8-TCDD; 2D: 1,2,3,7,8-

PeCDD; 3D: 1,2,3,4,7,8-HxCDD; 4D: 1,2,3,6,7,8-HxCDD; 5D: 1,2,3,7,8,9-HxCDD; 6D: 1,2,3,4,6,7,8-HpCDD; 7D: OCDD; 1F: 2,3,7,8-TCDF;

2F: 1,2,3,7,8-PeCDF; 3F: 2,3,4,7,8-PeCDF; 4F: 1,2,3,4,7,8-HxCDF; 5F: 1,2,3,6,7,8-HxCDF; 6F: 2,3,4,6,7,8-HxCDF; 7F: 1,2,3,7,8,9-HxCDF; 

8F: 1,2,3,4,6,7,8-HpCDF; 9F: 1,2,3,4,7,8,9-HpCDF; 10F: OCDF.
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Fig 10. Average congener profiles of PCDD/Fs as WHOPCDD/F-TEq basis in the average Finnish diet and in different human samples. Profiles: 

I=Total diet, II=General Finnish population, and III=Inland lake and Baltic Sea fishermen. Congeners: 1D: 2,3,7,8-TCDD; 2D: 1,2,3,7,8-

PeCDD; 3D: 1,2,3,4,7,8-HxCDD; 4D: 1,2,3,6,7,8-HxCDD; 5D: 1,2,3,7,8,9-HxCDD; 6D: 1,2,3,4,6,7,8-HpCDD; 7D: OCDD; 1F: 2,3,7,8-TCDF;

2F: 1,2,3,7,8-PeCDF; 3F: 2,3,4,7,8-PeCDF; 4F: 1,2,3,4,7,8-HxCDF; 5F: 1,2,3,6,7,8-HxCDF; 6F: 2,3,4,6,7,8-HxCDF; 7F: 1,2,3,7,8,9-HxCDF; 

8F: 1,2,3,4,6,7,8-HpCDF; 9F: 1,2,3,4,7,8,9-HpCDF; 10F: OCDF. 
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Fig 11. Average congener profiles of PCBs as concentration basis in the average Finnish diet and in different human samples. Profiles: I=Total 

diet, II=General Finnish population, and III=Inland lake and Baltic Sea fishermen.
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Fig 12. Average congener profiles of PCBs as WHOPCB-TEq basis in the average Finnish diet and in different human samples. Profiles: I=Total 

diet, II=General Finnish population, and III=Inland lake and Baltic Sea fishermen. 
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According to changes in PCB congener contributions between the total diet/exposure and 

human samples, it is obvious that congeners with five or less chlorine substituents are not 

bioaccumulating in humans from food to the extent seen with the higher chlorinated PCBs (Fig 

11 and 12). All tri, tetra, and penta chlorinated PCB congeners, including non-ortho-PCB 126, 

and two hexachlorinated congeners (PCB 128, and 141) expressed a weaker contribution to the 

congener profile in human samples than would have been predicted from their presence in the 

total average Finnish diet (Fig 11 and 12).  Those congeners showing the highest 

bioaccumulation tendency included PCBs 180, 170, 194, 156, 153 and 138. 

Changes in PCDD/F and PCB profiles attributable to the deposition or other non-animal 

origin sources via the food-chain into humans raises the question of the applicability of the 

current TEF scheme in assessing the risk to human health of these contaminants in different 

matrices. The differences in accumulation efficiencies should be taken into account when 

assessing TEF by e.g. using matrix specific TEFs.    

The dominating congeners in adipose tissue samples of the Finnish general population 

were almost the same as those reported for the Swedish population with two exceptions (see 

CHAPTER 1, Fig. 5 and 6). In Finnish people, the contribution of 1,2,3,6,7,8-HxCDD exceeded 

the contribution of 2,3,7,8-TCDD in the WHOPCDD/F-TEq profile, while the reverse was true for 

the Swedes (Fig 13). In WHOPCB-TEq, the proportion of PCB 156 in the Finnish population was 

slightly higher than the contribution of PCB 126, while the reverse was true for Swedes as well 

as inhabitants of other countries (Fig 14). The predominance of the congener 2,3,4,7,8-PeCDF in 

WHOPCDD/F-TEq profile in the general population in Finland can be traced to the consumption of 

Baltic Sea fish, similar to Sweden. The relatively lower contribution of congeners 2,3,7,8-TCDD 

and 1,2,3,7,8-PeCDD might reflect the fact that these foods are relatively less contaminated with 

PCDD/Fs and PCBs in Finland, when compared to other European countries and the USA.



Fig 13. Adipose tissue or serum fat congener profile of (A) sum of PCDD/Fs and (B) WHOPCDD/F-TEqs in Sweden, Europe, USA, Far-East, and 

Finland. (Wingfors et al. 2000, Päpke 1998, Koppen et al. 2002, Arfi et al. 2001, Schecter et al. 2003, Kumar et al. 2001, Choi et al. 2002, Kim 

et al. 2005, this study). Congeners: 1D: 2,3,7,8-TCDD; 2D: 1,2,3,7,8-PeCDD; 3D: 1,2,3,4,7,8-HxCDD; 4D: 1,2,3,6,7,8-HxCDD; 5D: 

1,2,3,7,8,9-HxCDD; 6D: 1,2,3,4,6,7,8-HpCDD; 7D: OCDD; 1F: 2,3,7,8-TCDF; 2F: 1,2,3,7,8-PeCDF; 3F: 2,3,4,7,8-PeCDF; 4F: 1,2,3,4,7,8-

HxCDF; 5F: 1,2,3,6,7,8-HxCDF; 6F: 2,3,4,6,7,8-HxCDF; 7F: 1,2,3,7,8,9-HxCDF; 8F: 1,2,3,4,6,7,8-HpCDF; 9F: 1,2,3,4,7,8,9-HpCDF; 10F:

OCDF.
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Fig 14. Adipose tissue or serum fat congener profile of  (A) certain PCBs and (B) WHOPCB-TEqs in Uelen/Russia, Sweden, Europe, Far-East, 

and Finland (Wingfors et al. 2000, Wicklund Glynn et al. 2000, Wicklund Glynn et al. 2003, Sjödin et al. 2000, Grimvall et al. 1997, Covaci et 

al. 2002, Koppen et al. 2002, Costabeber and Emanuelli 2003, Sandanger et al. 2003, Kumar et al. 2001, Choi et al. 2002, this study).
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6. CONCLUSIONS 

 Based on the results of the present studies, the following conclusions can be drawn about 

the exposure and human PCDD/F and PCB body burden in Finland: 

1. Assessment of the average daily intake of PCDD/Fs and PCBs

• On average, PCDD/Fs and PCBs contributed equally to the total daily adult intake of these 

contaminants. The total average intake was below the EU SCF suggested tolerable daily 

intake (2 pg WHO-TEQ/kg bw). With respect to the WHO suggested TDIs, the average 

exposure of the Finnish population was well below the TDI on a provisional basis (4 pg 

WHO-TEQ/kg bw), but the suggested ultimate goal of TDI (1 pg WHO-TEQ/kg bw) was 

exceeded. 

• The average daily adult intake of WHOPCDD/F-TEq was very similar to that in other European 

countries, while WHOPCB-TEq intake was somewhat lower. 

• A significant part of PCDD/Fs and PCBs in the Finnish diet originated from fish and fish 

products.  

• A decline in the intake of PCDD/Fs during 1990s was detected, which is similar to that seen 

in other countries throughout the world. The main causes of the diminishing concentrations 

are likely to be (1) lowering concentrations in foodstuffs, but not in fish and (2) changes in 

population dietary habits.  

2. Assessment of the average body burden of PCDD/Fs and PCBs 

• Adipose tissue concentrations of PCDD/Fs and PCBs in Finnish people were comparable to 

the concentrations found in other countries. 

• There was a decrease in concentrations of PCDD/Fs and PCBs from coastal area to the 

inland area, and this was thought to be due to differences in fish consumption. 

• The body burdens of PCDD/Fs and PCBs in the general Finnish population did not follow 

the upward convex curve with increasing concentrations until 40 years of age to be expected 

on toxicokinetic basis at constant intake. This was concluded to be due to decreasing 

exposure of the general population to these contaminants. 

3. Assessment of the PCDD/Fs and PCBs concentrations in breast milk

• A decline in breast milk concentrations of PCDD/Fs and PCBs was detected between 1987 

and 1994 being annually 4% and 8%, respectively. This decrease continued also after taking 

into account the more recent breast milk concentrations from the years 1995 to 2000, and 

was similar to that found in other countries. 
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• Concentrations of the contaminants in breast milk samples in 2000 were somewhat lower 

than those in other European countries. 

• The concentrations in breast milk declined as one moved away from the capital area to a 

more inland (Kuopio) area at least till the mid 1990s. This gradient was concluded to be due 

to consumption of different fish species in these two locations. 

4. High exposure fishermen population 

• Professional fishermen were found to be a population highly exposed to PCDD/Fs and PCBs, 

with the concentrations of both compound groups being 2 to 4 times higher compared to non-

fishermen of the same age. 

• The source of this high exposure was concluded to be more frequent use of wild fish, 

especially Baltic fatty fish by professional fishermen. 

• PCDD/F congener profiles of many individual fishermen closely resembled the congener 

profile of the fish species that the fisherman mostly consumed as food. 

5. Congener occurrence and accumulation

• Dioxin congeners, especially higher chlorinated compounds, expressed more efficient 

accumulation potency from diet to human adipose tissue than furan congeners. The 

accumulation efficiency of the furan congener 2,3,4,7,8-PeCDF was not as high as one would 

expect it to be on the basis of reported half-life for that congener. 

• Lower chlorinated PCB congeners expressed lower bioaccumulation potencies than higher 

chlorinated congeners.

• When comparing the average Finnish adipose tissue congener pattern to the corresponding 

patterns in other countries, it was evident that the Finnish pattern most resembled the 

Swedish pattern. 
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ANNEX I  

Dietary advice on fish consumption dated April 28, 2004    
Fish is recommended food and consumption of fish should be increased. Fish contain healthy fatty acids, several 
vitamins and minerals and a lot of protein. Fish are a particularly good source of n-3 fatty acids and vitamin D. The 
useful fatty acids contained in fish have been shown to reduce the risk of cardiovascular diseases. 

The National Nutrition Council recommends that 
- fish should be eaten at least twice a week  
- different fish species should be varied in the diet.  

EXCEPTIONS TO DIETARY ADVICE ON FISH CONSUMPTION 

Despite the favourable nutritional qualities of fish, salmon and herring caught in the Baltic Sea, particularly in the 
Gulf of Bothnia and the Gulf of Finland, may subject consumers to higher than normal levels of dioxins and PCB 
compounds which are harmful to health. Also, higher than normal levels of methyl-mercury can be derived from 
predatory fish caught in inland waters, particularly pike, but also from pike caught in the sea. The older the fish, the 
more contaminants will have been accumulated in it. For these reasons, the following special recommendations 
have been issued to children, young people and people at fertile age. 

Large Baltic herring and wild-caught salmon 
Large herring, more than 17 cm in length (whole fish), can be eaten once or twice a month and as an alternative to 
large herring salmon caught in the Baltic Sea can be eaten once or twice a month.  

Pike and predatory fish from inland waters 
Pike caught in the sea or inland waters can be eaten once or twice a month. 

In addition to these recommendations  
- consumers who eat fish from inland waters on an almost daily basis should also reduce their consumption of the 

following predatory fish that accumulate mercury: large perches, pike perches and burbots 
- pregnant women and nursing mothers should not eat pike due to the mercury risk 

FISH CONTAMINANTS AND DIETARY ADVICE 

The purpose of the dietary advice is to ensure safe consumption of fish. The advice concerns dioxins, PCB 
compounds, mercury and cesium-137 contained in fish. The safety assessments are based on a portion size of 100 g 
of fish. If the portion eaten is smaller, fish can be eaten more often. Herring as well as salmon caught from the 
Baltic Sea and predatory fish from inland waters can be eaten from time to time. In summer, for example, they can 
be eaten in larger amounts, as long as the total annual consumption is balanced and restricted. 

Part (up to one third) of the dioxins and PCB compounds accumulated in fish can be removed by skinning the fish 
before preparing it as food. The exceptions to dietary advice do not apply to small herring, less than 17 cm long 
(whole fish). Filleted herring are usually large, more than 17 cm in length. 

The dioxin and PCB levels in fish from inland waters are normally low, and the mercury levels in other lake fish are 
lower than in pike. The mercury and cesium-137 levels in fish vary from one lake to the other.  

Farmed fish contain only low levels of dioxin and PCB compounds, thanks to the control of fish feed quality. 
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