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ABSTRACT

Moisture and mold problems in buildings are known to cause health effects, but
the causal agents of the exposure and the mechanisms of the health effects are
obscure. To understand this phenomenon it is important to know how the indoor
environment of a moisture damaged building differs from that of a normal, non-
damaged building.  In this thesis, the differences between moisture damaged buildings
and reference buildings in indoor air pollutants, especially microbes, were studied in 38
residences, six day-care centers and two schools with several methods including
microbial sampling of air, surfaces, building materials and dust, determination of volatile
organic compounds, formaldehyde and house dust mites. In addition, microbial diversity
and concentrations in different building materials with moisture damage were
characterized. Furthermore, the associations between moisture and mold damage in
building and symptoms or mold-specific IgG levels of occupants were examined.

The wintertime concentrations of total viable fungi and concentrations of
Penicillium, Aspergillus, and yeasts in the moisture damaged buildings were higher than
in the reference buildings. Higher levels of fungi were observed especially in the particle
size fraction of 2-3 �m. In addition, the fungal diversity was larger in the moisture
damaged buildings. Certain fungal genera, such as Stachybotrys, Ulocladium,
Tritirachium and Exophiala, were detected only in the air of the moisture problem
buildings. No differences were observed in the concentrations or occurrence of the
other parameters: airborne viable bacteria, TVOC, formaldehyde, fungi in house dust
and house dust mites

The fungal concentrations in moisture damaged and reference buildings
overlapped in most cases in moisture damaged and reference buildings, and hence no
absolute level could be said to typically indicate the existence of moisture damage.
However, by examining both the levels and flora of the air samples, indications of
moisture problems can be achieved. The determination of microbial levels and flora
especially in building materials, but also on surfaces, were shown to give additional
information on the microbial flora in building and this knowledge can be utilized in
source characterization.

The temporal variation of the fungal concentrations was significant both in index
and reference residences, whereas spatial variation affected mostly the levels in the
index residence. In order to reliably ascertain the fungal level of a residence, a sampling
campaign of 11 different sampling days in two rooms was proposed.

Fungal diversity in moisture damaged building materials was large. Stachybotrys
was associated with gypsum boards. Acremonium, Aspergillus versicolor and
actinobacteria were associated with ceramic materials and they occurred often together
on the other materials as well. Sphaeropsidales and yeasts occurred often concurrently
in damaged building materials.

Mold-specific serum IgG levels were associated with only a few microbial
findings. The occurrence of elevated serum levels was contradictory in exposed and
non-exposed populations in different studies. It can be concluded that mold-specific
serum IgG levels are not sensitive enough to indicate the current exposure in a
moisture damaged home or school environment.
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ABBREVIATIONS

AIHA American Industrial Hygiene Association
AM arithmetic mean
aw water activity
BHR bronchial hyperreactivity
CFU colony forming unit
CI confidence interval
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d50 cut off size
DG18 dichloran 18% glyserol agar
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EPS extracellular polysaccharides
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GC-MS gas chromatography-mass spectrometry
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HCHO formaldehyde
HDM house dust mite
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HVAC heating ventilating and air-conditioning
IEH Institute of Environment and Health
IgE immunoglobulin E
IgG immunoglobulin G
IND index
I/O-ratio indoor/outdoor –ratio
LAL Limulus amebocyte lysate assay
LPS lipopolysaccharide
MD median
MEA malt extract agar
MVOC microbial volatile organic compounds
NIOSH National Institute of Occupational Safety and Health
ODTS organic dust toxic syndrome
OR odds ratio
PBS phosphate buffered saline
PCR polymerase chain reaction
PDA potato dextrose agar
REF reference
RH relative humidity
SBS sick building syndrome
TLC thin layer chromatography
TVOC  total volatile organic compounds
TYG tryptone yeast glucose agar
VOC volatile organic compounds
WAGM weighted average geometric mean
YMA yeast and mold agar
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1 INTRODUCTION

Moisture and mold problems in buildings are associated with health effects of both

adults and children occupying these buildings (Verhoeff and Burge 1997, Peat et al.

1998). Moisture problems can be found in all kinds of buildings; they mostly occur as a

consequence of leaks in roofs or in plumbing or capillary movement of water in the

structures, but also condensation may take place in cases of poor ventilation or

insufficient insulation (Nevalainen et al. 1998, Haverinen et al. 1999). Moisture

problems are common in the modern building stock; approximately 55% of Finnish

residences have been estimated to be in need of repair or more thorough inspection

due to moisture faults (Nevalainen et al. 1998). The costs to health care attributable to

the moisture damage in residences have been estimated to be high, high enough to

impact on the national economy (Nguyen et al. 1998).

Moisture and associated health problems in building are a complex phenomenon

involving several complicated and inter-related components. The understanding of

moisture damage in buildings requires knowledge of building structures and moisture

physics. Excessive moisture in buildings can cause microbial deterioration of the

materials and microbial exposure to the occupants adding another factor to the

equation. The detrimental consequence of moisture damage, the symptoms and

diseases of people occupying the damaged building, demand for medical and

epidemiological expertise. One of the underlying problems in this complex entity is that

the causal agents of the exposure and the mechanisms of the health effects are not

known  (Bornehag et al. 2001).  The exposure in moisture damaged buildings has been

described with several methods showing several potential exposing agents. Because

the causal relationships are still obscure, all these methods are probably only

surrogates of actual exposure. To understand and prevent this complex phenomenon

one has to ascertain, how the indoor environment of a moisture damaged building

differs from that of a normal, non-damaged building. In addition, there is a demand to

gain information for practical situations, how to detect moisture damage and how to

reveal health outcomes and prevent them to occur.
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2 REVIEW OF LITERATURE

2.1 Moisture damage and health

Indoor air complaints are one of the most common environmental health problems. A

great many complaints are connected with moisture problems and microbial growth in

buildings, a phenomenon having several names depending on its appearance and

severity, such as dampness, damp, damp or moisture patches, water damage, moisture

damage, condensation, visible mold, mold growth or fungal growth. The association

between health and various moisture problem indicators has been studied extensively,

in more than 100 studies as reviewed by Verhoeff and Burge (1997), Peat et al. (1998)

and Bornehag et al. (2001).

The adverse health effects associated with dampness and mold appear mainly as

respiratory symptoms (cough, wheeze and asthma), but also as unspecific symptoms

like tiredness and headaches (Peat et al. 1998, Bornehag et al. 2001). The health

findings are quite similar in various climatic areas and among both children and adults.

Irritative symptoms in the eyes, respiratory tract and skin have been observed in the

occupants of moldy buildings, and in some cases, exposed people even develop

outright allergies  (Waegemakers et al. 1989, Husman 1996, Garrett et al. 1998, Reijula

1998). In addition, the prevalence of respiratory infections has been abnormally high in

occupants of moldy buildings (Waegemakers et al. 1989, Brunekreef et al. 1989,

Pirhonen et al. 1996, Husman 1996, Koskinen 1999). Alveolitis, organic dust toxic

syndrome (ODTS) and other chronic pulmonary diseases may also develop, although

they are usually associated with high exposure in occupational environments such as

agriculture (Lacey and Crook 1988, Husman 1996, Reijula 1998).

The association between health effects and building-related moisture and mold is well

demonstrated, but the causative agents and mechanisms that lead to the symptoms

remain poorly known (Bornehag et al. 2001). Sensitization to mite allergens can explain

only part of the adverse health effects encountered in moldy buildings (Bornehag et al.

2001). Even though the mechanisms and causal factors are still obscure, extensive

moisture damage and fungal growth in buildings are unacceptable and should be
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removed and prevented (AIHA 1996, Flannigan et al. 1996, Ministry of Social Affairs

and Health 1997). One important challenge in this research field is to reveal the causal

relationships behind the complex phenomenon.

2.2 Exposing agents in moisture damaged buildings

Moisture damage is an event where undesired accumulation of water takes place, thus

moistening structural components, insulation materials or the surface material of the

building. Moisture damage may be a consequence of leaks in the roof or the plumbing,

due to condensation in cases of poor ventilation or insufficient insulation or due to

capillary movement of water from soil. Regular or extensive moistening of materials

promotes to various chemical and microbial deterioration processes, which may lead to

release of chemical and biological emissions into indoor air. However, the relative

importance of these various agents as possible causative factors to health effects

remains obscure.

Biological particles represent one type of the possible exposing agents with health

significance in the indoor air of moisture problem buildings. These particles consist of a

variety of fungal, bacterial and other biological materials. In addition to microbial spores

and cells, several structural components of microbes, such as ergosterol, the principal

sterol in membranes of hyphae and spores of fungi; endotoxin, the cell wall component

of gram-negative bacteria; or �(1 ��������	
������

���
�����
�
����	���	����
����	��

and yeasts and some bacteria, may have health relevance or they can be, at least,

used as exposure indicators. Microbial growth may also produce volatile organic

compounds (VOCs) and microbial toxins in their metabolism (Sunesson et al. 1996,

Korpi et al. 1998, Pohland 1993). High levels of indoor humidity can also increase the

populations of house dust mites present in homes (Konsgaard 1983).

In addition to microbiological deterioration, increased moisture content in materials may

enhance emissions due to chemical breakdown (Batterman 1995). In particular, the

emissions of formaldehyde depend on moisture conditions in the building (Reponen et

al. 1991, Tucker 1991). All of these moisture associated indoor air pollutants may all

contribute to the symptoms of occupants (Jones 1999).
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2.3 Sources of microbes in buildings

2.3.1 Outdoor air

Outdoor air is usually the main source for airborne fungi in indoor environments

(Gravesen et al. 1979, Burge 1990, Levetin 1995). The fungal population in outdoor air

is diverse, but consists mainly of phylloplane mycoflora, such as Cladosporium,

Alternaria, Aureobasidium together with Penicillium, Aspergillus, Botrytis and groups of

fungi such as yeasts and basidiomycetes (Tobin et al. 1987, Li and Kendrick 1995b,

Beaumont et al. 1985, Cooley et al. 1998). The concentrations of viable fungi vary

typically from 102 to 104 cfu/m3 in summer conditions, while the levels are lower in

winter, generally <102 cfu/m3 (Macher et al. 1991, Reponen et al. 1992, Kuo and Li

1994, Li and Kuo 1994). Geographical and climatic factors play a major role in airborne

fungal concentrations. In cold climates with snow cover on the ground, the seasonal

variation is great, and in winter, outdoor concentrations of microbes are extremely low

due to the snow cover and thus these have only little influence on the indoor air

mycoflora (Reponen et al. 1992). In warmer climates and also in a cold climate during

the frost-free seasons, the concentrations of indoor air fungi follow mainly outdoor

concentrations (Fradkin et al. 1987, Li and Kuo 1994, DeKoster and Thorne 1995,

Dharmage et al. 1999b, Burge et al. 2000, Su et al. 2001). This impact of outdoor air

has normally been estimated by using indoor/outdoor ratios of viable fungi or specific

genera (Fradkin et al. 1987, Kuo and Li 1994, DeKoster and Thorne 1995, Burge et al.

2000, Su et al. 2001).  Even in frost-free seasons, there is a considerable temporal

variation in fungal concentrations (Burge 1990).

The transport of spores from outdoor air into indoor air is influenced by the type of

ventilation. Mechanical ventilation systems with a filtration of the supply air have been

observed to reduce indoor air concentrations of fungi  (Reponen et al. 1989, Reponen

et al. 1992, DeKoster and Thorne 1995, Parat et al. 1997, Burge et al. 2000). Microbes

can also enter the building through open doors and windows as well as via uncontrolled

air streams through the structures, although the building frame can act as a filter

(Thatcher and Layton 1995).
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2.3.2 Normal sources

Everyday activities, such as handling foodstuffs or firewood, cleaning and other

household activity may release microbes into the indoor air causing occasionally even

high concentrations (Hunter et al. 1988, Lehtonen et al. 1993). While frequent

vacuuming has been demonstrated to decrease indoor air concentrations (Dharmage et

al. 1999b), vacuuming of contaminated carpet may increase airborne concentrations

(Buttner et al. 2001).  Pets and their bedding materials increase the concentrations of

viable fungi in air or �(1 ��������	
� �	� ��
�� �����
	�	� et al. 1993, DeKoster and

Thorne 1995, Dharmage et al. 1999b, Gehring et al. 2001, Ren et al. 2001). In addition,

microbes can be carried indoors on the clothes of people after their work or visits to

highly contaminated environments such as barns or stables (Pasanen et al. 1989).

Spores may also drift through air movements within a building or between buildings

especially if they are connected with corridors (Rautiala et al. 1996, Morey 1993).

Storage of separate organic household waste indoors can be a significant source of

microbial contamination of homes (Wouters et al. 2000). Other housing characteristics

also affect microbial levels; elevated �(1 ��������	��	����	���������
��	��
�
����
��
�

indoor air have been associated with wall-to-wall carpets or plants (Li and Kendrick

1995a, Wouters et al. 2000, Gehring et al. 2001, Pessi  et al. 2002). Fungi can also be

transported into the indoor air from a crawl-space type of basement with a dirt floor and

basements or cellars in general (Su et al. 1992, Lehtonen et al. 1993, DeKoster and

Thorne 1995, Ren et al. 1999).

House dust has been considered as a reservoir of fungi, from which spores can be

resuspended into the air. The importance of this phenomenon can, however, be

questioned, since of the several fungal species found in house dust, only half of them

were detected in indoor air  (Miller et al. 1988).  In normal dry conditions, fungal spores

do not germinate or grow in the indoor environment, but are removed by gravitational

settling or by ventilation. However, spores can develop into microcolonies on surfaces

that occasionally become wet (Pasanen et al. 1992a).

Fungal spores gradually accumulate in buildings. Thus, indoor air concentrations of

viable fungi are higher in older than new residences (Pasanen 1992). This also appears
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as high concentrations of airborne fungi during demolition of building structures

(Rautiala et al. 1996).

The indoor air of occupied buildings typically has higher levels and a different flora of

bacteria than outdoor air (Nevalainen 1989, Otten and Burge 1999). The main source

for indoor air bacteria is humans (Nevalainen 1989). The levels of bacteria in Finnish

buildings increased significantly after the occupants had moved in (Reponen et al.

1989). However, no such difference in pre- and post-occupancy periods were found in

microbial concentrations in a two year sampling period in San Francisco, CA (Macher et

al. 1991).

2.3.3 Microbial growth

Dampness and moisture

Microbes are ubiquitous in building structures, and microbial growth starts when the

moisture conditions permit. Thus, moist building materials provide a potential and

unwanted source of microbes. The source strength of microbial contamination depends

on type, seriousness, extent, age and location of the moisture damage. In fact, due to

the strong association between such microbial growth and health effects (see section

2.1), microbial growth can be regarded as one of the most important causes of indoor

air problems and complaints. Visible mold or dampness in buildings are associated with

elevated concentrations of fungi in air (Hunter et al. 1988, Li and Kendrick 1995a,

Garrett et al. 1998, Dharmage et al. 1999b, Ellringer et al 2000) and in house dust

(Verhoeff et al. 1994b) as well as with an increased ergosterol content in dust

(Dharmage et al. 1999b).  Microbial growth inside insulated external walls has been

noted to increase the levels of the actinobacteria in the indoor air, but not the levels of

fungi (Pessi et al. 2002). The demolition of moldy structures has been observed to

create very high airborne fungal levels (Rautiala et al. 1996).

The ducts of heating, ventilating and air-conditioning (HVAC) systems can also act as

sources of fungal contamination (Bernstein et al. 1983, Garrison et al. 1993). Water

condensation may take place in ducts, which are often located in unheated areas of a

building.  Also uncovered insulation material within ducts may support microbial growth
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(Foarde et al. 1997). In the case where the growth takes place in the ducts of supply air,

the ventilation system acts as a distribution mechanism for the spores into indoor air

(Rossi et al. 1991).  This type of source can be eliminated by the sanitation of air

handing systems (Garrison et al. 1993, Levetin et al. 2001) or increased efficiency of

filtration.

Factors affecting microbial growth

The most important factors that affect microbial growth on building materials are

moisture, nutrients, and temperature. In principle, water availability, usually discussed in

terms of water activity (aw), is the most critical factor for microbial growth. Moisture

demands depend on fungal genus or species (Grant et al 1989), but, in general, most

mesophilic molds can grow at aw of 0.95-0.99, while the range for xerophilic molds and

for yeasts are 0.65-0.90 and 0.88-0.99, respectively (Gravesen et al. 1994). On

materials with limited nutrients, the minimal aw is higher as is the case with lower than

optimum temperatures (Grant et al. 1989, Flannigan 1992a). Fungal growth can start

rapidly when moisture conditions are optimal in the material (Adan 1994). Rapid drying

of a material decreases the viability of the spores (Pasanen et al. 2000b), even though

some fungi (e.g. Penicillium) can tolerate fluctuating moisture conditions (Adan 1994,

Korpi et al. 1998). Relative humidity (RH) of air has no direct influence on fungal growth,

because fungi can grow at very low air humidities if there is enough moisture on the

surface (Gravesen et al. 1994). Condensation on cold surfaces, however, is possible

and the humidity of air can influence the moisture content of material; an RH value of

70% is often considered to be critical (Hunter et al. 1988, Grant et al. 1989). No

colonization of fiberglass insulation was seen at RH below 50% (Ezounu et al. 1994).

Fungi and bacteria need external sources of nutrition: carbon, nitrogen, phosphorous,

and potassium (Dix and Webster 1994), which are usually provided by most building

materials. Trace amounts of nutrients occur even in house dust and water and

therefore, the availability of nutrients does not generally limit the microbial growth. Fungi

can indeed grow on materials such as fiberglass and on galvanized steel which has an

accumulated dust layer or a residue of lubricant oil (Pasanen et al. 1993a, Pasanen et

al. 1993b, Chang et al. 1996, Buttner et al. 1999). The temperature in buildings,

typically 20-25�C, promotes mainly mesophilic microbes, that have their optimal growth
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temperature 20-<45�C (Ingold and Hudson 1993, Atlas and Bartha 1993). However,

microbes may grow slowly at temperatures well below their optimal (Atlas and Bartha

1993, Hyvärinen et al. 1991).  In addition, thermophilic microbes growing at 35-90�C are

occasionally found in buildings (Burge and Otten 1999).  Most of the fungi grow best in

rather neutral circumstances, optimally in the pH range 5-6.5 (Ingold and Hudson

1993), which is also the pH range of most building materials. Because there is usually

also enough light and oxygen available in the buildings, the availability of water remains

the critical factor regulating the possible growth of microbes in indoor environments.

2.4 Behavior of microbes in indoor environments

Different fungal genera have different capacities to release spores, which partly

explains the fungal composition of indoor air.  For example, dry spores of Penicillium

and Aspergillus are more easily released into air than Cladosporium spores under the

same indoor air conditions (Pasanen et al. 1991). Penicillium commune more easily

releases spores than Aspergillus versicolor or Paecilomyces variotii (Näsman et al.

1999). This may partly explain the frequent occurrence of Penicillium in indoor air

(Hunter et al. 1988, Miller et al. 1988, Pasanen 1992, Kuo and Li 1994, Beguin and

Nolard 1994, Ren et al. 1999, Górny et al. 1999, Burge et al. 2000). Fungi producing

spores in slime, such as Stachybotrys and Acremonium, or those producing spores in

closed fruiting bodies, such as Chaetomium, are not able to release spores easily

(Samson et al. 1996), thus the finding of their spores in air is less probable.

The release of spores of fungi and also sporulating bacteria such as actinobacteria are

affected by external factors such as air humidity (Pasanen et al. 1991, Reponen et al.

1998, Foarde et al. 1999) and air velocity (Zoberi 1961, Pasanen et al. 1991, Foarde et

al.1999, Górny et al. 2001), as well as the texture of the surface and vibration of

contaminated material (Górny et al. 2001). More spores were released at a higher air

velocity and at lower air humidity, while air turbulence increased the release from a

rough surface (Górny et al. 2001). A mechanical disturbance of mold growth, such as

dismantling, increased the airborne concentration of spores (Hunter et al. 1988,

Rautiala et al. 1996). In the study of Pessi et al. (2002), actinobacteria growing in the

insulation layer of an external wall were observed to infiltrate to the indoor air, while
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fungal contamination originating from the envelope of precast concrete panel buildings

was rare.

The behavior of airborne microbes, like particles in general, is strongly affected by the

size of the spore or the cell (Reponen et al. 2001). All mechanisms for settling,

resuspension and removal of microbes are at least partly influenced by the size of the

particle.  The smaller particles stay airborne longer, whereas the larger particles settle

faster. Spores and cells are removed from indoor air by gravitational settling or by air

movements due to ventilation. Even though lower concentrations of fungi have been

reported in buildings with mechanical ventilation (Harrison et al. 1992), the operation of

the mechanical ventilation does not always correlate with the airborne concentrations of

viable fungi and bacteria (Lawton et al. 1998, Lappalainen et al. 2001). Settled spores

can be resuspended into the air by human activity. Normal walking on a carpet can

significantly increase spore counts (Buttner and Stetzenbach 1993). In addition, the

higher airborne fungal levels found in schools with carpeted floors than in respective

offices were suggested to be due to the higher activity levels in schools (Gravesen et al.

1986). Human activity is also known to cause the phenomenon called the “personal

cloud” by being close to sources, such as cooking and vacuuming, and by

resuspension of coarse particles (Wallace 1996).

The concentrations of viable fungi in indoor air are suggested to have large temporal

and spatial variations (Hunter et al. 1988, Verhoeff et al. 1990, Pasanen et al. 1992c).

The temporal variation is partly due to the seasonal variation in the fungal

concentrations of the outdoor air (Kuo and Li 1994, Reponen et al. 1992, Ren et al.

1999) and partly due to the activity of the occupants; the highest concentrations are

seen during the most intense activity (Flannigan 1992b). The spatial variation of total

spores within the same building can be remarkable  (Li and Kendrich 1995a), but there

are also studies reporting no or little spatial variation between the different rooms of the

same building (Dotterud et al. 1995, Ren et al. 1999, Ross et al. 2000, Ren et al. 2001).

Higher concentrations of fungal spores in the living room have been explained by higher

activity there than in other rooms, but also by the influence of outdoor air, because the

difference was seen in the concentrations of Cladosporium and Alternaria (Li and

Kendrich 1995a).  Spatial variation may also be caused by differences in fungal

sources, as the variation seems to be greatest in damp residences, and between living
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areas and basements (Pasanen et al. 1992c, DeKoster and Thorne 1995, Ren et al.

1999). The largest fungal diversity found in the kitchens is thought to reflect the release

of spores during food preparation and cooking (Li and Kendrich 1995a).

2.5 Determination of microbes in indoor environments

Determination of concentrations and flora microbes in a building is usually done either

in order to estimate the microbial exposure of the occupants or in order to find abnormal

sources of microbes. In both exposure assessment and source characterization, it is

essential to know what kind of exposure or contamination can be considered as normal

or abnormal.

2.5.1 Sampling of bioaerosols

Several methods are available for sampling of bioaerosols. No single sampling method

can be used to collect, identify and quantify all bioaerosols at the same time

(Nevalainen et al. 1992, Reponen et al. 2001). The selection of the method must be

based on the aim of the measurement, the environment and the resources available. In

the sampling of bioaerosols, different physical forces are applied: inertial impaction,

centrifugal impaction, liquid impingement, filtration and gravitational settling (Willeke

and Macher 1999, Reponen et al. 2001).

In inertial impaction, the inertia of the particle forces it to impact on the collection

surface. This principle is used in multi-hole impactors, such as one-, two and 6-stage

Andersen impactors, Burkard spore trap and surface-air-sampler (SAS) as well as in slit

samplers (e.g. agar slide impactor, glass slide impactor). Centrifugal impaction is also

based on the inertia of the particle, but in a radial manner. Examples of use of this type

of impaction are Reuter Centrifugal samplers (RCS, RCS+) and cyclone samplers

(Willeke and Macher 1999). In liquid impingement, particles are mainly collected with

inertial impaction, but also due to the diffusion within bubbles (Reponen et al. 2001).

This principle is employed in all-glass impingers (e.g. AGI-4, AGI-30) and in the

BioSampler. The sampling principle of the BioSampler is based on both inertial

impaction and centrifugation (Lin et al. 1999). In filtration, several forces are used to

separate particles from air: inertia, interception, gravitational settling, diffusion and
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electrostatic attraction (Willeke and Macher 1999). Examples of filter sampling devices

are cassette filters and Button sampler (Willeke and Macher 1999, Aizenberg et al.

2000). In gravitational settling, the particles settle passively on the collection surface,

which can be an open petri dish supplied with growth medium.

The samplers differ in cut-off size (d50), which is the particle size above which 50% or

more of the particles are collected. Impactors have steep cut-off characteristics;

therefore in most impactors, d50 is assumed to be the size above which all particles

larger than that size are collected (Nevalainen et al. 1992). There are several studies

that have characterized the performance of various samplers (Nevalainen et al. 1992,

Grinshpun et al. 1994, Aizenberg et al. 2000) or compared their behavior in field or

experimental studies (Heikkilä et al. 1988, Smid et al. 1989, Verhoeff et al. 1990,

Verhoeff et al. 1992, Jensen et al. 1992, Thorne et al. 1992, Buttner and Stetzenbach

1993, Juozaitis et al. 1994, Cage et al. 1996, Mehta et al. 1992, Gao et al. 1997, Hauck

et al. 1997, Pahl et al. 1997, Lin et al. 1999, Bellin et al. 2001). The principle of

operation, cut-off sizes and application possibilities of commonly used samplers are

described in detail by Willeke and Macher (1999).

2.5.2 Analysis of bioaerosols

The analysis of bioaerosol samples is based on either cultivation of the collected

microbes into colonies, direct microscopical counting of spores or cells, analysis of

chemical markers of biomass, immunochemical analysis of allergens, or determination

of biological activity. Recently, PCR-assays for indoor fungi have been developed,

which may soon change the routine protocol for microbiological methodology of indoor

environment (Haugland et al. 1999, Zhou et al. 2000, Buttner et al. 2001, Cruz-Perez et

al. 2001a and b, Williams et al. 2001).

Cultivation

The determination of airborne levels of fungi and bacteria has been traditionally based

on cultivation methods after sampling with impactors directly on growth media (Hunter

et al. 1988, Miller et al. 1988, Reponen et al. 1989, Verhoeff et al. 1990, Nevalainen et

al. 1991, Verhoeff et al. 1992, Pasanen et al. 1992c, Pasanen 1992, Reponen et al.
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1992, Beguin and Nolard 1994, Lehtonen et al. 1993, DeKoster and Thorne 1995,

Burge et al. 2000, Miller et al. 2000). The most widely used sampling device is the

Andersen 6-stage impactor, which collects airborne microbes effectively (Willeke and

Macher 1999) and allows identification of air spora and examination of microbes in

different size classes. The six-stage impactor is, however, suitable only for short periods

of air sampling, <20 min. Cultivation has also been made from filter samples (Palmgren

et al. 1986, Björnsson et al. 1995, Rautiala et al. 1996) and impinger samples (Jensen

et al. 1992, Thorne et al. 1992, Lin et al. 1999). The airborne microbial flora has been

determined with gravitational settling samples in a few studies (Rogers 1984, Verhoeff

et al. 1992, Cvetnic and Pepeljnkak 2001). Even though levels given by this method

may correlate with levels given by the 6-stage impactor (Verhoeff et al. 1992), the

method is semiquantitative at best, because it greatly favors larger particles and is

affected by air movements (Reponen et al. 2001).

The methods based on cultivation always involve the use of growth media, but no single

medium is capable of detecting all of the microbes present in the air. The media that are

generally used for detecting fungi in indoor environments include 2% malt extract agar

(MEA) for hydrophilic fungi, dichloran 18% glycerol agar (DG18) (Samson et al. 1994,

AIHA1996) and malt-salt agar for xerophilic fungi and cellulose agar for Stachybotrys

chartarum (AIHA1996). The choice of the medium influences how readily various

genera are detected. For example, MEA favors fast growing Penicillium and Aspergillus

sp. at the expense of slower-growing genera like Stachybotrys and Chaetomium

(Samson et al. 1994, Andersen and Nissen 2000), which would be best detected with

corn meal agar (CMA) (Tsai et al.1999) or V8 juice agar (Andersen and Nissen 2000).

Microscopic counting

Only some of the microbes in indoor air are viable (Näsman et al. 1999, Toivola et al.

2002) or able to grow on the culture media provided (Burge and Otten 1999). The total

number of microbes can be determined with microscopical counting of spores and cells

with light microscopy, epifluorescence microscopy or scanning electron microscopy

(Palmgren et al. 1986, Eduard et al. 1990). The preparation of the sample depends on

the type of microscope to be used (Heikkilä et al. 1988, Eduard et al. 1990). When
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using the epifluorescence microscope, the counting can also be done with image

processing (Kildesø and Nielsen 1997).

Cultivation methods underestimate the total microbial levels, but it has been shown that

the viable and total spore concentrations in indoor environments correlate well

(Palmgren et al. 1986, DeKoster and Thorne 1995). Several estimates have been

presented for the proportion of viable/culturable microbes out of the total numbers of

airborne biological particles. In dwellings, the number of viable fungi has been observed

to be only about 1% of the total counts of the spores (Toivola et al. 2002). In agricultural

environments, a large variability in this proportion has been observed; Heikkilä et al.

(1988) and Hanhela et al. (1995) have reported 1-25% of fungal spores to be viable,

whereas according to Eduard et al. (1990) 0.1 – 68% of bacteria and actinobacteria and

3-98% of fungi were viable.

2.6 Microbial concentrations and flora in indoor air

2.6.1 Fungal concentrations and flora

A summary of the airborne levels of fungi in residences is presented in Table 1, in

which the studies have been divided into three groups according to the study design:

residences with suspected mold damage or other indoor complaints, residences without

any known indoor air problems and a few examples of other environments. The

designs, sampling methods and results of fungal measurements as well as main

conclusions of the studies are shown. The studies are listed in the order of their year of

publication.

Table 1 shows that the concentrations of viable airborne fungi vary between 101-105

cfu/m3. This wide range is partly explained by the impact of outdoor air (see section

2.3.1). Mean levels are, however, typically 102-103 cfu/m3. In two studies, lower indoor

levels have been reported in winter; this was noted not only in a cold climate (Reponen

et al. 1992) but also in a subtropical climate (Kuo and Li 1994). In most studies, the

sampling period covered several seasons. The impact of the seasonal variation has

either not been taken into account in the studies of indoor fungi or has been resolved by

calculating indoor/outdoor ratios of total fungi or genera. The total concentrations of
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fungal spores in homes varied between 103 – 6*105 spores/m3 (Björnsson et al. 1995,

Rautiala et al. 1996, Toivola et al. 2002). As examples of other environments, fungal

levels in a few studies concerning offices and a hotel are shown.  The levels in those

environments varied between 10-104 cfu/m3 (Table 1).

The most frequently found genus in indoor air has been Penicillium together with

Cladosporium, Aspergillus (Hunter et al. 1988, Miller et al. 1988, Waegemaekers et al.

1989, Strachan et al. 1990, Pasanen 1992, Pasanen et al. 1992c, Kuo and Li 1994, Li

and Kuo 1994, Beguin and Nolard 1994, Dotterud et al. 1995, Ren et al. 1999, Górny et

al. 1999, Burge et al. 2000) and yeasts (Hunter et al. 1988, Pasanen 1992, Pasanen et

al. 1992c). These common genera and groups are mostly the same, independent of the

climate or continent, because the studies originate from Great Britain, Canada, the

Netherlands, Finland, Taiwan, Belgium, Norway, USA, and Poland. In several studies,

Cladosporium has been the most dominating genus and its main source has been

outdoor air (Verhoeff et al. 1992, DeKoster and Thorne 1995, Dharmage et al. 1999b,

Ren et al. 1999, Su et al. 2001).  In addition to the most common genera or groups,

also other genera e.g. Ulocladium, Geomyces, Sistotrema and  Wallemia have been

found relatively often (Hunter et al. 1988, Verhoeff et al. 1992).

2.6.2 Fungal concentrations in relation to building dampness or moisture

In some studies, the association between elevated fungal levels and moisture damage

or observed mold growth has been investigated. There are also a number of reports

that present studies of indoor air fungi with disease-based design. Because the overall

picture of the complex triangle between building damage, health effects and microbial

exposure is unclear,  a variety of  studies and their main conclusions are summarized in

Tables 1 and 2.

The observations of concentrations of viable fungi in moisture damaged residences

have been contradictory (Table 1; residences with suspected mold damage or other

indoor complaints). In general, fungal concentrations have been higher in moisture

damaged buildings than in buildings without such problems (Gallup et al. 1987,

Waegemakers et al. 1989, Verhoeff et al. 1992, Li and Kendrick 1995b, Dharmage et

al. 1999b, Johanning et al. 1999, Klánová 2000). Hunter et al. (1988) also showed that
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there were higher levels of fungi in a room with visible growth than in those rooms

where mold was absent. On the other hand, there are many studies where no

difference in concentrations of viable fungi between moldy and non-moldy buildings has

been observed (Strachan et al. 1990, Nevalainen et al. 1991, Pasanen et al. 1992c,

Pasanen 1992, Dill and Niggemann 1996, Garrett et al. 1998) or between homes with

severe and mild mold damage (Miller et al. 2000). Furthermore, fungal growth in the

insulated external wall of precast concrete panel buildings has not been found to affect

the indoor air levels (Pessi et al. 2002). In some studies reporting fungal levels, the

residences have been defined as complaint buildings with no description on moisture-

related indoor air problem (Table 1). In these studies, higher concentrations of fungi or

I/O-ratio of the fungal concentration have indicated indoor air sources for fungi

(Reynolds et al. 1990, DeKoster and Thorne 1995). In addition, fungal levels have been

observed to increase during the demolition of moldy structures or constructional work

(Hunter et al. 1988, Rautiala et al. 1996), but decrease back to baseline level in a few

months after removal of the damaged materials (Rautiala et al. 1996, Ellringer et al.

2000).

In most studies, the classification of residences is based on reported or observed visible

mold. There are only a few studies that have investigated levels in buildings with no

moisture or mold damage. The range or average of the fungal concentrations in

residences with or without mold or moisture damages have not been always reported,

which makes the comparison difficult. In general, the distributions of fungal levels in

moldy and non-moldy buildings overlap. Extremely high levels (e.g. 23 000 cfu/m3) have

been reported even in residences with no visible mold in a study that showed the

association between mold damage and fungal levels (Hunter et al. 1988).  Only in the

studies of Klánová (2000) and Johanning et al. (1999) was the difference in ranges of

fungal levels fairly clear. Based on these studies, there is no fungal level that always

indicates moisture or mold damage, even though several attempts to set such limits

have been reported (Rao et al. 1996).  In order to use fungal levels in source

characterization, the conclusion must be based on the knowledge of what is considered

normal in the environment and climate of interest.

In Table 1, several studies are also listed that deal with residences without any known

indoor air problem, in order to describe the overall fungal levels of residences.  The
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levels vary between 10 –105 cfu/m3 and thus overlap with the levels observed in the

residences with moisture or mold problem. These studies have examined several

factors accounting for the variation in fungal levels, such as seasonal variation, outdoor

air and ventilation (see also sections 2.3.1 and 2.3.2).



Table 1. The summary of the airborne fungal levels in residences and a few other environments and the relation between levels and
building characteristics or outdoor air.

STUDY NUMBER AND
TYPE OF SITES

STUDY DESIGN METHOD LEVELS OF AIRBORNE FUNGI FUNGAL LEVELS IN RELATION
TO BUILDING CHARACTERISTICS

Residences with suspected mold damage or other indoor complaints
Gallup et al. 1987 127 residences Moisture problem

Non-problem
6-stage impactor problem : AM 5950 cfu/m3

non-problem: AM 716 cfu/m3
Levels in problem homes higher

Hunter et al. 1988 62 residences Monitoring complaint
homes

6-stage impactor
(MEA)

Visible mold: <12-449 800 cfu/m3

No mold: <12- 23 070 cfu/m3
High levels of fungi associated with
visible mold growth, constructional
work and activity

Miller et al. 1988 50 residences Characterize levels of
fungi and fungal
metabolites in winter

RCS (Rose bengal
malt extract)
Filter (Rose bengal
malt extract, MEA +
sucroce)

RCS : AM 345 cfu/m3

(0-3125)
Filter : AM 111 cfu/m3

No conclusion on effect on moisture
or dampness

Waegemaekers et
al. 1989

36 residences Damp (24)
Reference (8)

6-stage impactor
(MEA)

Damp: GM 192 cfu/m3

Reference: GM 102 cfu/m3
Fungal levels associated with
dampness.

Strachan et al.
1990

88 residences Homes of children with
wheeze (34) and
Controls (54)

6-stage impactor
(MEA)

Visible mold: <41 300 cfu/m3

(MD 200-294)
No mold:       < 38 600 cfu/m3

(MD 21-283)              

Median concentrations of viable
fungi did not associate with visible
mold.

Reynolds et
al.1990

6 residential and
office
environments

Monitoring complaint
buildings

2-stage impactor
(Sabouraud
dextrose agar)

Indoors: <18900 cfu/m3

Outdoors: <1090 cfu/m3
High I/O and flora indicated indoor
air sources.

Nevalainen et
al.1991

48 residences Mold damaged (30)
Reference (18)

6-stage impactor
(Hagem)

Damaged: 10-2300 cfu/m3

(GM 102)
Reference: 165-850 cfu/m3

(GM 308)

The mean concentrations of viable
fungi lower in the damaged than
reference residences, but
higher mean I/O-ratio in the
damaged residences (4.2/0.6)
indicates indoor sources.

Pasanen et
al.1992c

46 residences Damp (25)
Reference (21)

6-stage impactor
(Hagem)

Damp: <2291 cfu/m3 (GM 80)
Reference: <1445 cfu/m3 (GM 78)

Levels not higher in damp houses.

Continued
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Table 1. continued
STUDY NUMBER AND

TYPE OF SITES
STUDY DESIGN METHOD LEVELS OF AIRBORNE FUNGI FUNGAL LEVELS IN RELATION

TO BUILDING CHARACTERISTICS
Pasanen 1992 57 residences Urban (21)

Damp urban (22)
Rural (13): 7old+ 6new

6-stage impactor
(Hagem/MEA)

Urban: <1445 cfu/m3

(GM 78)
Damp: 2-1198 cfu/m3 

(GM 69)
New rural: 25-1916 cfu/m3

(GM 70)
Old rural: 98-5730 cfu/m3

(GM 1012)

Levels not higher in damp houses.
Levels higher in old rural houses.

Verhoeff et al.
1992

130 residences Relation of fungal
levels on dampness

1-stage impactor
(DG18)
Sedimentation
(DG18)
(in 84 residences)

Indoors: 62-43045 cfu/m3

              (GM 640-822)
Sedimentation: 0-518 cfu

Fungal levels correlated  weakly
with house damp.

Beguin and
Nolard 1994

130 residents Monitoring patient
homes

RCS (HS medium
with rose bengal)

375-3750 cfu/m3 No conclusion on effect on moisture
or dampness.

DeKoster and
Thorne 1995

41 residences: Health based home
categories:
Non-complaint (27)
Intervention (10)
Complaint (4)

6-stage impactor
(MEA)

Noncomplaint: GM <1290 cfu/m3

Intervention:  GM <1100 cfu/m3

Complaint: GM <6700 cfu/m3

I/O-ratios higher in complaint
homes.
Levels higher in the basement than
main floor.

Li and Kendrick
1995b

15 residences Homes of allergic (13)
Homes of non-allergic
(2)

Samplair MK1/MK2 Damp: 2727 spores/m3

Non-damp: 2051 spores/m3
Levels higher in the damp
residences.

Rautiala et al.
1996

7 buildings Monitoring of effect of
mold damage repair

6-stage impactor
(MEA)
filter

Before repairs:
GM 370 cfu/m3 (<1150)
GM 59000 spores/ m3 (<500000)

After repairs:
GM 200 cfu/m3 (<300)

Demolition of moldy structures
increase levels remarkably.
Levels on baseline after 6 months.

Dill and
Niggemann 1996

20 residences Homes of children with
allergic diseases

RCS
(MEA+Czapek Dox)

Visible mold: 64 – >4000 cfu/m3

No mold:     <13 – 1652 cfu/m3
Airborne levels did not correlate
with visible fungal growth.

Continued
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Table 1. continued
STUDY NUMBER AND

TYPE OF SITES
STUDY DESIGN METHOD LEVELS OF AIRBORNE FUNGI FUNGAL LEVELS IN RELATION

TO BUILDING CHARACTERISTICS
Garrett et al.1998 80 residences Homes of asthmatics

(43) and non-asthmatic
(37)

1-stage impactor
(MEA)

<20-54749 cfu/m3 (MD 812) No association between mean
levels and visible mold.
Elevated levels of fungi associated
with musty odor, moisture or
humidity, poor ventilation and
failure to clean indoor mold growth.

Rautiala et al.
1998

3 buildings Reducing microbial
exposure during
demolition of moldy
structures

Filter cultivation
(MEA, DG18)

Before repairs: 860-1300 cfu/m3

During repairs: <8*105
Local exhaust method most
effective for control.
Personal protection still needed.

Dharmage et al.
1999b

485 residences Homes of random
sample (349) and
asthmatics (139)

2-stage impactor
(PDA)

37-7619 cfu/m3 (MD 549) Higher concentrations in residences
with visible mold.

Johanning et al.
1999

2 residences Mold damaged
Control

1-stage impactor
(MEA)
Filter

Damaged: 1993->7069 cfu/m3

1.8-6.6 *105 spores/m3

Control: 194-336 cfu/m3

 3.7-4.7 *103 spores/m3

Higher concentrations in residence
with visible mold.

Klánová 2000 Residences and
offices
68 rooms:
,

A) no complaints +
     no mold  (20)
B) complaints +
     no mold (20)
C) no complaints +
    visible mold  (10)
D) complaints+ visible
     mold (18)

RCS Plus aeroscop
(YMA)

A) 0 - 230 cfu/m3 (AM 78)
B) 0 - 140 cfu/m3 (AM 58)
C) 60 - 3190 cfu/m3 (AM 1033)
D) 120 - 17930 cfu/m3 (AM 2476)

Concentrations of viable fungi
higher in rooms with visible mold.

Miller et al. 2000 58 residences Relation of air sampling
and damaged materials

RCS (Rose bengal
malt extract)

15 residences with lowest visible
growth: AM 214 cfu/m3

15 residences with highest visible
growth: AM 329 cfu/m3

The mean levels were not
associated with severity of damage.
More species different from outdoor
air in homes with severe damage.

Pessi et al. 2002 88 residences Fungal levels in relation
to the microbial growth
in external walls

6-stage impactor
(MEA)

Low growth: 9 - 516 cfu/m3

(AM 112)
Growth: 2 - 1784 cfu/m3

(AM 121)

Microbial growth in insulated
external wall did not effect indoor air
levels.

Continued
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Table 1. continued
STUDY NUMBER AND

TYPE OF SITES
STUDY DESIGN METHOD LEVELS OF AIRBORNE FUNGI FUNGAL LEVELS IN RELATION

TO BUILDING CHARACTERISTICS

Residences without any known indoor air problems
Fradkin et al.
1987

27 residences Species identification 2-stage impactor
(Rose bengal agar)

Indoor: AM 742 cfu/m3

Outdoor: AM 1131 cfu/m3
Species identification allows for the
detection of deviations from outdoor
air

Pasanen et al.
1989

3 residences Farm houses (2)
Urban residence

6-stage impactor
(MEA)
filter

Farm house: 104-105 cfu/m3

105-106 spores/m3

Urban: <100 cfu/m3

104-105 spores/m3

Fungal spores are carried from
barns to farmers’ homes.

Reponen et al.
1989

18 residences Effect of ventilation and
occupancy

6-stage impactor
(Hagem)

3-1300 cfu/m3 (GM 140) Mechanical supply and exhaust
ventilation decreases levels.
The first year occupancy has no
effect on fungal levels

Macher et al.
1991

A new residence Temporal variation and
effect of occupancy

1-stage impactor
(MEA)

Indoors: 58-673 cfu/m3 a

(MD 198)
Outdoors: 113-1158 cfu/m3 a 

(MD 362)

No change in microbial
contamination due to occupancy.
Elevated outdoor humidity, lower air
temperature and wind associated
with higher levels.

Reponen et al.
1992

71 residences Non-complaint
Seasonal variation
Effect of ventilation

6-stage impactor
(rose bengal malt
extract)

Indoor, summer: GM 410 cfu/m3

Indoor, winter: GM 40 cfu/m3

Outdoor, summer: GM 950 cfu/m3

Outdoor, winter GM 20 cfu/m3

Indoor and outdoor levels an order
of magnitude lower in winter than
summer.
Ventilation systems affect levels
only in summer: levels are the
lowest with mechanical supply and
exhaust ventilation system.

Kuo and Li 1994 6 residences Seasonal variation in
subtropical climate

1-stage impactor
(MEA)

Indoors: <3202 cfu/m3

Outdoors: <4200 cfu/m3

Winter, indoor: <165 cfu/m3

Winter, outdoor: <203 cfu/m3

Seasonal variation remarkable:
winter levels clearly lower

Li and Kuo 1994 12 residences Characteristics of
microfungi in
subtropical climate

2-stage impactor
(MEA)

Indoors: 1050-4970 cfu/m3

Outdoors: 770-5740 cfu/m3

Górny et al. 1999 60 residences Size distributions 6-stage impactor
(MEA)

<104 cfu/m3

a 95% confidence interval
Continued
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Table 1. continued
STUDY NUMBER AND

TYPE OF SITES
STUDY DESIGN METHOD LEVELS OF AIRBORNE FUNGI FUNGAL LEVELS IN RELATION

TO BUILDING CHARACTERISTICS
Ren et al. 1999 11 residences Seasonal variation Burkard (DG18,

MEA)
Winter:
Indoor: GM 314-432 cfu/m3

(basement 1658)
outdoor: GM 505 cfu/m3

other seasons:
indoor: GM 705-1036 cfu/m3

(basement 988-1165)
outdoor: GM 607-1198 cfu/m3

Levels higher in summer reflecting
outdoor air. The levels in
basements higher than in other
indoor areas and  outdoor in winter.
No seasonal variation in
basements.

Wu et al. 2000b 76 residences Winter -summer
Urban-suburban

Burkard (MEA) Winter:
Indoor: GM 8946 cfu/m3

Outdoor: GM 11464 cfu/m3

Summer:
Indoor: GM 4381 cfu/m3

Outdoor: GM 4689 cfu/m3

In summer, levels higher both
indoors and outdoors in suburban
homes. I/O-rations of Penicillium
and Aspergillus higher in suburban
homes.

Ren et al. 2001 1000  residences Relation to house
characteristics

Burkard (DG18,
MEA)

0-14900 cfu/m3 (MD 300-450) Levels related to season, relative
humidity, temperature and
presence of cat.
Presence of fungi in air cannot be
predicted from reported home
characteristics.

Cvetnic and
Pepeljnkak 2001

55 residences Urban (32) and rural
(33) residences

Sedimentation 0-100 cfu/plate/15 min Fungal colony counts higher in rural
homes

Toivola et al. 2002 81 residences Comparison of
personal, work and
home exposure

Filter:
Total + MEA/DG18

Homes: MD 5-6 cfu/m3

MD 4700 spores/m3

Work: MD 2-3 cfu/m3

MD 9000 spores/m3

Personal: MD 12 cfu/m3

MD 5700 spores/m3

Personal exposure higher than
home and work exposure.

Other environments
Harrison et al.
1992

15 offices SBS and airborne
microbes

6-stage impactor
(MEA)

2-978 cfu/m3 (MD 26-277) Levels higher in naturally ventilated
buildings.

Morey 1993 3 office buildings One damaged by fire
and moisture
Two connected to the
damaged building

A single stage sieve
(MEA)

40 - >104 cfu/m3 Spores migrated from damaged
areas to non-damaged areas.
Air sampling indicated hidden
damage.

Continued
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Table 1. Continued
STUDY NUMBER AND

TYPE OF SITES
STUDY DESIGN METHOD LEVELS OF AIRBORNE FUNGI FUNGAL LEVELS IN

RELATION TO BUILDING
CHARACTERISTICS

Burge et al. 2000 An office building Follow-up a new
building

2-stage impactor
(2% MEA, DG18)

Indoor: 10-372 cfu/m3

Outdoor: 99-3195 cfu/m3
Air sampling did not indicate
growth in ventilation system.

Ellringer et al.
2000

A hotel Mold intervention Filter and cultivation
(2%MEA)

Indoor: 75-2946 cfu/m3

Outdoor: 151-338  cfu/m3
Levels decreased to normal with
removal of damaged materials
and cleaning

36
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2.6.3 Fungal concentrations in relation to health effects

The studies reporting the relationships between airborne fungal indoor levels and health

effects are listed in Table 2, which shows the design with the health point of interest,

sampling method and the fungal results with the main observation of each study, in the

order of the publication year of the study. The elevated concentrations of fungi in

residences have been associated with several health effects, such as respiratory

symptoms, sensitization to house dust mites, asthmatic symptoms or emergency room

visits due to asthma (Waegemaekers et al. 1989, Dotterud et al. 1995, Björnsson et al.

1995, Johanning et al. 1999, Ross et al. 2000, Dharmage et al. 2001, Jarvis and Morey

2001) (Table 2). Associations between elevated fungal levels and respiratory symptoms

and infections or sick building syndrome, SBS, also have been observed in other

environments such as day-care centers and offices (Harrison et al. 1992, Koskinen et

al. 1995, Johanning et al. 1996, Li et al. 1997). In addition, some case studies have

shown increase of asthmatic and other respiratory symptoms and even an outbreak of

occupational diseases due to exposure to mold (Hodgson et al. 1998, Seuri et al. 2000).

The association between elevated levels of fungi and symptoms is supported by the

observation that the symptoms decreased after the exposure had been eliminated

(Koskinen et al. 1995, Jarvis and Morey 2001). However, there are several studies in

which no correlation between fungal levels and symptoms or diseases has been

observed (Strachan et al. 1990, Etzel et al. 1998, Garrett et al. 1998, Klánová 2000, Su

et al. 2001). The distributions of fungal levels also overlap in the residences of

symptomatic and non-symptomatic persons. No dose-response relationship between

fungal levels and health effects has been observed or can be proposed as concluded

also in the review of Verhoeff and Burge (1997) and hence no guidelines on fungal

levels can be set based on health risk. The contradicting results concerning the

associations between fungal concentrations and either occurrence of damage or

symptoms of occupants is not so surprising in consideration of the diversity of sources

of fungi and the huge variation in airborne fungal levels.  This sets major demands on

the development of methods which are both accurate enough to identify and to

measure the exposure as well as distinguishing differences between normal and

abnormal microbial exposure.



Table 2. The summary of studies determining associations between fungal levels and health effects.

STUDY NUMBER AND
TYPE OF SITES

STUDY DESIGN METHOD LEVELS OF AIRBORNE FUNGI MAIN OBSERVATION

Waegemaekers et
al.1989

36 residences Damp (24)
Reference (8)

6-stage impactor
(MEA)

Damp: GM 192 cfu/m3

Reference: GM 102 cfu/m3
Fungal levels associated with
respiratory symptoms.

Strachan et al. 1990 88 residences Children with wheeze
(34)
Controls (54)

 6-stage impactor
(MEA)

Wheeze: <38 600 cfu/m3

(MD 200-283)
No wheeze: <41 300 cfu/m3

(MD 224-271)

Median concentrations of viable
fungi did not associate with
wheeze.

Björnsson et
al.1995

88 residences Asthmatic adults (47)
Controls (41)

Filter
(total spores+viable)

Astmatics: GM 35*103 spores/m3

 (1.2-33 *104)
300 cfu/m3 (100-3300)

Controls: GM 25*103 spores/m3

(1.1-57 *104)
300 cfu/m3 (100-1300)

Spore levels higher in homes of
asthmatics.

Dotterud et al.1995 38 residences HDM-sensitized and
control children (19/19)

BIAP Slit sampler
(V-8 agar)

HDM-sensitized: <210 cfu/m3

Controls: <80 cfu/m3
Fungal levels higher in homes
of HDM-sensitized children.
High fungal levels related to
high indoor RH.

Li et al.1995 92 residences Asthmatic children (42)
Atopic children (20)
Controls (26)

6-stage impactor
(MEA)

Asthmatics: GM 565-659 cfu/m3

Atopics: GM 411-464 cfu/m3

Controls: GM 602-608 cfu/m3

Outdoor: GM 449-668 cfu/m3

Concentrations in homes of
asthmatics and controls higher
than those in the homes of
atopics.

Dill and Niggemann
1996

20 residences Children with allergic
diseases

RCS (MEA+Czapek
Dox)

<13->4000 cfu/m3 No correlation between fungal
exposure and specific IgE to
fungi.

Senkpiel et al.1996 7 residences Asthmatics allergic  to
molds (7)

FH 2 impactor
(Sabouraud-glucose
agar)

100-1000 cfu/m3 Levels much higher indoors
than outdoors.

Etzel et al.1998 40 residences Infants with pulmonary
hemorrhage (10)
Controls (30)

Filter: total and
viable (Czapek Dox,
MEA, DG18)

Patients: AM 29 227 cfu/m3

Controls: AM 707 cfu/m3
No association with total mean
levels, but with selective fungi.

Garrett et al.1998 80 residences Asthmatics (43)
Non-asthmatics (37)

1-stage impactor
(MEA)

<20-54749 cfu/m3 (MD 812) No association between mean
levels and asthma.

Continued
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Table 2. continued
STUDY NUMBER AND

TYPE OF SITES
STUDY DESIGN METHOD LEVELS OF AIRBORNE FUNGI MAIN OBSERVATION

Johanning et al.
1999

2 residences Mold damaged
Control

1-stage impactor
(MEA)
Filter

Damaged: 1993->7069 cfu/m3

1.8-6.6 *105 spores/m3

Control: 194-336 cfu/m3

3.7-4.7 *103 spores/m3

Higher concentrations
associated with respiratory
symptoms.

Klánová 2000 Residences and
offices
68 rooms:

A) no complaints +
      no mold (20)
B) complaints +
      no mold (20)
C) no complaints +

visible mold (10)
D) complaints+
      visible mold (18)

RCS Plus aeroscop
(YMA)

A) 0 - 230 cfu/m3 (AM 78)
B)  0 - 140 cfu/m3 (AM 58)
C) 60 - 3190 cfu/m3 (AM 1033)
D) 120 - 17930 cfu/m3 (AM 2476)

Health complaints did not
correlate with total
concentrations of viable fungi.

Ross et al. 2000 44 residences Asthmatics (57) 6-stage impactor 0-48760 cfu/m3 (MD 1560) Higher levels indicate
association with emergency
room visits.

Dharmage et al.
2001

485 residences Random sample (349)
Homes of asthmatics
(136)

2-stage impactor
(PDA)

37-7619 cfu/m3 (MD 549) High levels associated with
increased BHR, but lower risk of
being sensitized to fungi.

Jarvis and Morey
2001

2 apartment
buildings

Moldy building
Control building
Effect of renovation

Volumetric culture
plate impactor
(MEA, DG18)

Before renovation:
AM 330-340 cfu/m3

After renovation:
AM 41-96 cfu/m3

Control:
AM 50-316 cfu/m3

Renovation of the building
decreased both levels of fungi
and prevalence of symptoms

Su et al. 2001 35 residences Asthmatics (23)
Controls (12)

Burkard (MEA) AM 6798-20552 cfu/m3 Airborne levels and flora not
associated with asthma.

Harrison et al. 1992 15 offices SBS and airborne
microbes

6-stage impactor
(MEA)

2-978 cfu/m3 (MD 26-277) SBS and microbial levels
associated within buildings with
similar ventilation systems.

Continued
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Table 2. continued

STUDY NUMBER AND
TYPE OF SITES

STUDY DESIGN METHOD LEVELS OF AIRBORNE FUNGI MAIN OBSERVATION

Koskinen et al.
1995

2 day-care
centers

Moisture damaged,
Reference

6-stage impactor
(MEA)

Damaged: 120-430 cfu/m3

Reference:   29-64 cfu/m3
Exposed children had more
symptoms and infections.  After
the exposure ended occurrence
of symptoms decreased and
infections disappeared.

Johanning et al.
1996

2 office buildings Employees in water
damaged office (53)
Controls (21)

6-stage impactor
(MEA, MEA +
sucrose, Czapek)

Normal sampling:
48-116 cfu/m3

Aggressive sampling:
302->20*106 cfu/m3

Fungal levels from aggressive
sampling associated with
symptoms.

Li et al.1997 28 day-care
centers

Air quality and health
employees (264)

1-stage impactor
(MEA)

Indoor: GM 1212 cfu/m3 Total concentrations associated
with SBS.

Hodgson et al. 1998 2 office buildings Moisture damage in
relation to health
Case report

SAS PBI
1-stage impactor
(MEA)

Indoor:   24-8000 cfu/m3

Outdoor: 161-1650
Case description

Seuri et al. 2000 A hospital Moisture damage in
relation to health
Case report

6-stage impactor <1400 cfu/m3 Case description

40
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2.6.4 Differences in fungal flora between moisture damaged and reference

buildings

Although differences in mean fungal levels between moisture damaged and reference

buildings have not always been found, differences in microbial composition of air

samples have commonly been noted. These observations are listed in Table 3, which

shows the studies where certain fungal genera or microbial groups have been

associated with either moisture damage of building or a certain health effect.  For

example, higher concentrations of Aspergillus, Cladosporium, Penicillium, non-

sporulating fungi (including basidiomycetes) or yeasts have been observed in buildings

with moisture damage or with visible mold growth than in reference buildings (Strachan

et al. 1990, Pasanen 1992, Pasanen et al. 1992c, DeKoster and Thorne 1995, Garrett

et al. 1998) (Table 3). In the study of Miller et al. (2000), the total concentrations of

viable fungi were similar in residences with severe and mild mold damage, but the

presence of severe damage could be seen in the higher prevalence of fungal species

not present in the outdoor air (Miller et al. 2000).

Occurrence of certain fungi in air has also been associated with dampness or mold

growth in buildings (Table 3). Aspergillus versicolor has been observed frequently in the

air of damaged buildings (Hodgson et al. 1998, Jarvis and Morey 2001). Stachybotrys

has been noted to occur in a moisture damaged building, but not in the control building

(Johanning et al. 1999).  In addition, several other genera different from outdoor air

have been found, but their occurrence has not been reported to indicate moisture

damage. In general, the dominant genera in air have usually been reported, but the

value of rare findings as indicators of moisture damage has not been emphasized.

However, a list of damage-associated fungi and bacteria has been published as a result

of an expert meeting (Samson et al. 1994). This is based on empirical observations, but

little published data are available about the frequencies or other characteristics of these

microbes in building environments. The list of “indicator microbes”, or microbes that do

not belong to the normal flora but the presence of which may indicate mold growth is as

follows: Trichoderma, Exophiala, Phialophora, Ulocladium, Stachybotrys, Fusarium,

Wallemia, Aspergillus versicolor, Aspergillus fumigatus, actinobacteria, gram-negative

bacteria and yeasts (e.g. Rhodotorula and Sporobolomyces) (Samson et al. 1994).

Furthermore, the occurrence of different microbes especially in the air should be
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weighted differently, as some microbes, such as Stachybotrys chartarum, Fusarium and

Chaetomium are seldom found airborne due to their spore size and spore formation

(see section 2.4.). However, even these fungi can occasionally be present in

abundance in air samples, especially when the fungi are growing prominently in a

damage site (Hunter et al. 1988, Etzel et al. 1998, Johanning et al. 1999).

Table 3. Summary of the associations between microbial flora and moisture or mold

damage or health effects.

GENUS or GROUP FOUND TO INDICATE / RELATE  TO
MOISTURE or MOLD DAMAGE

FOUND TO BE RELATED TO
SYMPTOMS

Actinobacteria Nevalainen et al. 1991
Aspergillus Pasanen 1992

DeKoster and Thorne 1995
Li et al. 1997

Aspergillus versicolor Jarvis and Morey 2001 Hodgson et al. 1998
Cladosporium Garrett et al. 1998

Pasanen et al. 1992c
Pasanen 1992

Garrett et al. 1998
Dharmage et al. 2001

Penicillium DeKoster and Thorne 1995 Cooley et al. 1998,
Garrett et al. 1998
McGrath et al. 1999
Dharmage et al. 2001

Non-sporulating fungi
(includes e.g.
basidiomycetes)

Strachan et al. 1990 Strachan et al. 1990

Stachybotrys Johanning et al. 1999 Johanning et al. 1996
Etzel et al. 1998
Johanning et al.1999

Sporobolomyces Seuri et al. 2000
Yeasts Pasanen et al. 1992c

Pasanen 1992
Cladosporium,
Epicoccum,
Aureobasidium,  yeast

Su et al. 1992

The reported associations between certain fungal genera or species and health effects

are also listed in Table 3. These associations might provide hints about a causal

relationship to health effects, but these connections have not been established at

present. Elevated levels of Penicillium have been associated with SBS and asthmatic

symptoms (Cooley et al 1998, Garrett et al. 1998, McGrath et al. 1999, Dharmage et al.

2001), while higher levels of Cladosporium have been associated with asthmatic

symptoms and allergies (Garrett et al. 1998, Dharmage et al. 2001). Exposure to

airborne Stachybotrys has been suggested to cause acute pulmonary hemorrhage in

infants (Etzel et al.1998) and respiratory symptoms and disorders of central nervous
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system (Johanning et al. 1996, Johanning et al. 1999). In the case study of Hodgson et

al. (1998), Aspergillus versicolor was noted to dominate the mycoflora in offices where

occupants were suffering from asthmatic and other respiratory symptoms, whereas

exposure to Sporobolomyces in a hospital has been associated with a cluster of

occupational diseases, including asthma, rhinitis and alveolitis (Seuri et al. 2000).

2.6.5 Airborne concentrations of bacteria

Concentrations of viable bacteria in residences vary between 10-104 cfu/m3

(Nevalainen 1989, Nevalainen et al. 1991, Macher et al. 1991, Reponen et al. 1992,

DeKoster and Thorne 1995, Rautiala et al. 1996, Ross et al. 2000, Pessi et al. 2002).

Bacterial indoor air levels in residences are typically higher than outdoor air levels

(Nevalainen 1989). Concentrations of viable bacteria have not been associated with

moisture damage, but have been associated with the number of people living or

occupying the residences (Nevalainen 1989, Nevalainen et al. 1991, DeKoster and

Thorne 1995). The main genera found in the indoor air belong to Micrococcus and

Staphylococcus groups (Nevalainen 1989, Górny et al. 1999), while the outdoor air may

be dominated by gram-negative bacteria such as Pseudomonas (Nevalainen 1989).

Associations have been found between asthma and levels of total, gram-positive and

gram-negative bacteria in indoor air (Björnsson et al. 1995, Ross et al. 2000).

The occurrence of actinobacteria has been connected with the presence of mold

damage (Nevalainen et al. 1991) and they are regarded as moisture indicative bacteria

(see section 2.6.4). Actinobacteria are not of human origin, but they are abundant in the

soil and grow also in moistened building materials (Andersson et al. 1997b). The

airborne concentrations of viable actinobacteria in mold damaged buildings have varied

between <4-154 cfu/m3 (Nevalainen et al. 1991, Rautiala et al. 1996), while

actinobacteria were not found in the reference houses (Nevalainen et al. 1991). The

level of actinobacteria in indoor air has been noticed to be affected by the actinobacteria

growth in the insulated external wall (Pessi et al. 2002). However, in farmhouses,

actinobacteria occur commonly where they originate from barns and stables (Kotimaa

et al. 1984, Nevalainen 1989, Pasanen et al. 1989).  During the dismantling of moldy

structures, actinobacterial levels air can be increased up to 104 cfu/m3 in the indoor air

(Rautiala et al. 1996).
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2.6.6 Size distributions of airborne microbes

About 70-90% of the viable fungi in indoor air have been estimated to be in the

respirable size fraction (<4.7 �m) (Li and Kuo 1994, DeKoster and Thorne 1995),

whereas the corresponding number for viable bacteria is 50-60% (DeKoster and Thorne

1995). The median aerodynamic diameter is typically 3.4 �m for bacteria (Macher et al.

1991) and 2.0-3.0 �m for fungi in indoor air (Macher et al. 1991, Reponen 1995).  The

aerodynamic diameters of actinobacterial spores range from 0.6 to 1.3 �m (Reponen et

al. 1998).

The highest concentrations of airborne viable fungi are usually in the size range of 2-3

�m (Rautiala et al. 1996), and the highest increase in concentration during the

demolition of moldy structures was also seen in this size fraction (Rautiala et al. 1996).

According to Górny et al. (1999), fungi and bacteria occur mostly as single particles in

indoor air, but bacteria may form aggregates with tobacco smoke particles. The size of

fungal spores increases with increasing air humidity (Reponen et al. 1996). This small

increase in spore size, however, does not significantly affect the respiratory deposition

of fungal spores (Reponen et al. 1996).

2.7 Microbes on surfaces, building materials and house dust

2.7.1 Fungal concentrations and flora in house dust

House dust samples have been suggested to provide a readily available way to obtain

an integrated sample over a long period of time to reflect long-term exposure conditions

(Flannigan 1997, Dillon et al. 1999). The concentrations and flora of viable fungi in dust

are usually analyzed with a dilution method, from either dust vacuumed from carpets

(mainly 1 m2, 2 min) and mattresses (Verhoeff et al. 1994a, Dales et al.1997, Ellringer

et al. 2000, Koch et al. 2000) or from the dust bag of the vacuum cleaner of the resident

(Miller et al.1988). Also, direct spread of the dust on the nutrient medium has been used

(Gravesen et al. 1986, Wickman et al. 1992). The methods to collect house dust and

isolate culturable microbes have been reviewed by Macher (2001).
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Concentrations of viable fungi in dust vary from 10 to 108 cfu/g (Miller et al. 1988,

Verhoeff et al. 1994a, Dales et al. 1997, Koch et al. 2000, Ellringer et al. 2000). The

most common genera or groups detected are typically Penicillium, yeasts, Aspergillus,

Cladosporium and Alternaria (Miller et al. 1988, Wickman et al. 1992, Verhoeff et al.

1994b, Koch et al. 2001). These are the same ubiquitous fungal genera found also in

the air. However, the fungal flora in the house dust may also differ from that present in

air, e.g. Mucor, Wallemia and Fusarium have been found frequently in dust samples,

but rarely in air (Gravesen et al. 1986, Miller et al. 1988, Ren et al. 1999). According to

Koch et al. (2000), the fungal levels and flora in house dust are influenced by the

outdoor air fungi and thus show a corresponding seasonal variation, but this was not

seen in the study of Ren et al. (1999).

High levels of viable fungi, 120 000 cfu/g and 350 000 cfu/g, in dust have been

suggested to indicate intramural sources of fungi by the working group of Commission

of European Communities (DG18, dilution) (1993) and Koch et al. (2000), respectively.

Other proposed limits to indicate indoor sources are based on the 95th percentiles of

fungal concentrations by Koch et al. (2000); for Alternaria (10 000 cfu/g), Aspergillus (50

000 cfu/g), Cladosporium (30 000 cfu/g), and Penicillium (95 000 cfu/g) determined

between November and May.

Mold and dampness have been associated with elevated levels of viable fungi in dust

(Wickman et al. 1992, Dales et al. 1997), whereas in the study by Verhoeff et al.

(1994b) this association was not significant. Instead, the type of flooring had a

consistent effect on the concentrations of viable fungi in house dust (Verhoeff et al.

1994b). Even though a dust sample may represent an integrated sample over a long

period of time, a single measurement of viable fungi in house dust does not provide

reliable information of exposure due to the low reproducibility and differences in fungal

genera compared to the air (Miller et al. 1988, Verhoeff et al. 1994a, Ren et al. 1999)

2.7.2 Microbes in surface samples

Airborne spores and cells may be deposited onto different surfaces in the indoor

environment by gravitational settling or carried by wind currents. Thus, the spores found

on indoor surfaces that are not regularly cleaned, may reflect the airborne mycoflora in
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that indoor environment. Swab sampling from the surface will provide a rough estimate

of the airborne flora. Concentrations of viable fungi on surfaces with no visible fungal

growth or surfaces with no or minor moisture damage vary from being the under

detection limit to approximately 2500 cfu/cm2 (Ellringer et al. 2000, Lappalainen et al.

2001). The dominating genera have been Penicillium (Macher et al. 1991, Ellringer et

al. 2000, Lappalainen et al. 2001) together with Cladosporium, yeasts (Macher et al.

1991, Lappalainen et al. 2001), Aureobasidium and Alternaria (Lappalainen et al. 2001).

Interestingly, Aspergillus species have not been commonly found on undamaged

surfaces. The fungal concentrations on surfaces nearby visible moisture damage have

been reported as 3-260 cfu/cm2, within the same range as nearby surfaces without

damage (Lappalainen et al. 2001).

If there is water available on the surface, fungi will germinate and start to grow. In such

situations, the numbers of viable fungi in swab sampling are several orders of

magnitude higher than normal background, up to 106 cfu/cm2 (Johanning et al. 1996,

Jarvis and Morey 2001). The fungal genera observed on visibly damaged surfaces

have been Aspergillus versicolor (Beguin and Nolard 1994, Lappalainen et al. 2001,

Jarvis and Morey 2001), Cladosporium, Penicillium, Ulocladium, Acremonium,

Stachybotrys chartarum, Aureobasidium, Trichoderma and Scopulariopsis (Beguin and

Nolard 1994, Lappalainen et al. 2001). There are also studies in which Stachybotrys

has been the dominating genus found on surfaces (Johanning et al. 1996).

Even damp surfaces supporting large populations of bacteria and yeasts or fungal

growth do not necessarily result in higher microbial levels in the indoor air (Macher et al.

1991, Buttner and Stetzenbach 1993). Stachybotrys occurring on surfaces is often

difficult to detect in the air, whereas easily sporulating genera such as Aspergillus,

Penicillium and Cladosporium have commonly been observed in both types of samples

(Cooley et al. 1998, Tiffany et al. 2000, Lappalainen et al. 2001). Hence, surface

samples are often needed to confirm the findings, even though signs of contamination

are seen in air mycoflora of air samples (Reynolds et al. 1990).

Bacterial concentrations on surfaces without visible growth have been noted to be

under 4200 cfu/cm2 (Lappalainen et al. 2001). Gram-positive rods have been found on

both dry and damp surfaces (Macher et al. 1991), while gram-negative rods and
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actinobacteria have been found in mainly damp or damaged areas (Macher et al. 1991,

Lappalainen et al. 2001).

In addition to cultivation methods, fungal growth on surfaces can be determined from a

tape sample by observing spores and hyphae with direct microscopy or with

measurements of the rate of hydrolysis of fluoresceindiacetate to fluorescein by

microbial enzymes (Bjurman 1999) or with detection of N-acetylhexosaminidase activity

(MycoMeter) (Reeslev and Miller 2000).

2.7.3 Microbes in building materials

The concentrations of viable fungi in damaged materials vary typically between <45 –

108 cfu/g (Morey 1993, Andersson et al. 1997b, Etzel et al. 1998, Carlson and Quraishi

1999, Kujanpää et al. 1999, Johanning et al. 1999, Ellringer et al. 2000, Hodgson et al.

1998, Lappalainen et al. 2001, Pessi et al. 2002). Bacterial concentrations have shown

an even wider range, <45-5*108 cfu/g (Andersson et al. 1997b, Kujanpää et al. 1999,

Lappalainen et al. 2001, Pessi et al. 2002). Actinobacterial concentrations have been

reported to cover 0-11% of the total bacterial concentration depending on the type of

material (Kujanpää et al.1999, Reiman et al. 2000), in some cases being the dominant

type of bacteria (Lappalainen et al. 2001). In the study of Andersson et al. (1997b), 13

bacterial genera were isolated from damaged building materials, with domination by

gram-negative bacteria and Mycobacterium species. While moisture conditions may

fluctuate in the microenvironments of a building, microbial growth is also a complex

process regulated by the environmental factors. Therefore, moisture levels and

microbial concentrations do not necessarily correlate well in building material samples

(Meklin et al. 1999, Pasanen et al. 2000a).

The most common fungal genera found in material samples taken from damaged areas

have been Penicillium, Aspergillus (Morey 1993, Andersson et al. 1997b, Etzel et al.

1998, Gravesen et al. 1999, Kujanpää et al. 1999, Ellringer et al. 2000, Reiman et al.

2000, Lappalainen et al. 2001) Acremonium, Aspergillus versicolor, Cladosporium

(Ellringer et al. 2000, Reiman et al. 2000, Lappalainen et al. 2001), Stachybotrys

(Andersson et al. 1997b, Gravesen et al. 1999, Johanning et al. 1999, Hodgson et al.

1998), Chaetomium, Ulocladium (Gravesen et al. 1999), yeasts and Scopulariopsis
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(Reiman et al. 2000). In addition to these, a number of other genera or species are

usually found in damaged materials. The dominant fungal genera found in the material

samples are mainly similar to those seen in the air. There are, however, some genera

such as Stachybotrys, that are not usually found in air (Miller et al. 2000, Tiffany et al.

2000). This is supported by the study of Rautiala et al. (1996), in which some

infrequently found genera, such as Absidia, Botrytis, Exophiala, Fusarium, Graphium,

Mucor and Staphylotrichum, were found in the damaged materials and also in the air

during the dismantling of these materials. Building material samples, showing the actual

growth at a given site, have been found to be useful in verifying the sources for the

contamination, possibly seen in the air samples (Reynolds et al. 1990).

2.8 Other exposing agents

2.8.1 Structural components of microbes

Ergosterol

Ergosterol is the principal sterol present in membranes of hyphae and spores of

filamentous fungi and thus provides a chemical marker for fungal biomass (Flannigan

1997). Ergosterol content in spores varies somewhat between different fungal species

(Pasanen et al. 1999, Miller and Young 1997) and it is not a good indicator for yeasts

which being non-filamentous, contain less ergosterol (Pasanen et al. 1999). Ergosterol

is analyzed with the combination of gas chromatography-mass spectrometry (GC-MS)

(e.g. Larsson and Saraf 1997) or with high-pressure liquid chromatography (HPLC) and

GC-MS (e.g. Dales et al. 1997) or GC-MS-MS (e.g. Nielsen and Madsen 2000).

In house dust, ergosterol concentrations have been reported at <62 �g/g dust

(Axelsson et al. 1995, Miller et al. 1988, Dharmage et al. 1999b) and the correlation with

the counts of viable fungi has been good (Miller et al. 1988, Saraf et al. 1997).  Miller

and Young (1997) observed ergosterol in the air in range of 0.01-194 ng/m3, while

mean ergosterol values of 200 -3000 ng/m3 were reported by Dales et al. (1997).

Ergosterol was detectable only in about 5-25% of the air samples in these studies. The

ergosterol concentrations have been higher in damaged materials (0.01-0.15 ng/g) than
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in dry materials samples (nd) (Szponar and Larsson 2000) and correlated with

concentrations of viable fungi (Pasanen et al. 1999).

Ergosterol concentrations have been found to vary seasonally in dust, being highest in

winter (Dharmage et al. 1999b), while the variation is the opposite for culturable fungi.

Ergosterol levels in dust have been associated with visible or reported mold and fitted

old carpets, with pets and infrequent airing  (Dharmage et al. 1999a, Dharmage et al.

1999b). However, in studies of Dales et al. (1997) and Lawton et al. (1998), visible mold

areas or reported mold and water damage were not associated with ergosterol level in

dust or in the air. While ergosterol has been suggested to estimate fungal exposure

(Flannigan 1997), its relationship to the observed health effects are still obscure

(Szponar and Larsson 2001).

Endotoxins

Endotoxins are biologically active lipopolysaccharide (LPS) molecules that form the

outer membrane of gram-negative bacteria. The endotoxin activity can be measured

with the Limulus amebocyte lysate assay (LAL) (e.g. Hines et al. 2000). Chemical

determination is possible by analyzing the 3-hydroxy fatty acids of the lipid A, which is a

component of LPS  (Liu et al. 2000, Larsson and Saraf 1997). There is a correlation

between determinations of endotoxin with LAL and 3-hydroxy fatty acid concentrations

in dust (Saraf et al. 1997).

The median concentrations of airborne endotoxin have been 0.6-4.6 endotoxin units /m3

(EU/m3) in homes both with and without mold (Dales and Miller 1999, Park et al. 2000).

In house dust, mean levels have varied between 18-50 ng/g (Su et al. 2001) and 44-

105 EU/g (Park et al. 2000). Both air and house dust levels of endotoxin have seasonal

and within-home variation (Park et al. 2000, Su et al. 2001). The airborne endotoxin

levels in winter are dominated by indoor sources while the outdoor air contributes to the

levels in other seasons (Park et al. 2000).

The endotoxin levels in air have been associated with air humidity and weakly with

moisture sources (Park et al. 2000, Park et al. 2001), while endotoxin levels in dust

have been not associated with home dampness (Gereda et al. 2001). Both air and dust
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endotoxin levels have been associated with the presence of pets (Park et al. 2000,

Gereda et al. 2001). The biocontamination of moisture damaged building materials

could be shown as the difference in endotoxin and 3-hydroxy fatty acid levels compared

to non-damaged material (Andersson et al. 1997b, Szponar and Larsson 2000). The

role of endotoxin health related exposure in moisture damaged buildings remains

unclear.
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as most fungi, some bacteria and plants. �(1 ��������	
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glucan-reactive preparation of Limulus amebocyte lysate (LAL) (Rylander et al. 1992)

and enzyme inhibition immunoassay (EIA) (Douwes et al. 1996).

The airborne levels of �(1 ��������	��	���
���	�
���������	����
������
������������	

0-19 ng/m3 (Thorne and Rylander 1998). The �(1 ��������	� �����
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damaged building materials have been 2.5-210 �g/g and 0.4 �g/g in non–damaged

materials (Andersson et al. 1997b). The mean concentrations of �(1 ��������	��	���
�

have been observed to vary from 1.55 to 2.22 �g/g and to positively associate with total

culturable fungi in dust (Chew et al. 2001).
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complaint buildings (Rylander et al. 1992, Rylander et al. 1998) and a decrease in

�(1 ��������	� �����
� ���� � 	�!�3 � �� � 	�!�3) was observed due to renovation

(Rylander 1997). However, the importance of �(1 ��������	��
��	��"�

�	�����	�� �	

moldy buildings remains to be clarified.

2.8.2 Microbial metabolites

Microbial volatile organic compounds

Microbes can produce volatile organic compounds, microbial VOC (MVOC) as end

products of their metabolism. Volatile organic compounds are mainly sampled by

drawing air with a pump through a small tube filled with one or several sorbents, on
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which the compounds to be collected are adsorbed. In addition, VOCs can be sampled

passively with sorbents on which the compounds diffuse or with whole air sampling.

The compounds are desorbed from sorbents thermally or with liquid extraction.  The

analysis is generally performed with combination gas chromatography-mass

spectrometry (GC-MS) (Batterman 1995).

MVOCs are responsible for the “smell of mold, musty or earthy odors”, often associated

with microbial growth. Several compounds such as 1-octen-3 ol, geosmin, 3-

methylfuran, 3-methyl-2-butanol, 2-pentanol, 2-hexanone, 3-octanone, 2-octen-1-ol, 2-

methyl-isoborneol, 2-isopropyl-3-methoxypyrazine, 3-methyl-1-butanol, 2-heptanone

and 3-octanol, have been suggested as indicators of microbial contamination in

buildings (Ammann 1999, Korpi 2001). The production of MVOCs is dependent on the

microbial species and growth conditions, but on the other hand, some metabolites are

produced by several species and on more than one medium (Sunesson 1995, Fiedler

et al. 2001).

MVOCs have been suggested as representing a method for detecting “hidden mold”

(Wessen et al. 1999).  None of the commonly reported MVOCs, however, are

considered to be specific for microbial metabolism, but they are also released from

moist building materials and constructions (Korpi 2001). In fact, no consensus on the

relevant MVOCs exists (Pasanen 2001). Hence, the interpretation of MVOC results as

a mold indicator is contradictory. Furthermore, the production of MVOC indicates only

active growth. MVOCs are found in extremely low levels in indoor air and their role as

possible causative agents of irritation symptoms is not yet clear (Pasanen et al. 1998,

Korpi et al. 1999).

Microbial toxins

Mycotoxins are non-volatile, secondary metabolites of fungi, which may be produced

due to competition with other microbes. Their chemical structures are quite diverse

including polyketides, terpenes and indoles (Burge and Ammann 1999). Betina (1989)

has estimated that over 300 mycotoxins are formed by 350 species. The most well

known mycotoxins are aflatoxins, produced by Aspergillus flavus, thichothecenes,

produced by Fusarium sp. and Stachybotrys chartarum, and ochratoxins, produced by
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some species of Penicillium and Aspergillus (Betina 1989). Common to most

mycotoxins is their acute toxicity, some of them being among the most toxic compounds

known (Betina 1989, Hintikka and Nikulin 1998). Also, many bacteria may produce

toxins (Stanier et al. 1977); actinobacteria are known to produce very potent secondary

metabolites (Hodgson 2000).

Humans are exposed to mycotoxins mainly by ingestion of mycotoxin-contaminated

food or by airborne exposure via mycotoxin-containing spores or other particles in

moldy buildings or agricultural environments (Sorenson et al. 1987). Exposure to

mycotoxins, especially Stachybotrys toxins, in buildings has been associated with

adverse health effects (Johanning et al. 1996, Etzel et al. 1998, Jarvis et al. 1998,

Johanning et al. 1999); even the occurrence of pulmonary hemorrhage in infants due to

exposure to Stachybotrys mycotoxins in their homes has been proposed (Etzel et al.

1998, Jarvis et al. 1998).  However, a recent literature review by Page and Trout (2001)

concludes that there is not enough evidence to support a causal relationship between

symptoms or illness among building occupants and exposure to mycotoxins.

The attempts to detect mycotoxins in indoor air have failed so far (Pasanen 2001), but

both bacterial and fungal toxins have been detected in moisture damaged building

materials (Andersson et al. 1997b, Gravesen et al. 1999, Nielsen et al. 1998, Nielsen et

al. 1999, Tuomi et al. 2000). Mycotoxins are analyzed with thin layer chromatography

(TLC), high pressure liquid chromatography (HPLC) or the combination of GC-MS

(Burge and Ammann 1999).

2.8.3 VOC and formaldehyde

Emissions of formaldehyde and volatile organic compounds (VOCs) are enhanced by

moist conditions within the building (Reponen et al. 1991, Tucker 1991) and thus these

chemicals may be potential contaminants in moisture damaged buildings. The

emissions may be increased due to chemical and microbiological deterioration caused

by water (Batterman 1995). Volatile organic compounds are released from building

materials and numerous other sources including paints, varnishes, detergents, personal

use products, such as cosmetics and hair sprays, furniture and carpets and are also
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present in polluted outdoor air, mostly due to motor vehicle emissions (Commission of

European Union 1994, Batterman 1995).

The concept of total volatile organic compounds, TVOC, is used to characterize the

total amount of volatile compounds in the air. However, TVOC can be measured with

different techniques and can be defined in several ways (M�lhave et al. 1997).

The TVOC-values in new residences have been reported to vary between 0.21-9.60

mg/m3, while their concentrations decreased after 5 months’ occupancy to levels of

0.06-1.34 mg/m3 (Tuomainen et al. 2001).  In residences in general, levels of TVOC are

usually <1mg/m3 (Brown et al. 1994, Kostiainen 1995, M�lhave et al. 1997), but may

even exceed 10 mg/m3, though seldom over 25 mg/m3 (Miller et al. 1988, Norbäck et al.

1995, M�lhave et al. 1997). The Nordic Scientific Consensus Meeting has concluded

that the scientific literature is inconclusive with respect to TVOC being a risk for health

and comfort effects in buildings (Andersson et al. 1997a), which is supported by

M�lhave et al. (1997).

Elevated formaldehyde (HCHO) levels were earlier common in the indoor air due to the

use particle board with a high emission rate of HCHO. It is still ubiquitous, but released

less from the present particle boards. HCHO is emitted from pressed wood

constructions, urea formaldehyde foam insulation, household cleaning agents, and

smoking (IEH 1996). The levels of formaldehyde vary typically from 0.01 to 0.1 mg/m3

in European homes and schools (IEH 1996). In new Finnish residences, formaldehyde

levels have varied in the range of 1-27 �g/m3, while they decrease after 5 months’

occupancy to the level of 2-21 �g/m3 (Tuomainen et al. 2001). In Swedish residences,

levels have varied between <5-110 �g/m3 and elevated levels were associated with

nocturnal breathlessness (Norbäck et al. 1995).

2.8.4 House dust mites 

The amount of house dust mites can be estimated with determination of the main

allergens of house dust mites, Der f1 and Der p1, or the nitrogenous excretory product

of mites, guanine, in the dust. The allergen measurements are usually performed with

ELISA  (van Strien et al. 1994, Julge et al. 1998, Custovic et al. 1999, Sporik et al.
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1999) and the amount of guanine is determined with a semi-quantitative colorimetric

test (Björnsson et al. 1995).

The mite allergen levels (Der p1 and Der f1) in house dust vary typically between <0.02-

20 �g/g (van Strien et al. 1994, Julge et al. 1998, Custovic et al. 1999, Leung et al.

1998, Tunnicliffe et al. 1999, Ross et al. 2000, Su et al. 2001). However, high

concentrations 60-200 �g/g can be found, especially in mattresses (Julge et al. 1998,

Leung et al. 1998, Tunnicliffe et al. 1999).  House dust mites are known to need high

levels of indoor air humidity (RH>50%) and a warm temperature is favorable for them

(O’Rourke et al. 1993, van Strien et al. 1994, Hirsch et al. 2000), but such associations

are not always found (Su et al. 2001). The median concentrations of mite allergens did

not associate with reported mold and symptoms or asthma (van Strien et al. 1994,

Dales and Miller 1999, Ross et al. 2000). Even though house dust mite allergens are

found in dust, it is possible that no allergens will be found in the air (Custovic et al.

1999)

House dust mite allergens are found virtually in all homes in moderate climate  (van

Strien et al. 1994, Leung et al. 1998), but less frequently in a cold climate. This low

frequency of house dust mites in the Scandinavian climate was supported by a Swedish

study, where house dust mites were found relatively infrequently, in only 13% of homes

(Björnsson et al. 1995).  Their presence was, however, associated with prevalence of

asthma (Björnsson et al. 1995). In Finland, no Der p 1 was found in the floor dust of 30

residences (Raunio et al. 1998).

2.9 Mold-specific immunoglobulin G antibodies

Immunoglobulin G (IgG) antibodies are produced as a part of the human defense

system. When foreign antigens such as microbes enter the human body the production

of antibodies is induced.  The presence of IgG antibodies demonstrates an exposure,

not the development of a disease (Janeway and Travers 1994). Mold-specific IgG

antibody levels have been shown to be a useful tool for exposure assessment in

occupational environments, such as sawmills, agriculture, and handling and treatment

of biowaste (Eduard et al. 1992, Erkinjuntti-Pekkanen 1996, Lappalainen et al. 1998,

Bünger et al. 2000). In addition, elevated mold-specific IgG levels have been associated
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with fungal exposure among the personnel of a water-damaged hospital (Seuri et al.

2000).  These studies have shown IgG antibodies useful for adult populations with high

exposure to microbes. In other indoor environments, such as schools, offices, and

homes no or only a weak association between mold exposure and IgG-levels among

adults and children have been detected (Johanning et al. 1996, Malkin et al. 1998,

Makkonen et al. 2001, Taskinen et al. 2002).

2.10 Methods to characterize moisture damaged buildings

Moisture and mold growth are associated with several health effects (see section 2.1),

but the causal agents and mechanisms are still poorly understood.  Thus, in the search

for causal agents it is important to characterize the differences between moisture

damaged and non-damaged buildings together with epidemiological studies focusing on

the associations between health effects and exposure. In the following section, the

observed differences between damaged and non-damaged buildings are summarized.

In some studies, differences between moisture damaged and reference buildings could

be seen in airborne concentrations of fungi (Gallup et al. 1987, Waegemakers et al.

1989, Verhoeff et al. 1992, Dharmage et al. 1999b, Johanning et al. 1999, Klánová

2000, Hunter et al. 1988), but there also are several studies suggesting the opposite or

reporting inconclusive results (Strachan et al. 1990, Nevalainen et al. 1991, Pasanen et

al. 1992c, Pasanen 1992, Dill and Niggemann 1996, Garrett et al. 1998). In several

studies, airborne microbial flora has been different from outdoor air (DeKoster et al.

1995, Hodgson et al. 1998, Miller et al. 2000, Jarvis and Morey 2001) or concentrations

of certain microbial genera or groups have been higher in moisture damaged buildings

than in non-damaged buildings (Strachan et al. 1990, Nevalainen et al. 1991, Pasanen

1992, Pasanen et al. 1992c, Garrett et al. 1998). There are not enough data on

concentrations and flora on non-damaged surfaces and building materials to reveal the

difference between moisture damaged and reference buildings, because the

information on surface and building material samples is mainly descriptive. These types

of samples have been shown to give additional information on fungal flora in buildings

(Cooley et al. 1998, Rautiala et al. 1998, Miller et al. 2000, Tiffany et al. 2000,

Lappalainen et al. 2001). The association between moisture and mold damage and
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elevated levels of fungi in dust is still contradictory (Wickman et al. 1992, Verhoeff et al.

1994b, Dales et al. 1997, Ren et al. 1999)

Some associations between levels of endotoxin, ergosterol, �(1 ��������	
��	��
����

structural markers of microbial biomass, such as extracellular polysaccharides, EPS,

and presence of mold or moisture problem have been indicated (Rylander 1997,

Dharmage et al. 1999a, Douwes et al. 1999, Park et al. 2001), but little is known about

their levels and the variations present in moisture damaged and reference buildings.

MVOCs have been suggested to represent a mean for detecting hidden mold growth

(Wessén et al. 1999), but the differences in levels and specific compounds between

moisture and reference buildings remains to be clarified. Mycotoxins and bacterial

toxins can be considered as possible causative agents of health effects, but because

they can be measured only from the source itself, seldom directly from air, their use in

exposure assessment is indirect and so far inconclusive. Nevertheless, in the source

characterization, the occurrence of mycotoxins in building materials verifies the severity

of the mold damage.  As the health effects of mold exposure are evident, but the

causative agents still remain unclear, further studies are needed to characterize the

exposure and the differences in the indoor environment that are caused by moisture

damage of buildings.
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3 AIMS OF THE STUDY

This thesis combines the results of the original studies I-VI. The overall aim of the

current study was to characterize the differences between moisture damaged buildings

and reference buildings. The detailed aims of the study were to find answers to the

following questions:

1. How does the indoor quality of a moisture damaged building differ from that of a

reference building? (I,II,V,VI)

2. Can a building with mold problems be identified with cultivation of microbes from

environmental samples from the indoor environment? (I,II,V,VI)

3. Is there significant temporal and spatial variation in concentration of airborne fungi in

residential environments? What is the recommended sample size required for the

characterization the fungal concentration of a residence? (III)

4. Are certain microbes associated with certain moisture damaged building

materials?(IV)

5. Is there an association between fungal findings in buildings and microbial-specific

IgG-levels of the occupants? (V, VI)
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4 MATERIAL AND METHODS

4.1 The buildings studied

The following types of buildings were investigated: residences, day-care centers and

schools. The buildings studied were classified as index and reference buildings

according to technical criteria concerning moisture damage. Index buildings had

frequent signs of moisture in structures, mostly due to leaks in roofs and plumbing,

missing or inadequate drainage and construction defects in the insulation. Visible mold

was usually also observed in some parts of the index buildings. The reference buildings

had no water damage or only a few minor signs of moisture, which were assessed to be

consequences of normal aging of the building.

Studies I and II were carried out in nine index buildings with moisture and mold

problems: six residences and three day-care centers. Four of the residences were

apartments and two were detached houses. For each index building, a reference

building was chosen matching the age, site, use, construction materials and

architecture. Hence, a total of 12 residences and six day-care centers were included in

the study. Each index building and its reference were located in the same town and the

occupants represented similar socio-ecomic status of the population.

Study III was conducted in two residences. The index residence was a single-family

house with observed moisture problems; the reference residence was a single-family

house with no such problems. The houses were matched for building type, age, site,

use, occupancy and architecture. Both houses were used as day-care homes and three

to five children under seven years of age were present during the working hours of each

sampling day.

Study V was carried out in twelve index residences with moisture or mold problems and

twelve reference residences without such problems. The residences consisted of

single-family houses, row houses and apartment buildings. The data of study V have

been published only partly; additional results of the study are included in the results

section.
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Study VI was conducted in two primary schools, a moisture-damaged index school and

a non-damaged reference school.

In addition, several databases (Study I, III, V, Rautiala et al. 1996 and others) were

merged to estimate the overall range of concentrations of viable fungi in index

residences (III) and to show cumulative distributions of concentrations in index and

reference residences.

4.2 Building material samples

In study IV, 1140 samples of building materials were either collected during study

visits or sent for microbial analysis to KTL, National Public Health Institute, Finland,

or the University of Kuopio, Finland. All samples were collected from materials with

visible damage. Materials consisted of wood (n=451), paper (n=49), non-wooden

building boards i.e. gypsum boards (n=46), ceramic products (n=163), mineral

insulation materials (n=220), paints and glues (n=86), and plastics (n=125).

4.3 Technical investigations

Moisture and mold damage of the buildings were observed during a technical

investigation which included a thorough walk-through to visually observe signs of

moisture faults, such as signs of water leakage, detaching or discoloring of materials.

Tenants or personnel were interviewed to ascertain the damage history (I-III, V-VI). In

studies III and VI, buildings were inspected by a trained civil engineer using a

standardized protocol (Nevalainen et al. 1998) and the investigations were

supplemented with surface moisture recorders (Doser BD-2 and BS-2). The

temperature and relative humidity of the indoor and outdoor air were recorded (HMI 31

and HM34, Vaisala, Helsinki, Finland).



60

4.4 Study populations

In study V, 25 persons living in moisture damaged houses and 17 persons living in

reference houses were studied for their mold specific immunoglobulin G (IgG)

antibodies from the sera.

In study VI, 181 children who had a doctor-diagnosed asthma or had experienced

wheezing or cough symptoms during the previous 12 months provided a blood sample

for IgG analyses. In addition, their health status was examined with a questionnaire.

The children were a subpopulation of a total of 622 children participating in a

questionnaire study done in a moisture damaged and a reference school in Siilinjärvi

(Taskinen et al. 1999).

4.5 Sampling and analysis of indoor air pollutants

4.5.1 Airborne microorganisms

The samples for airborne viable microorganisms were collected with a six-stage

impactor (Andersen 10-800; Graseby Andersen, Atlanta, Georgia, USA) (I-III,V-VI). This

device was chosen for its good collection characteristics. A method based on detection

of viable micro-organisms was chosen in order to characterize microbial flora. Impactor

samples were taken in the middle of the room at a height of 1 m with the flow rate of

28.3 l/min (I-III,V-VI). In studies I and II, conducted in the fall and winter and in study III,

conducted only in winter, one outdoor air sample for each sampling day were taken. In

studies V and VI, samples were taken only in winter and no outdoor air samples were

taken, because in a subarctic climate outdoor air levels of microbes in winter are low

due to the snow cover and hence the contribution of the outdoor air to indoor air

microbial concentrations is negligible (Reponen et al. 1992).

The number of rooms sampled, sampling periods and samples per day per room are

presented in Table 4. Sampling time was 10 min for the mesophilic bacteria (II,VI)

and fungi (I-III,V-VI) and 15 min for the thermotolerant bacteria (II). Concentrations
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were calculated using Andersen correction table for multiple impactions on individual

deposition sites (Andersen 1958).

Table 4. Number of rooms sampled, sampling periods and samples per day per room.

Number of Study I-II Study III Study V Study VI

Rooms sampled 2-4 2 2-6 17-20

Sampling periods 2 6 1-2 1

Samples / room 1 3 1 1

The growth media and incubation conditions used are presented in Table 5. All growth

media were supplemented with either antibiotics or fungicides to suppress the growth of

bacteria and fungi, respectively. After incubation, the number of fungal and bacterial

colonies were counted. Actinobacteria -type bacterial colonies were counted separately

(II,VI) and fungal colonies were identified morphologically by genus using an optical

microscope (I-VI,IV).

4.5.2 Surface samples

In study I, the aim of the surface samples was to obtain qualitative information on the

genera of fungi that are attached to the surfaces of the buildings.  Surface samples (100

cm2) were taken from interior surfaces with a sterile swab into sterile water and

suspensions were plated on malt extract growth media (MEA) (Difco, Detroit, Michigan,

USA). The fungal genera were determined. In studies V and VI, surface samples were

taken from visibly damaged surfaces in order to determine possible fungal growth and

genera.  Samples (100 cm2) were taken with a sterile swab into sterile Tween 80

dilution buffer (distilled water with 42.5 mg/L KH2PO4, 250 mg/L MgSO4 x 7H2O, 8 mg/L

NaOH and 0.02% Tween 80 detergent). Reference samples (200 cm2) were taken from

corresponding, undamaged surfaces (VI). A series of dilutions were prepared, plated on

growth media and incubated as shown in Table 5. After incubation, the number of

fungal and bacterial colonies was counted. Actinobacteria -type bacterial colonies were

counted separately (VI) and fungal colonies were identified morphologically by genus

using an optical microscope (I, V-IV).



Table 5. The growth media and incubation conditions.

Fungi BacteriaSample type

Growth media Temp. (�C) Time (days) Growth media Temp. (�C) Time (days)

Impactor MEAa (I-II,V)

2%MEAb (III,V-VI)

DG18c (III,VI)

20-25 (I-III,V-

VI)

5-7(I-III,V-VI) TYGa, d (II,VI)

Half-strength

nutrienta (II)

20-23 (II,VI)

55 (II)

5 (II, VI), 14* (VI)

2-3 (II)

Sedimentation MEAa (I) 20-23 (I) 5-7 (I)

Surface MEAa (I,V)

2%MEAb (V-VI)

DG18c (VI)

20-25 (I,V-VI) 5-7(I, V-VI) TYGa(VI) 20-23 (VI) 5 (VI), 14* (VI)

Material MEAa (II,IV)

2%MEAb (IV,VI)

DG18c (IV,VI)

20-25 (II,IV,VI) 5-7(II, IV,VI) TYGa (VI)

Caseinate-

propionate (II)

Half-strength

nutrienta (II)

20-23 (VI)

20-23 (II)

55 (II)

5 (VI), 14* (VI)

5-7 (II)

2-3 (II)

House dust MEAa (I) 20-23 (I) 5-7 (I)

MEA = malt extract agar
DG18 = dichloran glycerol agar
TYG = tryptone yeast glucose agar
a Difco, Le Pont de Claix, France
b Biokar, Beuvais, France
c Oxoid, Basingstoke, Hampshire, England
*The number of ‘dry’ actinobacteria–type colonies was counted after 14 days.
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4.5.3 Building material samples

Material samples were taken from obviously contaminated materials of indoor surfaces

(e.g. wallboard) and structural materials (e.g. insulation). Samples were weighed,

homogenized, and extracted with dilution buffer (distilled water with 42.5 mg/l KH2PO4*7

H2O, 250 ml/l MgSO4, 8 mg/l NaOH and 0.02% Tween 80 detergent). Suspensions

were held in an ultrasonic bath (FinnSonic MO3/m) for 30 minutes and in a shaker

(KS125 basic, IKA Labotecknik) for 60 minutes (400-600 r/min) (II, IV, VI). Dilution

series were made, plated on growth media and incubated as shown in Table 5.

After incubation, the number of fungal and bacterial colonies were counted.

Subsequently, fungal colonies were identified morphologically by genus using an optical

microscope. Concentrations (cfu g-1) were calculated using the fresh weight of the

sample. (II,IV-IV)

Bacterial and fungal concentrations were obtained from dilutions which produced

separate colonies on the agar plate (II, IV-VI).  If additional fungal genera or

actinobacteria colonies were detected on dilutions where growth was so dense that

counting of individual colonies was impossible, the occurrence of these genera or

actinobacteria was recorded. This information was included in data representing the

presence or absence of each genus, species or group (IV). When counting of individual

colonies was impossible for all dilutions, due to high fungal or bacterial concentrations,

the total concentration was estimated by assuming that the number of colonies

produced by the highest dilution was 150 colonies for fungi (1.5x108 cfu g-1) and 650

colonies for bacteria (6.5x107 cfu g-1) (IV, VI).

4.5.4 House dust samples

In study I, house dust samples were obtained by using the vacuum cleaner of each

building studied. The vacuum cleaner was fitted with an unused dust bag before

collection. The collection time was 2-4 weeks. Samples were taken during fall and

winter. Dust samples of 1 g were suspended into 100 fold dilution buffer (distilled water

with 42.5 mg/l KH2PO4, 250 mg/L MgSO4 x 7H2O, 8 mg/l NaOH and 0.02% Tween 80

detergent), and the sample was shaken for 60 s. The suspension was filtered, diluted
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and plated on malt extract agar (Table 5). The samples were incubated in the dark at

20-23°C for 5-7 days.   The fungal concentrations and flora were determined.

4.5.5 House dust mites

Samples for house dust mites analyses were collected from beds, sofas and other

padded furniture with a vacuum-cleaner onto filter paper. One combined sample was

taken for each building. The presence of house dust mites was analyzed with Acarex-

test (Werner & Mertz, Reinbek, Germany) (II).

4.5.6 Formaldehyde and TVOC

Formaldehyde concentrations were determined with the chromotrophic acid method

(NIOSH 1974) (II).  TVOC-samples were taken passively with Tenax-TA-resin tubes

(Dietz and Cote 1982). TVOC sampling was started during the microbial sampling and

maintained for one week. TVOC analyses were performed with the gas

chromatography-mass spectrometer method modified by Pasanen et al. (1990) (II).

4.6 Serum samples for mold specific IgG

Mold specific IgG levels were studied as a possible biomarker of exposure. The

serum samples were stored at -20°C (VI) or -70°C (V) until all the serum samples

were collected. After the collection was completed, the antibody determinations of all

the samples were analyzed as one set. Analyses were done blinded in random order.

(V-VI)

In study V, 24 fungal strains were selected for antibody determination on the basis of

the results from environmental sampling of the study, whereas in study VI, serum IgG

antibodies were determined to 21 fungal strains, and three actinobacterial strains, which

were considered to cover the major microflora of the living environments. The microbes

used in the antibody analyses are shown in Table 6.
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Table 6. The list of microbes and study number (in roman numerals) included in the

investigation of microbe-specific IgG-antibodies.

Microbe specific IgG antibodies
Acremonium kiliense (VI)
Acremonium atrogriseum (VI)
Alternaria alternata (V)
Aspergillus niger  (V)
Aspergillus fumigatus (V, VI)
Aspergillus umbrosus (V)
Aspergillus versicolor (V, VI)
Aureobasidium pullulans (V,VI)
Botrytis cinerea (V)
Cephalosporium curtipes (V)
Cladosporium cladosporioides  (V, VI)
Chaetomium globosum (VI)
Eurotium amstelodami (VI)
Fusarium avenaceum (V)
Fusarium oxysporum (VI)
Geotrichum candidum (V, VI)
Humicola grisea (V)
Mucor circinelloides (VI)
Paecilomyces variotii (V, VI)
Penicillium brevicompactum (V)
Penicillium frequentans (V)
Penicillium glabrum (VI)
Penicillium notatum (VI)
Phialophora bubakii (V)
Phoma macrostoma (VI)
Rhizopus nigricans (V, VI)
Rhodotorula glutinis  (V,VI)
Scopulariopsis brevicaulis (V)
Sporobolomyces salmonicolor  (V, VI)
Stachybotrys chartarum  (V, VI)
Streptomyces albus (VI)
Streptomyces griseus (VI)
Streptomyces halstedii (VI)
Trichoderma citrinoviride (V,VI)
Tritirachium roseum (VI)
Ulocladium atrum (V)
Wallemia sebi (V)

Intracellular antigens for antibody determination were prepared as follows (V,VI). Fungi

were cultured in Roux bottles on mycological peptone broth (2% malt extract, 1%

mycological peptone, 4% glucose in sterile water) for 7 days. Harvested microbial mass

was washed three times with phosphate buffered saline (PBS), pH 7.4. After
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autoclaving, disrupting by a homogenizer and an ultrasonic treatment, microbial

homogenates were centrifuged. After the filtration through 0� � �� �
��� 
�#��� ��������

supernatants were stored at -70°C until used as antigens in the enzyme-linked

immunosorbent assay (ELISA). Alkaline phosphatase conjugated anti-human IgG

(Sigma, St. Louis, MO, USA) was used in ELISA as antiserum for the detection of IgG

antibodies in the sera samples.  (V,VI)

The working dilutions of antigens were determined from the titration curves for each

microbe separately by using IgG positive sera diluted 1:100. Serum immunoglobulin G

(IgG) antibody concentrations were determined by an enzyme-linked immunosorbent

assay (ELISA) (Laitinen et al. 1999). In the ELISA, absorbance values of a test serum

were compared to those of a pooled control serum collected from adults positive to a

few molds/microbes. The control serum was used on each microtiter plate.

Absorbances given by a test serum are expressed as percentages from the

absorbances of the corresponding microbes given by the pooled control serum. (V,VI)

4.7 Health questionnaires

The questionnaire in study VI was based on the Örebro-questionnaire (MM-40)

(Andersson 1998) supplemented with additional questions on respiratory infections

(common cold, tonsillitis, otitis, sinusitis, bronchitis, pneumonia) (Susitaival and Husman

1996), use of health care services, and background factors, such as housing conditions,

pets, passive smoking and parental profession. The questions on asthmatic symptoms

(shortness of breath, wheezy chest, attacks of shortness of breath with wheezing, dry

cough apart from coughing with a cold or chest infection) and doctor diagnosed asthma

were similar to those used in study of Timonen  (1997). The questionnaires were filled

in by the parents.

4.8 Ethics

The study protocol of study VI was approved by the Ethics Committee of the University

Hospital of Kuopio. Information about  the study was delivered in meetings open to the

personnel of the schools and the parents of the schoolchildren. Written consents for
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drawing the blood samples from the schoolchildren were obtained from the parents of

each child.

4.9 Statistical analysis

The distributions of fungal genera were not normally distributed, and hence non-

parametric tests were mainly used. The statistical tests used are summarized in Table

7. SPSS (I-II, V) and SAS (III-IV, VI) statistical packages were used for analyses (SPSS

Inc. 1988, SAS Institute Inc. 1990).

Table 7. Statistical methods used.

Use Method
Difference in microbial
concentrations

Wilcoxon signed rank test (I-III)
Wilcoxon rank test (III,V-VI)
Paired t-test (III)
Two sample t-test (III)
Kruskal Wallis one way analysis of
variance (IV)
Dunn’s Post hoc test (IV)

Difference in microbial
frequencies

McNemar test (I)
Chi Square test (IV)

Correlation between media Pearson’s correlation test (III)
Spearman rank correlation analysis (VI)

Correlation between fungal and
bacterial concentrations

Spearman rank correlation analysis (IV)

Temporal and spatial variation of
fungal concentrations

Anova (III)

Association between materials
and genera

Logistic regression (binary data) (IV)

Concurrent occurrence of two
genera

Chi Square test (binary data) (IV)

Difference in IgG-levels T-test (VI)
Wilcoxon rank test (VI)
Chi Square test  (binary data) (VI)
Fisher’s exact test (binary data) (VI)

Association between exposure
and IgG-levels

Logistic regression (VI)

Differences in occurrence of
symptoms and infections

Chi Square test  (binary data) (VI)
Fisher’s exact test (binary data) (VI)
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5 RESULTS

5.1 Concentrations and flora of airborne viable fungi

Airborne concentrations of viable fungi in indoor air environments are summarized in

Table 8. Concentrations were significantly higher and the occurrence of fungal genera

in the index buildings different from that in the reference buildings (I-III, V-VI). The most

common fungal genera were Penicillium together with Aspergillus, Cladosporium and

yeasts in a slightly different rank order depending on the study (I,III, V-VI).  Some

differences in the concentrations of individual genera were observed. Concentrations of

Aspergillus and Oidiodendron in the fall (I) and concentrations of Aspergillus (I, III, V),

Penicillium (I, III, V-VI), and yeasts (V-VI) in the winter were higher in the index than in

the reference buildings. In study I, the mean ratio between an index and a matched

reference building was 3 for the concentration of Aspergillus and 10 for Penicillium.  In

addition certain fungi, such as, Acremonium (I), ascomycetes (V), Aspergillus versicolor

(III), Botryosporium (I) Gliocephalis (V), Gliomastix (V), Gonatobotrys (V),

Gonatorrhoidiella (V), Olpitrichum (V), Polyscytalum (V), Rhizopus (V), Stachybotrys (I,

V), Tritirachium (V), and Ulocladium (V), were detected in the index buildings in the

winter, but not in the reference buildings. In addition, the following fungi occurred only in

the damaged school (VI): Aspergillus niger, Chrysosporium, Exophiala, Hyalodendron,

Monocillium, Mucor, Paecilomyces, Rhizopus, and Scopulariopsis.  All fungal genera

detected in indoor air of index and reference buildings are listed in Table 9. Altogether

47 and 34 fungal genera were found in the index and reference buildings, respectively.

The outdoor air concentrations of viable fungi were determined in the fall in study I and

in the winter in study III. In the fall, the total concentrations of viable fungi as well as the

concentrations of non-sporulating isolates, Polyscytalum  and Cladosporium were

higher in outdoor air than in indoor air (Table 8) (I).  In winter, the geometric mean of the

total concentrations of viable fungi was approximately 25 cfu/m3 (III).
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Table 8. The concentrations of viable fungi and the concentrations of the most common

fungal genera or groups in index and reference residences and the corresponding

samples of outdoor air in the fall. The results of studies III and VI are presented by

combining the results obtained with MEA and DG18.

Index Reference Study
GMa Rangeb GMa Rangeb

Fall, indoor
(nind/ref =25/25)
Total 250 19 - 7900 160 40 - 580 I
Penicillium 31 0 - 7900 16 0 - 72 I
Cladosporium 18 0 - 160 20 0 - 140 I
Aspergillus 4 0 - 76 2 0 - 20 I
Yeasts 14 0 - 74 16 0 - 200 I
Polyscytalum 0 - 40 3 0 - 38 I
Non-sporulating 54 0 - 1700 51 5 - 280 I
Fall, outdoor
(nind/ref=9/9)
Total 410 37 - 11000 190 37 - 630 I
Penicillium 14 0 - 95 12 0 - 76 I
Cladosporium 74 11 - 430 43 15 - 160 I
Aspergillus 1 0 - 11 2 0 - 15 I
Yeasts 23 0 - 790 10 0 - 83 I
Polyscytalum 16 5 - 93 3 0 - 54 I
Non-sporulating 190 19 - 9300 93 19 - 300 I
Winter, indoor
(nind/ref=131/118)
Total 120 - 363 7 - 54 000 58 - 61 11 - 1400 I, III, V-VI
Penicillium 38 - 90 0 - 8670 13 - 41 0 - 1400 I, III, V*-VI
Cladosporium 1 - 11 0 - 2370 1 - 5 0 - 71 I, III, V*-VI
Aspergillus 3 - 18 0 - 51500 1 0 - 187 I, III, V*-VI
Yeasts 5 - 14 0 - 403 1 - 8 0 - 62 I, III, V*-VI
Non-sporulating 7 0 - 269 2 - 9 0 - 83 I, V*-VI

a if more than one study, GM is presented as the range of GM’s of different studies
b if more than one study, range represents the range of the different studies
* partly published in study V
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Table 9. The prevalences  (present in % of samples) of the most common fungal genera or
species or groups detected less frequently (generally in <20% of samples) is also presented
and denoted by an X. (Data from studies I, III, V, VI, partly published). The results are presented
by combining the results obtained on MEA and DG18 (studies III, VI).

Fungal genera, species or group Index (% of samples) Reference (% of samples)
Penicillium 79 - 97 24 - 100
Aspergillus 53 - 73 19 - 55
Cladosporium 47 - 76 24 - 71
Yeasts 71 - 82 32 - 89
Non-sporulating isolates 36 - 71 12 - 76
Acremonium X X
Alternaria X X
Ascomycetes X
Aspergillus fumigatus X X
Aspergillus glaucus X
Aspergillus niger X
Aspergillus terreus X X
Aspergillus versicolor X X
Aureobasidium X X
Basidiomycetes X X
Botrytis X X
Chrysonilia X
Chrysosporium X X
Chaetomium X
Eurotium X X
Exophiala X
Fusarium X X
Geotrichum X X
Geomyces X
Gliocephalis X
Gonatobotrys X
Gonatorrhoidiella X
Graphium X
Humicola X
Hyalodendron X X
Monocillium X X
Mucor X X
Oedocephalon X
Oidiodendron X X
Olpitrichum X X
Ovulariopsis X
Paecilomyces X X
Phialophora X X
Phoma X X
Polyscytalum X X
Rhizopus X
Rhinocladiella X X
Rhodotorula X
Scopulariopsis X X
Sphaeropsidales X X
Stachybotrys X
Trichoderma X X
Tritirachium X
Ulocladium X
Wallemia X X
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The cumulative distributions of total concentrations of viable fungi in moisture-damaged

and non-damaged residences in the combined study population are shown in Figure 1.

(I, III, V and unpublished data). The results of study III are included as mean values of

the several sampling periods.

Figure 1. Cumulative distributions of concentrations of airborne viable fungi in index

and reference residences.

In studies III and VI, the fungi were sampled on two growth media, MEA and DG18. The

results obtained with MEA and DG18 correlated well in both studies for total

concentration (r=0.92/074) and concentrations of Penicillium (r=0.91/0.53) and

Aspergillus versicolor  (r=0.67/0.72). In study III, concentrations also correlated well for

Aspergillus spp. (r=0.74). In the study VI, the correlation was moderate for yeasts

(r=0.59), but poor (r=0.29) in the study III. Concentrations of Cladosporium correlated

poorly in both studies  (r=0.30/0.31).
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5.2 Concentrations of airborne viable bacteria

In the winter, the concentrations of airborne viable mesophilic bacteria varied between

14 - 35 000 cfu/m3 in the index residences and day-care centers and 79 - 18 000 cfu/m3

in the corresponding reference buildings (II). In the index and reference schools, the

respective ranges were 71 – 7 600 cfu/m3 and <4 -2 100 cfu/m3 (VI). In the fall, the

range of the indoor concentrations of viable mesophilic bacteria was 36 - 4 600 cfu/m3

in the index residences and day-care centers and 220 - 10 000 cfu/m3 in the reference

residences and day care centers (II). The differences between the index and reference

buildings were not significant (II,VI).

Concentrations of airborne actinobacteria were <30 cfu/m3 in all buildings. No

differences between the index and reference buildings were found (II, VI).

Actinobacteria were found in 26 % of samples taken from the index school and 6 % of

the samples from reference schools. The total concentration of thermotolerant bacteria,

being mainly actinobacteria, were <22 cfu/m3 in both index and reference buildings.

There were no differences in concentrations between indoor and outdoor air in the fall

and no seasonal variation was detected (II).

5.3 Size distributions of viable fungi and bacteria

The highest concentrations of viable fungi and clearest differences between the index

and reference buildings were usually in the size fraction of 2.1 –3.3 µm (II; Figure 2, III;

Figure 2). Furthermore, there were differences in the size fraction >7µm in the fall (II;

Figure 2) and in the size ranges 1.1-2.1µm (III; Figure 2) and  in 3.3 –4.7 µm (II; Figure

2) in the winter. There were no differences in size distributions of airborne bacteria

between the index and reference buildings either in the fall or in the winter samples (II).

The concentration difference (p<0.05) between the rooms of the index residence was

seen in four size ranges (4.7-7�m, 3.3-4.7�m, 2.1-3.3 �m, 1.1-2.1 �m) (III; Figure 3A),

while a difference between rooms was observed only in one size range (3.3-4.7�m) in

the reference residence.



73

5.4 Temporal and spatial variation of concentrations of viable fungi

Concentrations of viable fungi varied significantly in different rooms of the index

residence (III). The spatial variation was also seen in the concentrations of Penicillium

(III).

In the dining room of the index residence, temporal variation was observed both within-

day and within-season (p$%�%%���� &	� ��������

����
���within-day and within-season

differences were close to significant. All temporal differences in the reference residence

were significant (p<0.001). The total concentrations of fungi were usually higher in the

morning than in the afternoon (III; Figure 4). This was true for both index and reference

residences. The concentrations observed in November and in the beginning of

December, especially in the reference residence, were mostly higher than those

observed in February (III; Figure 4).

The variation in one room within one season was almost two orders of magnitude and

even within same day the ratio of maximum and minimum values was 2-23 in the index

residence and 2-9 in the reference residence. The difference between rooms within

same day was up to 11 fold in the index residence, whereas in the reference residence

it was less than 3 fold.

5.5 Proposal for sample size to characterize fungal level in residences during

the winter months

Concentrations of viable fungi in indoor environments have temporal and spatial

variation. Therefore, one short-time sample cannot characterize fungal contamination of

a residence. The number of samples required for this purpose must be estimated.

Sample size relates to the precision of measurement, yet the largest sample size is not

necessarily the best sample size; cost and time must be considered. The margin of

error, an indicator of the precision of the estimate, is defined as one-half the width of the

confidence interval of the mean. The margin of error, (E), the significance level

(α=0.05), and an estimate of the population standard deviation (�) are combined to
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estimate a sufficient and efficient sample size using the following equation:
222

2
/)( EZn σα=  (Freund and Wilson 1997), where is ��/2 = 1.96, when �=0.05.

The margin of error was calculated using the log-transformed sample database of the

index residence, E=0.785. The population standard deviation was obtained by dividing

the population range by 4. The range between 5th and 95th percentile values of the

merged database (n=129) of fungal concentrations were used to estimate the

population standard deviation. The estimated value of σ was 1.32.  The resulting

sample size required to characterize the fungal concentration of an index residence was

n=11.

5.6 Microbial concentrations and flora on surfaces

In studies V and VI,  fungal concentrations varied between <1 – 360 000 cfu/cm2 and

<1 – 450 000 cfu/cm2 on damaged surfaces in the index and reference buildings,

respectively (V,VI). In the index residences (V), concentrations were above the limit of

1000 cfu/cm2 in 51% of damaged surface samples, whereas the corresponding

percentage was only 4 for the reference samples. In the index school (VI),

concentrations of viable fungi were above 1000 cfu/cm2 in four of 23 surface samples

(17%), whereas all 14 samples taken from the reference school remained <200

cfu/cm2.  Bacterial concentrations varied between <1 – 12 400 cfu/cm2 in both visibly

damaged and undamaged surfaces in the index school, and between <1-450 000

cfu/cm2 and <1 – 5 100 cfu/cm2 in the reference school, respectively. Concentrations of

actinobacteria varied from <1-820 cfu/cm2 on damaged surfaces and <1 –180 cfu/cm2

on undamaged surfaces in the index school, compared to the corresponding ranges of

<1-5 cfu/cm2 and <1-59 cfu/cm2  in the reference school.

In study I, the rank order of frequency was rather similar to that in air samples in winter,

except the genus Aspergillus which was rare in the surface samples, whereas in fall,

there were several genera; Acremonium, Oidiodendron, Geotrichum, Polyscytalum and

Stachybotrys, in air that were not found on surfaces.
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Penicillium was the most frequently found genus on damaged surfaces (n=13) in the

index school (54%) together with Aspergillus versicolor (38%), yeasts (31%), and

Acremonium (31%). In the index residences (V), the rank order was different: yeasts

were most commonly found (51%) followed by Aspergillus (26%), Cladosporium  (26%)

and Penicillium (17%). The fungal genera found on the surfaces were mostly the same

as those in the indoor air (I, VI); only Alternaria (I), Olpitrichum (VI) and

Sphaeropsidales (VI) were found on the surfaces but in none of the air samples taken

from the corresponding building.

5.7 Building material samples

5.7.1 Microbial concentrations and flora in building material samples

Concentrations of viable fungi varied from <45 to 1.5x108 cfu g-1 in visibly damaged

materials (II,IV,V,VI).  Significant differences (p<0.05) in fungal concentrations were

observed between samples from different material groups (IV). Concentrations of fungi

were higher in samples of wooden materials on both growth media compared to paints

and glues, mineral insulation, ceramic products and plastics. In addition, concentrations

were higher in paper than those from paints/glues or mineral insulation (IV).

Concentrations of viable bacteria varied from <45 to 6.5x107 cfu g-1 in building materials

(II,IV-VI).  Significant differences (p<0.05) were observed in bacterial samples from

different types of building materials (IV). Concentrations of bacteria were lower in

mineral insulation than in wood, paper, ceramic products and plastics. No significant

differences were found between bacterial concentrations in other building materials (IV).

The correlation between total concentrations of viable fungi and bacteria was high

(R>0.6) in all building materials except paper products.

The main genera observed in damaged building materials of the studied buildings were

Penicillium (in 44-90% of samples) (II,V-VI), yeasts (35-41%) (II,V-VI), Aspergillus spp.

(30-37%) (II,V), Cladosporium (20%) (II), Acremonium (19-43%) (V-VI) and Aspergillus

versicolor (39%) (VI). The fungal genera most commonly detected were mainly the

same as in the indoor air (II,V-VI). When the mycoflora in indoor air and building

materials of individual buildings were compared, 36-100% of the fungal genera found in
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materials were also found in indoor air of the same building (II). Some fungal genera,

i.e., Ulocladium and Chaetophoma (II), Humicola, Monocillium, Ostracoderma and

Staphylotichum (V), and Fusarium, Oidiodendron, Phialophora, Sphaeropsidales group,

Stachybotrys and Tritirachium (VI) were detected in the building material samples, but

in none of the air samples of the corresponding building.

5.7.2 Occurrence of fungal genera and actinobacteria in various building

materials

The occurrence of fungal genera, groups and actinobacteria in different building

materials was studied from 1140 samples in study IV. The prevalences of 25 different

fungal genera or groups (MEA) in six different damaged building material groups are

shown in Figure 2.  Figure 2 also shows the relative proportion that each genus or

group contributed to the total fungal concentrations detected on MEA. The highest

diversity of fungal genera was observed in wooden materials, where the number of

genera or groups detected on MEA, NMEA was 46, while the number on DG18, NDG18

was 39. On the mineral insulation, the numbers of detected genera were also high

(NMEA=41, NDG18=36), while the diversity was lowest in gypsum boards (NMEA = 18,

NDG18=18).

Penicillium was the most commonly occurring genus on MEA growth media in all

building materials, and usually also the largest contributor to the total numbers of viable

fungi. The prevalence of Penicillium in paper, wood and mineral insulation was

significantly higher than that on plastics, ceramic products and paints. Yeasts were

found most frequently in wooden materials. They contributed about 13-18% of the total

fungal counts for most materials, except in ceramic products.  Acremonium was found

most frequently on ceramic products, in 35% of samples, and it contributed most to total

fungal numbers in ceramic products and in paints and glues. Aureobasidium was found

in 25% of samples from wood but in only 5-16% of samples of other materials. (Figure

2).   

Aspergillus versicolor was most commonly observed on ceramic products, but also

frequently in samples from paints and glues. Its contribution to total fungal

concentrations was also highest on these materials. (Figure 2)
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Cladosporium was found most commonly in paper material and mineral insulation, and

the highest counts were usually found in paper products. Stachybotrys was commonly

found in gypsum board (in 30% of samples), and at significantly higher frequencies than

in any other material. Stachybotrys contributed 20% of total fungi in gypsum board,

while its proportion in other materials was remarkably smaller (<4%). Tritirachium was

observed most frequently in paints and glues (10%), but rarely in wood, mineral

insulation, gypsum boards, and plastics.  (Figure 2).

On DG18 media, the differences between materials were rather similar to those

observed on MEA. Penicillium was again the most frequently found genus (37-67%).

The high prevalence of yeasts in wooden materials was even emphasized on DG18:

the difference was significant against all other materials except paper. While on MEA,

Cladosporium was associated with paper and mineral insulation, it was isolated most

commonly from mineral insulation on DG18.

Actinobacteria were found in 18-48% of different building materials. They were found

most commonly on ceramic products (48%) and less frequently in paper, mineral

insulation or gypsum board. Their average contributions to total bacterial concentrations

were highest for paints and glues (22%), ceramic products (18%) and plastics (18%).
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Figure 2. The prevalences of 25 different fungal genera or groups (MEA) in six different
damaged building material groups. The figure also shows the relative proportion that
each genus or group contributed to the total fungal concentrations detected on 2%
MEA.
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5.7.3 Concurrent occurrence of fungal genera and bacteria

Concurrent occurrences of two fungal genera or groups in different building materials at

frequencies higher than those occurring spontaneously were tested using Chi square

test, and are shown in study IV; Table 5. The most commonly observed genera or

groups (Penicillium, Aspergillus, Cladosporium and yeasts), and the microbes that

showed the most distinctive characteristics in relation to the different materials

(Acremonium, Aspergillus versicolor, Stachybotrys, Tritirachium, Phialophora,

Sphaeropsidales and actinobacteria) were included in the analyses.

Most of the concurrent occurrences of two fungal genera or microbial groups were

associated with actinobacteria, Penicillium, Acremonium, Aspergillus versicolor and

other Aspergillus spp. In all materials, actinobacteria and Acremonium were

simultaneously found more often than expected. That was also the case for

actinobacteria and Aspergillus versicolor in materials other than paper and gypsum

board.  In all materials except paper, the occurrence of Sphaeropsidales was

associated with the presence of yeasts.

5.8 Occurrence of microbes in house dust samples

The concentrations of viable fungi in house dust are presented in study I; Table 4. In the

fall, the concentrations of viable fungi were 7*103-1.2*106 cfu/g and 1.7*104-4.2*105

cfu/g in the index and reference buildings, respectively. The corresponding ranges were

3.8*104-6.8*105 cfu/g and 3.0*104-4.0*105 cfu/g in the winter. The difference between

the buildings was not significant. The fungal genera were similar in both index and

reference buildings. The most common genera were the same in the dust as in the air

samples, but their order of frequency was different (Study I; Table 2). Yeasts and

Aureobasidium were more common in the dust than in the air, while frequency of the

non-sporulating isolates was lower in the dust than in the air samples.
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5.9 Other environmental measurements

The concentrations of formaldehyde varied between <0.01 mg/m3 and 0.14 mg/m3 in

both index and reference buildings and there was no difference between the groups (II).

The mean concentrations of TVOC were 0.82 mg/m3 in the index buildings and 0.62

mg/m3 in the reference buildings, with no significant difference.

In study II, house dust samples were collected from beds and furniture. The samples

were positive for dust mites in 25% of the index buildings and in 19% of the reference

buildings. The difference was not significant.

5.10 Microbe-specific immunoglobulin G antibodies and symptoms and

respiratory diseases

Microbe-specific immunoglobulin G antibodies

Positive IgG-findings were common among the occupants of both index and reference

buildings (V-VI). In study V, higher antibody levels against most fungi were found in the

study group than in the control group (Figures 3 and 4), whereas in study VI, mean IgG

antibody levels seemed  to be higher among the students from the reference school

(Study VI). The difference, however, was significant only for Cladosporium

cladosporioides, Rhodotorula glutinis and Phoma macrostoma (p<0.05).

In study VI, more children with elevated antibody levels (>75 percentile) came from the

reference school than from the index school (Study VI; Table 1); the difference was

significant for Stachybotrys chartarum and Rhodotorula glutinis  (p<0.05). In contrast,

28 children in the index school had elevated IgG levels to Penicillium notatum and

Eurotium amstelodami (p=0.052 vs. reference school). Among the grades 1-3, the

number of children with elevated Penicillium notatum IgG levels was significantly higher

in the index school than in the reference (Study VI; Figure 2). In grades 4-6, instead, the

number of children with elevated IgG to Rhodotorula glutinis, Cladosporium

cladosporioides, Sporobolomyces salmonicolor, Tritirachium roseum and Streptomyces

griseus was higher in the reference school than in the index school (Study VI; Figure 2).
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Compatibility between fungal flora found in each building and higher IgG-levels of its

occupants to these microbes was seldom found in the index and reference buildings. In

the reference group of the residences, high IgG-levels against Trichoderma, Humicola,

Stachybotrys and Rhizopus were clustered to a few individuals who had no evident

exposure in their homes (V).  In Figures 3 and 4, the anti-Cladosporium- IgG and anti-

Phialophora- IgG levels are shown as examples of IgG-levels in occupants’ sera and

the compatibility to the microbial findings (V).  Figure 3 is an example of distribution of

IgG levels of a commonly found microbe and figure 4 gives an example of a microbe

found rarely.

Figure 3. The IgG levels to Cladosporium cladosporioides in the sera of occupants in

the index and reference residences. O indicates the presence of the genus in the

environmental samples.
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Figure 4. The IgG levels to Phialophora bubakii in the sera of the occupants of the

index and reference residences. O indicates the presence of the genus in the

environmental samples.

In study VI, associations between elevated serum IgG levels and microbial exposure

were examined with crude rations of elevated IgG levels compared to microbial findings

(Study VI: Table 1, Figure 1, Figure 2) and with logistic regression model. In the model,

the associations between moisture damage in school, at home or at both places and

mold specific IgG levels were analyzed. Age, gender, housing mode, having pets,

passive smoking, asthma and atopy (allergic rhinitis, allergic conjunctivitis or atopic

eczema) were included in the model. According to both of these analyses, moisture

damage in the school was associated with elevated IgG levels to Penicillium notatum

(p<0.05). Significant negative associations, however, were observed between elevated

levels of Stachybotrys chartarum or Rhodotorula glutinis and moisture damage in the

school (p<0.05). In addition, according to the model, elevated IgG levels to Penicillium

notatum (p<0.01) and Eurotium amstelodami (p<0.05) were significantly associated with
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elevated IgG levels to Geotrichum candidum (OR=2.5, 95%CI=0.9-6.8) or to any of

combined seven microbial strains (OR=2.3, 95%CI=0.9-6.3) (VI).

Symptoms and respiratory diseases

In study VI, the 212 children originally selected to the clinical study group had had either

doctor diagnosed asthma, wheezing symptoms or prolonged cough during the previous

12 months. The prevalences of these health outcomes in the original population were

41% in the index school and 20% in the reference school (p<0.001) (Taskinen et al.

1999). The prevalence of asthma (p<0.01), allergic rhinitis (p<0.05) and conjunctivitis

(p<0.05), doctor calls due to asthma (p<0.05) as well as parent reported wheezing

attacks (p<0.01) were significantly higher in the reference school than in the index

school. Reported allergic diseases were prevalent especially in the upper grades (4-6)

of the reference school. However, the prevalence of night cough was significantly

higher among the children of the index school compared to children attending the

reference school (p<0.05).

The prevalences of respiratory symptoms  (throat symptoms, hoarseness, dry cough,

night cough, upcoming phlegm, nasal congestion, rhinitis, nose bleeding, eye irritation)

are shown in Table 2 of study VI. In spring, dry cough and throat symptoms were more

prevalent among children from the index school than among those from the reference

school (p<0.05). The odds ratios for dry cough and throat symptoms in the index school

were 2.91 (95% CI 1.11-7.90), and 2.99 (95% CI 1.14-8.11), respectively. The

symptoms were more common in both schools in the fall. No significant differences

were found in the occurrence of respiratory infections between the index group and the

reference group.
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6 DISCUSSION

Moisture and mold damage have been associated with several health effects (Verhoeff

and Burge 1997, Peat et al. 1998), but the causal agents are still unknown. The aim of

this work was to characterize the differences in indoor pollutants between moisture

damaged (index) and non-damaged (reference) buildings. The buildings were classified

as index and reference base on the building technical criteria.  The differences were

evaluated using two approaches: source characterization and exposure assessment.

Levels of contaminants were examined in order to determine if there were abnormal

indoor sources for microbes in indoors or the levels were considered as markers of

exposure.  The current studies concentrate on the airborne concentrations of viable

microbes.

Samples for airborne microbes were mainly collected with a 6-stage impactor

(Andersen 10-800). Its cut-off size for particle collection is 0.57 �m (Nevalainen et al.

1992) and aerodynamic size of microbial spores and cells vary in the size range 1-30

�m (Reponen et al. 2001). Therefore, most of the microbial particles will be collected.

Collection of airborne microbes with 6-stage impactor supplemented with agar plates as

a collection surface enables not only the identification of airborne microbes but also the

determination of their size distribution. However, those microbial cells that are unable to

form colonies on the selected medium or cells that are not viable will not be detected. It

is known that viable counts comprise only about 1 % of the total counts of the spores in

residential environments (Toivola et al. 2002). However, the methods to detect the total

number concentration of microbial particles are poorly applicable to indoor

environments such as homes, since the concentrations are near their detection limit

(Toivola et al. 2002). The six-stage impactor is one of the recommended choices for

collection of viable microbes proposed by the International Aerobiology Symposium and

the American Conference of Governmental Industrial Hygienists (Jensen et al. 1992,

Willeke and Macher 1999). In addition, differences between moisture-damaged and

non-damaged buildings were characterized with the determination of viable microbes

from building materials, surfaces and house dust.
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Enumeration and description of microbial flora is dependent on culture media and the

conditions used, and on interactions between the microbes present in the sample.

Selection of culture media is a major factor in determining microbial growth, and should

be taken into account when comparing results from different studies. In the current

studies, microbial diversity in samples of air, materials, surfaces and house dust were

mainly described for fungi and actinobacteria that could be detected on MEA or 2%

MEA, DG18 and TYG. The combination of 2%MEA and DG18 is considered to

encompass the majority of important indoor fungi (Samson et al. 1994, Samson et al.

1996) as MEA is compatible with more hydrophilic fungi and DG18 with xerophilic

strains. However, cultivation on MEA favors fast growing Penicillium and Aspergillus at

the expense of slower-growing species such as Stachybotrys (Samson et al. 1994,

Andersen and Nissen 2000).

In addition to viable microbes, differences between the index and reference buildings

were characterized by determination of house dust mites, TVOC, and formaldehyde,

which are known to be associated with dampness (Konsgaard 1983, Reponen et al.

1991, Tucker 1991, Batterman 1995).  Furthermore, the association between moisture

and mold damage in building and symptoms or mold-specific IgG-levels were

examined.

6.1 Concentrations and flora of airborne viable fungi

The concentrations of viable fungi varied between 101-104 cfu/m3 and 101-103 cfu/m3 in

the index and reference buildings, respectively. In all studies, the concentrations of

airborne viable fungi were higher in the index buildings than in the reference buildings.

This is indicative of possible indoor air sources due to the existing moisture damage

and was in concordance with studies in which mold damage has been associated with

airborne fungal levels (Gallup et al. 1987, Hunter et al. 1988, Waegemakers et al. 1989,

Verhoeff et al. 1992, Dharmage et al. 1999b, Johanning et al. 1999, Klánová 2000).

Levels were <100 cfu/m3 in about 38% of the index residences and in about 88% of the

reference residences. Only about 27% and 1% of the levels were above >500 cfu/m3 in

the index and reference residences, respectively. This level of >500 cfu/m3 is

considered as “high” concentration indicating indoor air sources (Reponen et al. 1992,
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Ministry of Social Affairs and Health 1997). Hence, the absolute levels of the viable

fungi were high only in a few cases.

Penicillium with Aspergillus and Cladosporium were the most common indoor air fungal

genera in all studies as observed in several other studies (Hunter et al. 1988, Miller et

al. 1988, Waegemaekers et al. 1989, Strachan et al. 1990, Pasanen 1992, Pasanen et

al. 1992c, Kuo and Li 1994, Li and Kuo 1994, Beguin and Nolard 1994,  Dotterud 1995,

Ren et al. 1999, Górny et al. 1999,  Burge et al. 2000). Yeasts appeared commonly,

also supporting the findings of Hunter et al. (1988), Pasanen (1992) and Pasanen et al.

(1992c). In the current studies, the fungal composition of air samples was shown to be

different in index and reference buildings. In wintertime sampling, concentrations of

regularly found Penicillium, Aspergillus and yeasts were higher in the index than in the

reference buildings. This finding has also been supported by some earlier studies

showing higher levels of Aspergillus, Cladosporium, Penicillium, non-sporing fungi

(including basidiomycetes), or yeasts in moldy homes (Strachan et al. 1990, Nevalainen

et al. 1991, Pasanen 1992, Pasanen et al. 1992c, Garrett et al. 1998).

The observed differences in the fungal composition of air samples between index and

reference residences during fall may be biased by outdoor air, since the same fungal

genera were found in both indoor and outdoor air. Outdoor air is known to have a clear

contribution to levels and flora of fungi in the indoor air (Fradkin et al. 1987, Reponen et

al. 1992, Kuo and Li 1994, Li and Kuo 1994, DeKoster and Thorne 1995, Dharmage et

al. 1999b, Burge et al. 2000, Su et al. 2001). In our climate with its snow cover on the

ground in the winter, the contribution of outdoor air to indoor air levels is negligible

(Reponen et al. 1992), which gives a good opportunity to examine the effect of indoor

sources.

The fungal diversity in buildings was rather large; in all 47 and 34 fungal genera or

groups were found in the index and reference buildings, respectively. The result was

similar to that reported by Hunter et al. (1988) and Beguin and Nolard (1994). Sixteen

fungal genera that were found in the air of the index buildings were never found in the

air of the reference buildings indicating that moisture damage may change the fungal

composition of the building. Part of these sixteen genera, such as Rhizopus,

Stachybotrys and Ulocladium, were found sporadically, whereas genera such as
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Gonatorrhoidiella and Oedocephalon were found only once. The recurrent findings of

these uncommon genera may indicate moisture damage, thus supporting the earlier

conclusion that certain microbes indicate moisture damage (Samson et al. 1994). On

the other hand, Chrysonilia, Graphium, and Humicola were only found in the air of

reference buildings showing the large diversity of fungal genera in air samples in

general. The earlier results on the differences in the fungal composition between

moisture damage and non-damaged buildings are rare and inconclusive. It has,

however, been suggested by Flannigan (1997) that isolation of Stachybotrys from air

should be interpreted differently from isolation of Penicillium, since e.g. spores of

Penicillium and Aspergillus stay airborne longer than Stachybotrys due to their smaller

particle size (Flannigan and Miller 1994).  This could be assumed to be true for other

rarely found genera, such as Fusarium, Chaetomium and Ulocladium, which are

seldom airborne due their large spore size or way of producing spores (Samson et al.

1996).

The concept of the indicator microbe is complicated.   For example, the identification to

genus may not be accurate enough. On the other hand, according to Samson  (1999)

there is no general taxonomic consensus in the identification of some problematic

genera such as Penicillium, Aspergillus, and Fusarium, which makes the use of

indicator organisms even more problematic. In addition, certain microbes, such as

Aspergillus species, actinobacteria and Fusarium are very common in agricultural

environments (Kotimaa et al. 1984) which should be taken into account when

investigating moisture damages in buildings connected with agricultural environments.

The results obtained with MEA and DG18 growth media correlated either well or

moderately for total viable concentrations or concentrations of Penicillium, Aspergillus

spp. and Aspergillus versicolor, but poorly for yeasts, especially for Cladosporium,

which is partly supported by Ren et al. (2001). In addition, there were some genera that

could be detected with the other medium only. For example Stachybotrys was rarely

found on DG18 and Wallemia was rarely found on MEA. Usually higher levels and

larger diversity were found with MEA as observed also by Ren et al. (2001). On the

other hand, in the study of Wu et al. (2000a), the total fungal concentrations obtained

with DG18 were higher than those with MEA and more genera were obtained with

DG18. This study was done in a hospital with no evident moisture problems, which
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might explain the findings supporting the use of DG18. When taking the cost

effectiveness into consideration, the systematic use of two growth media, especially

DG18, may not be justified.

6.2 Concentrations of airborne viable bacteria

The concentrations of airborne viable bacteria varied between 14 - 35 000 cfu/m3 in the

index buildings and 79 - 18 000 cfu/m3 in the corresponding reference buildings. The

observed range, especially in the index homes, is higher than that observed in earlier

studies concerning homes (Nevalainen 1989, Nevalainen et al. 1991, Reponen et al.

1992, DeKoster and Thorne 1995, Rautiala et al. 1996, Ross et al. 2000).  No

differences, however, were found in the concentrations of airborne viable bacteria

between the index and reference buildings. The bacterial concentrations were,

however, occasionally over 4500 cfu/m3, which according to guidelines of the Ministry of

Social Affairs and Health of Finland  (1997) is considered to be the upper normal level

for total concentrations of airborne viable bacteria. Most of indoor air bacteria derive

from humans and thus elevated concentrations of viable bacteria observed are

probably attributable to overcrowding and inadequate ventilation (Nevalainen 1989,

Otten and Burge 1999).  In an earlier study by Nevalainen et al. (1991), abnormally high

concentrations of airborne bacteria detected especially in moldy homes were also

concluded to be the result of poor ventilation.

Mesophilic actinobacteria were determined from the bacterial samples, because in the

earlier study of Nevalainen et al. (1991), their presence seemed to indicate moisture

and microbial problems. However, in studies II and VI, the concentrations of mesophilic

actinobacteria were <30 cfu/m3 both in indoor and outdoor air and there were no

differences in concentrations or occurrence of actinobacteria between the index and

reference buildings. Thus, airborne actinobacteria did not associate with moisture

damage in the buildings studied. However, there seem to be cases, where

actinobacteria occur in high concentrations; in the study of Taskinen et al. (1997), some

moisture damage buildings with high concentrations of airborne actinobacteria, 2700

cfu/m3, have been observed.  In addition, actinobacterial levels in the indoor air can

increase up to 104 cfu/m3 during the dismantling of moldy structures (Rautiala et al.

1996). The culturability of collected airborne actinobacterial spores varies extensively
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and is affected by several factors, such as the species and sampling flow rate and

hence an alternative to cultivation methods should to be developed (Reponen et al.

1998). In general, results concerning actinobacteria have been reported in only a few

studies. In in vitro studies, they have been shown to be responsible for intense

inflammatory and toxic responses (Hirvonen et al. 1997a and b) and hence, in future

studies, their presence should be evaluated in more detail.

6.3 Size distributions of viable fungi and bacteria

There were differences between the index and reference buildings in the size

distributions of viable fungi. The difference in the concentrations between the buildings

was usually largest in the size fraction of 2.1 –3.3 µm, in which the highest increase in

concentration due to demolition also occurred (Rautiala et al. 1996). These findings

indicate significant differences in the exposure risk to people because particles of the 2-

3 µm size range deposit effectively into the alveoli (Seinfeld 1986). Most fungal spores

are only slightly hygroscopic and therefore their respiratory deposition is not significantly

affected by changes in relative humidity (Reponen et al. 1996).

6.4 Temporal and spatial variation of concentrations of viable fungi

In the index residence, the concentrations of viable fungi were higher in the bedroom

than in the dining room, whereas no such difference of practical value was observed in

the reference residence. No or some spatial variation has been also observed earlier

(Dotterud et al. 1995, Li and Kendrich 1995a, Ren et al. 1999, Ross et al. 2000, Ren et

al. 2001). The spatial variation in the index residence was considered to be due to the

more severe mold damage in the bedroom, because the activity level was considered

to be similar in both residences. This is supported by studies observing higher levels in

damaged buildings and basements with potential sources (Pasanen et al. 1992c,

DeKoster and Thorne 1995, Ren et al. 1999). Concentrations in the other room of the

index residence were significantly higher in four out of the six size fractions, whereas in

the reference residence, that was the case only in one size range. These results of size

distributions affirm the significant spatial variation in the index residence.
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Total concentrations of viable fungi were usually higher in the morning than in the

afternoon. This may reflect the activity peak in the mornings when adults went to work,

school age children went to school and day care children first arrived and later went out

to play. This is supported by studies, where highest concentrations have been seen

during the highest level of activity (Flannigan 1992b) and due to resuspension of spores

from a carpet by human activity (Buttner and Stetzenbach 1993).  A trend towards

higher concentrations at the beginning of the winter season was shown. One

explanation for this might be the changes in the building because of the heating season.

This suggestion, however, needs more research.  Earlier studies have shown that

fungal concentrations vary in time and space (Hunter et al. 1988, Verhoeff et al. 1990,

Pasanen et al. 1992c). In study III, it was demonstrated that the variation is remarkable,

even almost two orders of magnitude within one room within season and up to 11 fold

between the rooms of the same residence.

6.5 Proposal for sample size to characterize fungal level in residences during

the winter months

Due to the large variation of fungal concentration within space and time, a sampling

campaign of 11 different days was shown to be needed to characterize the airborne

fungal concentrations of a residence (III). Within-day variation should be addressed by

sampling at different times in each of the 11 sampling days and within space variation

by sampling two rooms of a subject residence during each sampling day.

Visible signs of mold in non-industrial environments are conclusive indicators of health

risks (WHO 1990, Samson et al. 1994, Ministry of Social Affairs and Health 1997) and

residences with such signs do not require air sampling - they require steps to control the

problem. In residences where people are experiencing symptoms indicative of mold

problems and where no visible signs of moisture or mold problems are seen, air

sampling is justified to determine potential contamination.  In the following section, the

sampling campaign of 11 days is related to the pertinent guidelines in Finland (Ministry

of Social Affairs and Health 1997). According to these guidelines, fungal concentrations

above 100 cfu/m3 and presence of indicator microbes (Samson et al. 1994) are alarm

bells indicating a possible abnormal indoor source of fungi. The process should

commence to identify the source and control it. Concentrations above 500 cfu/m3 are
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suggestive of an abnormal indoor source of fungi and action should be initiated to on

identify and control the source. In study III, it was suggested that if neither of the above

scenarios occurs, the sampling of indoor fungi must continue at least for 6 times over 2

months in the subject residence. If the coefficient of variation is less than 20 percent, no

additional samples are needed; the mean fungal contamination of the subject residence

is thought to be stable.  If the coefficient of variation is larger than 20 percent, the

remaining 5 samples should be taken over the next 2-month period to characterize

fungal contamination of the residence. In occupational settings, it has been estimated

that a reasonable approximation of an exposure distribution is often possible with about

10 measurements (AIHA 1998). Burge et al. (2000), however, have stated that

microbial status of large buildings may not be sufficiently documented even with

relatively extensive air sampling protocols. They observed no increase in fungal levels

measured with 476 samples during 14 months even though fungal contamination was

found in the air ducts of a large office building.

6.6 Microbial concentrations and flora on surfaces

Surface samples were taken to obtain more information about the fungal flora of the

building and to show possible microbial growth on the surfaces. Surface samples are a

kind of alternative for situations when building material samples cannot be taken. In the

index residences, 17-51% of the samples taken from the surfaces with signs of

moisture damage were above 1000 cfu/cm2, which is considered to indicate microbial

growth according to the guidelines of Ministry of Social Affairs and Health of Finland

(1997). In the reference residences, the corresponding percentage was 0-4%. Thus, not

all visibly damaged surfaces have active fungal growth, and on the other hand, there

are local sites with active growth even in buildings with no evident moisture damage.

The fungal genera found in the surfaces were mostly the same as those in the indoor

air, e.g. Penicillium, Aspergillus, Cladosporium, and yeasts.  Only three genera,

Alternaria, Olpitrichum and Sphaeropsidales, were found on the surfaces but in none of

the air samples taken from the corresponding building. Thus, the surface samples gave

only little additional information about the fungal flora in buildings as suggested by

Tiffany et al. (2000), but confirmed the microbial findings of indoor air.
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6.7 Building material samples

6.7.1 Microbial concentrations and flora in building material samples

Moist building materials provide the main substrates for microbial growth in buildings,

and thus are one of the main contributing factors to intramural microbial emissions into

indoor air. The concentration range of viable fungi in damaged building materials was

large, <45 to 1.5x108 cfu g-1 and similar to those reported earlier (Morey 1993,

Andersson et al. 1997b, Carlson and Quraishi 1999, Etzel et al. 1998, Kujanpää et al.

1999, Johanning et al. 1999, Ellringer et al. 2000, Hodgson et al. 1998, Lappalainen et

al. 2001). It was interesting, that even though the materials were identified as damaged

from their appearance, microbial concentrations were often below the detection limit,

e.g. in 12-35% of the samples depending on the material. Similar observations were

reported by Kujanpää et al. (1999) and Reiman et al. (2000). These low concentrations

may be partly due to an inability of fungi to grow on the selected growth media.

Secondly, in some cases, fungal growth may not have developed if the material had

dried quickly, although water damage had changed its visible appearance. It is also

possible that spores had lost their ability to grow due to the drying of the material

(Pasanen et al. 2000a). Using direct microscopy of the material, a close agreement

between field and laboratory observations on fungal growth could be found, as

suggested by Miller et al. (2000). Some genera, such as Stachybotrys may not be

found with the cultivation from visibly damaged materials, even though it is

microscopically found in these materials (Pasanen et al. 1992b Andersson et al. 1997b,

Miller et al. 2000).  Both these methods may be at least partly replaced with PCR-

techniques, which have been already used for the detection and quantification of

microbes in environmental samples and in experimental settings (Haugland et al. 1999,

Buttner et al. 2001, Roe et al. 2001, Williams et al. 2001).

The fungal genera most commonly found in building materials were mainly the same as

in the indoor air, even though the variety of fungal genera in indoor air was usually

larger. A building material sample represents the flora of one microenvironment, a

specific moist area in the building, but the flora of the indoor air is a result of several

sources of fungi. Building material samples were, however, shown to give additional

information of the composition of fungal flora in buildings, since some fungal genera
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grew in the building materials, but were not seen in any of the corresponding air

samples. This is supported by Rautiala et al. (1996), who detected fungal genera

growing in the damaged materials in the air only during the dismantling of these

materials.  One reason for this phenomenon may be that some genera e.g.

Stachybotrys, Phialophora, Sphaeropsidales and Fusarium, which produce their spores

in slime (Samson et al. 1996), are not easily released from the growth. Secondly,

genera with a larger spore size, for example Stachybotrys, Ulocladium and

Chaetophoma, do not stay airborne for long periods of time as do the typical indoor air

fungi which have a smaller spore size, such as Penicillium and Aspergillus (Samson et

al. 1996).

6.7.2 Microbial concentrations and diversity in various building materials

The highest median concentrations of fungi were observed in wooden and paper

materials and lowest in mineral insulation, ceramic products, and paints and glues.

Thus, wood and paper seem to offer more favorable conditions for fungal growth than

do other common building materials, such as gypsum board, mineral insulation,

ceramics, plastics, and paints. However, the study confirmed that even materials which

are not readily biodegradable, such as mineral-based insulation or ceramics, may

provide conditions for fungal growth.

Fungal and bacterial numbers correlated well in the samples, except in paper materials,

meaning that a sample with a high fungal count had usually also a high bacterial count.

The range of bacterial concentration was wide, 100-108 cfu g-1. Mineral insulation had

significantly lower bacterial concentrations than other materials.

The diversity of fungal genera in different materials varied greatly. The highest diversity

was observed in wooden materials (number of various genera 46) and mineral

insulation (41), while lowest in gypsum board (18). The variation in diversity may be

due, in part, to the larger number of samples from wooden building materials and

mineral insulation compared to samples from gypsum board, which may increase the

probability of observing more genera. On the other hand, wooden materials provide

relatively good nutrient conditions for growth. Mineral insulation is not a nutrient-rich

material but may act like a filter for outdoor air microbes, which may partly explain the
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variety of fungi found in these samples. Plastics contain few nutrients, but were

associated with a large number of genera, which may indicate the utilization of

accumulated dust on plastic materials as a nutrient source for growth.

Penicillium was the most common genus in moisture damaged building materials and

comprised the largest fraction of total viable fungal concentrations, in agreement with

earlier studies (Andersson et al. 1997b, Gravesen et al. 1999, Tuomi et al. 2000,

Reiman et al. 2000).  The high prevalence of Penicillia was to be expected, being

primary colonizers, fast growing, and not very demanding for nutrients and moisture

(Grant et al. 1989) and even tolerant to fluctuating or dry conditions (Adan 1994, Korpi

et al. 1998). Penicillium also appeared most frequently concurrently with other genera.

The second most common fungal group were yeasts, appearing most frequently in

wooden materials, and comprising a high proportion of total viable fungal concentration

in most materials.

One of the most distinctive findings in the material study was the high prevalence of

Stachybotrys in gypsum board (in 30% of samples). This fungus has been often linked

to this material (Andersson et al. 1997b, Gravesen et al. 1999, Hung 1999). It is

noteworthy, however, that in 70% of gypsum board samples no Stachybotrys was

found, but growth was dominated by other genera.   The occurrence of Stachybotrys in

gypsum board was not associated with simultaneous occurrence of any other genus.

Stachybotrys was also observed frequently in paper materials, but less often than in

gypsum board even though it is known to be highly cellulolytic (Gravesen et al. 1994).

Ceramic products and paints and glues seemed to favor the growth of Aspergillus

versicolor and Acremonium.  These microbes were frequently found concurrently not

only in these materials, but also in wood. Tritirachium also was associated with these

fungi and materials, even though its proportion of total fungal concentrations was low.

The observation of Ezeonu et al. (1994) that Aspergillus versicolor was the most

common colonizer in samples of new fiberglass was not supported.

Actinobacteria were found commonly (18-48%) in building materials, with an equal

frequency as yeasts. Actinobacteria were found especially on ceramic products, which

may be due to their capability to tolerate alkaline conditions (Suutari et al. 2000).
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Interestingly, although commonly occurring and having both inflammatory and toxic

potential (Hirvonen et al. 1997a and b, Andersson et al. 1998), actinobacteria have

been rarely discussed in studies concerning building related microbes.

Actinobacteria and Acremonium were found concurrently in all materials, and

actinobacteria and Aspergillus versicolor in all materials other than paper and gypsum

board.  Members of the Sphaeropsidales were strongly associated with the occurrence

of yeasts in most building materials. These are, to our knowledge, new findings. Due to

the consistency of the finding, it deserves more attention in future studies.

6.8 Occurrence of fungi in house dust samples

Concentrations of viable fungi in house dust varied 7*103-1.2*106 cfu/g in the index

buildings and 1.7*104-4.2*105 cfu/g in the reference buildings, having no significant

difference. The levels were close to those reported by Miller et al. (1988) and Verhoeff

et al. (1994a). The fungal genera were similar in both index and reference buildings. It

seems that with sampling of house dust from the vacuum cleaner and subsequent

microbial analyses, a building with moisture damage cannot be distinguished from a

normal building. This is supported by Verhoeff et al. (1994b), Ren et al. (1999)

suggesting that dust samples do not reflect the exposure.  The reason for similarity in

concentrations and composition of fungal flora in house dust of the index and reference

buildings may be that the majority of the viable fungi in the dust originate from outdoors

and from brief concentration peaks from normal sources (Lehtonen et al. 1993).

6.9 Other environmental measurements

In order to identify differences between the index and reference buildings several other

methods were also screened (II). The studied buildings included six moisture damaged

residences and three moisture damaged day-care centers and their matched controls

(see also section 4.1). The methods were determinations of formaldehyde, TVOC and

occurrence of house dust mites. The concentrations of formaldehyde were <0.15 mg/m3

being lower than the guideline values in Finland: 0.15 mg/m3 for the buildings built after

1983 and 0.30 mg/m3 for older buildings (Ministry of Social Affairs and Health 1997).

Thus, the formaldehyde concentrations did not appear to be elevated as a result of
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moisture and mould problems, nor did they explain the differences in symptoms of the

occupants in the index and reference buildings.

The means of TVOC concentrations were 0.82 mg/m3 and 0.62 mg/m3 in the index and

in the reference buildings, respectively, with no significant difference. The

concentrations were low compared to a study showing an association between sick

building syndrome and VOC (Wallace et al. 1990), but agreed with the calculated mean

values (weighted average geometric mean = WAGM) 1.13 mg/m3 and 0.52 mg/m3 for

established and complaint dwellings, respectively (Brown et al. 1994). The

concentrations in study II, even in the reference buildings, were higher than the average

concentrations reported earlier in smoking homes and in non-smoking homes (Hoskins

et al. 1993) or in 50 non-problem houses in Finland (Kostiainen 1995). Thus, the

importance of TVOC measurements in detecting a moisture or mold problem must be

questioned.

House dust mites (HDM) occurred in bed dust to a similar degree, about 20% in both

buildings with moisture problems and in the reference buildings.  This is a low

prevalence compared to the results of O’Rourke et al. (1993) and Flannigan et al.

(1993) with a 50% of prevalence and van Strien et al. (1994) and Leung et al. (1998)

with a 100% prevalence. The low prevalence may be partly due to Scandinavian

conditions, where indoor air relative humidity is <50% for most of the time, which is the

critical humidity level for the survival of HDM. The infrequent occurrence of mites in the

northern climate was also shown by Raunio et al. (1998), who did not detect the major

allergen of house dust mite Dermatophagoides pteronyssinus (Der p 1) in any of the

house dust samples collected from floor carpeting in 30 residences. Hence, mites seem

to be generally ubiquitous and their occurrence is rather associated with favorable

microclimatic conditions than with moisture problems in a house.
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6.10 Microbe-specific immunoglobulin G antibodies and respiratory symptoms

and diseases

Microbe-specific immunoglobulin G antibodies

Higher mold-specific IgG-levels were found among residents of moldy buildings than in

residents of control homes. However, only two IgG findings supported the hypothesis

that indoor exposure to fungi in school increases mold-specific IgG levels. The higher

percentages of elevated IgG levels in the index school to Penicillium notatum and

Eurotium amstelodami were observed. This was supported by the multivariate analysis,

since the elevated IgG levels to Penicillium notatum were associated with moisture

damage in school alone and in both school and home and high levels of Eurotium

amstelodami were associated with the presence of moisture damage in both school and

home. These microbes were more abundant in the index school; Penicillium in

significantly higher levels and Eurotium more frequently than in the reference school.

This is in line with preliminary findings in adults by Makkonen et al. (2001). Moisture

damage in the school was negatively associated with elevated IgG levels of

Stachybotrys chartarum and Rhodotorula glutinis with both univariate and multivariate

analysis adjusted for potential confounding factors. A cluster of high IgG-levels against

Trichoderma, Humicola, Stachybotrys and Rhizopus were found from a few persons

with no evident exposure in their homes. Evidently, mold-specific serum IgG

determinations do not reflect sensitively enough an exposure in the moisture and mold

damaged buildings either in the school or home environment.

Symptoms and respiratory diseases

Cough and throat symptoms among schoolchildren were associated with mold

problems in the school. Of special importance is the association between mold

exposure and night cough, which often precedes the development of asthma (Remes et

al. 1998). The association of the respiratory symptoms with the indoor exposure to

building-related moisture and mold is consistent with previous studies (Dales et al.

1991, Spengler et al. 1994, Koskinen et al. 1997).  In general, there was a trend

towards more prevalent irritation symptoms in the index school than in the reference
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school. This trend was present in spite of the fact that in this cohort, asthma and allergy

were more prevalent in the reference school.
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7 CONCLUSIONS

The moisture-damaged buildings were characterized and compared to the reference

buildings with several methods including microbial sampling of air, surfaces, building

materials and dust, determination of volatile organic compounds, formaldehyde and

house dust mites. In addition, mold-specific serum IgG-levels of occupants in moisture-

damaged and reference buildings were assessed. The following conclusions can be

drawn from the results:

1. The wintertime concentrations of total viable fungi (101-5*104 cfu/m3) and

concentrations of Penicillium (100-104 cfu/m3), Aspergillus (100-104 cfu/m3), and

yeasts (100-102 cfu/m3) in the moisture damaged buildings were higher than in the

reference buildings. Higher levels of fungi were observed especially in the particle

size fraction of 2-3 �m.  In addition, the fungal diversity was larger in the moisture

damaged buildings. Certain fungal genera, such as Stachybotrys, Ulocladium,

Tritirachium and Exophiala, were detected only in the air of the moisture problem

buildings. No differences were observed in the concentrations or occurrence of the

other parameters: airborne viable bacteria, TVOC, formaldehyde, fungi in house

dust and house dust mites.

2. The fungal concentrations in moisture damaged and reference buildings overlapped

in most cases in moisture damaged and reference buildings, and hence no absolute

level can be said to typically indicate the existence of moisture damage. However,

by examining both the levels and flora of the air samples, indications of moisture

problems can be achieved. The determination of microbial levels and flora

especially in building materials, but also on surfaces, were shown to give additional

information on the microbial flora in building and this knowledge can be utilized in

source characterization.

3. The temporal variation of the fungal concentrations was significant both in index and

reference residences, whereas spatial variation affected mostly the levels in the

index residence. In order to reliably ascertain the fungal level of a residence, a

sampling campaign of 11 different sampling days in two rooms was proposed. In
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cases where there is only minor variation between six measurement days

(coefficient of variation <20%), no additional sampling is needed.

4. Fungal diversity in moisture damaged building materials was large. Fungal growth

was associated with bacterial growth. Stachybotrys was associated with gypsum

boards.  Acremonium, Aspergillus versicolor and actinobacteria were associated

with ceramic materials and they occurred often together on the other materials as

well. Sphaeropsidales and yeasts occurred often concurrently in damaged building

materials.

5. Mold-specific serum IgG levels were associated with only a few microbial findings.

The occurrence of elevated serum levels was contradictory in exposed and non-

exposed population in different studies. It can be concluded that mold-specific

serum IgG levels are not sensitive enough to indicate the current exposure in a

moisture damaged home or school environment.
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