MOLECULAR AND PHYSIOLOGICAL STUDIES ON BACTERIAL DEGRADATION OF POLYNUCLEAR AROMATIC HYDROCARBONS

NWINYI, OBINNA CHUKWUEMEKA (CUGP050150) B. Sc. (NAU), M. Sc. (UNILAG), MIPAN.

A thesis submitted in partial fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in Microbiology in the Department of Biological Sciences, School of Natural and Applied Sciences, College of Science and Technology, to the School of Post-Graduate Studies, Covenant University, Ota, Nigeria.

July, 2012

DECLARATION

I, NWINYI, Obinna Chukwuemeka, hereby declare that this thesis is a product of my own unaided research work. It has not been submitted, either wholly or in part, to this or any other institution for the award of any degree, diploma, or certificate. All sources of scholarly information that were used in this thesis were duly acknowledged.

.....

NWINYI, Obinna Chukwuemeka

CERTIFICATION

We certify that this thesis entitled "Molecular and Physiological Studies on Bacterial Degradation of Polynuclear Aromatic Hydrocarbons" is an original research work carried out by NWINYI, Obinna Chukwuemeka (CUGP050150) of the Department of Biological Sciences, Covenant University, Ota, Nigeria under the supervision of Prof. O.O. Amund and Dr F.W. Picardal. We have examined and found the research work acceptable for the award of a degree of Doctor of Philosophy in Microbiology.

Supervisor	Date
Prof. O. O. Amund	
Co-Supervisor	Date
Dr. F.W. Picardal	
HOD, Biological Sciences	Date
Prof. L.O. Egwari	
External Examiner	Date
Prof. E.I. Chukwura	
Dean, College of Science and Technology	Date
Prof. F.K. Hymore	

DEDICATION

This work is dedicated to my Lord, my Saviour, Jesus Christ, the Son of the Ever Living, Almighty God to whom I owe completely my survival to this day and also the grace and inspiration to complete this work that was very daunting.

ACKNOWLEDGEMENTS

I am very thankful to God Almighty and to my saviour Jesus Christ who has never left or forsaken me at any stage of my development but has always taken care of the totality of my life. I am grateful to the Chancellor of Covenant University, Dr. David Oyedepo, whose vision to establish this University provided me the stage to embark on the Ph.D. programme. My immense thanks also go to my Vice-Chancellor, Prof. Aize I. Obayan, and to the University management for driving the post-graduate programme of this citadel of learning. My profound gratitude goes to the Institute of International Education (IIE) and the Fulbright scholarship board for having found me worthy to be awarded the Junior Fulbright fellowship that enabled my travel to the United States of America for the experimental part of this research. I am also thankful for the technical and financial support from the city of Bloomington (Indiana) Parks and Rrecreation, Department during this research.

I want to sincerely appreciate my kind and laudable research supervisor, Professor O.O. Amund, for his special interest in my success. God used him as the key that opened linkages to research laboratories abroad. I thank him for his attention to detail in reading through this thesis. He was never tired of imparting me with remarkable skills, which he has acquired over a long period of hard work and unrelenting commitment. I will be committing a terrible mistake, if I forget to mention the role of Dr. Flynn. W. Picardal, Associate Professor at the School of Public and Environmental Affairs, Indiana University, United States, who accepted to host me in his research laboratory, with unrestricted access to all that I needed for my research during my 10 months of intensive research. He was a wonderful host- supervisor to me and I gained a lot from his impactful research experiences.

You all are not just supervisors but men of deep knowledge with passionate hearts. It is my desire that the Almighty God will reward your labour of love beyond measure now and even in eternity, in Jesus' name (amen).

My deep appreciation goes to the Dean of the School of Post-Graduate Studies, Prof.C.O. Awonuga, the Dean of College of Science and Technology, Prof. F.K. Hymore, the Deputy-Dean, School of Natural and Applied Sciences, Prof. L.O. Egwari, and all members of their team for their indefatigable contributions to the development of Covenant University. I wish to offer my humble and heart-felt gratitude to my Head of Department, Professor L.O. Egwari, who happens to be the Deputy-Dean School of Natural and Applied Sciences, for his fatherly attitude, prayers, guidance and keen interest throughout my research work. May God keep blessing you. I also want to thank all my past Head of Department's for all their encouragement and moral support. I am fully indebted for the care, support and encouragement from Prof. K.O. Okonjo, Prof M.A. Mesubi, Prof M.O. Ilori, Prof (Mrs) Oyawoye, Dr. Sunday Adebusoye and all my colleagues and Faculty of the Department of Biological Sciences, Covenant University.

Good and reliable friends remain as gems to one's life. Among them are my wonderful research fellows in the US: Anirban Charkraborty, Thuy An, and Agineszka Furmann. I appreciate their team spirit and the high level of togetherness that they displayed while we worked together as office /laboratory mates.

I must not fail to express my deep thanks to friends who ensured that I enjoyed a stressfree stay during my period of rigorous laboratory work in US. among them are Peter Arenner, Victor Chijioke, Michael Brown, Kyle Miller, Benjamin Pheasant, Elan Rajamani, Ed Huff and all the SOCC coffee hour friends; then my friends in Nigeria who have touched my life in special ways during this period of research: Dr. O.O Ajani, Dr. S.N. Chinedu, Dr. S. Oranusi, Mr J.A. Adekoya, Mr. O. Oluwagbemi, Mr Onyeka Emebo, Mr O.C. Iroham and Mr Uchenna Efobi.

I am fulfilled having Dr Nnamdi I. Nwinyi, Dr (Mrs) Chinyelu N. Uzoamaka, Nkiru and Chibuzo as brothers and sisters. You all have been a source of support and encouragement. And to my wonderful sister- in- law the current Deputy-Vice Chancellor (Academics), University of Abuja, Dr (Mrs) F.C Nwinyi, Dr Onyekachi Uzoamaka, Arc. and Mrs Muyiwa Odufalu, I say a big "thank you all" for your encouragement.

My appreciation goes to my wonderful parents, Chief. S.C.O Nwinyi and Mrs R.O Nwinyi and to my parents in-law, Chief A. Obianinwa and Mrs N. Obianinwa for their parental blessings and consistent prayer over my life. You are the best parents in the whole world. No amount of money can pay back you for all your sacrifices towards ensuring good upbringing and worthy character

enshrined in me. Finally, I am sincerely grateful to my beloved wife, Barrister. Chinelo Elochukwu Nwinyi, for her sweet words of love and care and for her ever willingness to stay by me during the rigours of this research, even at the expense of her career as a lawyer. She stood strong and took total charge of the home front while I was away abroad to complete the experimental aspect of this work. You are indeed a golden pillar in my life. I bless God forever for giving me a rare gems and jewels of immeasurable value in the persons of my lovely daughters, Blessing and Miracle. I am grateful for their unconditional love and for their continuously reminding me to always do them proud.

I will forever love you all.

God bless you all!!!!

CONTENTS

Page
i
ii
iii
iv
v
viii
XV
xix
xxi
xxii
xxiii
xxiv
XXV

1.1	Background of the Study	1
1.2	Statement of Problems	9
1.3	Justification of the Study	14
1.4	Purpose/Objectives of the Study	18

CHAPTER TWO

2.0	LITERATURE REVIEW	20
2.1	Polynuclear Aromatic Hydrocarbons (PAH) and the Biosphere	20
2.2	Structure and Properties of PAHs	21
2.3	Polynuclear Aromatic Hydrocarbons as Soil Contaminants	22
2.4	Sources and Sinks	23
2.5	Sources and Environmental Fate of PAHs	24
2.6	Controls on PAH Assemblages in the Environment	25
2.7	Health and Environmental Concerns	26
2.8	Biodegradation Processes	29

2.9	Remediation Methods and Rate-Limiting Factors	30
	2.9.1 Dig and Dump	30
	2.9.2 Containment	31
	2.9.3 Sustainable Remediation	32
	2.9.4 Bioremediation	33
2.10	Factors Affecting Polycyclic Aromatic Hydrocarbon (PAH) Degradation	36
	2.10.1 Temperature	37
	2.10.2 Effect of pH	38
	2.10.3 Effect of Aeration	38
	2.10.4 Effect of Salinity	39
	2.10.5 Presence of other Organic Matters	39
	2.10.6 Bioavailability of PAHs	39
	2.10.7 Hydrophobicity and Low Solubility	40
	2.10.8 Dissolution of PAH particles	41
	2.10.9 Soil Structure and Sorption Mass Transfer	42
	2. 10.10 Sorption Rated Mass Transfer	42
	2.10.10.1 Diffusion	43
	2.10.10.2 Intra Organic Matter Diffusion	43
	2.10.10.3 Retarded Intra Particle Diffusion	43
	2.10.10.4 Film Diffusion of PAH	44
2.	11 Factors Affecting the Rate of Release of Sorbed PAH	44
	2.11.1 Ageing Processes	44
	2.11.2 Pulverization and Acidification of Soil Aggregates	45
	2.11.3 Geosorbent and Sorbent Domains	45
2.	12 PAH Degradation- The Role of Biosurfactants	46
	2. 12.1 Factors Affecting Biosurfactant Production	48
	2.12.1.1 Carbon and Nitrogen Sources	48
2.2	13. The Role of Plasmids in PAH Degradation	48
2.	14 Role of Aromatic Ring Hydroxylating Dioxygenases in PAH Degradation	49
2.	15. Cometabolism of PAHs	49
	2.15. 1 Cometabolism and the Role of Consortium in PAH Degradation	50

2.16 Growth Models and Kinetics in PAH Degradation	52
2.16.1 Substrate-Limited Growth	54
2.17 Isolation of PAH Degraders	54
2.17.1 Isolation by Membrane Filter Method	55
2.18 PAH-Degrading Microorganisms	55
2.18.1 Characteristics of most common PAH Degraders	56
2.18.1.1 Rhodococcus sp.	56
2.18.1.2 Pseudomonas sp.	56
2.19. PAHs catabolic mechanism	60
2.20 Some selected PAHs	67
2.20.1 Naphthalene	67
2.20.2 Anthracene	72
2.20.3 Pyrene	76
2.20.3.1 Pyrene toxicity and its detection	80
2.20.3. 2 Some notable bacterial species involved in pyrene degradation	80
2.20.3.3 Pyrene degradation pathways	81
2.20.3.4. Anaerobic degradation of pyrene and other PAHs	83
2.20.4 Fluoranthene	85
2.20.5 Chrysene	88
2.21 DNA- The Central Dogma of Molecular Biology	89
2.22 Sequencing and their Roles in Phylogenetic Classification	89
2.23 Use of BioEdit version 7.0.9 in Gene Sequence Analysis	95
CHAPTER THREE	
3.0 MATERIALS AND METHODS	96
3.1 Chemicals and Reagents	96
3.2 Instrumentation	96
3.3 Preparation of Glassware	97
3.4 Historical Background and Environmental Auditing	97
3.4.1 Microwave extraction of the soil samples using US EPA Method 3546	98
3.4.2 Quantification and Identification of the PAHs using US EPA Method 8270	99
3.5 Soil Sample Collection	100
3.6 Physicochemical Analysis of Soil Samples	101

3.6.1 Determination of Moisture Content	101
3.7 Selection of five PAHs for Enrichment and Isolation of Bacterial Species	102
3.8 Enrichment and Isolation of Bacterial Species	102
3.8.1 Enrichment/Isolation of Bacterial Strains Capable of Utilizing Fluoranthene	103
3.9 Screening for PAH Degraders	104
3.10 Preparation of Stock Solution of Different PAHs	104
3.10.1 Preparation of Naphthalene Stock Solution	104
3.10.2 Preparation of Fluoranthene Stock Solution	105
3.10.3 Preparation of Pyrene Stock Solution	105
3.10.4 Preparation of Anthracene Stock Solution	105
3.10.5 Preparation of Chrysene Stock Solution	106
3.11 Calibration and Calculation of the Retention Time of the Compounds	106
3.11.1 Calculation of Retention Times of the Selected PAHs	106
3.12 Analytical Procedure	109
3.13 Quantification of Cell Numbers During PAH-dependent Growth	110
3.14 Enumeration of Cells	110
3.15 Preservation of the Isolates	111
3.15.1 Preparation of Minimal Salt Salicylic Acid	111
3.15.2 Preparation of 0.2M Minimal Salt Benzoate	111
3.16 Biodegradation Studies	111
3.16.1 Minimal Salts (MS) Medium Preparation	112
3.16.2 Biodegradation and Growth Profile Studies	
of Strains OC-1 OC-2, OC-3 and OC-4 on Chrysene, Naphthalene	
Pyrene and Fluoranthene	112
3.16.3 Growth Profile Studies and Biodegradation	
of Strains CB-1 and CB-2 on Chrysene, Naphthalene Pyrene	
and Fluoranthene	114
3.16.4 Growth Profile / Biodegradation of Strains PB-1	
and PB-2 on Chrysene, Fluoranthene, Naphthalene and Pyrene	115
3.16.5 Growth profile and Biodegradation Studies of Strains FB-1, FB-2	
and FB-3 on Fluoranthene, Anthracene, Naphthalene and Pyrene	116

3.16.5.1 Degradation of Fluoranthene Amended with Blackstrap Molasses	
by Strains FB-1, FB-2 and FB-3	118
3.17 Screening for Anaerobic PAH degradation Using Nitrate as a	
Reducing Agent in MS Benzoate and Salicylate	119
3.18 Molecular Studies:	119
3.18.1 Construction of the Forward Primer 8FM, Reverse Primers 926R and 1387R	119
3.18.2 Cell Growth for the Isolation of Genomic DNA from Pure Isolates	120
3.18.3 Isolation of the Microbial DNA	120
3.18.4 Isolation of Soil and Sediment DNA	123
3.18.5 Concentration of the genomic DNA	125
3.19 Amplification of 16S rDNA or 16S rRNA	126
3.19.1 Preparation of Primer Solutions for PCR	126
3.19.2 PCR Product Clean Up Using Nucleotide Removal Kit	128
3.19.3 Quantification of the Nucleic Acids Using Spectrophotometry	129
3.19.3.1 Measurement of Absorbance at 260 nm	129
3.19.3.2 Quantification of the Nucleic Acids Using NanoDrop	
Spectrophotometry ND-1000	129
3.19.3.3 Agarose Gel Electrophoresis	130
3.20 16 S rRNA Sequencing	131
3.20.1 Editing and Assemblying of Sequences	132
3.21 Long-Term Preservation of the Strains	134
CHAPTER FOUR	
4.0 RESULTS	135
4.1 Goegraphic Information System (GIS) Mapping of Pollutant Distribution at	
McDoel Switchyard	135
4.2 Physicochemical Analysis of McDoel Switchyard Soil	149
4.3 Isolation of Bacterial Species	150
4.4 Degradation of Naphthalene, Chrysene, Fluoranthene and Pyrene by	
Bacterial Strains OC-1, OC-2, OC-3 and OC-4	152
4.4.1 Degradation of Naphthalene	152
4.4.2 Degradation of Fluoranthene	156
4.4.3 Degradation of Pyrene	160

4.4.4 Degradation of Chrysene	163
4.5 Degradation of Pyrene, Chrysene, Naphthalene by Strains of PB-1 and PB-2	166
4.5.1 Degradation of Naphthalene	166
4.5.2 Degradation of Chrysene	169
4.5.3 Degradation of Fluoranthene	172
4.5.4 Degradation of Pyrene	175
4.6 Degradation of Fluoranthene, Naphthalene, Molasses and Fluoranthene, Pyrene	
and Anthracene by Strains FB-1, FB-2 and FB-3	178
4.6.1 Degradation of Naphthalene	178
4.6.2 Degradation of Anthracene	181
4.6.3 Degradation of Pyrene	184
4.6.4 Degradation of Fluoranthene	187
4.6.5 Degradation of Fluoranthene Supplemented with Black strap Molasses	190
4.7 Degradation of Chrysene, Pyrene, Naphthalene and Fluoranthene	
by Strains CB-1 and CB-2.	193
4.7.1 Degradation of Chrysene	193
4.7.2 Degradation of Fluoranthene	196
4.7.3 Degradation of Naphthalene	199
4.7.4 Degradation of Pyrene	202
4.8 Screening for Anaerobic Degradation using Nitrate as Electron Donor	
in MS Benzoate and Salicylate Media	205
4.8.1 Anaerobic Degradation in MS Benzoate	205
4.8.2 Anaerobic Degradation in MS Salicylate	208
4.9 Molecular Characterization and Preservation of the Isolated Genomic Sequences	211
4.9.1 Microbial DNA Amplification using Polymerase Chain Reaction (PCR)	
and gel electrophoresis	211
4.9.2 Isolation and Quantification of Total Microbial DNA directly	
from the Different Soil Samples and their PCR Amplification	215
4.9.3 Analysis of the Sequences using Bioinformatic Tools	220

CHAPTER FIVE

DISCUSSION	233
Conclusion	256
Recommendations	258
Contributions to knowledge	260
REFERENCES	261
APPENDIX	292
Appendix 1	292
Appendix 2	326
Appendix 3	345

LIST OF FIGURES

Figure		Page
1.0	Aromaticity on the Benzene Ring	2
2.0	Sample of Creosote in a Conical Flask	23
2.2	Main Processes and Factors Affecting PAH Degradation	37
2.3	PAH Degradation Intermediate Metabolites	63
2.4	Pathways for the Microbial Degradation of PAHs	64
2.5	Pathways for the Degradation of Catechol	65
2.6	The Tricarboxylic Acid Cycle (TCA)	66
2.7	Structure of Naphthalene	70
2.8	Pathways for the Degradation of Naphthalene	71
2.9	Structure of Anthracene	74
2.10	Pathways for the Degradation of Anthracene	75
2.11	Pathways for the Degradation of Pyrene	84
2.12	Structure of Fluoranthene	86
2.13	Fluoranthene Degradation Pathways	87
2.14	Structure of Chrysene	88
2.15	The Central Dogma of Life	89
2.16	The Phylogenetic Tree of Life	94
3.1	Annotated Diagram of a PCR Process	127
3.2	Sample of a FASTA file	134
4.1	Satellite Imagery of McDoel Switchyard Site Showing Estimated	138
	Concentration of Sub-Surface Lead	
4.2	Satellite Imagery of McDoel Switchyard Site Showing Estimated	139
	Concentration of Surface Lead	
4.3	Satellite Imagery of McDoel Switchyard Site Showing Estimated Sub-	140
	Surface Arsenic Concentration	
4.4	Satellite Imagery of McDoel Switchyard Site Showing Estimated Surface	141
	Arsenic Contamination	

4.5	Satellite Imagery of McDoel Switchyard and Estimated PAH Contamination	142
4.6A	Analysed soil samples showing estimates of the contaminants at the McDoel	143
	Switchyard	
4.6B	Analysed soil samples showing estimates of the contaminants at the McDoel	144
	Switchyard	
4.6C	Analysed soil samples showing estimates of the contaminants at the McDoel	145
	Switchyard	
4.7a	Degradation of Naphthalene by MS-Benzoate Grown Cells, Strains OC-1,	154
	OC-2, OC-3, and OC-4	
4.7b	Naphthalene–dependent Growth and Cell Numbers of Strains OC-1, OC-2,	155
	OC-3, and OC-4 after 14-day incubation	
4.8a	Degradation of Fluoranthene by MS-benzoate Grown Cells, Strains OC-1, OC-	158
	2, OC-3, and OC-4	
4.8b	Fluoranthene-dependent Growth and Cell numbers of Strains OC-1, OC-2, OC-	159
	3, and OC-4 after 21-day Incubation	
4.9a	Degradation of Pyrene by MS-benzoate Grown Cells ,Strains OC-1, OC-2, OC-	161
	3, and OC-4	
4.9b	Pyrene-dependent Growth and Cell numbers of Strains OC-1, OC-2, OC-3 and	162
	OC-4 after 21-day Incubation	
4.10a	Degradation of Chrysene by MS-benzoate Grown Cells , Strains OC-1, OC-2,	164
	OC-3, and OC-4	
4.10b	Chrysene –dependent Growth and Cell numbers of Strains OC-1, OC-2, OC-3	165
	and OC-4 after 21-day Incubation	
4.11a	Degradation of Naphthalene by MS-benzoate Grown Cells, Strains PB-1 and	167
	PB-2	1.60
4.11b	Naphthalene – dependent Growth and Cell numbers of Strains PB-1 and PB-2	168
4 10-	after 14-day incubation	170
4.12a	Degradation of Chrysene by MS-benzoate Grown Cells, Strains PB-1 and PB-2	170
4 1 2 b	Chrysona dependent Growth and Call numbers of Strains DP 1 and DP 2 after	171
4.120	21-day Incubation	1/1
4 139	Degradation of Fluoranthene by MS-benzoate Grown Cells Strains PR-1 and	173
r.1Ju	Degraduation of r normalicate by this benzoute Grown Cells, Strains I D-1 and	175

	PB-2	
4.13b	Fluoranthene-dependent Growth and Cell numbers of Strains PB-1 and PB-2	174
	after 21-day Incubation	
4.14a	Degradation of Pyrene by MS-benzoate Grown Cells , Strains PB-1 and PB-2	176
4.14b	Pyrene-dependent Growth and Cell numbers of Strains PB-1 and PB-2 after 21-	177
	day Incubation	
4.15a	Degradation of Naphthalene by MS-benzoate Grown Cells ,Strains FB-1 FB-2	179
	and FB-3	
4.15b	Naphthalene-dependent Growth and Cell numbers , Strains FB-1, FB-2 and FB-	180
	3 after 14-day Incubation	
4.16a	Degradation of Anthracene by MS-benzoate Grown Cells, Strains FB-1 FB-2	182
	and FB-3	
4.16b	Anthracene-dependent Growth and Cell numbers of Strains FB-1, FB-2 and	183
	FB-3 after 21-day Incubation	
4.17a	Degradation of Pyrene by MS-benzoate Grown Cells , Strains FB-1 FB-2 and	185
	FB-3	
4.17b	Pyrene–dependent Growth and Cell numbers of Strains FB-1, FB-2 and FB-3	186
	after 21-day Incubation	
4.18a	Degradation of Fluoranthene by MS-benzoate Grown Cells , Strains FB-1 FB-2	188
	and FB-3	
4.18b	Fluoranthene–dependent Growth and Cell numbers of Strains FB-1, FB-2 and	189
	FB-3 after 21-day Incubation	
4.19a	Degradation of Fluoranthene Supplemented with Black-strap Molasses by MS-	191
	benzoate Grown Cells, Strains FB-1 FB-2 and FB-3	
4.19b	Fluoranthene and BlackStrap Molasses dependent Growth and Cell numbers of	192
	Strains FB-1, FB-2 and FB-3 after 21-day Incubation	
4.20a	Degradation of Chrysene by MS-benzoate Grown Cells, Strains CB-1 and CB-2	194
4.20b	Chrysene-dependent Growth and Cell numbers of Strains CB-1 and CB-2 after	195
	21-day Incubation	
4.21a	Degradation of Fluoranthene by MS-benzoate Grown Cells , Strains CB-1 and	197
	CB-2	
4.21b	Fluoranthene-dependent Growth and Cell numbers of Strains CB-1 and CB-2	198

after 21-day Incubation 4.22a Degradation of Naphthalene by MS-benzoate Grown Cells, Strains CB-1 and 200 CB-2 Naphthalene-dependent Growth and Cell numbers of Strains CB-1 and CB-2 4.22b 201 after 14-day Incubation Degradation of Pyrene by MS-benzoate Grown Cells ,Strains CB-1 and CB-2 4.23a 203 4.23b Pyrene-dependent Growth and Cell numbers of Strains CB-1 and CB-2 after 21-204 day Incubation Transformation of Nitrate in MS benzoate by Strains OC1, OC2, OC3, OC4, 4.24 206 FB1, FB2, FB3 PB1, PB2, CB1 and CB2. 4.25 Transformation of Nitrate in MS Salicylate by Strains OC1, OC2, OC3, 209 OC4, FB1, FB2, FB3 PB1, PB2, CB1 and CB2.

LIST OF TABLES

Table		Page
1.0	EU and USEPA Regulated PAH Compounds.	7
2.1	Some Biosurfactant–Producing Bacteria	47
4.1.A	Analysis of the Different Pollutants at McDoel Switchyard	146
4.1.B	Analysis of the Different Pollutants at McDoel Switchyard	147
4.1.C	Analysis of the Different Pollutants at McDoel Switchyard	148
4.2	Physico-chemical Composition of McDoel Soil Samples	149
4.3	Analysis of Nitrate Reduction in 2.5 mM MS Benzoate	207
4.4	Analysis of Nitrate Reduction in 2.5 mM MS - Salicylate	210
4.5	16S rRNA Amplification at Different Dilutions	212
4.6	Estimation of the total 16S rRNA gene sequence using Nanodrop Spectrophotometer	216
4.7	Amplification Total Microbial 16S rRNA obtained from the different soil sample	217
4.8.1	GenBank Probe Analysis of 8FM, 926R and 1387R Amplified Fragments	221
	of 16S rRNA gene for Strain CB-1	
4.8.2	GenBank Probe Analysis of 8FM, 926R and 1387R Amplified Fragments of	222
	16S rRNA gene for strain CB-2	
4.9.1	GenBank Probe Analysis of 8FM,926R and 1387R Amplified Fragments	223
	of 16S rRNA gene for Strain FB-1	
4.9.2	GenBank Probe Analysis of 8FM, 926R and 1387R Amplified Fragments	224
	of 16S rRNA gene for Strain FB-2	
4.9.3	GenBank Probe Analysis of 8FM, 926R and 1387R Amplified Fragments	225
	of 16S rRNA gene for Strain FB-3	
4.10.1	GenBank Probe Analysis of 8FM, 926R and 1387R Amplified Fragments	226
	of 16S rRNA gene for Strain OC-1	
4.10.2	GenBank Probe Analysis of 8FM, 926R and 1387R Amplified Fragments	227
	of 16S rRNA gene for Strain OC-2	

- 4.10.3 GenBank Probe Analysis of 8FM, 926R and 1387R Amplified Fragments 228 of 16S rRNA gene for Strain OC-3
- 4.10.4 GenBank Probe Analysis of 8FM, 926R and 1387R Amplified Fragments 229 of 16S rRNA gene for Strain OC-4
- 4.11.1 GenBank Probe Analysis of 8FM, 926R and 1387R Amplified Fragments 230 of 16S rRNA gene for Strain PB-1
- 4.11.2 GenBank Probe Analysis of 8FM, 926R and 1387R Amplified Fragments 231 of 16S rRNA gene for Strain PB-2
- 4.12 Summary of All the Strains of Isolates, their Length, Bacteria Subdivision 232 and Genbank Accession Number

LIST OF PLATES

Plates		Page
3.1	Physical Appearance of the Soil	100
4.1	Fluoranthene Degrading Isolates on Minimal Salt (MS) Agar Sprayed with Fluoranthene:	150
	7 days of Incubation	
4.2	Strain OC-1 Epifluorescene Microscopy using Acridine Orange Direct Count (AODC) for Cell Number Enumeration	151
4.3	Flaking of Chrysene	151
4.4	Ethidum Bromide Stained Gel Electrophoresis of Amplified 16SrRNA of Strains	213
	OC4, FB1, FB2 and the marker (1kb DNA Ladder)	
4.5	Ethidium Bromide Stained Gel Electrophoresis of Amplified 16SrRNA of Strains	214
	OC-1, OC-2, OC-3 and the marker (1kb DNA Ladder)	
4.6	Ethidium Bromide Stained Gel Electrophoresis of Amplified 16SrRNA of Total	218
	Microbial DNA of Soil Sample 1-3 and the marker (1kb DNA ladder, Primers 8FM	
	and 1387R)	
4.7	Ethidium Bromide Stained Gel Electrophoresis of Amplified 16SrRNA of Total	219
	Microbial DNA of Soil Sample 1-3 and the marker (1kb DNA ladder, Primers 8FM	
	and 926R)	

GLOSSARIES OF TERMS

Amplification: a process of multiplying a fragment of DNA by subjecting it to different cycles of temperature using a thermal cycler in the presence of an enzyme called DNA polymerase.

Anthropogenic: sources of pollution that occur as a result of human activities.

Bioaugmentation: the direct introduction of microorganisms into a contaminated environment to enhance the cleanup of such an environment.

Biodegradation: the breakdown of a complex chemical by microorganisms, resulting in a minor loss of functional groups, fragmentation into larger constituents or complete breakdown to carbon dioxide and minerals.

Bioremediation: the use of biological agents to clean soils and waters polluted by substances hazardous to human health or the environment.

Teratogenicity: the extent to which a substance causes damage, reflected in the reproductive organs or abnormality of embryo and offspring.

Biodegradable: undergoing a biological transformation.

Persistent: not undergoing biodegradation in a certain environment.

Recalcitrant: resisting biodegradation in a wide variety of environments.

ABBREVIATIONS

ANT	Anthracene
AODC	Acridine orange direct counting method
BLAST	Basic local alignment search tool
BMB	Bead mill bioreactor
DHHS	Department of Health and Human Services
DNA	Deoxyribonucleic acid
DMSO	Dimethyl sulphoxide
GC-FID	Gas chromatography – flame ionization detector
GC-MS	Gas chromatography – mass spectrometry
HPLC	High pressure liquid chromatography
HMN	Heptamethylnonane
HMW	High molecular weight
IRT	Inhibitor removal technology
LMW	Low molecular weight
MS	Minimal salt
NAPLs	Non-Aqueous Phase Liquids
NRCC	National Research Council of Canada
РАН	Polycyclic aromatic hydrocarbons/polynuclear aromatic hydrocarbons
PCR	Polymerase chain reaction.
PYRQ	pyrene-4,5–dione
PYRdHD	cis-4,5-dihydroxypyrene
RNA	Ribonucleic acid
SDS	Sodium dodecyl sulphate
SSU	Small subunits
SIM	Selected ion monitoring
SOM	Sorbent organic matter
UDS	unscheduled DNA synthesis
USEPA	United States Environmental Protection Agency
WHO	World Health Organization

PHYSICAL SYMBOLS

centimeter
degree celsius
gram
gram per centimetre square
gram per mole
microgram per millilitre
milliliter
millimetre mercury
millimolar
megahertz
parts per million
pound per square inch
microlitre
micromolar
nanometer
percentage
revolutions per minute
nanograms per cubic meter
nanograms per liter
parts per billion
seconds

ABSTRACT

McDoel Switchyard, an old industrial site in Bloomington, Indiana, US inundated with extensive levels of organic pollutants, was screened for the presence of Polynuclear aromatic hydrocarbons (PAHs) degrading bacteria. The incidence of the PAHs and other organic pollutants was evaluated using the US EPA methods 8270 and 3546. The technique of continual enrichment of selected PAHs- naphthalene, chrysene, pyrene, fluoranthene and anthracene yielded eleven unique bacterial isolates tentatively named OC-1, OC-2, OC-3, OC-4, FB-1, FB-2, FB-3, CB-1, CB-2; PB-1 and PB-2. Following the isolation of pure bacterial strains, each of the bacterial strains was screened against four different PAHs. Their degradative abilities on the PAHs were determined using a GC- FID HP 5890 series II gas chromatograph connected to an HP 3396 Series II Integrator. Epifluorescent microscopy was used to measure the cell numbers via a PAHdependent growth study. For the molecular characterization of the bacterial strains, genomic DNA was extracted. The polymerase chain reaction was carried out using 8FM as forward primer, and as reverse primers 926R and 1387R to amplify the 16S rDNA. The amplified fragments of 16S rDNA were sequenced with an ABI 3730 sequence machine. The results were analyzed using the following bioinformatic tools: Stuffit Expander 2009, Chromas Lite 2.0, BioEdit, 7.0.9, Codon Aligner and BLAST algorithm. The bacterial strains evolutionary relatedness were performed on the basis of 16S rDNA gene analysis by comparison of the obtained sequences data with known sequences in the GenBank.

From the environmental audit carried out at the site of study, two- to three-ring PAHs which were seven in number were recorded. From the values obtained, the 4-ring PAHs Surface Benzo (a) anthracene had the highest incidence of about 63,000 µg/kg with minimum and maximum values between 13.35-63000 µg/kg while the lowest recorded PAH was Sub surface dibenz(a,h) anthracene with values between 1-1249 µg/kg. Following the screening on the different PAHs, all the strains showed an ability to utilize a broad spectrum of the different PAHs as carbon and energy sources. They have also shown an ability to utilize the PAHs under anaerobic conditions. The biodegradation and PAH-dependent studies showed rapid exponential increase in cell numbers in some PAHs with about 99% disappearance of some of the PAHs at different volume biodegradation rates. The 16S rDNA analysis classified the organisms (OC-1, OC-2, OC-3 and OC-4) as species of uncultured bacterium OC-1, Bacterium OC-2 with about 99% homology to the type strain of *Pseudomonas putida*, strain OC-3 as *Pseudomonas* sp. strain OC3 and OC-4 as

Pseudomonas putida strain OC4. Furthermore, strains of FB-1 FB-2 and FB-3 were identified as *Lysinibacillus* sp. FB1, Bacterium FB2 with 99% homology to the type strain of *Paenibacillus* sp. and *Lysinibacillus fusiformis* strain FB3 respectively. Strains CB-1 and CB-2 were identified as Bacterium CB1 with 100% homology to the type strain of an uncultured bacterium and *Stenotrophomonas maltophila* strain CB2 respectively. Strains PB-1 and PB-2 were identified as *Pseudomonas plecoglossicida* strain PB1 and *Pseudomonas* sp. strain PB2. The obtained 16S rDNA gene sequences have been deposited at the GenBank with the accession numbers issued.