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Abstract 

Determination of reaeration coefficient is an important factor in surface water quality modeling as it determines 
the efficiency of the Streeter-Phelps model used for predicting dissolved oxygen deficit of any stream. This study 
compared the efficiency of Atuwara model with ten other reaeration coefficients models by making use of three 
data sets obtained from river Atuwara during the prevalent wet and dry seasons using composite goodness of fit 
test which was developed by quantitatively combining statistical and graphical goodness of fit. The eleven tested 
models were ranked in order of performance. Results show that the four top ranking models were developed 
through a process that utilized data from multiple streams while models that were developed from data obtained 
from the test subject alone performed less competitively. The outcome of the study also suggests that the usual 
practice of selecting the best model based on statistical analysis alone does not necessarily yield the best result 
and therefore recommended the incorporation of quantitatively analyzed graphs. The paper concludes that 
selection of the best performing model among existing reaeration coefficient models using the composite 
goodness of fit may present a cheaper and better alternative to conventional model development approach.  

Keywords: re-aeration coefficient, algorithm, error statistics, fit, Atuwara, modeling, surface water 

1. Introduction 

Computation of reaeration coefficient (k2) is an integral part of the process of modeling the dissolved oxygen of 
any surface water body (Chapman, 1996; Lin & Lee, 2007; Omole, Adewumi, Longe, & Ogbiye, 2012). Several 
k2 models have been proposed and their distinguishing factor has been their capacity to predict measured data 
with minimum error. This has been demonstrated through several publications on reaeration coefficient modeling 
(Streeter, Wright, & Kehr, 1936; O’Connor & Dobbins, 1958; Owens, Edwards, & Gibbs, 1964, Langbein & 
Dururn, 1967; Bansal, 1973; Bennet, & Rathburn, 1972; Long, 1984; Baecheler & Lazo, 1999; Jha, Ojha, & 
Bhatia, 2001; Agunwamba, Maduka, & Ofosaren, 2007; Longe & Omole, 2008; Omole & Longe, 2012) 
beginning with the pioneering work of Streeter and Phelps (1925) where it was established that dissolved oxygen 
(DO) content of surface water bodies is used up in breaking down biological and chemical wastes. The quantity 
of oxygen that would be required to break down these wastes completely was described as biochemical oxygen 
demand (BOD). Streeter and Phelps (1925) therefore succeeded at providing a mathematical relationship 
between DO and BOD, thus setting the pace for understanding the process. Subsequent researches proposed 
different k2 models, most of which were validated by presenting the regression statistic and probably by 
comparing it with one other existing model. Although k2 models are characteristically empirical, models such as 
O’Connor & Dobbins (1958), Owens, et al. (1964), Langbein & Dururn, (1967), Bansal, (1973) and, Bennet & 
Rathburn, (1972) were developed for application in multiple geographical locations. However, since each surface 
water body is unique, adopting a single k2 model for modeling multiple water bodies must be done carefully 
following a robust and objective analysis of multiple models. Furthermore, the development of an empirical k2 
model requires data collection which involves repeated field trips, water sampling, stream geometry 
measurements, laboratory tests of water samples, and data analysis. This tedious and expensive approach could 
probably be avoided by use of an alternative approach which involves testing a group of reaeration coefficients 
models that were previously developed under conditions similar to local conditions. The conventional approach 
embraces the generation of null hypothesis and the application of statistical analysis of data in drawing 
inferences because of its quantitative outlook. Error statistics in particular helps to select the model that 
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minimizes error. However, the use of graphs visually demonstrates the comparison between measured and 
simulated data and thus presents an argument that may agree with or differ from statistical inference. A perfect fit 
of the two plotted lines therefore show that the simulated data perfectly represents the measured data and the 
equation of the line simulating data becomes the perfect model. Otherwise, the line that best simulates measured 
data becomes the preferred model. Therefore, the current study, which may be the first of its kind, proposes a 
method that combines both statistical and visual inspection of graphs of multiple models using the same data 
sets. 

 

Table 1. Selected models for composite goodness of fit test (test of performance) 

s/n Model Authors Background Country

1 
0128.0

5463.1

2 2679.46
H

U
k   Atuwara (Omole & 

Longe, 2012) 

Based on data gathered from River Atuwara in Southwest Nigeria. Range: (0.01 < U < 

1.15 m/s: 0.1 < H < 3.56 m) where U is velocity and H is hydraulic radius 
Nigeria

2 5.1

5.0

2 9.12
H

U
k 

 O’Connor & 

Dobbins (1958) 

For moderately deep to deep channels. Range: (0.305 < H < 9.14 m; 0.15 < U < 0.49 

m/s; 0.5 ≤ k2 ≤ 12.2 d-1) 
USA 

3 0016.0

0954.1

2 632.11
H

U
k 

 Agunwamba et al. 

(2007) 

Based on data gathered from creeks in the south-south part of Nigeria. Where U is 

velocity and H is hydraulic radius 
Nigeria

4 25.0

5.0

2 792.5
H

U
k 

 
Jha et al., (2001) Based on data obtained from River Kali in India India 

5. 673.1

969.0

2 026.5
H

U
k 

 
Streeter & Phelps Based on data gathered from River Ohio, USA USA 

6 902.3

696.2

2 046.10
H

U
k 

 Baecheler & Lazo 

(1999) 
For slight slope rivers in a mountainous environment Chile 

7 5.1

67.0

2 7.21
H

U
k   

Owens et al., (1964) 
Oxygen recovery monitored for six streams in England following de-oxygenation with 

sodium sulfite. Range: (0.12 < H < 3.35 m; 0.55 < U < 1.52 m/s 
England

8 4.1

6.0

2 67.4
H

U
k   

Bansal (1973) Based on re-analysis of re-aeration data of numerous data USA 

9 689.1

607.0

2 2.20
H

U
k 

 Bennet & Rathburn 

(1972) 
Based on re-analysis of historical data USA 

10 584.0

273.0

2 923.1
H

U
k   

Long (1984) Based on data collected from streams in Texas. Equation also known as Texas equation USA 

11 33.12 6.7
H

U
k 

 Langbein & Dururn 

(1967) 

Based on synthesis of data from O’Connor and Dobbins (1958), Churchill et al., 

(1962), Krenkel & Orlob (1963), Streeter et al., (1936) 
USA 

 

The selected models for this study are Atuwara (Omole & Longe, 2012), Streeter et al. (1936) (which is also 
known as US Geological Survey equation), O’Connor & Dobbins (1958), Owens et al. (1964), Langbein and 
Dururn (1967), Bansal (1973), Bennet and Rathburn (1972), Long (1984), Baecheler and Lazo (1999), Jha et al., 
(2001) and, Agunwamba et al. (2007) model which was developed in southern Nigeria using data obtained 
during the wet season only (Table 1). The Streeter et al. (1936) model was selected because it is the first 
proposed k2 model. O’Connor and Dobbins (1958), Owens, et al. (1964), Langbein and Dururn, (1967), Bansal, 
(1973) and, Bennet and Rathburn, (1972) were selected because each of them simulated multiple rivers which 
possess diverse characteristics such as stream depth and speed. Long (1984) was selected because Texas state has 
high temperatures during summer which is similar to the tropics. Baecheler and Lazo (1999) was selected 
because of its gentle slope which is similar to river Atuwara’s. Jha et al. (2001) was selected because the climatic 
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conditions in western Uttar Pradesh in India where the model was developed is similar to river Atuwara environ 
(Yadav et al., 2008). Finally, Agunwamba et al. (2007) was selected because it was developed in Nigeria also. 

2. Materials and Methods 

Three data sets obtained from river Atuwara were used for the analysis. The data sets were obtained in March 
and July 2009 as well as January 2010. The March and January data represented data taken during the dry season 
while July data represented data during the peak of wet season when there is high dilution of pollutant load. 
January was the most critical period because of the dry weather flow which is characterized by low stream 
velocity and discharge. All effluent discharges into the river body at this time have maximum impact because of 
the low dilution of pollutant concentration. Detailed discussion on how the data sets were obtained and how 
Atuwara model was developed are fully discussed in Omole and Longe (2012). Selection of the best model from 
among existing models for river Atuwara, which is the focus of this study, was based on criteria such as 
availability in literature, the similarity of model parameters, stream geometry, stream speed, the type of climate 
from which model was developed, and the robustness of analysis that led to the development of the model. Other 
model specific factors for choosing the test models are summarized in Table 1.  

2.1 Theoretical Concept 

The efficiency of a model can be defined as its ability to adequately predict observed data with minimal error. 
The best model is therefore deemed as having the best goodness of fit (Berthouex & Brown, 2002; Montgomerry 
& Runger, 2003; Chatterjee & Hadi, 2006). Goodness of fit can be categorized into two. These are statistical 
goodness of fit and graphical goodness of fit (Montgomerry & Runger, 2003; Omole, 2011). The former is based 
on an array of statistically determined error parameters such as estimated variance (standard error), sum of 
squares of regression (SSR); coefficient of determination (R2); adjusted coefficient of determination (Adj.R2) and 
root mean square error (RMSE). Furthermore, statistical error parameters such as SE, SSE, SSR, and RMSE 
whose values are closer to 0 indicate a better fit. Also, models with higher values of statistical parameters such as 
R2 and Adjusted R2 indicate better fit (Runger & Montgomery, 2003). The graphical goodness of fit is based on 
visual inspection which could be a subjective but nonetheless highly useful tool. This is because a model could 
have minimum error and still be visually non-predictive (Montgomery & Runger, 2003). In order to compare the 
predictive capacity of eleven k2 models, the statistical goodness of fit of each model is determined using the 
procedure described in the flowchart (Figure 1).  
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Figure 1. Flowchart showing the progression of the statistical analysis 

 

2.2 Procedure for the Composite Goodness of Fit 

The statistical values and graphs are the input data for the composite goodness of fit procedure described by the 
algorithm stated below (Lines 1-3 of data structure). The procedure operates by adapting the Likert scale system 
of weight allocation (Page-Buchi, 2003; Uebersax, 2006; Longe, Longe, & Ukpebor, 2009) to statistical and 
graphical input data (Steps 4, 6, 8, 10, 12 and 15). For the statistical input data, the error term for the best model 
is expected to be the least. Therefore, the model with the minimum error is allocated the highest weight, n. 
Likewise, the best model is expected to have the highest value of coefficient of determination. Therefore, the 
highest weight is allocated to the model with the highest R2 or Adjusted R2. For the graphical input data, the 
weights are allocated by inspection. The response trend line that best imitates the measured data trend line is 
allocated the highest weight. If two models display the same statistical value or trend line, the same values are 
allocated to them. However, the value of weight that may be allocated to the next model will be m-j, where m is 
the weight value shared by two or more models and j is the number of models that share the value. Another 
sensitive part of the composite goodness of fit is the allocation of importance to the statistical and graphical 
components of the composite goodness of fit (Steps 16-22 of the algorithm). For this study, equal importance 
was given to them therefore each carried a 50% cumulative weight in the final analysis (Steps 25-26). 
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Data Structure 

1. Stat: array of records: Each record has 14 fields 

Fields in a record: Type, SSE, SSR, RMSE, R2, SSEW, SSRW, RMSEW, R2W, ADJR2 ADJR2W, SUMOFALL, 
Wsfactor, Wgfactor 

2. Graph: array of records: Each record has 3 fields 

Fields in a record: Type, Weight, Wgfactor 

3. Merge: array of of records: Each record has 2 fields  

Fields in a record: Type, Overallweight 

ALGORITHM OF COMPOSITE_GOODNESS_OF_FIT 

STEP 1:  Initialize Stat, Graph, Merge 

STEP 2:   For i = 1 to 11 

Begin 

    Stat[i].Type = i; //model name 1, 2, 3 … 11 

    Compute  

    Stat[i].SSE; 

    Stat[i].SSR; 

    Stat[i].RMSE; 

    Stat[i].R2; 

    Stat[i].ADJR2; 

End 

STEP 3:   Sort Stat in ascending order of Stat.SSE 

STEP 4:   For i = 1 to 11 

Begin 

    Assign weight to Stat[i].SSEW; 

    //highest weight to least value of SSE 

End  

STEP 5:  Sort Stat in ascending order of Stat.SSR 

STEP 6:   For i = 1 to 11 

Begin 

      Assign weight to Stat[i].SSRW; 

      //highest weight to least value of SSR 

End 

STEP 7:  Sort Stat in ascending order of Stat.RMSE 

STEP 8:   For i = 1 to 11 

Begin 

      Assign weight to Stat[i].RMSEW; 

      //highest weight to least value of SSE 

End 

STEP 9:   Sort Stat in ascending order of Stat.R2 

STEP 10: For i = 1 to 11 

Begin 

      Assign weight to Stat[i].R2W; 

      //highest weight to highest value of R2 
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End 

STEP 11:  Sort Stat in ascending order of Stat.AdjR2 

STEP 12:   For i = 1 to 11 

  Begin 

      Assign weight to Stat[i].AdjR2W; 

      //highest weight to highest value of AdjR2 

  End  

STEP 13: For i = 1 to 11 

  Begin 

    Stat[i].SUMOFALL=Stat[i].SSEW+Stat[i].SSRW+Stat[i].RMSEW+Stat[i].R2W+Stat[i].AdjR2W; 

End 

STEP 14: Sort Stat in descending order of Stat.SUMOFALL 

  //the model in Stat[1].Type is the best model 

STEP 15: For i = 1 to 11 

  Begin 

    Graph[i].Type = i;  //model name  

    Print ‘‘Enter graphical weight for model %d: ’’ i;  

    Input Graph[i].Weight; 

  End  

STEP 16:  Print ‘‘Enter Graphical Percentage: ’’ 

STEP 17:  Input N1 

STEP 18:  Print ‘‘Enter Statistical Percentage: ’’ 

STEP 19:  Input N2 

STEP 20:  Print ‘‘Caution: N1+N2 should be equal to 100’’ 

STEP 21:  gfactor =  
100

1N  

STEP 22:  sfactor =  
100

2N  

STEP 23:  For i = 1 to 11 

  Begin 

      Graph[i].Wgfactor = gfactor * Graph[i].Weight; 

      Stat[i].Wsfactor = sfactor * Stat[i].SUMOFALL; 

End  

STEP 24:  Sort Stat in ascending order of Stat.Type 

STEP 25:  For i = 1 to 11 

Begin 

      Merge[i].Type = i; //model name 

      Merge[i].Overallweight = Stat[i].Wsfactor+Graph[i].Wgfactor; 

End  

STEP 26:  Sort Merge in descending order of Merge.Overallweight 

//the first i.e. Merge [1].Type is the best overall model having combine Stat & Graph   
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3. Results and Discussion  

3.1 Statistical Analysis 

Subsequent to the statistical analysis of data, all the pre-selected models were ranked according to how well they 
minimized error and maximized fit. Models which performed better were allocated the higher scores (Table 2). 
The ranking was done for each data set and then combined to find an average score which was then converted to 
percentages in the last row of Table 2. Results show that each data set presented fluctuations in ranking for most 
of the models but a few of the models had consistently high scores. The fluctuations were expected considering 
that the different data represented extreme weather conditions. Regardless, the most representative model is 
expected to have high rankings in both wet and dry seasons. The combined assessment of the three data sets 
showed that best ranking model is Long (1984) and this is closely followed by Bansal (1973) model, Streeter et 
al. 1936, and Agunwamba et al. (2007) in that order. Atuwara model ranked eighth in the cumulative statistical 
analysis. The unique feature of the two top ranking models is the fact that both were developed using data from 
multiple streams (Table 1). This further buttress the fact that empirical models developed from particular streams 
may not necessarily be the most representative model for that stream.  

 

Table 2. Statistical goodness of fit using January, March and July data 

  Atuwara w O'Connorw Agunwambaw Jha w Streeter w Baechelerw Owens w Bansal w Bennet w Long w Langbein w

January Data 

SSE= 129.29 8 6785.58 4 16.573 1017.99 9759.2331 5 169141 1 43299.1 2536.633 725186.9 3 8.432 11 545.872 6

SSR= 22.2823 8 391.431 4 2.1175 91.167 1070.90248 5 24793.2 1 3231.22 2 34.516 71714.05 3 0.2908 11 52.1983 6

R2 =  0.14701 11 0.05454 2 0.1133 90.061 40.085411 7 0.12784 10 0.06944 60.06043 30.06372 5 0.0333 1 0.08728 8

RMSE= 2.93587 8 21.269 4 1.0511 101.095 9 7.11446 5 106.189 1 53.7271 25.98127 740.9772 3 0.7498 11 6.03253 6

Adj. R2= 0.09014 11 -0.00849 2 0.0542 9 0 40.024438 7 0.0697 10 0.00741 6 -0.0022 3 0.0013 5-0.0311 1 0.02643 8

 TOTAL SCORE 46 16 47 36 29 23 18 27 19 35 34

March Data 

SSE= 1201.37 5 1320.76 4 91.114 928.01 10174.5671 7 3794.77 3 6178.08 1129.361 84221.66 2 3.818 11 229.133 6

SSR= 27.3381 5 85.2295 4 1.2952 90.168 116.101995 8 107.48 3 343.823 16.13083 7241.447 2 0.1718 10 6.55914 6

R2 =  0.02225 3 0.06062 11 0.014 20.006 10.033774 6 0.02754 4 0.05272 90.04525 8 0.0541 10 0.0431 7 0.02783 5

RMSE= 8.94937 5 9.38354 4 2.4646 91.367 103.411423 7 15.9055 3 20.2946 12.93667 816.7763 2 0.5045 11 3.90839 6

Adj. R2= -0.04293 3 -0.00201 11 -0.0517 2 -0.06 1 -0.03064 6 -0.0373 4-0.01043 9 -0.0184 8 -0.009 10-0.0207 7 -0.037 5

 TOTAL SCORE 21 34 31  33 34 17 21 39 26 46 28

July Data 

SSE= 4843.94 1 50.254 5 249.58 221.45 711.21727 9 20.0913 8 151.538 37.46274 10130.324 4 0.7124 11 32.8521 6

SSR= 4.05001 1 0.55222 4 0.3763 50.088 70.087571 8 0.00136 11 1.6657 20.08055 91.45062 3 0.0065 10 0.21255 6

R2 =  0.00084 2 0.01087 10 0.0015 30.004 40.007746 6 6.80E-05 1 0.01087 100.01068 80.01101 11 0.009 7 0.00643 5

RMSE= 17.9702 1 1.83037 5 4.079 21.196 70.864765 9 1.15733 8 3.17844 30.70535 102.94758 4 0.2179 11 1.47991 6

Adj. R2= -0.06578 2 -0.05507 10 -0.0651 3 -0.06 4 -0.0584 6 -0.0666 1-0.05507 10 -0.0553 8 -0.0549 11-0.0571 7 -0.0598 5

 TOTAL SCORE = 7 34 15 29 38 29 28 45 33 46 28

AVERAGE SCORE FOR

 THREE MONTHS= 25 28 31 22 34 23 22 37 26 42 30

AVERAGE SCORE FOR 

THREE MONTHS (%) =   7.8  8.8  9.7  6.9  10.6  7.2  6.9  11.6  8.1  13.1  9.4
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Figure 2. Plot of individual k2 models against measured k2 data gathered in January 
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Figure 3. Plot of individual k2 models against measured k2 data gathered in March 
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Figure 4. Plot of individual k2 models against measured k2 data gathered in July 
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3.2 Graphical Inspection and Analysis 

Following the visual inspection of Figures 2-4 which represent the three different data sets, the models were 
again ranked according to how well the trend lines fit the measured data for each data set by allocating the 
highest scores to the model with the best fit (Table 3). Worthy of note is that some of the models displayed the 
same fit within a data set. Such cases attracted the same weight allocation. Like in the statistical analysis, all the 
scores for the three data sets were combined to produce a ranking for all the models in percentages. The 
combined values for the three data sets suggest that the models with the best fit were Owens et al. (1964) and 
Bennet and Rathburn (1972) while O’Connor and Dobbins (1958) model ranked third and Atuwara model ranked 
fourth (Table 3). Worthy of note is that the four top ranking models in the graphical analysis were completely 
different from the four top ranking models in the statistical analysis category. This confirms that graphical 
analysis may not necessarily produce the same results as statistical analysis even though both are very important. 
It should be noted however that just like in the statistical analysis, the three top ranking models in the graphical 
analysis were also developed from data gathered from multiple streams (Table 1). This again lends credence to 
the theory that models developed by using data from single streams may as well be a waste of resources and 
energy as they may not compete favorably with models developed using multiple data from different streams. 

3.3 Composite Goodness of Fit 

The summary of values from statistical (Table 4, last row) and graphical analyses (Table 3, Row 5) were again 
combined on an equal percentage basis to give a final model ranking. Results suggest that the model with the 
least error and best visual representation of data is O’Connor and Dobbins (1958) model (Table 4). The second 
ranking model following the composite goodness of fit test is Bennet & Rathburn (1972) and the fifth ranking 
model is Atuwara. The four top ranking models (Table 4) were all developed using data from multiple locations 
(Table 1) which again shows that making use of data from multiple streams has a direct positive impact on the 
model performance. Furthermore, results demonstrated that even though Long (1984) model ranked best 
following statistical analysis, it did not give a corresponding graphical prediction of measured data (Table 4). In 
fact, it performed least in graphical analysis as it gave a flat horizontal line in nearly all the graphical plots 
(Figures 2-4). This therefore suggests that using statistical analysis alone in the selection of reaeration coefficient 
models or comparing the model with just one or two other models as is common in literature is not the best 
practice.  

 

Table 4. Order of composite goodness of fit 

s/n MODEL 

MODEL RANKING IN ORDER 

OF PERFORMANCE FOR 

STATISTICAL ANALYSIS 

MODEL RANKING IN ORDER 

OF PERFORMANCE FOR 

GRAPHICAL ANALYSIS 

AVERAGE SCORE FOR STAT & GRAPH (%)

1 O'Connor and Dobbins (1958) model 6th 3rd 11.1 

2 Bennett and Rathburn (1972) model 7th 1st 11.0 

3 Owens et al., (1964) model 10th 1st 10.4 

4 Bansal (1973) model 2nd 6th 9.9 

5 Atuwara model 8th 4th 9.6 

6 Streeter et al., (1936) model 3rd 6th 9.4 

7 Langbein and Dururn (1967) model 5th 5th 9.2 

8 Agunwamba et al., (2007) model 4th 6th 8.9 

9 Long (1984) model 1st 11th 7.5 

10 Jha et al., (2001) model 10th 9th 7.3 

11 Baecheler and Lazo (1999) model 9th 10th 6.0 

 

4. Conclusion 

The analysis of data collected from River Atuwara in Nigeria using eleven different reaeration coefficient models 
generated results which suggested that the development of a new reaeration coefficient model for every stream 
may not necessarily be the best approach in stream DO deficit modeling in terms of cost and model performance 
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efficiency. Although Atuwara and Agunwamba et al. (2007) models, which were developed in the Nigerian 
environment, performed relatively well in the statistical and graphical analyses, O’Connor and Dobbins 
displayed more remarkable performance which suggests that it could be safely deployed in DO deficit modeling 
studies on River Atuwara. The selection of a few models out of the several existing models using the composite 
goodness of fit approach may provide a cheaper and better alternative than the traditional model development 
approach. Hence, detailed information on the design of existing and future models should be given prominence 
in scientific publications so as to aid future researchers in short-listing the most suitable models for use in other 
environments. Furthermore, the study pointed out that the conventional practice of basing scientific inferences 
on statistical analyses while relegating graphical analyses to complementary status may not yield the most 
objective inference. Although, graphical analysis is subjective in approach, this study has proposed a way to 
assess it quantitatively thus making it a very important tool in the selection of models with the best fit.  
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