
Journal of Computer Science & Its Application, December 2007, Vol. 14, No. 2
Improved Shellsort for the Worst-Case, the Best-Case

and a Subset of the Average-Case Scenarios

Oyelami, M.O *., Azeta, A.A. ** and Ayo, C.K.***

Department of Computer and Information Sciences, Covenant University, Ota, Ogun State, Nigeria

*olufemioyelami@yahoo.com, **azeta_ambrose@yahoo.com, ***ckayome@yahoo.com

ABSTRACT

Sorting involves rearrangement of items into ascending or descending order.

There are several sorting algorithms but some are more efficient than others in

terms of speed and memory utilization. Shellsort improves on Insertion sort by

decreasing the number of comparisons made on the items to be sorted.

This paper presents an Improved Shellsort algorithm that further decreases

the number of comparisons made on the items to be sorted through a modified

diminishing increment sort.

The results obtained from the implementation of both Shellsort and the

proposed algorithm shows that the proposed algorithm has a fewer number of

comparisons made for all input sizes of the best and worst cases and for input size

of twenty or less for the average case.

By implication, this means that the proposed algorithm is faster in these

situations. The strength of the algorithm however diminishes for only the average

case of input size greater than twenty.

Keywords: Algorithm, Sorting, Insertion Sort, Shellsort, Improved Shellsort,

Worst-case, Best-case and Average-case.

1. Introduction

For computer to serve as a

problem solving machine, it must be

directed what steps to follow in order

to get the problem solved. An

algorithm is a finite sequence of

instructions, each of which has a clear

meaning and can be performed with a

finite amount of effort in a finite

amount of time [1]. Algorithms are

paramount in computer programming.

An algorithm could be of no use even

though it is correct and gives a desired

output if the resources like time and

storage it needs to run to completion

are intolerable.

To say that a problem is

solvable algorithmically means,

informally, that a computer program

can be written that will produce the

correct answer for any input if we let it

run long enough and allow it as much

storage space as it needs [2].

In an algorithm, instructions

can be executed any number of times,

provided the instructions themselves

indicate repetition. However, no matter

what the input values may be, an

 74

algorithm terminates after executing a

finite number of instructions. Thus, a

program is an algorithm as long as it

never enters an infinite loop on any

input [2].

An algorithm can either be

correct or incorrect. A correct

algorithm is one that halts with a

correct output while an incorrect

algorithm halts with an incorrect

output or may not halt at all. An

algorithm has five important features

[3]:

(i) teness: An algorithm must always

terminate after a finite number of

steps;

(ii) Definiteness: Each step of an

algorithm must be precisely

defined; the actions to be carried

out must be rigorously specified for

each case;

(iii)Input: An algorithm has zero or

more inputs- quantities that are

given to it initially before the

algorithm begins, or dynamically

as the algorithm runs. These inputs

are taken from specified sets of

objects;

(iv) Output: An algorithm has one or

more outputs- quantities that have a

specified relation to inputs;

(v) Effectiveness: An algorithm is also

generally expected to be effective,

in the sense that its operations must

all be sufficiently basic that they

can in principle be done exactly

and in a finite length of time by

someone using pencil and paper.

An algorithm can be described using a

computer language. It can also be

specified using pseudocode.

Pseudocode provides an alternative

step between an English language

description of an algorithm and an

implementation of this algorithm in a

programming language [4]. Different

kinds of problems can be solved by

algorithms: sorting, searching,

determining the subsequences of the 3

billion chemical base pairs that make

up human DNA, etc. There are also a

group of problems christened ‘hard

problems’. These are problems for

which no efficient solution is known

[5]. NP-Complete problems are a

subset of hard problems and are

interesting because although no

efficient algorithm has been found for

them, no one has ever proved that an

efficient algorithm for one cannot

exist. They also have the property that

if an efficient algorithm exists for any

one of them, then efficient algorithms

exist for all of them. This paper

examines only sorting algorithms and

specifically Insertion Sort and

Shellsort and improves on the latter for

 75

the worst-case, best-case and a subset

of the average-case scenario.

Arrangement of the Paper

2. Objective of the Research

Shellsort improves on Insertion

sort by decreasing the number of

comparisons made and hence the time

taken to complete the sorting, the main

of objective of this work is the

development an algorithm that also

improves on Shellsort by further

decreasing the number of comparisons

made on the items to be sorted in order

to know the position each item will

occupy. By implication, the time taken

to run an algorithm to completion also

decreases with a decreased number of

comparisons.

3. Methodologies

Improved Shellsort algorithm

was developed based on the concept of

dividing items to be sorted into

subsequences and the subsequences

sorted just like Shellsort does but using

a different approach. Shellsort and

Improved Shellsort algorithms were

implemented on the same platform

with different sets of numbers of

varying input sizes for the best case,

average case and the worst case

situations and the results of the number

of comparisons made in each situation

which also affects the running time

were compared and tabulated.

4. Sorting Algorithms

Given a list of input elements

or objects, sorting arranges the

elements either in ascending order or

descending order and produces a sorted

list as the output. The elements to be

sorted need to be stored in a data

structure for manipulation. Among the

various data structures usually used for

sorting are: arrays, linked list, heap,

etc. Sorting can either be internal or

external. Internal sorting is the type of

sorting that requires all the elements to

be sorted to be in the main memory

throughout the sorting process while an

external sorting allows part of the

elements to be sorted to be outside the

main memory during the sorting

process [6]. Examples of internal

sorting algorithms are: Insertion Sort,

Selection Sort, Bubble Sort, Shellsort,

etc. There is no known “best” way to

sort; there are many best methods,

depending on what is to be sorted, on

what machine and for what purpose

[3]. What needs to be done is to learn

the characteristics of each sorting

algorithm and make a good choice for

a particular problem.

4.1 Insertion Sort

 76

Insertion Sort assumes the first

element in the array is sorted, so we

start with the second element. The

second element is compared with the

first. If it is less than the first, the two

swap positions. The third element is

picked and compared with the second,

if it is less, it is swapped with the

second. Otherwise, it remains where it

is. Suppose it has been swapped with

the second element, it now occupies

the second position. It is still further

compared with the first element and

necessary action taken. The fourth

element is taken and the same

operations performed until all the

elements have been sorted. The

algorithm is presented below:

insertionsort(A, size:int)

Begin

1) for i =2 to size of A [A is the

array, while size is the length of

the array A]

 begin

2) temp = A[i] [temp is a

temporary storage]

 [insert A[i] into the sorted

sequence a[1…i-1]

3) j = i -1 [j is 1 position less than

the current position of i]

4) while (j > 0 and a[j] > temp)

 begin

5) A[j + 1] = A[j] [Store A[j] in

position (j + 1)]

6) j = j - 1

 end

7) A [j + 1] = temp

 end

End

The actions performed by the

algorithm given the list of numbers

below to be sorted in ascending order

of magnitude are shown diagram-

matically below:

Given list:16 13 15 17 12 14

16 13 15 17 12 14

13 16 15 17 12 14

13 15 16 17 12 14

13 15 16 17 12 14

12 13 15 16 17 14

12 13 14 15 16 17

4.2 Shellsort

Shellsort proposed by Donald

L. Shell improves on Insertion Sort by

reducing the number of comparisons

made. It sorts an array A with n

elements by dividing it into

subsequences and sorts the

subsequences. Any sequence s1, s2,

s3,…, sn can be used for the

 77

subsequences in as much as the last

subsequence is 1. In the first pass,

elements that are s1 distance apart are

sorted using insertion sort starting from

the first on the list. For the second

pass, elements that are s2 distance apart

are sorted using Insertion sort also by

starting from the first. This continues

until elements that are 1 distance apart

are sorted using straight Insertion Sort.

Integer division is carried out on s1 to

get s2, integer division also carried out

on s2 to get s3 and so on. Shellsort is

also called Diminishing Increment

Sort. The elements to be sorted are

assumed to be stored in an array.

Consider the worst-case

problem of sorting the following

elements in ascending order:

51 35 17 9 6 4 2 1

Let us take s1 = 4 to be the initial

value.

First Pass

For the first pass, numbers that

are 4 distance apart are sorted. They

are sorted in ascending order as follow:

51 35 17 9 6 4 2 1

6 35 17 9 51 4 2 1

6 4 17 9 51 35 2 1

6 4 2 9 51 35 17 1

6 4 2 1 51 35 17 9

Second Pass

s2 = s1 ÷ 2 = 4 ÷ 2 = 2

For the second pass, numbers

that are 2 distance apart are sorted.

They are sorted in ascending order as

follow:

6 4 2 1 51 35 17 9

2 4 6 1 51 35 17 9

2 1 6 4 51 35 17 9

2 1 6 4 51 35 17 9

2 1 6 4 51 35 17 9

2 1 6 4 17 35 51 9

2 1 6 4 17 9 51 35

Third Pass

s3 = s2 ÷ 2 = 2 ÷ 2 = 1

Numbers that are 1 distance

apart are sorted as shown below.

2 1 6 4 17 9 51 35

After sorting each one with

straight Insertion Sort we will have the

following sorted list:

 78

1 2 4 6 9 17 35 51

For the average-case, consider

the problem of sorting the same set of

numbers with the following

arrangement:

51 17 35 9 4 1 2 6

First Pass

For the first pass, numbers that

are 4 distance apart are sorted. They

are sorted in ascending order as follow:

51 17 35 9 4 1 2 6

4 17 35 9 51 1 2 6

4 1 35 9 51 17 2 6

4 1 2 9 51 17 35 6

4 1 2 6 51 17 35 9

Second Pass

For the second pass, numbers

that are 2 distance apart are sorted.

They are sorted in ascending order as

follow:

4 1 2 6 51 17 35 9

2 1 4 6 51 17 35 9

2 1 4 6 51 17 35 9

2 1 4 6 51 17 35 9

2 1 4 6 51 17 35 9

2 1 4 6 35 17 51 9

2 1 4 6 35 9 51 17

Third Pass

2 1 4 6 35 9 51 17 (*)

After sorting each one with

straight Insertion Sort we will have the

following sorted list:

1 2 4 6 9 17 35 51

The algorithm is presented below:

shellsort(A,size:int)

Begin

1. increment = size/2 [increment

here represents s1, s2, …, 1

described above]

2. while(increment ≥ 2)

 begin

3. i = 1

4. while(i+increment) ≤ size

 begin

5. if array[i] > array[i + increment]

swap the two

6. i=i+1

 end

7. increment = increment / 2

 end

 [call insertion sort function to

sort the array with increment =1]

8. insertsort(A, size:int)

End

 79

Insertsort function in line 8 of the

algorithm above applies insertion sort

on the whole array when increment is

1. In this algorithm, we have assumed

that for each array to be sorted,

elements that are (size/2) distance apart

are first sorted. The constant 2 used

can be changed.

4.2.1 Different Sequences Proposed

for Shellsort

The sequence originally proposed

by Shell is [N/2], [N/4], [N/8],….But,

it has been found out that this sequence

is not good enough and as such,

different researchers have proposed

different sequences: Hibbard proposed

the sequence is 1,3,7,…,2
K
-1 [7,8].

The sequence 2
K
+1 was proposed by

Papernov and Statsevich. Other

sequences proposed are: (2
k
- (-1)

k
/3

and (3
k
-1)/2, Pratt-like sequences

{5
p
11

q
} and {7

p
13

q
}, Fibonacci

numbers, the Incerpi Sedgewick’s

sequences for ρ =2.5 and ρ=2 as well

as his sequence {1,5,19,41,109,…} in

which the terms are either of the form

9.4
i
 – 9.2

i
 +1 or 4

i
 - 3.2

i
 + 1 and N.

Tokuda’s sequence h0 = 1, hs+1 =

2.25hs +1 [9,10].

4.3 Improved Shellsort

Improved Shellsort is the

proposed sorting algorithm which is an

improvement over the Shellsort

algorithm. This proposed sorting

algorithm also divides the elements to

be sorted into subsequences just like

Shellsort does but by first of all

comparing the first element with the

last. If the last is less than the first, the

two swap positions, otherwise, they

maintain their positions. Later, the

second element is compared with the

second to the last, if the second to the

last element is smaller than the second,

they are swapped. Otherwise, they

maintain their positions. This process

continues until the last two consecutive

middle elements are compared or until

it remains only one element in the

middle. After this, straight Insertion

Sort is applied to sort the elements that

are 1 distance apart just as Shellsort

does. This approach reduces the

number of comparisons made for the

whole sorting process compared with

when Shellsort is used for the worst-

case, the best-case and small input size

for average-case.

Consider the worst-case

scenario of sorting the following

elements used for Shellsort in

ascending order:

51 35 17 9 6 4 2 1

The algorithm works like this:

51 35 17 9 6 4 2 1

 80

1 35 17 9 6 4 2 51

1 2 17 9 6 4 35 51

1 2 4 9 6 17 35 51

1 2 4 6 9 17 35 51

The Improved Shellsort for the

worst-case scenario as can be seen

performs better than Shellsort when the

number of comparisons made in the

two cases are compared.

For the average-case of sorting

the same set of numbers used for

Shellsort above, consider the

following:

51 17 35 9 4 1 2 6

51 17 35 9 4 1 2 6

6 17 35 9 4 1 2 51

6 2 35 9 4 1 17 51

6 2 1 9 4 35 17 51

6 2 1 4 9 35 17 51

A call is now made to straight

Insertion sort to sort these last

numbers.

6 2 1 4 9 35 17 51 (**)

After sorting each one with

straight Insertion sort we will have the

following sorted list:

1 2 4 6 9 17 35 51

It is worthy of note that in the

average-case scenario of both

algorithms before straight Insertion

sort is called, three boldened numbers

are already in their correct positions in

the case of Improved Shellsort and

only two in the case of Shellsort when

(*) and (**) above are compared. It is

obvious that when the total number of

comparisons made are compared in the

two cases after performing straight

Insertion sort on both (*) and (**),

Improved Shellort performs better.

The algorithm is presented below:

improvedShellSort(array, size)

Begin

1. i = 1

2. j = size

3. while(i < j) do

 begin

4. if array[i] > array[j] swap(array,

i, j)

5. i = i + 1

6. j = j – 1

 end

 [call insertion sort function to

sort the array with increment =1]

7. insertsort(A, size:int)

End

 81

5. Performance Analysis of

Algorithms

 The most important attribute of a

program/algorithm is correctness. An

algorithm that does not give a correct

output is useless. Correct algorithms

may also be of little use. This often

happens when the algorithm/program

takes too much time than expected by

the user to run or when it uses too

much memory space than is available

on the computer [11]. Performance of a

program or an algorithm is the amount

of time and computer memory needed

to run the program/algorithm. Two

methods are normally employed in

analyzing an algorithm:

i. Analytical method

ii. Experimental method

 In analytical method, the factors

the time and space requirements of a

program depend on are identified and

their contributions are determined. But

since some of these factors are not

known at the time the program is

written, an accurate analysis of the

time and space requirements cannot be

made. Experimental method deals with

actually performing experiment and

measuring the space and time used by

the program. Two manageable

approaches to estimating run time are

[11]:

i. Identify one or more key

operations and determine the

number of times they are

performed;

ii. Determine the total number of

steps executed by the program.

5.1 Worst-case, Best-case and

Average-case Analysis of

Sorting Algorithms

The worst-case occurs in a

sorting algorithm when the elements to

be sorted are in reverse order. The

best-case occurs when the elements are

already sorted. The average–case may

occur when part of the elements are

already sorted. The average-case has

data randomly distributed in the list

[12]. The average–case may not be

easy to determine in that it may not be

apparent what constitutes an ‘average’

input. Concentration is always on

finding only the worst-case running

time for any input of size n due to the

following reasons [5]:

i. The worst-case running time of an

algorithm is an upper bound on the

running time for any input.

Knowing it gives us a guarantee

that the algorithm will never take

any longer. We need not make

some educated guess about the

running time and hope that it never

gets much worse.

 82

ii. For some algorithms, the worst-

case occurs fairly often. For

example, in searching a database

for a particular piece of

information, the searching

algorithm’s worst-case will often

occur when the information is not

present in the database. In some

searching applications, searches for

absent information may be

frequent.

iii. The “average-case” is often

roughly as bad as the worst case.

5.2 Analysis of Shellsort and

Improved Shellsort for the

Worst-case and Best- case

Scenarios

Analysis of Shellsort is very

difficult and incomplete. A complete

analysis is extremely difficult and

requires answers to some mathematical

problems that have not yet been solved

[2,3]. The running time of Shellsort

depends on the choice of increment

sequence and the proofs can be rather

complicated. The average-case

analysis is a long-standing open

problem, except for the trivial

increment sequences [7]. Since

Shellsort improves on Insertion Sort by

decreasing the number of comparisons

made, the approach employed here in

comparing Shellsort with this proposed

algorithm is to compare the number of

comparisons made in each case.

6.0 Results Obtained

The two algorithms were

implemented and compiled using

Turbo C++ 4.5 compiler on an Intel

Celeron M microcomputer running

Windows Vista
TM

 Basic. The results

obtained showing the number of

comparisons made in each case are

summarized in the table below:

Table I: Number of Comparisons

The number of comparisons

has a direct effect on the time; the

lower the number of comparisons, the

shorter the time taken to complete the

sorting. For any input size n for the

worst and the best cases, the number of

comparisons carried out by the

Improved Shellsort is half the size of

the input, that is, Number of

comparisons = n/2. For input size n

greater than 1 for the worst case for

 Number of Comparisons
Carried Out

Case Size of
 Input

Shellsort Improved
Shellsort

Worst-case 10 19 5

Best-case 10 13 5

Average-case 10 19 13

Worst-case 20 55 10

Best-case 20 43 10

Average-case 20 59 50

Worst-case 50 180 25

Best-case 50 154 25

Average-case 50 254 296

Worst-case 100 456 50

Best-case 100 404 50

Average-case 100 672 1183

 83

Shellsort, the minimum number of

comparisons made is n and for the best

case the minimum number of

comparisons is
n
/2. The growth rate of

the number of comparisons made in

the worst case is higher than that of the

best case as the size of n increases for

Shellsort.

7. Conclusion

The Improved Shellsort

algorithm obviously from the results

obtained performs better than Shellsort

in the worst-case, the best-case and a

small size input of the average-case.

The strength of this algorithm becomes

more appreciated as the size of the

input to it increases for the worst-case

and best-case scenarios but when input

size begins to be higher than twenty its

strength diminishes for the average-

case. Implementing the two algorithms

on a different platform may produce

different running time results but the

same pattern will of course show. We

therefore, conclude that this proposed

Improved Shellsort will run faster than

Shellsort for the worst-case, best-case

and a subset of the average-case.

8. References

[1] Alfred V. Aho, John Horroroft

and Jeffrey D. Ullman (2002).
Data Structures and

Algorithms. Pearson Education
Asia.

[2] Sara Baase and Allen Gelder
(2000). Computer Algorithms
(Introduction to Design &
Analysis). Addison Wesley
Longman.

[3] Donald E. Knuth (1997). The Art
of Computer Programming,
Volume I, Fundamental
Algorithms; Third Edition.
Addison-Wesley.

[4] Kenneth H. Rosen (2003).
Discrete Mathematics and its
Applications. McGrawHill.

[5] Thomas H. Cormen, Charles E.
Leiserson, Ronald L. Rivest
and Clifford Stein (2003).
Introduction to Algorithms.
The Massachusetts Institute of
Technology.

[6] Shola P. B. (2003). Data
Structures With
Implementation in C and
Pascal. Reflect Publishers.

[7] Mark Allen Weiss (2006). Data
Structures and Algorithm
Analysis in C++. Pearson
Education. Inc.

[8] Hibbard T. H., “An Empirical
Study of Minimal Storage
Sorting”, Communications of
the ACM, Vol. 6, Number 5,
1963, pp. 206 – 213.

[9] Donald E. Knuth (1998). The Art
of Computer Programming,
Volume 3, Sorting and
Searching, Second Edition.
Addison-Wesley.

 [10] Papernov A. A. and Stasevich G.
V., “A Method of Information
Sorting in Computer
Memories”, Problems of
Information Transmission,
Vol. 1, Number 3, 1965, pp. 63
– 75.

[11] Sartaj Sahni (2000). Data
Structures, Algorithms and
Applications in Java.
McGrawHill.

[12] William Ford and William Topp
(2002). Data Structures With
C++ Using STL. Prentice Hall.

 84

About the Authors

Olufemi Moses Oyelami holds both
BSc and MSc in Computer Science
and currently teaches the same in
Covenant University, Ota, Ogun State,
Nigeria. He is a member of both
Computer Professional Registration
Council of Nigeria (CPN) and Nigerian
Computer Society (NCS). He is a PhD
student of Computer Science in the
Department of Computer and Inform-
ation Sciences, Covenant University,
Ota. Algorithms, Programming Langu-
ages and Mobile Computing are his
current research interests.

Azeta, A.A. is a Ph.D. student in the
Department of Computer and
Information Sciences, Covenant
University, Ota, Nigeria. He holds
B.Sc. and M.Sc. in Computer Science.
His current research interests are in the
following areas: Software Engineering,
Algorithm Design and Mobile
Computing. He is a member of the
Nigerian Computer Society (NCS), and
Computer Professional Registration
Council of Nigeria (CPN).

Charles K. Ayo holds a B.Sc. M.Sc.
and Ph.D in Computer Science. His
research interests include: mobile
computing, Internet programming, e-
business and government, and object
oriented design and development. He
is a member of the Nigerian Computer
Society (NCS), and Computer
Professional Registration Council of
Nigeria (CPN). He is currently the
Head of Computer and Information
Sciences Department of Covenant
University, Ota, Ogun state, Nigeria,
Africa. Dr. Ayo is a member of a
number of international research
bodies such as the Centre for Business
Information,Organization and Process
Management (BIOPoM), University of
Westminister.
http://www.wmin.ac.uk/wbs/page-744;
the Review Committee of the
European Conference on E-
Government, http://www.academic-
conferences.org/eceg/; and the
Editorial Board, Journal of Information
and communication Technology for
Human Development.

