
CAES: A Model of an RBR-CBR Course Advisory Expert System

Emebo Onyeka, Daramola Olawande, Ayo Charles

Department of computer and information sciences, Covenant University, Nigeria

emebo.onyeka,dwande{@gmail.com},ckayome@yahoo.com

Abstract

 Academic student advising is a gargantuan task

that places heavy demand on the time, emotions and

mental resources of the academic advisor. It is also a

mission critical and very delicate task that must be

handled with impeccable expertise and precision else

the future of the intended student beneficiary may be

jeopardized due to poor advising. One integral

aspect of student academic advising is course

registration, where students make decisions on the

choice of courses to take in specific semesters based

on their current academic standing. In this paper, we

give the description of the design, implementation

and trial evaluation of the Course Advisory Expert

System (CAES) which is a hybrid of a rule based

reasoning (RBR) and case based reasoning (CBR).

The RBR component was implemented using JESS.

The result of the trial experiment revealed that the

system has high performance/user satisfaction rating

from the sample expert population conducted.

1. Introduction

Advising plays an essential role in the retention and

graduation of students in the university. One of the

difficult and time-consuming tasks that university

students and their advisors face today is individual

course scheduling (assigning students to courses that

satisfy their respective curricula). As the session

progresses, the task becomes more complex due to

the increase in the number of sequencing rules (e.g.,

prerequisites) that need to be satisfied by an advisee.

Such a complex advising process may lead to

decisions that can later inhibit a student from timely

graduation. Thus, there is a need for a system that

automates and simplifies the process for both

students and advisors. It is important to realize that

the course advisory expert system was not developed

to replace the advisor but rather, it removes the time

consuming tasks associated with course registration

and allows advisor to concentrate on more complex

advising functions.

Course advising is an activity in which faculty

members advise students on which courses to take

each semester in order to achieve their individual

academic goals. For a university student to progress

from one level to the next, he/she must meet up with

certain numbers of credits as essential requirements.

Course Advisory exhibits characteristics favorable to

an expert system approach in that– it is restricted to

domain specific knowledge, uses voluminous data, is

difficult to characterize accurately, curriculum

changes constantly and decisions have to be made by

stipulated rules of the university.

CBR is a concept of AI-problem solving that relies

on knowledge gained from previous problem-solving

episodes to resolve new problems once sufficient

similarity between the current case (problem) and

previously stored cases have been established. The

justification for the CBR as our problem solving

model is premised on contemporary experiences in

the educational domain where a lot of similarities

exist in the nature of academic problems and

concerns that students have in the process of course

registration. Hence our intent for implementing a

RBR-CBR based expert system for student advising

is to emulate human proficiency at drawing from

experiences that are similar for solving problems at a

reasonable level.

In this paper, we designed and implemented a course

advisory expert system. The expert system is a

hybrid of the rule based system and case-based

reasoning. The main purpose of this system is to

assist students and their advisors in providing timely

and reliable course schedule for each student to

register at the beginning of a new semester.

The remaining part of the paper is succinctly

described as follows: In section 2 we elaborate on

related work. Section 3 discusses CAES architecture.

Section 4 gives a description of the course advisory

process. Section 5 gives the decision algorithm for

CAES. Section 6 details a case study report carried

out in a tertiary institution. Section 7 reports a trial

evaluation conducted. We conclude in section 8.

2. Related Work

A number of advising systems have been

reported in literature that are mainly expert system

based [1], or expert system and database hybrids

[2,3].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Covenant University Repository

https://core.ac.uk/display/12356468?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A Software architecture of a new generation of

advisory systems using Intelligent Agent and

Semantic Web technologies was reported in [4]. The

domain knowledge was modeled with the OWL

ontology language. Using an inference engine the

agents reason on the basis of their knowledge to

make decisions or proposals.

A Planning Advisor on Curriculum and

Enrollment was reported in [5]. A framework for an

intelligent advisory system for college students that

combine object-oriented and knowledge-based

paradigms was presented. The model is presented for

course advising based on students need to know

“what to do” and “how to do it”.

Interactive Virtual Expert System for Advising

(InVEStA) was reported in [6]. InVEStA was

proposed and developed to assist undergraduate

students and their advisors in providing timely,

accurate and conflict-free schedules. The proposed

system was based on Java and object-relational

database technologies and consists of the Database

Layer, Transaction Layer, Scheduler and the web-

based Front-End.

The Graduate Course Advisor (GCA), a Multi-

Phase Rule-Based Expert System that advises

graduate students in Computer Science was reported

in [7]. It was implemented in Prolog, using an

inference engine modeled after MYCIN. The

advising task was divided into four phases, each of

which may apply the inference engine to its own rule

base and invoke other procedures.

In [8], AACORN (A CBR Recommender for

Academic Advising), was introduced as a course

recommendation system that uses the course

histories as the basis for course advising. By reusing

the experience embodied in historical student's

transcripts, AACORN can make reasonable

suggestions with only a limited amount of domain

knowledge. The system uses the edit distance

between two course histories, as well as other

heuristics to determine the similarity between course

histories.

Our approach in this work contrasts these

previously reported approaches in that it is focused

primarily on the aspect of student advising for online

course registration using a combination of case-

based reasoning (CBR) and rule based reasoning

(RBR). In the next section, we discuss the hybrid

architecture of CAES and how it works.

3. CAES Architecture

CAES comprises of the University database where

information for each student are stored, the

knowledge base where rules and structure of the

courses are stored, the rule base engine that reasons

on the available rules in the knowledge base and

case-based engine that contains stored cases of

previous advise.

Figure 1. The 3-tier architecture of the

system

The Figure 1 illustrates the architecture of the

proposed system which is based on a 3-tier

architecture. The Data Layer (bottom) contains all

the knowledge sources that the system engages in

order to provide information. This layer consist of a

knowledge base that contains the facts and rules

needed by the rule-based engine to provide advice

and a relational database that contains details of

course registration information of the university.

In the middle layer the most important component,

the RBR engine implemented using Java Expert

System Shell (JESS) [9], the CBR engine, and a web

server with intrinsic capabilities to execute Java

servlets and support JSP components. The web

server handles communication with the external

environment and routes external calls to appropriate

components. In this particular case Apache Tomcat

has been used as the web application server. Tomcat

implements the Java Servlet and the JSP

specifications, providing an environment for Java

code to run in cooperation with a web server. Tomcat

includes its own internal HTTP server.

Communication with the data tier is through the

JDBC (Java Data Base Connectivity) protocol.

 The CBR engine which performs case base

reasoning functionality and the rule base engine are

solution deployed on the web application server.

 The presentation layer contains forms which are

used to interact with the system. Communication

with the web server seated at the middle layer, is

accomplished using HTTP protocol through a simple

web browser. Each student is able to connect into the

system using the web browser available on the

machine (laptop, desktop, PDA).

4. Description of the Course Advisory

process

The student accesses the Expert system Interface

Online with a valid identification number. On

successful access the University course information

database displays the Student details which entails

his current standing on failed/dropped course if any

and the set of course to register for the current

semester. The University course information

database is maintained by the University’s database

administrator. The knowledge base which is a

component of the expert system is maintained by the

knowledge engineer who models the rules as used by

the human course adviser in advising student. The

Inference engine comprising of the rule base engine

and the Case-based engine are used to generate

recommendation of courses to be registered in the

current semester. The Inference mechanism checks

to see if there are previous cases that are similar to

the current case and uses such as a case for

generating advise for the student. The report is sent

back to the student via the Expert system interface. If

no such advice case exists then the rule base

inference engine processes the request and stores the

recommended solution as a new case in the case base

reasoning engine.

The Figure 2 is a schematic representation of the

recommendation process using program flowchart.

Figure 2. Schematic representation of CAES

recommendation process

5. The Decision Algorithm for CAES

When CAES starts, the student course information is

considered as a new case. CAES then computes a

similarity score for the new case using the algorithm.

Similarity (NC, OC) = common

 common + different

Where NC is the new case, OC is the old case

present in the case base.

Common refers the matching pair between the new

case and that of the old case.

Different refers the mismatch pair between the new

case and that of the old case.

The case with the highest similarity score is picked

as the candidate for adaptation in recommending

courses to register else an appropriate decision

algorithm based on the rule engine is executed.

6. Case Study and Discussion

A case study of Covenant University a tertiary

institution based in Ota, Ogun State of Nigeria was

carried out using the Computer science study

program of the department of computer and

Information science. For a student intending to

register a course at the beginning of a new semester

this scenarios exist.

 The student could have just the current

semester course to register.

 The student could have failed course(s)

alongside the current semester courses.

 The student could have dropped course(s)

alongside the current semester courses.

 The student could have failed and dropped

course(s) alongside the current semester

courses.

In recommending the set of courses to register for the

current semester, CAES uses the scenario above that

is applicable to that particular student together with

the set of rules outlined by the University policies for

course registration, putting into consideration the

different course status (course perquisites,

compulsory or elective courses).

These rules were put together in the form of an

algorithm as modeled in the rule base of CAES.

The REGISTERDROPPEDFAILEDCOURSE

Algorithm caters for the first 3 mentioned scenarios.

Algorithm
REGISTERDROPPEDFAILEDCOURSE (V, E, S)

Input: A vector V of courses failed and/or dropped

in the previous session of the same semester, E a

vector of Elective courses and S a vector of courses

to register in the current session of the same

semester.

Output: A vector R containing the list of courses

recommended for registration by the student in that

semester.

Initialize R.

[Considering Failed and Dropped courses]

for all courses vi є V ordered by coursecode in

ascending order

 while registeredCredit < maxRegistrable

AND i < count(V)

 Add vi to R.

 registeredCredit ← registeredCredit +

courseCredit(vi)

 increment i.

[Considering failed prequisite course]

If registeredCredit < maxRegistrable

for each course Cj є S

 while registeredCredit < maxRegistrable

AND j < count(S)

 if prequisite(Cj) is failed OR dropped

 then Add Cj to D

 else

 Add Cj to R

 S ← S- Cj

 registeredCredit ← registeredCredit +

courseCredit(Ci)

 increment j.

[For the remaining courses]

If registeredCredit < maxRegistrable

for each course Kp є S that is compulsory

ordered by course credit in descending order

 while registeredCredit < maxRegistrable

AND p < count(S)

 Add Kp to R

 registeredCredit ← registeredCredit +

courseCredit(Kp)

 increment p.

If registeredCredit < maxRegistrable

for each course Me є E that is elective

 while registeredCredit < maxRegistrable

AND e < count(E)

 Add Me to R

 registeredCredit ← registeredCredit +

courseCredit(Me)

 increment e.

return the vector R containing the list of

recommended course for the semester.

Algorithm REGISTERCOURSE (E, S) caters

for the last scenario.

Algorithm REGISTERCOURSE (E, S)

Input: A vector E of Elective courses and S a vector

of courses to register in the current session of the

same semester.

Output: A vector R containing the list of courses

recommended for registration by the student in that

semester.

R ← NULL [initialize R]

for each course Ci Є S

 while registeredCredit < maxRegistrable

AND i < count(S)

 if prequisite(Ci) is passed

 Add Ci to R

 registeredCredit ← registeredCredit +

courseCredit(Ci)

 increment i

If registeredCredit < maxRegistrable

for each course Kj Є S that is compulsory

ordered by course credit in descending order

 while registeredCredit < maxRegistrable

AND i < count(S)

 Add Kj to R

 registeredCredit ← registeredCredit +

courseCredit(Kj)

 increment j

If registeredCredit < maxRegistrable

for each course Me Є E that is elective

 while registeredCredit < maxRegistrable

AND e < count(E)

 AddMe to R

 registeredCredit ← registeredCredit +

courseCredit(Me)

 increment e

return the vector R containing the list of

recommended course for the semester..

7. Evaluation

A usability evaluation of the prototype was

conducted using human-expert evaluation to

determine the level of performance/user satisfaction

of the system and validated by using a direct method

as used by Salim et al in [10].

A small experiment to test the system’s

recommendations against those of human advisors

was conducted using the direct method. Course

Advisors across each level from the Department of

Computer and Information Sciences of Covenant

University were asked to participate in the survey.

Each received an identical set of questionnaire

alongside a copy of CAES. The course advisors

were asked to rank from one to five (TRUE to

FALSE) the recommendation of CAES.

A description of the direct method test instrument

completed by each evaluator is as follows:

1. The evaluator obtains demonstration or

sample copies of the software packages to

be evaluated.

2. The evaluator selects a benchmark problem,

based on his experience, and runs this

problem on CAES.

3. After running the bench-mark problem, the

evaluator responds to the 14 questions in the

instrument and estimates a quantitative

answer to each question on a 0 to 5 scale

with 5 being very true and 0 being very

false.

4. Each numerical result is multiplied by a

weighting factor as given in the weight

column.

5. The weighted values are summed and then

divided by 19 the sum of the weights to give

a result in the numerical range of 0 to 5.

The Figure 3 gives a computation of the evaluation

experiment conducted by one of the evaluator.

Figure 3. Evaluator’s questionnaire

A subset of the summary result in calculating the

experimental evaluation of the evaluators is given in

the Table 1 below.

Table 1. Result of Evaluation Experiment

Evaluator Computed Satisfaction

Level

1 4.00

2 4.16

3 4.21

4 3.52

5 3.57

Mean Satisfaction

Level

3.89

From the statistical analysis of the results obtained

from the evaluation of the human experts that per

took in the experiment, CAES had a mean

satisfaction level score of 3.89, which is indicative of

a 77.8% level of user satisfaction.

The result revealed that the system has a

performance rating/user satisfaction of 77.8% from

the sample human expert population used for the trial

experiment.

8. Conclusion

The proposed CAES system is intended for use in

mid-range universities. Currently, its experimental

version is launched at the Department of Computer

and Information Sciences of Covenant University, its

modular structure and web based design makes it

possible to be launched and used elsewhere.

In our future work we hope to elaborate more on the

case revision and case adaptation of the case based

reasoned and also issues relating to data security and

database mapping, in order to prevent unauthorized

access to data.

As its contribution, this project offers a

demonstration of application of modern AI-

approaches for evolving important computer-based

systems that can be used to resolve crucial business

and operational concerns in the educational domain.

While an expert system will not replace the need for

wise and sympathetic counsel from human advisors,

CAES focuses students more clearly on issues to

consider and let them have unhindered access to the

expert system before seeking further advise, thus

alleviating academic staff of part of their burden.

9. References

[1] Harlan R. M, “The Automated Student Advisor: A

Large Project for Expert Systems Courses,” ACM SIGCSE

Bulletin Vol. 26(1), pp. 31- 35, 1994.

[2] Rao T. M, Coleman S., Hollenbeck C., “ADVISOR –

An Expert System for Student Advisement,” Proc. 15th

Annual Conference on Computer Science, St Louis, pp. 32-

35, 1987.

[3] Murray W. S, LeBlanc L. A., “A Decision Support

System for Academic Advising,” Proc. 1995 ACM

Symposium on Applied Computing, pp. 22-26, 1995.

[4] Dunkel J., Bruns R., “Software architecture of advisory

systems using agent and semantic Web technologies”

Proceedings of the IEEE/WIC/ACM International

Conference on Web Intelligence, Volume 19, pp. 418 –

421, 2005.

[5] Gunadhi H., Kwang-Hui Lim, Wee-Yong Yeong,

“PACE: a planning advisor on curriculum and enrolment”,

Proceedings of the Twenty-Eighth Hawaii International

Conference on System Sciences, Vol. 3, pp. 23 – 31, 1995.

[6] Pokrajac D., Rasamny M., “Interactive Virtual Expert

System for Advising (InVEStA)”, 36th Annual Frontiers in

Education Conference. pp. 18-23, 2006.

 [7] Valtorta M.G., Smith B.T., and Loveland D.W., “The

graduate course advisor: a multi-phase rule-based expert

system” Proceedings of the IEEE Workshop on Principles

of Knowledge-Based Systems, 1984.

 [8] Sandvig, J.J. and Burke, R. “AACORN: a CBR

recommender for academic advising”, Technical Report,

TR05-015, DePaul University, 2005.

[9] Friedman-hill, E., “JESS, The rule engine for the java

platform”, from http://herzberg.ca.sandia.gov/jess/. Access

date: November 28, 2009.

[10] Salim MD, Villavicencio A., Timmerman M.A., “A

Method for Evaluating Expert System Shells for

Classroom Instruction”, Journal of Industrial Technology,

Vol. 19(1), 2002.

http://herzberg.ca.sandia.gov/jess/

