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Abstract 
 

    Academic student advising is a gargantuan task 

that places heavy demand on the time, emotions and 

mental resources of the academic advisor. It is also a 

mission critical and very delicate task that must be 

handled with impeccable expertise and precision else 

the future of the intended student beneficiary may be 

jeopardized due to poor advising. One integral 

aspect of student academic advising is course 

registration, where students make decisions on the 

choice of courses to take in specific semesters based 

on their current academic standing. In this paper, we 

give the description of the design, implementation 

and trial evaluation of the Course Advisory Expert 

System (CAES) which is a hybrid of a rule based 

reasoning (RBR) and case based reasoning (CBR). 

The RBR component was implemented using JESS. 

The result of the trial experiment revealed that the 

system has high performance/user satisfaction rating 

from the sample expert population conducted. 

 

 

1. Introduction 
 

Advising plays an essential role in the retention and 

graduation of students in the university. One of the 

difficult and time-consuming tasks that university 

students and their advisors face today is individual 

course scheduling (assigning students to courses that 

satisfy their respective curricula). As the session 

progresses, the task becomes more complex due to 

the increase in the number of sequencing rules (e.g., 

prerequisites) that need to be satisfied by an advisee. 

Such a complex advising process may lead to 

decisions that can later inhibit a student from timely 

graduation. Thus, there is a need for a system that 

automates and simplifies the process for both 

students and advisors. It is important to realize that 

the course advisory expert system was not developed 

to replace the advisor but rather, it removes the time 

consuming tasks associated with course registration 

and allows advisor to concentrate on more complex 

advising functions. 

Course advising is an activity in which faculty 

members advise students on which courses to take 

each semester in order to achieve their individual 

academic goals. For a university student to progress 

from one level to the next, he/she must meet up with 

certain numbers of credits as essential requirements.  

Course Advisory exhibits characteristics favorable to 

an expert system approach in that– it is restricted to 

domain specific knowledge, uses voluminous data, is 

difficult to characterize accurately, curriculum    

changes constantly and decisions have to be made by 

stipulated rules of the university. 

CBR is a concept of AI-problem solving that relies 

on knowledge gained from previous problem-solving 

episodes to resolve new problems once sufficient 

similarity between the current case (problem) and 

previously stored cases have been established. The 

justification for the CBR as our problem solving 

model is premised on contemporary experiences in 

the educational domain where a lot of similarities 

exist in the nature of academic problems and 

concerns that students have in the process of course 

registration. Hence our intent for implementing a 

RBR-CBR based expert system for student advising 

is to emulate human proficiency at drawing from 

experiences that are similar for solving problems at a 

reasonable level. 

In this paper, we designed and implemented a course 

advisory expert system. The expert system is a 

hybrid of the rule based system and case-based 

reasoning. The main purpose of this system is to 

assist students and their advisors in providing timely 

and reliable course schedule for each student to 

register at the beginning of a new semester.  

The remaining part of the paper is succinctly 

described as follows: In section 2 we elaborate on 

related work. Section 3 discusses CAES architecture. 

Section 4 gives a description of the course advisory 

process. Section 5 gives the decision algorithm for 

CAES. Section 6 details a case study report carried 

out in a tertiary institution. Section 7 reports a trial 

evaluation conducted. We conclude in section 8. 

 

2. Related Work 
 

A number of advising systems have been 

reported in literature that are mainly expert system 

based [1], or expert system and database hybrids 

[2,3].  
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A Software architecture of a new generation of 

advisory systems using Intelligent Agent and 

Semantic Web technologies was reported in [4]. The 

domain knowledge was modeled with the OWL 

ontology language. Using an inference engine the 

agents reason on the basis of their knowledge to 

make decisions or proposals. 

A Planning Advisor on Curriculum and 

Enrollment was reported in [5]. A framework for an 

intelligent advisory system for college students that 

combine object-oriented and knowledge-based 

paradigms was presented. The model is presented for 

course advising based on students need to know 

“what to do” and “how to do it”.  

Interactive Virtual Expert System for Advising 

(InVEStA) was reported in [6]. InVEStA was 

proposed and developed to assist undergraduate 

students and their advisors in providing timely, 

accurate and conflict-free schedules. The proposed 

system was based on Java and object-relational 

database technologies and consists of the Database 

Layer, Transaction Layer, Scheduler and the web-

based Front-End.  

The Graduate Course Advisor (GCA), a Multi-

Phase Rule-Based Expert System that advises 

graduate students in Computer Science was reported 

in [7]. It was implemented in Prolog, using an 

inference engine modeled after MYCIN. The 

advising task was divided into four phases, each of 

which may apply the inference engine to its own rule 

base and invoke other procedures. 

In [8], AACORN (A CBR Recommender for 

Academic Advising), was introduced as a course 

recommendation system that uses the course 

histories as the basis for course advising. By reusing 

the experience embodied in historical student's 

transcripts, AACORN can make reasonable 

suggestions with only a limited amount of domain 

knowledge. The system uses the edit distance 

between two course histories, as well as other 

heuristics to determine the similarity between course 

histories. 

Our approach in this work contrasts these 

previously reported approaches in that it is focused 

primarily on the aspect of student advising for online 

course registration using a combination of case-

based reasoning (CBR) and rule based reasoning 

(RBR). In the next section, we discuss the hybrid 

architecture of CAES and how it works. 

3. CAES Architecture 
 

CAES comprises of the University database where 

information for each student are stored, the 

knowledge base where rules and structure of the 

courses are stored, the rule base engine that reasons 

on the available rules in the knowledge base and 

case-based  engine that contains stored cases of 

previous advise. 

 
Figure 1. The 3-tier architecture of the 

system 
 

The Figure 1 illustrates the architecture of the 

proposed system which is based on a 3-tier 

architecture. The Data Layer (bottom) contains all 

the knowledge sources that the system engages in 

order to provide information. This layer consist of a 

knowledge base that contains the facts and rules 

needed by the rule-based engine to provide advice 

and a relational database that contains details of 

course registration information of the university. 

In the middle layer the most important component, 

the RBR engine implemented using Java Expert 

System Shell (JESS) [9], the CBR engine, and a web 

server with intrinsic capabilities to execute Java 

servlets and support JSP components. The web 

server handles communication with the external 

environment and routes external calls to appropriate 

components. In this particular case Apache Tomcat 

has been used as the web application server. Tomcat 

implements the Java Servlet and the JSP 

specifications, providing an environment for Java 

code to run in cooperation with a web server. Tomcat 

includes its own internal HTTP server. 

Communication with the data tier is through the 

JDBC (Java Data Base Connectivity) protocol. 

 The CBR engine which performs case base 

reasoning functionality and the rule base engine are 

solution deployed on the web application server. 

 The presentation layer contains forms which are 

used to interact with the system. Communication 

with the web server seated at the middle layer, is 

accomplished using HTTP protocol through a simple 



web browser. Each student is able to connect into the 

system using the web browser available on the 

machine (laptop, desktop, PDA). 

 

4. Description of the Course Advisory 

process 
 

The student accesses the Expert system Interface 

Online with a valid identification number. On 

successful access the University course information 

database displays the Student details which entails 

his current standing on failed/dropped course if any 

and the set of course to register for the current 

semester. The University course information 

database is maintained by the University’s database 

administrator. The knowledge base which is a 

component of the expert system is maintained by the 

knowledge engineer who models the rules as used by 

the human course adviser in advising student. The 

Inference engine comprising of the rule base engine 

and the Case-based engine are used to generate 

recommendation of courses to be registered in the 

current semester. The Inference mechanism checks 

to see if there are previous cases that are similar to 

the current case and uses such as a case for 

generating advise for the student. The report is sent 

back to the student via the Expert system interface. If 

no such advice case exists then the rule base 

inference engine processes the request and stores the 

recommended solution as a new case in the case base 

reasoning engine.  

The Figure 2 is a schematic representation of the 

recommendation process using program flowchart. 

 

 
 

Figure 2. Schematic representation of CAES 

recommendation process 

 

5. The Decision Algorithm for CAES 
 

When CAES starts, the student course information is 

considered as a new case. CAES then computes a 

similarity score for the new case using the algorithm.  

 

Similarity (NC, OC) =          common 

     common + different 

 

Where NC is the new case, OC is the old case 

present in the case base.  

Common refers the matching pair between the new 

case and that of the old case. 

Different refers the mismatch pair between the new 

case and that of the old case. 

 

The case with the highest similarity score is picked 

as the candidate for adaptation in recommending 

courses to register else an appropriate decision 

algorithm based on the rule engine is executed. 

 

 

6. Case Study and Discussion 
 

A case study of Covenant University a tertiary 

institution based in Ota, Ogun State of Nigeria was 

carried out using the Computer science study 

program of the department of computer and 

Information science. For a student intending to 

register a course at the beginning of a new semester 

this scenarios exist. 

 The student could have just the current 

semester course to register. 

 The student could have failed course(s) 

alongside the current semester courses. 

 The student could have dropped course(s) 

alongside the current semester courses. 

 The student could have failed and dropped 

course(s) alongside the current semester 

courses. 

 

In recommending the set of courses to register for the 

current semester, CAES uses the scenario above that 

is applicable to that particular student together with 

the set of rules outlined by the University policies for 

course registration, putting into consideration the 

different course status (course perquisites, 

compulsory or elective courses). 

These rules were put together in the form of an 

algorithm as modeled in the rule base of CAES.  

 

The REGISTERDROPPEDFAILEDCOURSE 

Algorithm caters for the first 3 mentioned scenarios. 

 

Algorithm 
REGISTERDROPPEDFAILEDCOURSE (V, E, S) 



Input: A vector V of courses failed and/or dropped 

in the previous session of the same semester, E a 

vector of Elective courses and S a vector of courses 

to register in the current session of the same 

semester. 

Output: A vector R containing the list of courses 

recommended for registration by the student in that 

semester. 

 

Initialize R. 

[Considering Failed and Dropped courses] 

for all courses vi  є V  ordered by coursecode in 

ascending order 

    while registeredCredit < maxRegistrable 

AND i < count(V) 

       Add vi to R. 

       registeredCredit ← registeredCredit + 

courseCredit(vi) 

       increment i. 

[Considering failed prequisite course] 

If registeredCredit < maxRegistrable 

for each course Cj є S  

    while registeredCredit < maxRegistrable 

AND j < count(S) 

          if prequisite(Cj) is failed OR dropped 

            then Add Cj to D 

         else  

           Add Cj to R 

      S ← S- Cj 

           registeredCredit ← registeredCredit + 

courseCredit(Ci) 

           increment j. 

 

 

[For the remaining courses] 

If registeredCredit < maxRegistrable 

for each course Kp є S  that is compulsory 

ordered by course credit in descending order 

           while registeredCredit < maxRegistrable 

AND p < count(S) 

           Add Kp to R 

           registeredCredit ← registeredCredit + 

courseCredit(Kp) 

           increment p. 

If registeredCredit < maxRegistrable 

for each course Me є E  that is elective 

           while registeredCredit < maxRegistrable 

AND e < count(E) 

           Add Me to R 

           registeredCredit ← registeredCredit + 

courseCredit(Me) 

           increment e. 

return the vector R containing the list of 

recommended course for the semester. 

 

Algorithm REGISTERCOURSE (E, S) caters 

for the last scenario. 

 

Algorithm REGISTERCOURSE (E, S) 

Input: A vector E of Elective courses and S a vector 

of courses to register in the current session of the 

same semester. 

Output: A vector R containing the list of courses 

recommended for registration by the student in that 

semester. 

R ← NULL [initialize R] 

for each course Ci Є S  

    while registeredCredit < maxRegistrable 

AND i < count(S) 

          if prequisite(Ci) is passed 

            Add Ci to R 

            registeredCredit ← registeredCredit + 

courseCredit(Ci) 

            increment i 

If registeredCredit < maxRegistrable 

for each course Kj Є S  that is compulsory 

ordered by course credit in descending order 

           while registeredCredit < maxRegistrable 

AND i < count(S) 

           Add Kj to R 

           registeredCredit ← registeredCredit + 

courseCredit(Kj) 

           increment j 

If registeredCredit < maxRegistrable 

for each course Me Є E  that is elective 

           while registeredCredit < maxRegistrable 

AND e < count(E) 

           AddMe to R 

           registeredCredit ← registeredCredit + 

courseCredit(Me) 

           increment e 

return the vector R containing the list of 

recommended course for the semester.. 

 

7. Evaluation 
 

A usability evaluation of the prototype was 

conducted using human-expert evaluation to 

determine the level of performance/user satisfaction 

of the system and validated by using a direct method 

as used by Salim et al in [10].  

A small experiment to test the system’s 

recommendations against those of human advisors 

was conducted using the direct method.  Course 

Advisors across each level from the Department of 

Computer and Information Sciences of Covenant 

University were asked to participate in the survey.  

Each received an identical set of questionnaire 

alongside a copy of CAES.  The course advisors 

were asked to rank from one to five (TRUE to 

FALSE) the recommendation of CAES. 

A description of the direct method test instrument 

completed by each evaluator is as follows: 

1. The evaluator obtains demonstration or 

sample copies of the software packages to 

be evaluated. 



2. The evaluator selects a benchmark problem, 

based on his experience, and runs this 

problem on CAES. 

3. After running the bench-mark problem, the 

evaluator responds to the 14 questions in the 

instrument and estimates a quantitative 

answer to each question on a 0 to 5 scale 

with 5 being very true and 0 being very 

false.  

4. Each numerical result is multiplied by a 

weighting factor as given in the weight 

column.  

5. The weighted values are summed and then 

divided by 19 the sum of the weights to give 

a result in the numerical range of 0 to 5. 

The Figure 3 gives a computation of the evaluation 

experiment conducted by one of the evaluator. 

 
Figure 3. Evaluator’s questionnaire 

 

A subset of the summary result in calculating the 

experimental evaluation of the evaluators is given in 

the Table 1 below. 

 

Table 1. Result of Evaluation Experiment 

Evaluator Computed Satisfaction 

Level 

1 4.00 

2 4.16 

3 4.21 

4 3.52 

5 3.57 

Mean Satisfaction 

Level 

3.89 

 

From the statistical analysis of the results obtained 

from the evaluation of the human experts that per 

took in the experiment, CAES had a mean 

satisfaction level score of 3.89, which is indicative of 

a 77.8% level of user satisfaction. 

 

The result revealed that the system has a 

performance rating/user satisfaction of 77.8% from 

the sample human expert population used for the trial 

experiment. 

 

8. Conclusion 
 

The proposed CAES system is intended for use in 

mid-range universities. Currently, its experimental 

version is launched at the Department of Computer 

and Information Sciences of Covenant University, its 

modular structure and web based design makes it 

possible to be launched and used elsewhere.  

In our future work we hope to elaborate more on the 

case revision and case adaptation of the case based 

reasoned and also issues relating to data security and 

database mapping, in order to prevent unauthorized 

access to data. 

As its contribution, this project offers a 

demonstration of application of modern AI-

approaches for evolving important computer-based 

systems that can be used to resolve crucial business 

and operational concerns in the educational domain. 

While an expert system will not replace the need for 

wise and sympathetic counsel from human advisors, 

CAES focuses students more clearly on issues to 

consider and let them have unhindered access to the 

expert system before seeking further advise, thus 

alleviating academic staff of part of their burden. 
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