
I. Lovrek, R.J. Howlett, and L.C. Jain (Eds.): KES 2008, Part II, LNAI 5178, pp. 879–886, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Model for Measuring Cognitive Complexity of
Software

Sanjay Misra and Ibrahim Akman

Department of Computer Engineering, Faculty of Engineering
Atilim University, Ankara, Turkey

smisra@atilim.edu.tr, akman@atilim.edu.tr

Abstract. This paper proposes a model for calculating cognitive complexity
of a code. This model considers all major factors responsible for (cognitive)
complexity. The practical applicability of the measure is evaluated through ex-
perimentation, test cases and comparative study.

Keywords: Software complexity, metric, size, structure, cognitive complexity,
understandability.

1 Introduction

Software metrics have always been important for software engineers to assure soft-
ware quality because they provide approaches to the quantification of quality aspects
of software. However, absolute measures are uncommon in software engineering [9].
Instead, software engineers attempt to derive a set of indirect measures that lead to
metrics that provide an indication of quality of some representation of software. The
quality objectives may be listed as performance, reliability, availability and maintain-
ability [10] and are closely related to software complexity. Complexity is defined by
IEEE [3] as “the degree to which a system or component has a design or implementa-
tion that is difficult to understand and verify” Over the years, research on measuring
the software complexity has been carried out to understand, what makes software
products difficult to develop, maintain, or use. Major complexity measures of soft-
ware that refer to effort, time and memory expended have been used in the form of
different software metrics. Cyclomatic number [4], Halstead programming effort [2],
data flow complexity measures [8], cognitive functional size measure [11], are exam-
ples to such metrics. Number of metrics can also be found at [7]. These metrics calcu-
late the complexity of software from the code and measures only specific internal
attributes like size, algorithm complexity, control flow structures etc. In all above
mentioned complexity metrics, they attempt to quantify the primitives which make
software difficult to understand. For many of them, the developer’s claim that their
complexity metric based on an internal attribute is the most accurate predictor of
software quality. However, the authors realize that a single internal attribute is not
sufficient for measuring the complexity of the code. For measuring the complexity of
a code, one must consider most of the internal attributes responsible for complexity.
Therefore, the purpose of this paper is to propose a new complexity metric which

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Covenant University Repository

https://core.ac.uk/display/12356443?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

880 S. Misra and I. Akman

calculates complexity of the program code by considering all factors responsible for
complexity. For this, first we identified the factors which are responsible for the com-
plexity and then established a metric to reflect a proper relationship between these
factors. In our previous work, we presented a metric in ICCI, 2007, [6] which is based
on input, output and basic control structures (based on cognitive informatics [12]). In
the present work, we extended our previous work by including all the factors respon-
sible for complexity of software.

In section 2, we identified the primitives responsible for the complexity and ac-
cordingly proposed a new measure. The metric is demonstrated in section 3. Experi-
mentation and comparative study are given in section 4. The last section 5 includes
the conclusions drawn.

2 Proposed Metric: Unified Complexity Measure (UCM)

Complexity of a code is directly dependent on the understandability of the code and
relates to ease of comprehension. It is a cognitive process. All the factors that makes
program difficult to understand are responsible for cognitive complexity. When we
analyze a program code we find that that number of lines (size), total occurrence of
operators and operands (size), numbers of control structures (control flow structured-
ness), function call (coupling) are the factors which directly affect the complexity. In
general, these primitives are measured independently by different complexity meas-
ures and each one of these is assumed to represent overall complexity of the software.
When we look at most of the known complexity measures, we can observe the close
relation between number of lines, operator and operand counts, and basic control
structures. Consequently, these primitives of software may constitute the components
of a unified, comprehensive complexity measure.

In our opinion, the complexity of a software system depends on following factors:

1. Complexity of program depends on the size of the code. We suggest that the size
of the code can be measured by total occurrence of operators and operands. There-
fore, the complexity due to ith line of the code can be calculated as

21 iii NNSOO += Where

 Ni1: The total number of occurrences of operators at line i,
 Ni2: The total number of occurrences of operands at line i,

2. Complexity of the program is directly proportional to the cognitive weights of
Basic Control Structures (BSC). Cognitive weight of software [11] is the extent
of difficulty or relative time and effort for comprehending given software mod-
eled by a number of BCS’s. BCS’s, sequence, branch and iteration [11] are basic
logic building blocks of any software and their weights are one, two and three re-
spectively. These weights are assigned on the classification of cognitive phe-
nomenon as discussed by Wang [11]. He proved and assigned the weights for sub
conscious function, meta cognitive function and higher cognitive function as 1, 2
and 3 respectively. In fact, cognitive weights correspond to the number of
executed instructions. The details of the weights for different BCS’s are given in
Table-1, see [11].

 A Model for Measuring Cognitive Complexity of Software 881

Table 1. Basic Control Structures and their weights

 Category Basic
Control Structures

Cognitive
Weight

Sequence Sequence 1
Branch If-Then-Else 2

 Case 3
Iteration For-do 3

 Repeat-until 3
 While-do 3

Embedded Component Function Call 2
 Recursion 3

As a result, the cognitive complexity due to ith line of the code, CWi, can be
weighted as in Table-1.

Using the above considerations, we propose the following model to establish a
proper relationship among internal attributes of software.

)*()(
1 1

ij

n

i
ij

m

j

CWSOOUCMsureplexityMeaUnifiedCom
i

∑∑
= =

= (1)

where complexity measure of the software code UCM is defined as the sum of com-
plexity of its n modules and module i consists of mi line of code.
It is important to note here that in this formula:

• number of lines (mi), number of operators and operands correspond to size of
software,

• total occurrence of basic control structures, operators and operands (SOOij) is
related to algorithm complexity,

• basic control structures (CWij) are related to control flow structuredness, there-
fore corresponds to structural complexity,

• CWij also corresponds to cognitive complexity.
• number of modules (n) is related to modularity,
• function calls in terms of basic control structures are related to coupling be-

tween modules(in terms of CWij’s).

We believe that these are the major factors which are responsible for the program
comprehension, therefore complexity of the software system.

In our context, the concept of cognitive weights is used as an integer multiplier.
Therefore, the unit of the UCM (Unified Complexity Unit-UCU) is always a positive
integer number. This implies achievement of scale compatibility of SOO and CW.

3 Demonstration of UCM

The proposed complexity metric given by equation 1 is demonstrated with the pro-
gramming example given by the following Table 2.

882 S. Misra and I. Akman

Table 2. Calculated complexity values for the example program

Components Line No. Sample Algorithm
SOOi CWi

UCMi

Line 1 #include<stdio.h> 0 1 0
Line 2 #include<stdlib.h> 0 1 0
Line 3 #include<conio.h> 0 1 0
Line 4 int main (){ 0 1 1
Line 5 long fact (int n); 3 1 3
Line 6 int isprime(int n); 3 1 3
Line 7 int n; 2 1 2
Line 8 long int temp; 2 1 2
Line 9 clrscr(); 1 1 1
Line 10 printf("\n input the num-

ber");
1 1 1

Line 11 scanf("%d",&n); 2 1 2
Line 12 temp=fact(n); 5 2 10
Line 13 {printf("\n is prime");} 1 1 1
Line 14 int flag1=isprime(n); 5 2 10
Line 15 if (flag1==1) 3 2 6
Line 16 else 0 1 0
Line 17 {printf("\n is not prime")}; 1 1 1
Line 18 printf("\nfactorial(n)=%d",

temp);
2 1 2

Line 19 getch(); 1 1 1
Line 20 long fact(int n) 2 1 2
Line 21 {long int facto=1; 4 1 4
Line 22 if (n==0) 3 2 6
Line 23 facto=1;else 4 1 4
Line 24 facto=n*fact(n-1); 9 1 9
Line 25 return (facto); } 2 1 1
Line 26 int isprime(int n) 2 1 2
Line 27 { int flag; 2 1 1
Line 28 if (n==2) 3 2 6
Line 29 flag=1; 4 1 4
Line 30 else 0 1 0
Line 31 for (int i=2;i<n;i++) 10 3 30
Line 32 { if (n%i==0) 5 2 10
Line 33 { flag=0; 4 1 4
Line 34 break; } 1 1 1
Line 35 else { 0 1 0
Line 36 flag=1 ;}} 4 1 4
Line 37 return (flag);}} 2 1 2
 TOTAL 136

This example consists of a simple source code, which contains a main program and
two functions. The main program (lines 1-19) calls the function fact (lines 20-25) to
calculate the factorial of the inputted positive integer and calls the function prime
(lines 26-37) to check whether the inputted integer is a prime number or not. The last

 A Model for Measuring Cognitive Complexity of Software 883

three columns of table 2 show how the UCM is calculated for each line of code. It
also demonstrates how complexity value varies from line to line depending on the
architecture and size of the line. The highest complexity value is 30 for line number
31 since this line consists a loop and ten operators and operands. In other words, this
line is most complex in its structure and size. On the contrary, complexity value is
zero for lines 1, 2, 3, 16, 30, 35 since these lines have the simplest structure, which do
not contain any operator or operand. Similarly, line 14 and 16 have function calls and
therefore the complexity due to call is double in comparison to an ordinary program
line (without any branching, iterations, or embedded systems).

4 Experimentation and Comparative Study

Empirical studies play an important role in the evaluation of software engineering
discipline [1]. We have taken eight different ‘C’ programs from Misra and Mishra [5]
for the analysis of the UCM approach. We calculated the Unified Complexity Meas-
ure (UCM) for each one of those programs (see Table-3). The complexity values for
their components and UCM are also given in table 3. We observe from this table that
the UCM values are high for programs whose program lines generally contain high
value for any one of their components. Obviously, it is due the fact that UCM depends
on the number of lines, operators, operands and cognitive weights.

We also used these sample programs to calculate the value of four different
complexity measures, namely cognitive functional size complexity measure, effort
measure, cyclomatic complexity and statement count, for comparative purposes
(Table-4). Inspection of Table 4 states that the behavior of UCM is similar to the

Table 3. Calculated complexity values for UCM and its Components

No. The Number of
Lines (NL)

SOO CW UCM

1 12 20 4 50

2 17 35 3 57

3 18 52 3 71

4 37 58 16 136

5 23 25 10 79

6 15 20 6 57

7 11 10 6 43

8 11 17 9 73

884 S. Misra and I. Akman

UCM

EM
CFS

SC

 CC

Fig. 1. UCM and other related complexity measures. CFS: Cognitive functional Size, EM:
Effort Measure, SC: Statement Count; CC: Cyclomatic Complexity.

Table 4. Complexity values for different measures

Programs
Complexity
Measures

Pgm.1 Pgm.2 Pgm.3 Pgm.4 Pgm.5 Pgm.6 Pgm.7 Pgm. 8

Statement
Count

12 17 18 37 23 15 11 11

Cyclomatic
Complexity

 2 2 2 5 4 2 3 4

Effort
Measure

1859 5191 6237 15556 5079 2869 1221 1039

Cognitive
functional
size

8 9 9 46 30 14 21 30

Unified
Complexity
Measure

50

57

71

 136

 79

 57

 43

73

other complexity measures. The higher values of UCM is due to the fact that the
UCM includes most of the parameters of different measures. This means, the UCM
can be assumed to be a superset (see fig 1.) of cognitive complexity, effort measure,
cyclomatic complexity and statement count measures, which seems to be the most
important advantage of UCM.

Interestingly, the inspection of Figure 2 states that the UCM and CFS show almost
the same trend but the UCM has higher values. The relatively high values of UCM are
because the UCM already includes the considerations of all cognitive aspects of CFS.
Especially, the highest value of UCM for the sample program 4 is due to the contribu-
tion of other factors i.e. larger size of the code, high cognitive complexity, high occur-
rences of operators and operands.

 A Model for Measuring Cognitive Complexity of Software 885

UCM and CFS

0
20

40
60
80

100
120

140
160

1 2 3 4 5 6 7 8

Programs

C
o

m
p

le
xi

ty
 V

al
u

es

Cognitive Functional
Size

Unified Complexity
Measure

Fig. 2. Comparative Graph of UCM with CFS

5 Conclusion

In this paper, we proposed a metric by primarily considering all the internal attributes
which directly affect the complexity. It uses number of lines (size), total occurrence of
operators and operands (size), number of control structures (control flow structured-
ness) and function calls (coupling) as the internal attributes. The proposed metric also
considers cognitive complexity since it is one of the important factors for increasing
overall complexity and relates to comprehension. Understandability of software is the
program comprehension and is a cognitive process. The cognitive complexity is used
in terms of cognitive weights of basic control structures, which is also an indication of
structural complexity. This means, the proposed metric is a unique model including
all the factors responsible for increasing the complexity. The use of proposed metric
is demonstrated by using a simple programming example. The practical applicability
of the metric is evaluated by using eight different test cases which prove the sound-
ness and robustness of the proposed measure. As a conclusion, we hope that the pro-
posed metric, UCM, will aid the developers and practitioners in evaluating the com-
plexity before and after coding.

References

1. Basili, V.: The Role of Controlled Experiments in Software Engineering Research. In:
Basili, V.R., Rombach, H.D., Schneider, K., Kitchenham, B., Pfahl, D., Selby, R.W. (eds.)
Empirical Software Engineering Issues. LNCS, vol. 4336, pp. 33–37. Springer, Heidelberg
(2007)

886 S. Misra and I. Akman

2. Halstead, M.H.: Elements of Software Science. Elsevier North-Holland, New York (1997)
3. IEEE Computer Society: Standard for Software Quality Metrics Methodology. Revision

IEEE Standard, 1061–1998 (1998)
4. McCabe, T.H.: A Complexity Measure. IEEE Transactions Software Engineering, 308–

320 (1976)
5. Misra, S., Misra, A.K.: Evaluating Cognitive Complexity Measure with Weyuker’s proper-

ties. In: Proc. of IEEE (ICCI 2004), pp. 103–108 (2004)
6. Misra, S.: Cognitive Program Complexity Measure. In: Proc. of IEEE (ICCI 2007), pp.

120–125 (2007)
7. Mills, E.: Software Metrics (2007),

http://www.sei.UCMu.edu/publications/documents/UCMs/
UCM.012.html

8. Oviedo, E.I.: Control flow, Data and Program Complexity. In: Proc. of IEEE COMPSAC,
Chicago, IL, pp. 146–152 (1980)

9. Pressman, R.S.: Software Engineering: A Practitioner’s approach, 5th edn. McGraw Hill,
New York (2001)

10. Sommerville, I.: Software Engineering, 6th edn. Addison-Wesley, Reading (2001)
11. Wang, Y., Shao, J.: A New Measure of Software Complexity based on Cognitive Weights.

Can. J. Elect. Comp. Eng. 28(2), 69–74 (2003)
12. Wang, Y.: The theoretical framework of cognitive informatics. International Journal of

Cognitive Informatics and Natural Intelligence 1(1), 10–22 (2007)

	A Model for Measuring Cognitive Complexity of Software
	Introduction
	Proposed Metric: Unified Complexity Measure (UCM)
	Demonstration of UCM
	Experimentation and Comparative Study
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

