
International Journal of Theoretical and Applied Computer Sciences
Volume 1 Number 1 (2006) pp. 1–10
(c) GBS Publishers and Distributors (India)
http://www.gbspublisher.com/ijtacs.htm

A Complexity Measure Based on Cognitive Weights

Sanjay Misra
Department of Computer Engineering

Atilim University, Ankara, Turkey
smisra@atilim.edu.tr

Abstract

Cognitive Informatics plays an important role in understanding the
fundamental characteristics of software. This paper proposes a model of the
fundamental characteristics of software, complexity in terms of cognitive
weights of basic control structures. Cognitive weights are degree of difficulty
or relative time and effort required for comprehending a given piece of
software, which satisfy the definition of complexity. An attempt has also been
made to prove the robustness of proposed complexity measure by comparing it
with the other measures based on cognitive informatics.

Keywords: Software complexity, cognitive weights, basic control structures.

1. Introduction

Many well known software complexity measures have been proposed such as
McCabe’s cyclomatic number [9], Halstead programming effort [4], Oviedo’s data
flow complexity measures [10], Basili’s measure [2,3],Wang’s cognitive complexity
measure[16], Knot complexity [12] and others [1,5, 6, 7]. All the reported complexity
measures are supposed to cover the correctness, effectiveness and clarity of software
and to provide good estimate of these parameters. Out of the numerous proposed
measures, selecting a particular complexity measure is again a problem, as every
measure has its own advantages and disadvantages. There is an ongoing effort to find
such a comprehensive complexity measure, which addresses most of the parameters of
software [11].

The complexity measures based on cognitive informatics is in developing phase.
Cognitive complexity measures are the human effort needed to perform a task or
difficulty in understanding the software. In this paper, an attempt has been made to
develop a very simple method for calculating the complexity of code in terms of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Covenant University Repository

https://core.ac.uk/display/12356439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Sanjay Misra

cognitive weights. This method is the most suitable due to not only its simplness but
also it provides the complete information about the information contents of a program.

In section 2, we discussed the other complexity measure based on cognitive
informatics. In section 3, we propose a new complexity measure with its formulation.
The comparison of the proposed measure with the others has been done in section 4.
The conclusion is given section 5.

2. Cognitive Weights and Cognitive Informatics

In cognitive informatics, it is found that the functional complexity of software in
design and comprehension is dependent on internal architecture of the software. Basic
control structures (BCS), sequence, branch and iteration [13, 14, 15] is the basic logic
building blocks of any software. The cognitive weight of software [16] is the extent of
difficulty or relative time and effort for comprehending a given software modeled by a
number of BCS’s. There are two different architectures for calculating Wbcs: either all
the BCS’s are in a linear layout or some BCS’s are embedded in others. For the
former case, sum of the weights of all n BCS’s; are added and for the latter, cognitive
weights of inner BCS’s are multiplied with the weights of external BCS’s.
The cognitive weights for Basic Control Structures are as under:

Category BCS Weight
Sequence Sequence (SEQ) 1
Branch If-Then-Else (ITE) 2
 Case 3
Iteration For-do 3
 Repeat-until 3
 While-do 3
Embedded
Component

Function Call (FC) 2

 Recursion (REC) 3
Concurrency Parallel (PAR) 4

 Interrupt (INT) 4
Table 1: Basic control structures and their Cognitive Weight

Kushwaha and Misra [7] has proposed a complexity measure, which includes the
information contents of software. They consider the theory of Wang [17], which
explains that software obeys the laws of Informatics and the Cognitive Science based
on the following assertions:
��Software represents computational information.
��Software is a mathematical entity.
��Software is the coded solution to a given program.

A Complexity Measure Based on Cognitive Weights 3

��Software is a set of behavioral instructions to computer.
According to Wang [17], Information is the third essence in modeling the natural

world supplement to matter and energy. Wang [18] defines software, as “Software in
cognitive informatics is perceived as formally described design information and
implementations instructions of computing application”. In other words, Wang proved
that complexity of any software is in the form of complexity of understanding of the
information contained.

Hence, the cognitive complexity of the software should be based on the measure
that takes into account the total amount of information contained in the software.

3. Cognitive Weight Complexity Measure (CWCM)

By considering the above theories, the author is in favor of that, although cognitive
functional size approach is good but one can find the same conclusion only by the
consideration of cognitive weights. Cognitive weights itself provide the sufficient
information about the information contained in the software. In the next section, it is
proved by comparing this approach with the cognitive functional size approach. There
is no need to add more information in cognitive weight measurement for complexity
value calculation. Kushwaha and Misra [7] has tried to modify the functional size
approach, but it is shown in the next section that there are very much similarity of
their approach with functional size approach. Therefore, his proposal also does not
contribute very much.

In this proposal, we consider that our cognitive weight complexity measure
depends upon:

The Cognitive Weights of Basic Control Structures
In fact, cognitive weights correspond to the number of executed instructions. For
example, if in a simple program without any loop, the processor executes only once at
the run time. So the weights assigned to such code is one. Cognitive weights of basic
control structures are basic building blocks of software and the standard weights for
different control structures are given in Table-1. The total cognitive weight of a
software component Wc is defined as the sum of cognitive weight of its q linear
blocks composed in individuals BCS’S. Since each block may consists of m layers of
nesting BCS’s, and each layer with n linear BCS’s, the total cognitive weight, Wc can
be calculated by:

∑ ∏∑
= = =

=

q

j

m

k

n

i
cc ikjWW

1 1 1

),,((C W U) (1)

The unit of cognitive weight complexity measure is defined as the cognitive
weight of the simplest software component i.e. a linear structured BCS i.e.

 CWCM = f (Wbcs) = 1 Cognitive Weight Unit (CWU)

The above measure has been illustrated with the help of an example below.
Example 1. An algorithm to calculate the average of a set of numbers as shown in
Figure-1 is used to illustrate the application of CWCM to measure the complexity

4 Sanjay Misra

define N 10
main ()
{
int count;
float sum, average, number;
sum=0;
count=0;
while(count<N)
 {
 scanf(“%f”,&number);
 sum = sum +number;
 count = count +1;
 }
average= sum/N;
printf(“N=%dsum = %f”, N,sum);
printf(“average = %f”,average),
}

Figure-1: An algorithm to calculate the average of a set of n numbers

We illustrate the CWCM to calculate the complexity of the above program as under:
BCS (sequence) W1 = 1
BCS (iteration) W2 = 3
Wc = W1+W2=1+3 = 4
CWCM = Wc
 = 4 CWU
Then, the cognitive complexity measure value of the algorithm is 4 CWU.

4. Comparative Study of Cognitive Weight Complexity
Measures with Others

In this section, we have taken different ‘C’ program from [8] for analysis of the result.

We calculated the Cognitive Weight Complexity Measure (CWCM) for different
programs. Then, we compared Cognitive Weight Complexity measure with cognitive
functional size. The value of Cognitive weight complexity measure and cognitive
functional size are given in the table 2.

The CWCM for all the programs gives lower complexity values when we compare
it with cognitive functional size approach. It can be easily seen that CWCM already
includes the considerations of information contained in terms of cognitive weights. It
is also worth mentioned that lower complexity value in terms of number is considered
better measure in comparison of measures, which gives higher complexity value.

A Complexity Measure Based on Cognitive Weights 5

CWCM has also been compared with cognitive information complexity measure as
illustrated in table below, table 3.

No. Cognitive
Weights
(CW)

Cognitive
Functional
Size(CFS)

Ref of
source
code

1 7 21 Fig 7
2 4 8 Fig 1
3 7 14 Fig 6
4 10 30 Fig 8
5 15 30 Fig 5
6 3 9 Fig 2
7 3 9 Fig 3
8 21 42 Fig 4

Table 2: Complexity values for CWCM & CFS

No Cognitive weight
complexity

measure(CWCM)

Cognitive
Information
complexity

measure(CICM)

Software
functional size

(CFS)

1 4 19 12
2 2 3 2
3 4 19 16
4 21 97 42
5 15 19 30
6 7 30 14
7 8 83 24
8 4 22 16
9 3 10 9
10 4 14 16

 Table 3: Complexity values for CWCM , CICM and CFS.

A plot for CWCM, CICM and CFS is shown in fig 2. (Instead of below).

The plot in fig 2 shows the trends of cognitive weight complexity measure with
cognitive information complexity measure. It is seen that the trends of each graph is
almost similar, if the complexity value is high for some program, then it reflects in all
the graphs. This comparative study proves the similarity between all the complexity
measures. Once, we are getting the appropriate information by a small number and by
simple calculation, there is no need to adopt the complex method for the same
information. It also proves the robustness of this measure.

6 Sanjay Misra

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

programs

co
m

pl
ex

ity
 V

al
ue

s

Series1

Series2

Series3

Series 1: Cognitive weight complexity measure, Series 2 : CICM Series 3: CFS

Figure-2: Graph for CWCM, CICM and CFS

5. Conclusion

A complexity measure based on cognitive weight is proposed. It is found that
cognitive weight complexity measure is the most suitable measure, when it is
compared with other similar measures. The most important feature of this measure is
that it is simple to understand, easy to calculate, less time consuming, gives the
complexity value in terms of small number, and language independent i.e. it satisfy
most of the property of a good measure. It will aid the developers and practitioners in
evaluating the software complexity due to its simple ness, which serves both as an
analyzer and as a predicator in quantitative software engineering.

6. Acknowledgement

I am highly thankful to Prof. Ibraham Akman, chair of the department for his
encouragement and support during the work. I am also thankful to my collogues Dr.
Alok Mishra and Dr. Hurevren Kilic for useful discussion.

References

[1] Baker, A.L., and Zweben, S.H. (1980), A comparison of Measures of control

flow Complexity, IEEE Transaction on Software Engineering, 6, 506-511.
[2] Basili. V.R.,(1980), Qualitative software complexity models: A summary in

tutorial on models and methods for software management and engineering.
IEEE Computer Society Press, Los Alamitos,CA.

A Complexity Measure Based on Cognitive Weights 7

[3] Basili, V.R.,Selby, R.W and Phillips,T.Y.,(1983) Metric analysis and data
validation across fortran projection. IEEE Transactions Software Engineering,
SE-9(6):652-663.

[4] Halstead. M.H.(1997), Elements of software science, Elsevier North-Holland,
New York

[5] Harrison, W.,(1992) An entropy-based measure of software complexity. IEEE
Transactions on Software Engineering, 18(11): 1025-1029.

[6] Kearney, J.K., Sedlmeyer, R.L.,Thompson, W.B., Gray, M.A. and.Adler.
M.A,(1986) Software complexity measurement. ACM Press, New York,
28:1044-1050.

[7] Kushwaha,D.S. and Misra,A.K.(2006). Robustness Analysis of Cognitive
Information Complexity Measure using Weyuker Properties, ACM SIGSOFT
6RIWZDUH�(QJÕQHHUÕQJ������1RWHV����������-6.

[8] Misra S. and Misra. A. K.(2004), Evaluating Cognitive Complexity Measure
with Weyuker’s properties.Proceedings of third IEEE International
Conference on Cognitive Informatics ,103-108.

[9] McCabe. T.H.(1976),A complexity measure. IEEE Transactions Software
Engineering, (SE-2,6):308-320.

[10] Oviedo, E.I.(1980). Control flow, data and program complexity. Proc. IEEE
COMPSAC, Chicago, IL, pages 146-152.

[11] Weyuker. E.J.,(1988), Evaluating software complexity measure. IEEE
Transaction on Software Complexity Measure, 14(9): 1357-1365.

[12] Woodward, M. R., Hennel. M. A., David . H.,(1979) A measure of
control flow complexity in program text. IEEE Transaction on Software
Engineering, SE-5, Vol. 1, pages 45-50.

[13] Wang. Y.(2002). Component Based Software Measurement in F. Barbier ed.
Business Component - Based Software Engineering. 247-262.

[14] Wang. Y.(2002). The real-time process algebra (RTPA). Annuals of Software
Engineering An International Journal, 14:235-274.

[15] Wang. Y. and Shao J.(2002) Y Wang. On cognitive informatics, Keynote
Lecture. Proceeding of the 1st IEEE International Conference on Cognitive
Informatics, pages 34–42.

[16] Wang. Y. and Shao J. (2003). A new measure of software complexity based
on cognitive weights, Can.J.Elect. Comput. Eng.,28,2,69-74.

[17] Wang. Y.and Shao J. (2004). On cognitive informatics: Foundation of
Software Engineering. Proceeding of the 3rd IEEE International Conference on
Cognitive Informatics (ICCI'04), IEEE CS Press.22-31.

[18] Wang. Y. (2004). On the Informatics Laws of Software. Proceeding of the 1st
IEEE International Conference on Cognitive Informatics (ICCI'02), IEEE CS
Press. 132-141.

