
P a g e | 77 Vol. 9 Issue 5 (Ver 2.0), January 2010 Global Journal of Computer Science and Technology

HierarchyMap: A Novel Approach to Treemap

Visualization of Hierarchical Data

Aborisade D. O. And Oyelade O. J

Abstract- The HierarchyMap describes a novel approach for

Treemap Visualization method for representing large volume

of hierarchical information on a 2-dimensional space.

HierarchyMap algorithm is a new ordered treemap algorithm.

Results of the implementation of HierarchyMap treemap

algorithm show that it is capable of representing several

thousands of hierarchical data on 2-dimensional space on a

computer and Portable Device Application (PDA) screens

while still maintaining the qualities found in existing treemap

algorithms such as readability, low aspect ratio, reduced run

time, and reduced number of thin rectangles. The

HierarchyMap treemap algorithm is implemented in Java

programming language and tested with dataset of

Departmental and Faculty systems of Universities, Family

trees, Plant and Animal taxonomy structures.

Keywords-Treemaps, Aspect ratio, HierarchyMap,
Hierarchical data, Tree-like structure, Node.

I. INTRODUCTION

arge volume of data we use today are represented in

hierarchical structures, such structures in their natural

forms includes information about Corporate Organizations,

University/Departmental Structures, Family trees, Manuals
Directory, Internet Addressing, Library Cataloging,

Computer Programs, Animal and Plant Taxonomy, e.t.c.

The contents and organization of these structures are easily

understood if they are small, but very difficult to understand

when the structures become large (Mark Bruls, et al.,2000).

These problems lead to the concept of Treemaps

(Shneiderman and Johnson, 1991). Treemap describes the

notion of turning a tree into a planar space-filling map. It is

described as space-filling visualization method capable of

representing large hierarchical collections of quantitative

data. A treemap works by dividing the display area into a
nested sequence of rectangles whose areas correspond to an

attribute of the dataset, effectively combining aspects of a

Venn diagram and a pie chart (Shneiderman et al., 2002).

With Treemaps, large hierarchical structures can be viewed

without any difficulty because the Treemap visualization

Manuscript received “19th December 2009”

1st author: Department of Computer and Mathematical

Sciences, College of Natural and Applied Sciences,

Crawford University, Faith City, Igbesa, Nigeria.

(Telephone: +234-8056535109

Email: adoj_olan@hotmail.com)
2nd author: Department of Computer and Information

Sciences, School of Natural and Applied Sciences, Covenant

University, Ota, Nigeria.

(Telephone: +234-8035755778

Email: ola2000faith@yahoo.co.uk)

method maps hierarchical information into a rectangular 2-
dimensional display in a space-filling manner such that

100% of the designated display space is utilized. Interactive

control allows users to specify the presentation of both

structural (depth bounds, etc.) and content (display

properties) information (Shneiderman, 1992). This is in

contrast to traditional static methods of displaying

hierarchically structured information, which generally

makes either poor use of display space or hide vast

quantities of information from users. With the Treemap

method, sections of the hierarchy containing more important

Information can be allocated more display space while

ortions of the hierarchy, which are less important to the
specific task, can be allocated more space. Although

treemaps are originally designed to visualize files on a hard

drive (Shneiderman, 1992), it has been applied to a wide

variety of areas ranging from financial analysis, business

intelligence, money market, stock portfolio to sports

reporting (Wattenberg, 1999). A key ingredient of a

treemap is the algorithm used to create the nested rectangles

that make up the map. These set of rectangles are referred to

as the layout of the treemap.

In this work, we developed and implemented a novel

HierarchyMap Algorithm. The idea behind this algorithm is
to layout information from an hierarchy structures on nested

rectangles which we called HierarchyMap Treemap. With

this algorithm, every attribute in a hierarchical structure is

represented by a rectangular node on the treemap. Each

rectangle on the treemap corresponds to an attribute of the

dataset. Each of these nodes representing the main attributes

of tree-like structures is made to generate the information of

sub-nodes of a lower level of the hierarchical structures.

This process would continue until all the information in the

different levels of the tree hierarchy are displayed one after

the other on the same 2-dimensional screen.

II. RELATED WORKS

There are various methods that have been applied to display

structure of information, and one of these techniques is the

traditional tree diagram where elements are shown as nodes

and relations are shown as links from parent to child nodes.

More improved techniques have been presented to enhance

the efficiency and qualities of such diagram both in 2-

dimensional and 3-dimensional space (Furnas , 1986),

Knuth, 1973), (Bruggemenn, 1989), and (Card et al.,1991).

These techniques have been found to be effective for small
trees, but generally ineffective when more than hundreds

elements have to be visualized simultaneously. The major

reason for this limitation is that node and link diagrams use

L

GJCST Classifications:

 D.2.12, I.2.8, E.1, G.4, G.2.2

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Covenant University Repository

https://core.ac.uk/display/12356438?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Global Journal of Computer Science and Technology Vol. 9 Issue 5 (Ver 2.0), January 2010 P a g e | 78

the display space inefficiently as depicted in the Figure 1

below:

Fig. 1: Tree diagram for representing Hierarchical Data

Structure (Mark Bruls et al., 2000)

Fig. 2: TreeMap representing the Hierarchical Data

Structure in fig. 1 (Mark Bruls et al., 2000)

A treemap as shown in Figure 2 above was developed and

introduced to solve the problem of this space usage by using

the full display space to visualize the contents of the tree
(Johnson and Shneidermann, 1991), (B. Shnerdermann,

1992). As illustrated in Figure 2 above, Slice and Dice

treemap algorithm splits the display rectangles along

horizontal and vertical lines while recursively traversing a

hierarchically structured dataset in top–down direction

(Shneiderman,1992). Slice- and –Dice treemap are very

effective when size is the most important feature to be

displayed. However, this method also has the problem of

creating layouts that contain many rectangles with a high

aspect ratio. Therefore, many other treemap layout

algorithms have been proposed. In order to overcome this
limitations. These include Cluster and Squarified treemap

algorithms,

Cluster treemap uses a simple recursive algorithm that

reduces overall aspect ratios (Wattenberg, 1999), while

Squarified treemap algorithm presented the layout of the

children in one rectangle as a recursive procedure squarify

(Bruls et al., 2000). This procedure lays-out the rectangles in

horizontal and vertical rows. When a rectangle is processed,

a decision is made between two alternatives, either the

rectangle is added to the current row, or the current row is

fixed and a new row is started in the remaining sub-

rectangle. This decision depends only on whether adding a
rectangle to the row will improve the layout of the current

row or not.

These methods also have their drawbacks; changes in the

data set can cause dramatic discontinuous changes in the

layout produced by both cluster treemaps and squarified

treemaps. This rapid layout changes also cause an

unattractive flickering that draws attention away from other

aspects of the visualization and makes it hard to find items

on the treemap. Another problem with Cluster and

Squarified treemap is that, its layouts fail to preserve order

of information as it is done with slice and dice treemap.

Many ordered treemap algorithms were introduced to

address the limitations in slice-and-dice, Cluster, and
Squarified treemap algorithms. The motivating factor here is

to seek for the creation of layout in which items that are next

to each other in a given order are adjacent in the treemap.

Ordered treemaps include Pivot by Split Size, Pivot by

Middle, Split and Strip treemap algorithm. These ordered

treemaps generally change relatively smoothly under

dynamic updates and roughly preserve order, produce

rectangles with low aspect ratios compared to that of cluster

and squarified treemap (Shneiderman et al. 2002).

Pivot- by- middle algorithm selects the pivot to the middle

item of the list so as to create a balanced layout. With this
idea, this algorithm is not sensitive to changes as Pivot –by-

Split Size. The pivot is taken to be the item (rectangle) with

the largest area. Pivot –by-Split-size selects the pivot that

will split the list into approximately equal total areas. These

two algorithms create layouts that roughly preserve order

and are relatively efficient, but fail to produce layouts with

relatively low aspect ratio.

Strip algorithm is a modification of the Squarified treemap

algorithm. It works by processing input rectangles in order,

laying them out in horizontal or vertical strips of varying

thickness. It is efficient in that it produces a layout with

better readability than the basic ordered treemap algorithm,
and reasonable aspect ratios and stability (Shneiderman et

al. 2002).

III. METHODS

A. Development of HierarchyMap Algorithm

The algorithm for the HierarchyMap treemap is as follows:

Infotree(treedata nodes) T={t1,t2 ,t3, ……….., tn} and a 2-

D space divided into four equal rectangles.

i. If the number of hierarchical items to be displayed
is zero (i.e. T=0) , then no display.

ii. If the number of hierarchical items to be displayed

is 1 (i.e T=1), then Set 2-D space to the item.

iii. If the number of items is greater than 1, split the

rectangular 2-D space into four equal sizes and

recursively divides each of the resultant item into

fours until all items in the list are exhausted such

that ∀ ti ∈ T1, ∀ tj ∈ T2, ∀ tK

∈T3,……………………∀ tn ∈ Tn : ti ≤ ti+1 ≤ tj ≤

tj+1 ≤ tk ≤ tk+1 ≤ . . . tn ≤ tn+1.
iv. An attribute of each hierarchical item corresponds

to an area of each of the nested rectangles is

defined as area(R) in such a manner that their areas

correspond to the size of the elements of T1, T2

T3, and T4 where area (R1) ≈ area (R2) ≈ area (R3)

≈ area (Rn).

The algorithm accepts inputs data in hierarchical form.

These input items in their hierarchical order are stored, read

P a g e | 79 Vol. 9 Issue 5 (Ver 2.0), January 2010 Global Journal of Computer Science and Technology

and lay-out on nested rectangles which make up a treemap

on the computer screen. The entire 2-dimensional computer

screen is divided first into four equal parts, each of the

successive parts is then repeatedly divided into four parts in

such a way that the resultant rectangles are grouped

according to the nodes level to be represented in the entire

hierarchical data. This is to ensure that the order of the items
to be displayed is maintained. These items are then linked to

each of the resultant rectangles that make up the treemap.

Each rectangle that represents the node level of tree data can

then clicked repeatedly to display the sub-node elements.

Every other nodal rectangle on the treemap could be clicked

to display their own sub-node elements in a similar manner.

In this process, several thousands of items of information

could be displayed and viewed in a single space of 2-

dimensional treemap.

IV. RESULTS AND DISCUSSION

HierarchyMap algorithm is tested with a several number of

sample data of the information structures such as University

system, Family system, and Animal Taxonomy. The results

of this implementation are represented in Figures 3,4 and 5

respectively. Figure 3 shows the treemap appearance with

no information, Figure 4 shows the treemap representation

of ten different families Structure and the adjustment of each

of the rectangles to reduce their aspect ratio, improve their

readability, reduction of thin rectangles . Finally, Figure 5
shows the HierarchyMap for the combination of several tree

structures capable of displaying thousands of information. It

also shows the adjustment change of the rectangles to

demonstrate its optimum measures of the three treemap

metrics (i.e. aspect ratio, readability, ordering and capability

for change) as data is updated.

The results of this implementation also shows that this

HierarchyMap algorithm is similar to other existing

treemaps in that, it lays out hierarchical information on

nested rectangles, and added further advantage by making it

possible to display very large volume of hierarchical
information by continuous clicking of node level rectangle,

which we have demonstrated in the implementation.

 Figure 3: HierarchyMap showing nested rectangles without information

Global Journal of Computer Science and Technology Vol. 9 Issue 5 (Ver 2.0), January 2010 P a g e | 80

 Figure 4: HierarchyMap representing ten different family Structures

 Figure 5: HierarchyMap representing a combination of several hierarchical Structures.

P a g e | 81 Vol. 9 Issue 5 (Ver 2.0), January 2010 Global Journal of Computer Science and Technology

V. CONCLUSIONS

In this work, we developed and implemented a novel

treemap called HierarchyMap algorithm, which improved on

the limitations of the existing treemap algorithms such as

Slice-and-dice, Cluster, Squarified, Strip, etc. and added a

new feature, which enable viewing of several thousands of
hierarchical information by clicking on any of the nodal

rectangles. The result showed that the HierarchyMap

treemap algorithm has the capability for adjustment change

whenever data are updated; it also improved on readability,

preservation of order, low aspect ratio, and reduced number

of thin rectangles. The combination of these treemap metrics

makes HierarchyMap a promising treemap algorithm for the

future.

VI. REFERENCES

1) Bruggemann-Klein and D. Wood. Drawing trees nicely

with tex. Electronic Publishing, 2(2):101–115, 1989.

2) Johnson and B. Shneiderman. Treemaps: A space-

filling approach to the Visualization of Hierarchical

Information Structures. In Proc. of the 2nd International

IEEE Visualization Conference, pages 284–291,

October 1991.

3) Shneiderman. Tree visualization with treemaps:A 2-D

space-filling approach. ACM Transactions on Graphics,

11(1):92–99, September 1992.

4) Bruls S., M., Huizing, K., and Van Wijk, J., 2000.

Squarified treemaps. In Proceedings of the Joint
Eurographics and IEEE TCVG Symposium on

Visualization

(VisSym), 33–42.

5) Bederson, B., Shneiderman, B., and Wattenberg, M.

2002. Ordered and quantum treemaps: Making effective

use of 2D space to display hierarchies. ACM

Transactions on Graphics 21, 4, 833–854.

6) D.E. Knuth. Fundamental algorithms. Art of computer

programming. Volume 1. Addison-Wesley, Reading,

MA, 1973.

7) G.W. Furnas. Generalized fisheye views. In Proc. of
ACM CHI’86, Conference on Human Factors in

computing systems, pages 16–23, 1986.

8) Herman H, Maurer. Data Structures and Programming

Techniques. Prentice- All Incorporation. 1977.

9) J. Bingham and S.Sudarsanum. Visualising large

hierarchical clusters in Hyperbolic space. Bioinfomatics

Chapter 16:pg. 660-661, 2000. Malin Koksal,

Visualization of threaded discussions forums on hand-

held devices, Masters Thesis at NADA, 2005.

10) Russel Winder and Graham Roberts, Developing Java

Software, John Wiley & Sons. 1998.
11) S.K. Card, G.G. Robertson, and J.D. Mackinlay. The

information visualizer, an information workspace. In

Proc. of ACM CHI’91, Conference on Human Factors

in Computing Systems, pages 181–188, 1991.

12) Wattenberg, M. 1999. Visualizing the stock market. In

Extended Abstracts onBHuman Factors in Computing

Systems (CHI), ACM Press, 188–189.

