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Abstract 
 

Plastid transformation offers a viable alternative to nuclear transformation because of its numerous advantages.  It was 
against this backdrop that various groups of researchers have been exploiting this group of sub-cellular organelles, 
over the last two decades, for the genetic engineering of agronomic traits and metabolic pathways, as well as for 
molecular farming for the production of plant-derived high-valued biopharmaceuticals and industrial proteins. In this 
short review, we discuss the evolution and development of this technology with respect to the current state-of-the-art, 
which places it in high pedestal as a cost effective and safe production technology for high quality molecular farming 
products as well as a highly efficient method to create new metabolic pathways and improve the agronomic traits.  
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Evolution and development of plastid transformation 

Chloroplasts were considered as endosymbionts 
derived from ancestral free-living photosynthetic 
cyanobacteria. However, the genomes of present day 
land plants encode only about 5-10% of genes that are 
present in the cyanobacteria genome, indicating a 
massive transfer of genome into the nucleus. However, 
the proteins encoded by the migrated genes come back 
to plastid for their function through various mechanisms. 
A comparison of proteins encoded in the Arabidopsis 
genome with the proteins from the cyanobacterial 
genomes, suggests that approximately 4,500 of 
Arabidopsis protein-coding genes (~18% of the total) 
were acquired from the cyanobacterial ancestor of 
plastids (Martin et al. 2002).  

The plastids in higher plants include chloroplasts 
(green plastids), chromoplasts (yellow or red plastids, 
found in some fruits and flowers), amyloplasts (containing 
starch) and elaioplasts (containing oil) (Gillham, 1994). 
Plastids of higher plants are semi-autonomous organelles 
with a small circular double stranded DNA with a high 
copy numbers and have their own transcription-
translation machinery. Chloroplast gene expression is 
regulated at both transcription and translation level and 
requires a coordinate expression with the nuclear 
genome. The plastid genome is transcribed by two 
different RNA polymerases: one encoded by the nucleus 
(NEP) and the other plastid encoded (PEP). While some 
plastid genes are transcribed by both NEP and PEP, 
some are transcribed only by the PEP. While PEP is a 
prokaryotic-type enzyme, NEP is a T7 RNA polymerase-
like enzyme (Hess & Börner, 1999). There are several 
sigma factors encoded by the nuclear genome, which are 
part of the PEP transcription system. The translational 
apparatus of chloroplasts is similar to that of bacteria, but 

has adopted to translate mRNAs in the organelle within a 
eukaryotic cell (Marín-Navarro et al., 2007).  

The plastid transformation (PT) technology was 
birthed as a result of the quest for low cost, safer and 
more flexible scale-up expression system than the 
established systems that use bacterial, fungal and animal 
cells as production platforms for recombinant proteins, 
especially pharmaceutical proteins. The first stable 
chloroplast transformation was reported in 
Chlamydomonas using high velocity microprojectiles by 
biolistic delivery of naked DNA that integrated into the 
genome through homologous targeting (Boynton et al., 
1988). Although transient foreign gene expression in 
chloroplasts of cultured tobacco cells after biolistic 
delivery of chloroplast vectors was reported  by Daneill et 
al. (1990), the first stable plastid transformation in higher 
land plant was achieved in tobacco by Pal Maliga’s group, 
using same biolistic delivery system (Svab  et al., 1990). 
They used transformation vectors that contain a mutated 
plastid 16S rRNA (rrn16) gene that confer spectinomycin 
and streptomycin resistance. However, a year later, a 
more efficient selectable marker gene, aadA, encoding 
aminoglycoside 3’-adenylyltransferase, which inactivate 
spectinomycin and streptomycin, was discovered 
(Goldschmidt-Clermont, 1991). This PT marker has since 
been prominently used for selection of cells containing 
transformed plastid genomes (ptDNA), even though, an 
alternative marker, aphA-6, which confers kanamycin 
resistance, was later found to be of comparable efficiency 
with aadA (Hunag et al., 2002). Stable plastid 
transformation in tobacco by an alternate transformation 
protocol based on polyethylene glycol (PEG) treatment of 
leaf protoplasts in the presence of plasmid DNA was also 
reported (Golds et al., 1993). Since the first high-level 
foreign protein expression of 2.5% of the total soluble 
protein was achieved with the bacterial β-glucuronidase 
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(GUS), (Staub & Maliga 1993), there have been 
significant advances in the development of plastid 
expression technology, which have largely demonstrated 
that plastid could indeed serve as a safe platform for the 
large-scale production of recombinant proteins. Similarly, 
the first proof of agronomic trait engineering via PT, which 
was demonstrated by McBride et al. (1995), actually 
served as the impetus for the advances made in this area 
of plant biotechnology to date. Additionally, it was around 
this time that the foundation for the recent advances in 
the elimination of selectable markers conferring antibiotic 
resistance, and which are generally of bacterial origin, 
and as such constitute biosafety concerns, was laid 
(Carrer & Maliga, 1995; Fischer et al., 1996). Moreover, 
the advances made to date with respect to increasing the 
spectrum of higher plants that are amenable to this 
technology was premised on the possibility of stably 
transforming Arabidopsis chloroplasts in 1998 (Sikdar et 
al., 1998), a feat that doused the notion that the 
technology may be limited to the Solanaceous species 
only. The advances in the abovementioned areas of the 
PT technology, which have now placed it in high pedestal 
as a cheap and safe production technology for high 

quality molecular farming products, and also as a highly 
efficient method for agronomic traits- and metabolic 
engineering, are thus the focus of this review paper.   
Rationale for the PT technology 

The diversely numerous advantages of PT over its 
nuclear counterpart are the incentive for its adoption as 

the preferred stable transformation strategy. These 
advantages are presented in Table 1. Thus, PT has an 
unparalleled leverage as a tool for production of valuable 
compounds through metabolic engineering and molecular 
farming as well for achieving enhanced efficiency in 
agronomic trait engineering. 
Particle bombardment-mediated transformation 

The gene transfer technique that is generally being 
used for plastid transformation is the particle 
bombardment. This can be performed on a wide variety of 
cell and tissue explants of most species (including 
nowadays cereal plants), because it is neither species- 
nor genotype-dependent, hence it has no biological 
constraints or host limitation. Besides, this method of 
transformation can facilitate co-transformation of a cell 
with two of more transgenes simultaneously (for 
comprehensive expert review, see Altpeter et al., 2005).  
The DNA transfer by particle bombardment makes use of 
physical processes to achieve the transformation of crop 
plants. The particle bombardment-mediated 
transformation is performed with a device known as the 
PDS-1000/He. The device uses high-pressure helium-
aided acceleration of gold or tungsten microparticles 

coated with DNA. The built-up helium pressure is 
released using a rupture disc, which produces a 
shockwave that travels to the second disc (macrocarrier) 
on which the DNA-coated are spotted. The macrocarrier 
is then propelled into a stopping screen, which retain the 
macrocarrier but ensures the continuous travelling of the 

Table 1: Advantages of PT over nuclear transformation.

Plastid transformation Nuclear transformation
Plastid genome is highly polyploid leading to high accumulation 
of protein  

Nuclear genome is not highly polyploidy hence low level of 
protein expression  

Plastids possess prokaryotic gene expression system, which 
facilitate the expression of  several genes simultaneously from 
single operons 

The nucleus does not possess prokaryotic gene expression 
system, hence cannot  express  several genes simultaneously 

Facilitates the expression of multi-subunit complex proteins 
from polycistronic mRNAs, under a single promoter 

The expression of multi-subunit complex proteins from 
polycistronic mRNAs is not practicable, hence several promoters 
are needed to drive the expressions of the individual genes 
encoding the respective subunits  

Polycistronic multigene expression enables enhanced 
sequential metabolic reactions in a single transformation 
procedure 

Multiple transformation procedure will be required to achieve 
multigene expression 

The use of a single operon to express several genes removes 
the burden of using  several selection markers 

Several selection markers will be used to independently select 
for integration events of these individual genes 

The plastid genome is versatile in codon usage for recombinant 
protein production 

Widespread codon usage bias exist, hence the codon 
optimization is common, in order to optimize translation 
efficiency 

Provides substantial degree of natural biocontainment of 
transgene flow by out-crossing, as plastids are inherited through 
maternal tissues in most species 

There is always the risk of out-crossing through pollination

No positional effects and epigenetic interference because 
integration is guarded into the functional region of the genome 
through homologous targeting.  

There are positional effects and epigenetic interference because 
integration is random 

Absence of transgene instability and gene silencing Presence of transgene instability and gene silencing
Eliminates the need for transit peptide for the transgene transit peptide is needed for genes destined for the plastid 

genomes 

Information from Staub et al.( 2000), Maliga (2004), Daniell et al. (2005), Bock (2007), Moeller  and Wang (2008), Hasunuma et al. 
(2008), Cardi et al., 2010, Meyers et al. (2010, Obembe et al. (2010). 
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microprojectiles, which finally hit their target tissues held 
in a vacuum, facilitating the delivery of the naked DNA 
into the plant cells and ultimately into the nuclear-, 
plastid- or mitochondrial genome. Particle bombardment 
is the most efficient way to achieve plastid transformation 
in plants and is the only method used to achieve 
mitochondrial transformation (Maliga & Small, 2007)  
Advances in molecular farming and in the engineering of 
agronomic traits and metabolic pathways 

The application of PT has made tremendous 
advances in the field of molecular farming for the 
production of varied high-valued biopharmaceuticals 
including monoclonal antibody (Daniell et al., 2004), γ- 
and and alpha-interferon (Leelavathi & Reddy, 2003; 
Arlen et al., 2007), human alpha 1-antitrypsin (Nadai et 
al., 2008), insulin-like growth factor (Daniell et al., 2009), 
and antimicrobial peptide (Oey et al., 2009). Also this 
platform has been explored for high-level production of a 
host of vaccine antigens including bacterial antigens such 
as tetanus and Cholera toxin B (Tregoning et al., 2003; 
Davoodi-Semiromi et al., 2009) and bio-defense vaccine 
antigens, anthrax and plaque (Koya et al., 2005; Arlen et 
al., 2008). Viral antigens including hepatitis C, swine 
fever virus and human papillomavirus (L1) have also 
been expressed in the chloroplasts (Birch-Machin et al., 
2004; Fernandez-SanMillan et al. 2008; Shao et al. 
2008). Other antigens successfully expressed in the 
chloroplast include the protozoan antigens such as the 
surface antigen of Entamoeba histolytica and malaria 
vaccine candidates (Chebolu & Daniell, 2007; Davoodi-
Semiromi et al., 2009), and the autoantigens for diabetes- 
type 1, the cholera toxin B-proinsulin fusion protein (CTB-
pins) and human glutamic acid decarboxylase (hGAD65) 
(Ruhlman et al., 2007; Wang, X. et al., 2008). Other 
valuable chloroplast-derived products include elastin-
derived polymer and monellin (Guda et al., 2000; Roh et 
al., 2006). 

With respect to metabolic engineering, the PT 
platform has made remarkable advances in increasing 
the yield of useful compounds such as p-hydroxybenzoic 
acid (25% dry weight) (which is in hot demand as a major 
monomer in liquid crystal polymers) (Viitanen et al., 2004) 
and astaxanthin, which is a highly valued red pigment that 
is being used as feed supplement in poultry farming and 
aquaculture (Hasunuma et al., 2008). Additionally, the 
technology has been used to achieve overproduction of 
tryptophan, a very important amino acid (Zhang et al., 
2001; Tsai et al., 2005) and a polyester, 
polyhydroxybutyrate (Lössl et al., 2003). 

Moreover, several transgenes have conferred useful 
agronomic traits to the plants including drought resistance 
(Kumar et al., 2004), bacterial and fungal pathogen 
resistance (DeGray et al., 2001), herbicide resistance (Ye 
et al., 2001), and insect resistance (De Cosa et al., 2001; 
Dufourmantel et al., 2005). Additionally, the TP platform 
has recently found relevance in bioremediation (Hussein 
et al., 2007). 

Advances in strategies for enhancing protein expression  
The strategies for enhancing protein expression in 

the chloroplast have been based on ensuring protein 
stability rather than transcript abundance due to the lack 
of correlation between increased transcript level and 
translation efficiency (Verma & Daniell, 2007). For 
example a chaperon for the CRY protein was used to fold 
an insecticidal protein, Cry2Aa2, into cuboidal crystals, 
which protected the foreign protein from degradation from 
chloroplast proteases, thereby leading to remarkable 
increase in protein accumulation (De Cosa et al., 2001). 
Similarly, a striking 500-fold increase in expression of the 
human serum albumin was achieved when regulated in 
the light for protection inside inclusion bodies 
(Fernandez-San Millan et al., 2003). Also, some proteins 
such as insulin are unstable in the chloroplast; as such 
can only gain stability when expressed as fusion proteins. 
For example the fusion of insulin with Cholera toxin B-
subunit led to high expression of up to 16% of the total 
soluble protein (Ruhlman et al., 2007). Additionally, 
codon optimization has also been recently found to 
enhance protein expression, to a certain extent, in the 
chloroplasts (Zhou et al., 2008; Oey et al., 2009). 

Besides, Oey et al. (2009) were able to accumulate a 
phage-derived bactericidal protein to an unprecedented 
level of over 70% of the plant’s total soluble protein (the 
highest foreign protein expression level obtained in plant 
so far). They exploited the evolutionary resistance of 
phage lysins against prokaryotic proteases for achieving 
a very high stability of the protein inside the chloroplasts, 
which retain prokaryotic gene-expression machinery. This 
unrivalled foreign protein expression further validates the 
PT technology as an expression platform for cost-
effective large-scale production of proteinaceous 
pharmaceuticals. It is also worthy of note that the protein 
antibiotic killed the pathogenic group A streptococci 
without any purification, an advantage that is especially 
relevant when the protein antibiotic is to be produced for 
topical application (Oey et al., 2009). 
Advances in marker excision strategies  

The main reason for the clamor for the removal of the 
maker genes from transgenic plants is because of the 
antibiotic resistance they confer, which poses appreciable 
biosafety concerns. Besides, their presence will no longer 
be necessary to maintain the transplastomic state when 
plants with a uniformly transformed ptDNA population 
have been obtained, as such their removal will spare the 
transgenic plant of the unnecessary metabolic burden 
imposed by high-level expression of the marker gene 
(Lutz & Maliga, 2007). Four strategies being used for 
plastid marker gene excision include homology-based 
excision through directly repeated sequences, excision by 
phage site-specific recombination system, transient 
cointegration of the marker gene and the 
cotransformation-segregation approach.  

The homology-based excision through directly 
repeated sequences relies on loop-out elimination of 
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sequence between two directly oriented repeats. There 
have been a lot of advances since the first 
demonstrations of this approach in tobacco and 
Chlymadomonas in the mid 90s (Carrer & Maliga, 1995; 
Fischer et al., 1996). These include the interruption of an 
herbicide resistance gene with excisable selectable 
marker, such that after marker elimination, the integrity of 
the herbicide resistance gene can be restored and as 
such can be used for identifying the marker-free clones 
(Dufourmantel et al., 2007). The second advance is the 
visual identification of the marker-free plants as a result of 
a loss of function of a co-excised plastid pigmentation 
gene, rbcl (Kode et al., 2006). 

However, a second more efficient and widely adopted 
strategy for marker gene excision is the use of the 
nuclear-encoded, plastid targeted phage site-specific 
recombinases. This involves the construction of 
transplastomic plants, which carry a marker gene flanked 
by two directly oriented recombinase target sites. The 
marker gene is then removed by the introduction of a 
gene encoding a plastid-targeted recombinase in the 
plant nucleus, which eventually enters all plastids and 
simultaneously excises the marker genes flanked by 
directly oriented target sites (Lutz & Maliga, 2007). Two of 
such recombinases, the Cre recombinase, derives from 
the P1 bacteriophage, and which excises target 
sequences flanked by directly oriented 34 bp loxP sites 
(Corneille  et al., 2001; Kuroda &  Maliga, 2003, 
Tungsuchat et al., 2006; Sinagawa-García et al., 2009; 
Zhou et al., 2008) and the ΦC31 phage integrase, Int 
(Lutz et al., 2004; Kittiwongwattana et al., 2007) have 
been used successfully to achieve marker-free 
transplastomic plants. 

The transient co-integration approach is more effort-
demanding and consequently enjoys less adoption. This 
is because the removal of the selectable marker gene 
involves the generation of a loss of function mutant lines 
generated by knocking down the photosynthetic gene 
rpoA or petA and a subsequent gene complementation 
for the restoration of the lost green pigmentation 
capability (Klaus et al., 2003; 2004). 

The co-transformation-segregation approach relies 
on co-transformation and segregation of the ptDNA that 
has been transformed independently with two plasmids, a 
marker gene and an herbicide resistance gene. The 
transplastomic clones are identified by selection for 
spectinomycin resistance, with the resultant 
heteroplastomic cell carrying the wild-type ptDNA, the 
ptDNA with marker gene integration, the ptDNA with 
herbicide gene integration and the ptDNA with both 
vectors. Subsequent replication and segregation of the 
ptDNA on non-selective medium eventually yields 
chloroplasts with homoplastomic ptDNA for both vectors 
as well as for the single individual vectors. As high as 
20% of the desired herbicide-resistant plants, which lack 
the antibiotic resistance marker was obtained for tobacco 
(Ye et al., 2003). 

A recent and promising alternative approach that has 
been developed for tobacco plastid transformation 
involves the use of a selection system that is based on 
the feedback-insensitive anthranilate synathase (AS) α-
subunit of tobacco (ASA2) as a new selective marker and 
the indole analogue 4-methylindole (4MI) or the 
tryptophan analogue 7-methyl-DL-tryptophan (7MT) as 
the selection agents (Barone et al., 2009). 
Advances in widening the range of crop species 

Even though tobacco proffers almost infinite 
advantages as an ideal crop for various applications of 
the PT, however, the presence of nicotine and other 
alkaloids has been the single major disadvantage, 
especially for the production of biopharmaceuticals, the 
recent use of low-nicotine varieties like LAMD (Arlen et 
al., 2007) not withstanding (Verma & Daniell, 2007). The 
need to broaden the crop spectrum for PT is particularly 
imperative for oral delivery systems. It is therefore 
exciting to note that the range of the PT-amenable crops 
has been broadened since the first stable plastid 
transformation was achieved in a non-tobacco species in 
1998 (Sikdar et al., 1998). As such, stable PT has been 
successfully achieved in crops species such as oilseed 
rape (Hou et al., 2003), petunia (Zubko et al., 2004) and 
poplar (Okumura et al., 2006), following the same 
protocols developed for tobacco, with minor modifications 
though. It is even more excitingly noteworthy that 
chloroplast transformation has been possible in leafy 
edible crops like lettuce and cabbage (Kanamoto et al., 
2006; Liu et al., 2007), and other edible crops like potato 
(Nguyen et al., 2005), tomato (Ruf et al., 2001), and 
carrot (Kumar et al., 2004a), which offer ideal systems for 
the oral delivery platform. The range of PT-amenable 
crops has even been widen to include also the 
economically important crops such as cotton (Kumar et 
al., 2004b), rice (Lee et al., 2006) and soybean 
(Dufourmantel et al., 2004). Not only is the PT technology 
available for these variety of crop species but also that it 
employs different plant regeneration approaches 
including somatic embryogenesis and organogenesis 
from leaf and protoplast cultures, which makes it all the 
more promising to still increase the crop species base for 
the technology. 
Future prospects 

So far plastid transformation has been accomplished 
in relatively few species. There are several factors that 
have limited the expansion of plastid transformation 

technology to agronomically more important crop species 
such as cereal crops. A major factor is the lack of good 
selection marker that can be used in rice, wheat, maize 
etc. Also lack of reproducible tissue culture procedures 
that are compatible to plastid transformation is another 
serious limiting factor. Although some partial success was 
achieved in rice, generating a homoplastomic lines 
remained a distant dream. Moreover, it is not possible to 
generate homoplastomic plants via subsequent rounds of 
regeneration using leaves as explants. Based on the 
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knowledge available, it is possible in the near future to 
apply plastid transformation to improve the agronomic 
traits in important crop species. Nevertheless, the 
available plastid transformation and expression 
technology in several dicots can be readily exploited for 
the large scale production of high value products required 
in bulk quantities useful in human health and technical 
industry. 
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