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Abstract 

This paper considers the effect of buoyancy force and internal heat generation on laminar 

thermal boundary layer over a vertical plate with a convective surface boundary condition. We 

assumed that left surface of the plate is in contact with a hot fluid while a stream of cold fluid 

flows steadily over the right surface with a heat source that decays exponentially. Using a 

similarity variable, the steady state governing non-linear partial differential equations have been 

transformed into a set of coupled non-linear ordinary differential equations, which are solved 

numerically by applying shooting iteration technique together with fourth order Runge-Kutta 

integration scheme. The effects of Prandtl number, local Biot number, the internal heat 

generation parameter and the local Grashof number on the velocity and temperature profiles are 

illustrated and interpreted in physical terms. A comparison with previously published results on 

special case of the problem shows excellent agreement 

Keywords: Vertical plate; Convective boundary condition; Internal heat generation; Buoyancy 

forces  

 

1.   Introduction  

Investigations of boundary layer flow and heat transfer of viscous fluids over a flat sheet are 

important in many manufacturing processes, such as polymer extrusion, drawing of copper 

wires, continuous stretching of plastic films and artificial fibers, hot rolling, wire drawing, glass-

fiber, metal extrusion, and metal spinning. Study of laminar boundary layer flow caused by a 

moving rigid surface was initiated by Sakiadis [1] and later the work was extended to the flow 

due to stretching of a sheet by Crane [2]. The flow of an incompressible fluid past a moving 
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surface has several engineering applications. The aerodynamic extrusion of plastic sheets, the 

cooling of a large metallic plate in a cooling bath, the boundary layer along a liquid film in 

condensation process and a polymer sheet or filament extruded continuously from a die, or a 

long thread traveling between a feed roll and a wind-up roll are the examples of practical 

applications of a continuous flat surface. In certain dilute polymer solution (such as 5.4% of 

polyisobutylene in cetane and 0.83% solution of ammonium alginate in water [3,4]), the 

viscoelastic fluid flow occurs over a stretching sheet. Any fluid that does not behave in 

accordance with the Newtonian constitutive relation is called non-Newtonian [5–12]. Non-

Newtonian fluids have gained considerable importance because the power required in stretching 

a sheet in a viscoelastic fluid is less than when it is placed in a Newtonian fluid; and the heat 

transfer rate for a viscoelastic fluid is found to be less than that of Newtonian fluid. 

Recently, Aziz [13] examined a similarity solution for laminar thermal boundary layer over a flat 

plate with a convective surface boundary condition. Makinde and Olanrewaju [14] and Makinde 

et al. [15] extended Aziz [13] work by adding the buoyancy effects on thermal boundary layer 

and internal heat generation term to Aziz [13] work. Other papers that are relevant to the present 

work are those of Wang [16] and Anderson [17]. The papers by Abel and Mahesha [18, 19] are 

important contributions because they included effect of variable thermal conductivity, heat 

source, radiation, buoyancy, magneto-hydrodynamic effects, and viscoelastic behavior of the 

fluid. 

This present work examined the combined effects of internal heat generation and buoyancy 

effects on thermal boundary layer over a vertical plate with a convective surface boundary 

condition. Using a similarity approach, the governing equations are transformed into nonlinear 

ordinary differential equations and solved numerically using a shooting iteration technique 

together with fourth order Runge-Kutta integration scheme. The pertinent results are displayed 

graphically and discussed quantitatively 

 

2.    Mathematical analysis 

We consider the steady flow of a stream of cold incompressible fluid at temperature T  over the 

right surface of the vertical plate with a uniform velocity U while the left surface of the plate is 

heated by convection from a hot fluid at temperature Tf which provides a heat transfer coefficient 
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hf . The cold fluid in contact with the right surface of the plate generates heat internally at the 

volumetric rate q . The density variation due to buoyancy effects is taken into account in the 

momentum equation using the Boussinesq approximation. The continuity, momentum, and 

energy equations describing the flow can be written as 
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where u and v are the x (along the plate) and the y (normal to the plate) components of the 

velocities, respectively, T is the local temperature,  is the kinematics viscosity of the fluid,  is 

the fluid density, cp is the specific heat at constant pressure and k is the thermal conductivity of 

the fluid. The velocity boundary conditions can be expressed as  

    ,00,0,  xvxu     Uxu , .       (4) 

The thermal boundary conditions at the plate left surface and far into the cold fluid at the plate 

right surface may be written as  

   ],0,[0, xTThx
y

T
k ff 



        (5) 

       TxT , ,         (6) 

Introducing a similarity variable η and a dimensionless stream function F(η) and temperature 

() as  
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where prime symbol denotes differentiation with respect to η and Rex =Ux/ is the local 

Reynolds number. The local internal heat generation parameter λx is defined so that the internal 

heat generation q decays exponentially with the similarity variable η as stipulated in [6] and the 

local thermal Grashof number Grx. This type of model can be used in mixtures where a 

radioactive material is surrounded by inert alloys and in the electromagnetic heating of materials 

[18].  After substituting Eq.(8) into Eqs. (1) – (6), we obtain the following locally similar 

equations:  
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The solution generated whenever Bix, λx and Grx are defined as in Eqs. (8)-(12) are local 

similarity solutions. In order to have a true similarity solution the parameters Bix,  λx and Grx 

must be constants and not depend on x. This condition can be met if the heat transfer coefficient 

hf is proportional to x
-1/2

, the internal heat generation q  is proportional to  x
-1

 and the thermal 

expansion coefficient β is proportional to x
-1

. We therefore assume  

,, 121   mxcxhf  ,1 lxq
        (13) 

where c, m and l are constants but have the appropriate dimensions. Substituting Eq. (13) into 

Eqs. (7) and (12), we obtain 
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The Biot number lumps together the effects of convection resistance of the hot fluid and the 

conduction resistance of the flat plate. The parameter λ is a measure of the strength of the 

internal heat generation and the parameter Gr is the thermal Grashof number.  

 

3.   Numerical Solutions 

 

The coupled nonlinear Eqs (8) and (9) with the boundary conditions in Eqs. (10) and (11) are 

solved numerically using the fourth-order Runge-Kutta method with a shooting technique and 

implemented on Maple [20]. The step size is used to obtain the numerical solution with seven-

decimal place accuracy as the criterion of convergence. 

 

4.    Results and Discussion 

 

Figures 2-9 illustrate the influence of the local Biot number Bix, local Grashof number Grx (the 

buoyancy effect), local internal heat generation parameter λx and the Prandtl number Pr on the 

velocity )(F  , temperature θ(η), the local skin friction coefficient and the local Nusselt number, 

respectively. Comparison is made with previous results in tables 1 and 2 while table 3 shows the 

influence of embedded parameters on the overall flow structure. Attention is focused on positive 

values of the buoyancy parameters i.e. local Grashof number Grx > 0 (which corresponds to the 

cooling problem). It is clearly seen in tables 1 and 2 that the special cases of our results are in 

perfect agreement with those reported in [13-15]. From table 3, we observed that the local skin-

friction and the rate of heat transfer at the plate right surface decreases as local Grashof number 

and local Biot number increases while the local skin-friction and the rate of heat transfer at the 

plate right surface increases as the internal heating parameter increases. Increase in Prandtl 

number brings an increase in the local skin-friction and the rate of heat transfer at the plate right 

surface. Figure 2 depicts the velocity profiles for various values of local Grashof number with 

other parameters remain constant. It was observed that increase in local Grashof number bring an 

increase in the velocity which thickens the velocity boundary layer. Moreover, the fluid velocity 

increases from the plate right surface, attains its peak value within the boundary layer and 

decreases to its free stream values satisfying the boundary condition. Similar trend is observed in 

figure 3 with respect to an increase in the internal heat generation parameter. The fluid within the 

boundary layer becomes lighter and flow faster due to internal heating. Figures 4 and 5 show the 

effect of increasing local Biot number and Prandtl number. It is interesting to note that the 
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velocity boundary layer thickness decreases as local Biot number and Prandtl number increase.  

Figures 6-9 illustrate the fluid temperature profiles within the boundary layer. The fluid 

temperature is maximum at the plate right surfaces and decreases exponentially to zero value far 

away from the plate satisfying the boundary conditions. From these figures, it is noteworthy that 

the thermal boundary layer thickness increases with a decrease in local Biot number, Prandtl 

number and local Grashof number while it increases as the local internal heat generation 

parameter increases. 

 

 

Table 1: Computations showing comparison with Aziz [13] results for Grx=0, λx=0 and Pr=0.72 

Bix Aziz[13]  

 0  

Aziz [13] 

 0  

Present 

 0  

Present 

 0  

0.05 0.1447 0.0428 0.1447 0.0428 

0.10 0.2528 0.0747 0.2528 0.0747 

0.20 0.4035 0.1193 0.4035 0.1193 

0.40 0.5750 0.1700 0.5750 0.1700 

0.60 0.6699 0.1981 0.6699 0.1981 

0.80 0.7302 0.2159 0.7302 0.2159 

1.00 0.7718 0.2282 0.7718 0.2282 

5.00 0.9441 0.2791 0.9441 0.2791 

10.00 0.9713 0.2871 0.9713 0.2871 

20.00 0.9854 0.2913 0.9854 0.2913 
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Table 2: Computations showing comparison with Makinde & Olanrewaju [ 14] results  

Bix Pr λx Makinde& 

Olanrewaju[14] 

 0  

Makinde& 

Olanrewaju[14] 

 0  

Present 

 0  

Present 

 0  

0.1 0.72 1 0.1154879  2.15487958 0.1154879 2.15487958 

1.0 0.72 1 0.3526541 1.35265410 0.3526541 1.35265410 

10 0.72 1 0.4437910 1.04437910 0.4437910 1.04437910 

0.1 3.0 1 0.0272290 1.27229008  0.0272290 1.27229008 

0.1 7.10 1   -0.0101008 0.89899201 -0.0101008 0.89899201 

0.1 0.72 5 0.8763365 9.76336572  0.8763365 9.76336572 

0.1 0.72 10 1.8273973 19.273973 1.8273973 19.2739733 

 

Table 3: Computation showing      00,0  andf   for different parameter values 

Bix Pr λx Grx  0f    0   0  

0.1 0.72 1 0.1 0.639970 0.089403 1.894034 

1.0 0.72 1 0.1 0.570644 0.303644 1.303644 

10 0.72 1 0.1 0.538641 0.396797 1.039679 

0.1 3.0 1 0.1 0.479768 0.016571 1.165719 

0.1 7.10 1 0.1 0.421585 -0.01547 0.845266 

0.1 0.72 5 0.1 1.319375 0.611718 7.1171820 

0.1 0.72 10 0.1 1.916164 1.157887 12.578876 

0.1 0.72 1 1.0 2.023402 0.040122 1.4012239 

0.1 0.72 1 10 7.698598 -0.01036 0.8963780 

0.1 0.72 1 20 11.564248 -0.023012 0.769870 
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Figure 2: Velocity profiles for Bi=0.1, λx=1, Pr=0.72 

 

 

Figure 3: Velocity profiles for Grx=0.1, Bi=0.1, Pr=0.72 
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Figure 4: Velocity profiles for Grx=0.1, λx=1, Pr=0.72 

 

 

Figure 5: Velocity profiles for Grx=0.1, Bi=0.1, λx=1 
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Figure 6: Temperature profiles for Grx=0.1, λx=1, Pr=0.72 
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Figure 7: Temperature profiles for Bi=0.1, λx=1, Pr=0.72 

 

Figure 8: Temperature profiles for Grx=0.1, Bi=0.1, Pr=0.72 
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Figure 9: Temperature profiles for Grx=0.1, Bi=0.1, λx=1 

 

5.    Conclusions 

The problem on boundary layer flow past a vertical plate due to gravity and fluid density 

variation due to temperature with internal heat generation and buoyancy effects has been 

considered. Using similarity variable and the fourth-order Runge-Kutta method coupled with 

shooting technique, the governing equations are tackled numerically and the influence of various 

embedded parameters have been discussed quantitatively. Our results reveal among others that; 

 the velocity boundary layer thickness increases with an increase in local Grashof number 

due to buoyancy effects and local internal heat generation.  

 the thermal boundary layer thickness increases with a decrease in local Biot number, 

Prandtl number and local Grashof number while it increases as the local internal heat 

generation parameter increases. 

 the local skin-friction and the rate of heat transfer at the plate right surface decreases as 

local Grashof number and local Biot number increases while the local skin-friction and 

the rate of heat transfer at the plate right surface increases as the internal heating 

parameter increases. 
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