
1

Unsteady three-dimensional MHD flow and mass transfer in a porous space in the presence of thermal
radiation

Olanrewaju, P. O.

Department of Mathematics, Covenant University, Ota, Nigeria, West Africa.

(oladapo_anu@yahoo.ie )

Abstract

Unsteady three-dimensional MHD flow and mass transfer in a porous is presented here by taking into 
account of thermal radiation. The governing fundamental equations are first transformed into system of 
ordinary differential equations using self similar transformation and they are solved numerically by using 
the sixth-order Runge-Kutta-Fehlberg method with shooting technique for some values of the physical 
parameters embedded in the flow model. Important features of the flow and heat transfer characteristic 
for different values of thermal radiation, magnetic field and chemical reaction are analyzed and 
discussed. Numerical results for the velocities, temperature and concentration profiles for a prescribed 
magnetic field, thermal radiation and chemical reaction parameters as well as the development of the 
local skin-friction coefficient, local Nusselt number and Sherwood number are reported graphically for 
various parametric conditions to show interesting aspect of the numerical solution.

Keywords: Unsteady flow: Three-dimensional stretching: Mass transfer: Porous medium: Radiation: 
Magnetic field.

1. Introduction

Boundary layer flow induced by a stretching surface has been studied extensively under varied 
conditions by many researchers because of its considerable engineering applications. For instance, 
aerodynamic extrusion of plastic sheets, cooling of metallic sheets in a cooling bath, in paper industry is 
few examples of such applications. Particularly, momentum and heat transfer in stretching flow of a 
viscoelastic fluid have been analyzed due to its ever increasing usage in manufacturing process of 
artificial film and artificial fibers. Literature survey establishes serious attention has been given to the 
steady two-dimensional flow bounded by a stretching surface whose velocity to the distance from a 
fixed origin varies linearly and non-linearly. Some recent contributions on the topic have been presented 
(see [1-10]). Recently, Xu et al. [11] looked at the unsteady three-dimensional magnetohydrodynamic 
(MHD) boundary layer flow and heat transfer over a stretching sheet. They have presented the series 
solutions for the mathematical problems. Very recently, Hayat et al. [12] studied homotopy solution for 
the unsteady three-dimensional MHD flow and mass transfer in a porous space.

Radiative heat transfer flow is very important in manufacturing industries for the design of reliable 
equipments, nuclear plants, gas turbines and various propulsion devices for aircraft, missiles, satellites 
and space vehicles. Similarly, the effects of thermal radiation on the forced and free convection flows 
are important in the content of space technology and processes involving high temperature. Based on 
these applications, England and Emery [13] studied the thermal radiation effect of an optically thin gray 
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gas bounded by a stationary vertical plate. Plumb et al [14] was the first to examine the effect of 
horizontal cross-flow and radiation on natural convection from vertical heated surface in saturated 
porous media. Rosseland diffusion approximation had been utilized in this investigation of convection 
flow with radiation. Makinde et al. [15] examined unsteady convection with chemical reaction and 
radiative heat transfer past a flat porous plate moving through a binary mixture. Makinde and 
Olanrewaju [16] studied unsteady mixed convection with Soret and Dufour effects past a porous plate 
moving through a binary mixture of chemically reacting fluid. Hayat et al. [17] investigated the effect of 
thermal radiation on the flow of a second grade fluid and the references there in. Similarly, very 
recently, Hayat et al. [d] studied effects of radiation and magnetic field on mixed convection stagnation-
point flow over a vertical stretching sheet in a porous medium. Hayat et al. [18] examined the effects of 
radiation and magnetic field on the mixed convection stagnation-point flow over a vertical stretching 
sheet in a porous medium. 
The aim of present work is to extend the analysis of Hayat et al. [12]] in three directions. To the best of 
author’s knowledge, it has not been considered. Firstly, to examine the boundary layer flow in porous 
space. Secondly, to analyze the heat transfer effects. Thirdly, to describe the influence of mass transfer. 
Fourthly, to describe the effects of the embedded flow parameters that governs the flow model. 
Keeping this in view, we present the problems formulation in Section 2. Section 3 includes the method 
of solutions. In Section 4, the solutions are analyzed by various parameters. Finally, main observations 
are presented in Section 5.

2. Mathematical formulation

We consider the transient and three-dimensional flow of a viscous fluid over a stretching surface. The 
fluid is electrically conducting in the presence of a constant applied magnetic field B0 and thermal 
radiation. The induced magnetic field is neglected under the assumption of a small magnetic Reynolds 
number. Initially (for t = 0), both fluid and plate are stationary and they have constant temperature T

and Concentration C . The plate at t = 0 is expressed by the velocity components u ax, v = by (u and v 
are the velocity components in x- and y-directions). Now, for this time the surface temperature and 
concentration vary from T to wT and C to wC , respectively. The mathematical statements for the 
boundary layer problems are 
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where w is the z-component of velocity,  ρ is the fluid density, ν is the kinematic viscosity, σ is the 
electrical conductivity,  is the porosity, k is the permeability of the porous medium, C is the 
concentration species of the fluid, D is the diffusion coefficient of the diffusion species in the fluid, k1 is 
the first-order homogeneous constant reaction rate and α is the thermal diffusivity.
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The corresponding boundary conditions are 
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Where the constants a and b are positive. The radiative heat flux qr is described by Roseland 

approximation [10] such that 

,
3

4 4*

y

T

K
qr 





(7)

where * and K are the Stefan-Boltzmann constant and the mean absorption coefficient, respectively. 

Following Chamkha [6], we assume that the temperature differences within the flow are sufficiently small 

so that the T4 can be expressed as a linear function after using Taylor series to expand T4 about the free 

stream temperature T and neglecting higher-order terms. This results in the following approximation:
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Using (8) and (7) in (4), we obtain
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Following Hayat et al. [12], it is convenient to use the following similarity transformations:
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Eq. (1) is satisfied identically and Eqs. (2)-(5) becomes
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Prime denotes the derivative with respect to η, c( = b/a) the stretching parameter is a positive constant. It 

was noted that when c = 0, the problem reduces to two-dimensional case. Here the local Hartman number 

M, the local porosity parameter λ, the Schmidt number Sc, the chemical reaction parameter γ and the 

thermal radiation parameter Ra are given by 
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Here, the skin friction coefficients Cfx and Cfy in x- and y-directions, local Nusselt number Nu and local 

Sherwood number Sh are
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where Rex = ax2/ν and Rey = ay2/ ν are the local Reynolds number, )0,()0,(  gandf  are the surface 

shear stresses in x- and y-directions, )0,(  is the surface heat transfer parameter and )0,(  is the 

surface mass transfer parameter.

For ε = 0, Eqs. (11)-(14) can be written as 
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Similarly for ε = 1, Eqs. (11)-(14) becomes
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subject to the boundary conditions (15). 
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3. Method of Solution

Here, we solve Eqs. (18) analytically and Eqs. (19) numerically using Shooting technique with sixth order 

of Runge-Kutta method. It can be seen that for ε = 0, Eq. (18) has a closed formed solution of the form 
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where
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Eq. (19) constitutes a highly non-linear coupled boundary value problem of third and second-
order. So we develop most effective numerical shooting technique with sixth-order Runge-Kutta 

integration algorithm. To select  we begin with some initial guess value and solve the problem 

with some particular set of parameters to obtain      0,0,),0,(,0,   andgf . The solution 

process is repeated with another larger value of  until two successive values of 

     0,0,),0,(,0,   andgf differ only after desired digit signifying the limit of the 

boundary along η. The last value of  is chosen as appropriate value for that particular 

simultaneous equations of first order for seven unknowns following the method of superposition.
To solve this system we require ten initial conditions whilst we have only two initial conditions.
Now, we employ numerical shooting technique where these two ending boundary conditions are 
utilized to produce two unknown initial conditions at η = 0. In this calculation, the step size 

001.0 is used while obtaining the numerical solution with 11max  and five-decimal 

accuracy as the criterion for convergence.
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4. Results and discussion

Numerical calculations have been carried out for different values of the thermophysical 

parameters controlling the fluid dynamics in the flow regime. The values of Schmidt number 

(Sc) are chosen water vapour (Sc = 0.62), ammonia (Sc = 0.78) and Propyl Benzene (Sc = 2.62) 

at temperature 25oC and one atmospheric pressure. The values of Prandtl number is chosen to be 

Pr = 0.72 which represents air at temperature 25oC and one atmospheric pressure. In all 

computations we desire the variation of f, g,  and  versus  for the velocities, temperature and 

species diffusion boundary layers. Table (1) shows the computations for the influence of the 

embedded flow parameters on the local skin friction on x and y directions together with the heat 

and mass transfer rate at the moving plate surface. It is quite interesting to note that increase in 

Sc, and γ has no effects on the skin friction coefficients and the Nusselt number at the surface

)0,()0,(),0,(   andgf but increases the Sherwood number at the surface boundary layer. 

Skin friction coefficients at the surface increases as the Hartman number increases. It was also 

seen that the skin friction coefficients increases with an increase in the porosity parameter and at 

the same time decreasing the Nusselt and Sherwood number at the surface. Significantly, the 

radiation parameter Ra has appreciable influence on the heat transfer rate but with no effect on 

the other interesting physical quantities. It is noteworthy to note that the stretching parameter c 

has greater influence on the physical properties of the flow. It was seen clearly that increase in 

parameter c increases the skin friction coefficients, the Nusselt and Sherwood numbers at the 

surface boundary layer )0,()0,(,)0,(),0,(   andgf . It is interesting to note that positive 

values of γ represent destructive and negative values represent generative chemical reaction. 

Increasing parameter γ increases the Sherwood number at the surface.
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Table 1

Values of )0,()0,(),0,(),0,(   andgf for the embedded flow parameters in the flow model
when ε = 1.

M Sc Pr Ra λ γ c )0,(f  )0,(g  )0,(  )0,( 
0 1 1 1 1 1 0.1 1.42707425 0.11989595 0.28417669 1.17092198
0.1 1 1 1 1 1 0.1 1.43056719 0.12031101 0.28378656 1.17074353
0.3 1 1 1 1 1 0.1 1.45821203 0.12358193 0.28074425 1.16934359
0.4 1 1 1 1 1 0.1 1.48198158 0.12637529 0.27819159 1.16815717
0.1 0.62 1 1 1 1 0.1 1.43056719 0.12031101 0.28378656 0.90796272
0.1 0.78 1 1 1 1 0.1 1.43056719 0.12031101 0.28378656 1.02595318
0.1 2.62 1 1 1 1 0.1 1.43056719 0.12031101 0.28378656 1.94693909
0.1 1 0.72 1 1 1 0.1 1.43056719 0.12031101 0.22732899 1.17074353
0.1 1 3.00 1 1 1 0.1 1.43056719 0.12031101 0.64411898 1.17074353
0.1 1 7.10 1 1 1 0.1 1.43056719 0.12031101 1.15093985 1.17074353
0.1 1 1 1 1 1 0.1 1.43056719 0.12031101 0.28378656 1.17074353
0.1 1 1 2 1 1 0.1 1.43056719 0.12031101 0.21079238 1.17074353
0.1 1 1 3 1 1 0.1 1.43056719 0.12031101 0.17818658 1.17074353
0.1 1 1 1 0.1 1 0.1 1.07235304 0.07445359 0.33135495 1.19109626
0.1 1 1 1 0.3 1 0.1 1.16132221 0.08668680 0.31800509 1.18562015
0.1 1 1 1 0.4 1 0.1 1.20341226 0.09222260 0.31206396 1.18313408
0.1 1 1 1 1 0.1 0.1 1.43056719 0.12031101 0.28378656 0.63711465
0.1 1 1 1 1 0.3 0.1 1.43056719 0.12031101 0.28378656 0.79351784
0.1 1 1 1 1 0.4 0.1 1.43056719 0.12031101 0.28378656 0.85919188
0.1 1 1 1 1 1 0.00 1.41774468 0.00000000 0.26665579 1.15485136
0.1 1 1 1 1 1 0.25 1.44945710 0.31642983 0.30811892 1.19400515
0.1 1 1 1 1 1 0.50 1.48012872 0.68163040 0.34556949 1.23142220

A.   Velocity Profiles 

Figures 1-6 depict the effects of emerging flow parameters on non-dimensional velocity profiles. 

In figure 1 the effect of increasing the Hartman number on the momentum boundary-layer 

thickness is illustrated. Increasing this parameter lead to a decrease in the velocity which 

confirmed with the fact that the magnetic field presents a damping effect on the velocity by 

creating a drag force that opposes the fluid motion. Figure 2 shows a decrease in the fluid 

velocity within the boundary layer due to porosity parameter. This indicates the usual fact that 

porosity stabilizes the boundary layer growth. Furthermore, figures 3 show that an increase in the 

stretching parameter lead to a small decrease in the velocity profile. Figure 4-6 has similar effect 

with figures 1-3.
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Figure 1: Velocity profiles for Ra = 1, Sc = 1, c = 0.5, ε = 1, λ = 0.5, Pr = 1, γ = 1.

Figure 2: Velocity profiles for Pr = 1, M = 1, c = 0.5, ε = 1, Ra = 0.5, Sc = 1, γ = 1.
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Figure 3: Velocity profiles for Pr = 1, M = 1, γ = 0.5, ε = 1, Ra = 0.5, Sc = 1, λ = 1.

Figure 4: Velocity profiles for Ra = 1, Sc = 1, c = 0.5, ε = 1, λ = 0.5, Pr = 1, γ = 1.
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Figure 5: Velocity profiles for Pr = 1, M = 1, c = 0.5, ε = 1, Ra = 0.5, Sc = 1, γ = 1.

Figure 6: Velocity profiles for Pr = 1, M = 1, γ = 0.5, ε = 1, Ra = 0.5, Sc = 1, λ = 1.
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B.   Temperature Profiles 

The effects of various thermophysical parameters on the fluid temperature are illustrated in 

Figures. 7 to 11. In figures 7, we observed that an increase in the Hartman number brings an 

increase in the thermal boundary layer thickness. Figure 8 shows the influence of Prandtl number 

on fluid temperature. It was seen that increase in the Prandtl number is to decrease the thermal 

boundary layer thickness across the plate. Figure 9 depicts the graph of temperature against 

spanwise coordinate η for various values of radiation parameter. Due to radiation absorption the 

thermal boundary layer thickness increases as the radiation parameter increases. It is interesting 

to note that increase in the porosity parameter increases the temperature boundary layer thickness 

(see figure 10). Figure 11 represents the temperature solution for various values of the stretching 

parameter c. It was noticed that the thermal boundary layer thickness decreases as the stretching 

parameter c increases across the plate.

Figure 7: Temperature profiles for Ra = 1, Sc = 1, c = 0.5, ε = 1, λ = 0.5, Pr = 1, γ = 1.
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Figure 8: Temperature profiles for Ra = 1, M = 1, c = 0.5, ε = 1, λ = 0.5, Sc = 1, γ = 1.

Figure 9: Temperature profiles for Pr = 1, M = 1, c = 0.5, ε = 1, λ = 0.5, Sc = 1, γ = 1.
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Figure 10: Temperature profiles for Pr = 1, M = 1, c = 0.5, ε = 1, Ra = 0.5, Sc = 1, γ = 1.

Figure 11: Temperature profiles for Pr = 1, M = 1, γ = 0.5, ε = 1, Ra = 0.5, Sc = 1, λ = 1.
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C.    Concentration Profiles 

Figures 12–15 depict the fluid concentration profiles against spanwise coordinate  for varying 

values of physical parameters in the boundary layer. Figure 12 shows the influence of the 

magnetic field parameter M on the species concentration. Increasing the Hartman number 

increases the species concentration boundary layer thickness. Figure 13 described the influence 

of Schmidt number on the species concentration and it was observed that increase in Schmidt 

number leads to a decrease in the species concentration within the boundary layer due to the 

combined effects of buoyancy forces and species molecular diffusivity. Moreover, it is 

noteworthy that increasing values of chemical reaction parameter decreases the species 

concentration boundary layer thickness as illustrated in figure 14. Finally, it is noteworthy to 

note that increasing the ratio of stretching constant c decreases the species concentration 

boundary layer thickness across the plate.

Figure 12: Concentration profiles for Ra = 1, Sc = 1, c = 0.5, ε = 1, λ = 0.5, Pr = 1, γ = 1.
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Figure 13: Concentration profile for Ra = 1, M = 1, c = 0.5, ε = 1, λ = 0.5, Pr = 1, γ = 1.

Figure 14: Concentration profiles for Pr = 1, M = 1, c = 0.5, ε = 1, Ra = 0.5, Sc = 1, λ = 1.
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Figure 15: Concentration profiles for Pr = 1, M = 1, γ = 0.5, ε = 1, Ra = 0.5, Sc = 1, λ = 1.

5. Conclusions

This present article discusses a mathematical model for the transient flow with heat and mass transfer in 
the presence of thermal radiation. Three dimensional stretching case has been taken care off. Closed 
form solutions are first developed for ε = 0. For ε = 1, numerical solutions were obtained and interpreted 
for different involved parameters. The following conclusions were drawn as follows:

 The effects of Hartman number and the porosity parameter are qualitatively similar.
 The effect of decreasing values of M and λ is to increase the boundary layer thickness.
 The effects of Schmidt number is to decrease the concentration boundary layer thickness
 The effect of radiation parameter Ra is to increase the thermal boundary layer thickness 

through absorption.
 The thermal boundary layer thickness increases as Pr decreases.
 The influence of c and M on the skin friction coefficients are the same.
 The effect of the destructive chemical reaction parameter is to reduce the concentration field.
 The radiation parameter has no effect on the skin friction coefficients and the mass transfer 

rate.
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