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ABSTRACT 

 
This study is devoted to investigate the effect of geometry on thermal explosion of a strong exothermic 

chemical reaction with variable pre-exponential factor under Bimolecular, Arrhenius and Sensitised reaction rate, 
neglecting the consumption of the material are examined. Analytical solutions are constructed for the governing 
nonlinear boundary-value problem using perturbation technique together with a special type Hermite-pade 
approximation and important properties of the temperature field including bifurcations and thermal criticality are 
discussed. It is shown that temperature field is highly influenced by the geometry. 
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1. INTRODUCTION  

 
The thermal expansion theory is the spontaneous explosion due to internal heating in combustible 

materials such as industrial waste fuel, coal, hay, wool wastes and so on. In fact the problem of evaluation of 
critical regimes thought of as regimes separating the regions of explosive and non explosive ways of chemical 
reactions are the main mathematical problem of the thermal explosion theory (see [1-10]). 

The analyses of these problems have been performed based on closed-form, approximation and phase-
plane methods and numerical techniques using computational fluid dynamics packages. [10], examined reactive-
diffusive equation with variable pre-exponential factor, taking the diffusion of the reactant in a slab into account. 
He presented boundary conditions of a generalised lane-emden equation of the second-kind. To the best of 
author’s knowledge, the thermal explosion analysis has not been considered for a spherical shape under 
Bimolecular, Arrhenius and sensitised reaction rate. 

In this work, we extend [8-10] to thermal explosion of a strong exothermic chemical reaction in a slab, a 
cylindrical pipe and a spherical pipe. In the following section, the problem is formulated, analysed and discussed. 

 
2. MATHEMATICAL ANALYSIS 

 
The geometry of the problem is depicted in Figure 1. It is assumed that the combustible material inside the 

slab, cylindrical and spherical pipes are subjected to a steady state one step exothermic chemical reaction with 
possibility of variable pre-exponential factors. 
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Fig 1. Geometry of the problem 
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The equation of the heat balance in the original variables together with the boundary conditions can be 
written as ( see[4]) 
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Where T   is the absolute temperature, 0T  the wall temperature, k the thermal conductivity of the 

materials, Q the heat of reaction, A the rate constant, E the activation energy, R the universal gas constant, 0C  

the  initial concentration of the reactant species, h the planck’s number, K the Boltzmann’s constant, v the 

vibration frequency, a the pipe radius, r  the radial distance measured normal direction, n the geometry of the 
vessel i.e. n=0 (slab), n=1 (cylinder) and n=2 (spherical0 and m the numerical exponent such that 

{ }
2
1,0,2−=m  represent numerical exponent for sensitised, Arrhenius and Bimolecular kinetics respectively ( 

see[8] and [2]). We introduce the following dimensionless variables into equation (2.1)-(2.2) 
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and obtaining the dimensionless governing equation together with the corresponding boundary conditions 

as 
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Where ελ,  represent the Frank Kamenetskii and activation energy parameters respectively. In the 

following sections, equations (2.4)-(2.5) are solved using both perturbation and multivariate series summation 
techniques ( see [8-9]) 

 
3. METHOD OF SOLUTION 

 
To solve equations (2.4)-(2.5), it is convenient to take a power series expansion in the Frank Kamanetskii 

parameter λ i.e. 

i
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. Substitute the solution series into equations (2.4)-(2.5) and collecting the coefficients of like 

powers ofλ , we obtained and solved the equations governing the coefficients of solution series. The solutions for 

the temperature field for sensitized, Arrhenius and Bimolecular reaction rates are given as 
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Using computer symbolic algebra package (MAPLE), we obtained the first 30 terms of the above solution 

series (3.1a)-(3.3k) as well as the series for maximum fluid temperature ),,;0(max mr ελθθ ==  

 
4. BIFURCATION STUDY 

 
The main tool of this paper is a simple technique of series summation based on the generalized of Pade 

approximants and may be described as follows. 
Let us suppose that the partial sum 
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is given. We are concerned with the bifurcation study by analytic continuation as well as the dominant 
behaviour of the solution by using partial sum (4.1). We expect that the accuracy of the critical parameters will 
ensure the accuracy of the solution. It is well known that the dominant behaviour of a solution of a differential 
equation can often be written as   
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Where K is some constant and cλ is the critical point with the exponentα . However, we shall make the 

simplest hypothesis in the contest of nonlinear problems by assuming the )(λU   is the local representation of an 

algebraic function ofλ . 

Therefore, we seek an expression of the form  
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Where .3,2,1,1 =≥ id the condition (4.4) normalizes the dF  and ensures that the order of series 

iNA  increases as dandi  increase in value. There are thus )2(3 d+  undetermined coefficients ijb in the 

expression (4.4). The requirement (4.5) reduces the problem to a system of N linear equations for the unknown 

coefficients of dF . The entries of the underlying matrix depend only on the N given coefficients ia . Henceforth, 

we shall take 

)2(3 dN +=                                              (4.6) 

 
So that the number of equations equal the number of unknowns. Equation (4.5) is a new special type of 

Hermite-Pade approximants. Both the algebraic and differential approximants form of equation (4.5) are 
considered. For instance, we let 
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And obtain a cubic Pade approximant. This enables us to obtain solution branches of the underlying 
problem in addition to the one represented by the original series. In the same manner, we let 
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In equation (4.4), where D is the differential operator given by 
λd
d

D = . This leads to a second order 

differential approximants. It is an extension of the integral approximants idea by [12] and enables us to obtain the 

dominant singularity in the flow fluid i.e. by equating the coefficient )(3 λNA in the equation (4.5) to zero. 

Meanwhile, it is very important to know that the rationale for chosen the degrees of iNA  in equation (4.4) in this 

particular application is based on the simple technique of singularity determination in second order linear ordinary 
differential equation with polynomial coefficients as well as the possibility of multiple solution branches for the 
nonlinear problem (see [13]). 

In practice, one usually finds that the dominant singularities are located at zeroes of the second order 

linear ordinary differential equation. Hence, some of the zeroes of )(3 λd

NA may provide approximations of the 

singularities of the series  U  and we expect that the accuracy of the singularities will ensure the accuracy of the 

approximants. 

The critical exponent Nα  can easily be found by using Newton’s polygon algorithm. However, it is well 

known that, in the case of algebraic equations, the only singularities are structurally stable have simple turning 

points. Hence, in practice, one almost invariably obtains
2
1=Nα . If we assume a singularity of algebraic type 

as in equation (4.2), then the exponent may be approximated by 
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For details on the above procedure, interested readers can see (see [8-11]). We apply this procedure on 
the first 30 terms of the solution series as shown in following section. 

 
5. RESULTS AND DISCUSSION 

 
The bifurcation procedure above is applied on the first 30 terms of the solution series and we obtained the 

results as shown in Tables 1-6. 

Tables 1-3 shows the rapid convergence of the dominant singularity cλ i.e the thermal criticality in the flow 

field together with its corresponding critical exponent cα and maximum temperature maxθ with gradual increase in 

the number of series coefficients utilized in the approximants. Two solution branches (type I and II) are identified 

with a bifurcation point at cλ (i.e. turning point) as shown in a sketch of bifurcation diagram in Figure 2. Note that, 

at very large activation energy, thermal explosion criticality is independent of the type of reaction as shown in 
Table 1-3. For moderately value of activation energy, the criticality varies from one reaction to another as shown 
in Tables 4-6. Explosion in Bimolecular reaction seems to occur faster than in Arrhenius and Sensitised reactions. 
Note that the interesting part of this analysis from table 6 shows that the temperature is maximum and the thermal 
criticality is also maximum which means that despite the fact that the temperature is high, the explosion rate is 
very slow compare to table 4 and table 5. It is clearly seen that the thermal runaway is controlled by the 
geometrical shape of the explosive mechanism. 

 
Table 1. Computations showing the procedure rapid convergence for ε = 0, m = -2, 0, ½, n = 0 

 

D N 
maxθ  cλ  cNα  

1 9 1.186841989 0.8784514732 0.4999999 

2 12 1.186842168 0.8784576797 0.5000000 

3 15 1.186842168 0.8784576797 0.5000000 

4 18 1.186842168 0.8784576797 0.5000000 

5 21 1.186842168 0.8784576797 0.5000000 

 
Table 2. Computations showing the procedure rapid convergence for ε = 0, m = -2, 0, ½, n = 1 

 

D N 
maxθ  cλ  cNα  

1 9 1.386540594 1.999999999 0.499999999 

2 12 1.386294350 2.000000000 0.500000000 

3 15 1.386294361 2.000000000 0.500000000 

4 18 1.386294361 2.000000000 0.500000000 

5 21 1.386294361 2.000000000 0.500000000 
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Table 3. Computations showing the procedure rapid convergence for ε = 0, m = -2, 0, ½, n = 2 

 

D N 
maxθ  cλ  cNα  

1 9 1.586840898 3.099999999 0.499999999 

2 12 1.586494584 3.100000000 0.500000000 

3 15 1.586494592 3.100000000 0.500000000 

4 18 1.586494592 3.100000000 0.500000000 

5 21 1.586494592 3.100000000 0.500000000 

 
Table 4. Computations showing Criticality for Sensitised, Arrhenius and Bimolecular Reaction, n =0 
 

M ε  
maxθ  cλ  cNα  

-2, 0.0, 0.5 0.0 1.186842168 0.8784576797 0.500000000 

-2 0.1 2.222393808 1.3138875302 0.500000000 

0.0 0.1 1.524355912 0.9882078037 0.500000000 

0.5 0.1 1.420243862 0.9322160716 0.500000000 

 
Table 5. Computations showing Criticality for Sensitised, Arrhenius and Bimolecular Reaction, n =1 
 

M ε  
maxθ  cλ  cNα  

-2, 0.0, 0.5 0.0 1.386294361 2.0000000000 0.500000000 

-2 0.1 2.654197458 3.0162070811 0.500000000 

0.0 0.1 1.802469335 2.2612754821 0.500000000 

0.5 0.1 1.677326619 2.1321950843 0.500000000 

 
Table 6. Computations showing Criticality for Sensitised, Arrhenius and Bimolecular Reaction, n =2 
 

M ε  
maxθ  cλ  cNα  

-2, 0.0, 0.5 0.0 1.586494592 3.1000000000 0.500000000 

-2 0.1 3.743196453 4.2013463134 0.500000000 

0.0 0.1 2.984203145 3.3612753815 0.500000000 

0.5 0.1 2.644538431 3.2034608115 0.500000000 
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Fig. 2. A slice of approximate bifurcation diagram in the (λ , θmax (δ = 0.1, m = 0.5, ε = 0.1)) plane 

 
 
6. CONCLUSIONS 

 
A bifurcation study by analytic continuation of a power series in the bifurcation parameter for a particular 

solution branch is utilized to investigate the effect of geometry on the analysis of thermal explosion of strong 
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exothermic chemical reactions. For large activation energy, the procedure reveals accurately the steady state 
thermal criticality conditions as well as the solution branches. 

It was shown that geometry has a greater influence on the thermal runaway of an explosive mechanism. 
Finally, the above series summation procedure can be used as an effective tool to investigate several 

other parameter dependent nonlinear boundary-value problems 
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