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Abstract

Production to order and production in advance has been compared in many frame-
works. In this paper we investigate a mixed production in advance version of the
capacity-constrained Bertrand-Edgeworth duopoly game and determine the solution
of the respective timing game. We show that a pure-strategy (subgame-perfect) Nash-
equilibrium point exists for all possible orderings of moves. It is pointed out that unlike
the production-to-order case, the equilibrium of the timing game lies at simultaneous
moves. An analysis of the public firm’s impact on social welfare is also carried out. All
the results are compared to those of the production-to order version of the respective
game.
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1 Introduction

We can distinguish between production-in-advance (PIA) and production-to-order (PTO)
concerning how the firms organize their production in order to satisfy the consumers’
demand.1 In the former case production takes place before sales are realized, while in
the latter one sales are determined before production takes place. Markets of perishable
goods are usually mentioned as examples of advance production in a market. Phillips,
Menkhaus, and Krogmeier (2001) emphasized that there are also goods which can be
traded both in a PIA and in a PTO environment since PIA markets can be regarded as
a kind of spot market whereas PTO markets as a kind of forward market. For example,
coal and electricity are sold in both types of environments.

The comparison of the PIA and PTO environments have been carried out in experimen-
tal and theoretical frameworks for standard oligopolies.2 For instance, assuming strictly
increasing marginal cost functions Mestelman, Welland, and Welland (1987) found that in
an experimental posted offer market the firms’ profits are lower in case of PIA. For more
recent experimental analyses of the PIA environment we refer to Cracau and Franz (2012)

1The PIA game is also frequently called the price-quantity game or briefly PQ-game.
2We call an oligopoly standard if all firms are profitmaximizers, which basically means that they are

privately owned.
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and Davis (2013). In a theoretical paper Shubik (1955) investigated the pure-strategy
equilibrium of the PIA game and conjectured that the profits will be lower in case of
PIA than in case of PTO. Levitan and Shubik (1978) and Gertner (1986) determined the
mixed-strategy equilibrium for the constant unit cost case without capacity constraints.3

Assuming constant unit costs and identical capacity constraints, Tasnádi (2004) found
that profits are identical in the two environments and that prices are higher under PIA
than under PTO. In a recent paper Zhu, Wu, and Sun (2013) showed for the case of strictly
convex cost functions that PIA equilibrium profits are higher than PTO equilibrium prof-
its. In addition, considering different orders of moves and asymmetric cost functions Zhu,
Wu, and Sun (2013) demonstrated that the leader-follower PIA game leads to higher profit
than the simultaneous-move PIA game.4

Concerning our theoretical setting, the closest paper is Tasnádi (2004) since we will
investigate the constant unit case with capacity constraints. The main difference is that
we will replace one profit-maximizing firm with a social welfare maximizing firm, that is
we will consider a so-called mixed duopoly. We have already considered the PTO mixed
duopoly in Balogh and Tasnádi (2012) for which we found (i) the payoff equivalence of the
games with exogenously given order of moves, (ii) an increase in social welfare compared
with the standard version of the game, and (iii) that an equilibrium in pure strategies
always exists in contrast to the standard version of the game. In this paper we demonstrate
for the PIA mixed duopoly the existence of an equilibrium in pure strategies, lower social
welfare than in case of the PTO mixed duopoly and the emergence of simultaneous moves
in the timing game.

It is also worthwhile to relate our paper briefly to the literature on mixed oligopolies.
In a seminal paper Pal (1998) investigates for mixed oligopolies the endogenous emergence
of certain orders of moves. Assuming linear demand and constant marginal costs, he shows
for a quantity-setting oligopoly with one public firm that, in contrast to our result, the
simultaneous-move case does not emerge. Matsumura (2003) relaxes the assumptions of
linear demand and identical marginal costs employed by Pal (1998). The case of increasing
marginal costs in Pal’s (1998) framework has recently been investigated by Tomaru and
Kiyono (2010). In line with our result on the timing of moves Bárcena-Ruiz (2007) obtained
the endogenous emergence of simultaneous moves for a heterogeneous goods price-setting
mixed duopoly timing game.

The remainder of the paper is organized as follows. In Section 2 we present our frame-
work, Section 3 contains the analysis of the three games with exogenously given order of
moves, Section 4 solves the timing game, and we conclude in Section 5.

2 The framework

The demand is given by function D on which we impose the following restrictions:

Assumption 1. The demand function D intersects the horizontal axis at quantity a
and the vertical axis at price b. D is strictly decreasing, concave and twice continuously
differentiable on (0, a); moreover, D is right-continuous at 0, left-continuous at b and
D(p) = 0 for all p ≥ b.

3Gertner (1986) also derived some important properties of the mixed-strategy equilibrium of the PIA
game for strictly convex cost functions. For more on the PIA case see also van den Berg and Bos (2011).

4From the mentioned papers only Zhu, Wu, and Sun (2013) considered sequential orders of moves. For
more on leader-follower games we refer to Boyer and Moreaux (1987), Deneckere and Kovenock (1992) and
Tasnádi (2003) in the Bertrand-Edgeworth framework.
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Clearly, any price-setting firm will not set its price above b. Let us denote by P the
inverse demand function. Thus, P (q) = D−1 (q) for 0 < q ≤ a, P (0) = b, and P (q) = 0
for q > a.

On the producers side we have a public firm and a private firm, that is, we consider
a so-called mixed duopoly. We label the public firm with 1 and the private firm with 2.
Henceforth, we will also label the two firms by i and j, where i, j ∈ {1, 2} and i 6= j. Our
assumptions imposed on the firms’ cost functions are as follows:

Assumption 2. The two firms have positive identical c unit costs up to the positive
capacity constraints k1, k2 respectively.

We shall denote by pc the market clearing price and by pM the price set by a monopolist
without capacity constraints, i.e. pc = P (k1 + k2) and pM = arg maxp∈[0,b](p− c)D (p). In
what follows p1, p2 ∈ [0, b] and q1, q2 ∈ [0, a] stand for the prices and quantities set by the
firms.

For any firm i and for any quantity qj set by its opponent j we shall denote
by pmi (qj) the unique profit maximizing price on the firms’ residual demand curves
Dr

i (p, qj) = (D(p)− qj)+, i.e. pi(qj) = arg maxp∈[0,b](p − c)Dr
i (p, qj), where in the defi-

nition of pi(qj) we do not include the capacity constraint of firm i. For notational con-
venience we also introduce pmi (qj) as the price maximizing profits with respect to the
residual demand curve subject to the capacity constraint of firm i. Clearly, pc, pi and pmi
are well defined whenever c < P (qj) and Assumptions 1-2 are satisfied. In addition, let
pi(qj) = pmi (qj) = c if c ≥ P (qj). For a given quantity qj we shall denote the inverse
residual demand curve of firm i by Ri(·, qj). It can be checked that Ri(qi, qj) = P (qi + qj)
and pmi (qj) = max{pi(qj), Ri(ki, qj)}. Let qi(qj) = arg maxqi∈[0,a] (Ri (qi, qj)− c) qi and
qmi (qj) = min{qi(qj), ki}. Clearly, qi(qj) = Dr

i (pi(qj), qj) and qmi (qj) = Dr
i (pmi (qj), qj).

Let us denote by pdi (qj) the smallest price for which

(pdi (qj)− c) min
{
ki, D

(
pdi (qj)

)}
= (pmi (qj)− c)qmi (qj),

whenever this equation has a solution.5 Provided that the private firm has ‘sufficient’
capacity, that is max{pc, c} < pm2 (k1), then if it is a profitmaximizer, it is indifferent to
whether serving residual demand at price level pm2 (q1) or selling min{k2, D

(
pd2(q1)

)
} at the

lower price level pd2(q1). Observe that if Ri(ki, qj) ≥ pi(qj), then pdi (qj) = pmi (qj).
6 We shall

denote by q̃j the quantity for which qi(q̃j) = ki in case of pM < P (ki) and qi(kj) ≤ ki.
7

In addition, let q̃j = 0 if pM ≥ P (ki) and q̃j = kj if qi(kj) > ki. From Deneckere and
Kovenock (1992, Lemma 1) it follows that pdi (·) is strictly decreasing and it can be also
verified that pi(·), qi(·), and pmi (·) are also strictly decreasing. Moreover, qmi (·) is strictly
decreasing on [q̃j , kj ] and constant on [0, q̃j ].

We assume efficient rationing on the market, and thus, the firms’ demands equal

∆i (D, p1, q1, p2, q2) =


D (pi) if pi < pj ,

qi
q1+q2

D (p) if p = pi = pj ,

(D (pi)− qj)+ if pi > pj ,

5The equation defining pdi (qj) has a solution for any qj ∈ [0, kj ] if, for instance, pi(kj) ≥ max{pc, c},
which will be the case in our analysis when we will refer to pdi (qj).

6This can be the case if pM < P (ki).
7The second case does not occur if pi(kj) > max{pc, c}.
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where if the firms set identical prices, we assume that the demand is allocated in proportion
of the firms’ production.

Now we specify the firms objective functions. The public firm aims at maximizing total
surplus, that is,

π1(p1, q1, p2, q2) =

∫ min{(D(pj)−qi)+,qj}

0
Rj(q, qi)dq +

∫ min{a,qi}

0
P (q)dq − c(q1 + q2), (1)

where 0 ≤ pi ≤ pj ≤ b. The private firm is a profitmaximizer, and therefore,

π2(p1, q1, p2, q2) = p2 min {k2,∆2 (D, p1, q1, p2, q2)} − cq2. (2)

In the present paper we investigate the most interesting and difficult case identified by
our results on the PTO game (see Balogh and Tasnádi, 2012). In particular, we assume
that the private firm’s capacity is large enough to have strategic influence on the outcome.

Assumption 3. Let p2(k1) > max{pc, c}.

3 Equilibrium analysis

We now determine all the equilibrium strategies of both firms for the three possible or-
derings of moves. We begin with the simultaneous-move case, thereafter we focus on the
public-firm-moves-first case, finally we analyze the private-firm-moves-first case.

The following two inequalities remain true for all three cases, therefore we do not
discuss them separately in each subsection.

Lemma 1. Under Assumptions 1-3 we must have

p∗2 ≥ pd2(q∗1) (3)

in any equilibrium (p∗1, q
∗
1, p
∗
2, q
∗
2).

Proof. We obtain the result directly from the definition of pd2(q1). For any q1 ∈ [0, k1], the
private firm is better off by setting p2 = pm2 (q1) and q2 = qm2 (q1), than by setting any price
p2 < pd2(q1) and any quantity q2 ∈ [0, k2].

Lemma 2. Under Assumptions 1-3 we have

p∗2 ≤ max{P (k2), p
M} (4)

in any equilibrium (p∗1, q
∗
1, p
∗
2, q
∗
2).

Proof. If the public firm is not present on the market (i.e. q∗1 = 0), then the private firm’s
best reply is (p∗2, q

∗
2) =

(
max{P (k2), p

M}, D(max{P (k2), p
M})

)
.

Assume that the public firm is present on the market (i.e. q∗1 > 0). We prove (4)
by contradiction. Suppose that p∗2 > max{P (k2), p

M}. If p∗2 < p∗1, then we must have
q∗2 = D(p∗2) and the superfluous production by the public firm is reducing social welfare.
If p∗2 = p∗1, then the private firm could gain by undercutting the public firm’s price and
satisfying the entire demand. Finally, if p∗2 > p∗1, then the private firm serves residual
demand, and therefore switching to either action (p2(q

∗
1), q2(q

∗
1)) or action (R2(k2, q

∗
1), k2)

will be beneficial for the private firm, implying a price reduction since by definition p2(q
∗
1) <

pM and R2(k2, q
∗
1) < P (k2).

8

8The former case determines the reduced price if q2(q∗1) ≤ k2, while the latter one if q2(q∗1) > k2.
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3.1 Simultaneous moves

Proposition 1 (Simultaneous moves). Let Assumptions 1-3 be satisfied. A strategy profile

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p∗1, q

∗
1, p

m
2 (q∗1) , qm2 (q∗1)) (5)

is for a quantity q∗1 ∈ [0, k1] and for any price p∗1 ∈
[
0, pd2 (q∗1)

]
a Nash-equilibrium in pure

strategies if and only if

π1

(
pd2 (q∗1) , q∗1, p

m
2 (q∗1) , qm2 (q∗1)

)
≥ π1 (P (k1) , k1, p

m
2 (q∗1) , qm2 (q∗1)) , (6)

where there exists a nonempty closed subset H of [0, k1] satisfying condition (6).9 More-
over, if π1(p

′
2, 0, p

′
2, q
′
2) ≥ π1(P (k1), k1, p

′
2, q
′
2), where p′2 = max{P (k2), p

M} and q′2 =
D(max{P (k2), p

M}), then for all p1 ∈ [0, b]

(p∗1, q
∗
1, p
∗
2, q
∗
2) =

(
p1, 0, p

′
2, q
′
2

)
(7)

are also equilibrium profiles.10 Finally, no other equilibrium in pure strategies exists.

Proof. Assume that (p∗1, q
∗
1, p
∗
2, q
∗
2) is an arbitrary equilibrium profile. We divide our anal-

ysis into three subcases. In the first case (Case A) we have p∗1 = p∗2, in the second one
(Case B) p∗1 > p∗2 holds true, while in the remaining case we have p∗1 < p∗2 (Case C).

Case A: We claim that p∗1 = p∗2 implies q∗1 +q∗2 = D(p∗2). Suppose that q∗1 +q∗2 < D(p∗2).
Then because of p∗2 > max{pc, c} by a unilateral increase in output the public firm could
increase social welfare or the private firm could increase its profit; a contradiction. Suppose
that q∗1 + q∗2 > D(p∗2). Then the public firm could increase social welfare by decreasing
its output or if q∗1 = 0, the private firm could increase its profit by producing D(p∗2); a
contradiction.

We know that we must have p∗1 = p∗2 ≥ pd2(q∗1) by Lemma 1. Then we must have
q∗2 = min{k2, D(p∗2)}, since otherwise the private firm could benefit from reducing its
price slightly and increasing its output sufficiently (in particular, by setting p2 = p∗2 − ε
and q∗2 = min{k2, D(p2)}). Assume that q∗1 > 0. Observe that pm2 (0) = pd2(0) = p′2,
pm2 (q1) = pd2(q1) for all q1 ∈ [0, q̃1] and pm2 (q1) > pd2(q1) for all q1 ∈ (q̃1, k1]. Moreover, it
can be verified by the definitions of pm2 (q∗1) and pd2(q∗1) that q∗1 + k2 ≥ D(pd2(q∗1)) ≥ D(p∗2),
where the first inequality is strict if q∗1 > q̃1. Thus, q∗1 > q̃1 is in contradiction with
q∗2 = min{k2, D(p∗2)} since we already know that q∗1 + q∗2 = D(p∗2) in Case A. Hence, an
equilibrium in which both firms set the same price and the public firm’s output is positive
exists if and only if pm2 (q∗1) = pd2(q∗1) (i.e., q∗1 ∈ (0, q̃1)) and (6) is satisfied. This type of
equilibria appear in (5).

Moreover, it can be verified that (p∗1, q
∗
1, p
∗
2, q
∗
2) = (p′2, 0, p

′
2, q
′
2) is an equilibrium profile

in pure strategies if and only if

π1(p
′
2, 0, p

′
2, q
′
2) ≥ π1(P (k1), k1, p

′
2, q
′
2), (8)

where p′2 = max{P (k2), p
M} and q′2 = D(max{P (k2), p

M}).
Case B: Suppose that p∗1 > p∗2 ≥ pd2(q∗1) and D(p∗2) > q∗2. Then the public firm could

increase social welfare by setting price p1 = p∗2 and q1 = D(p∗2)− q∗2; a contradiction.

9In particular, there exists a subset [q, k1] of H.
10We remark that the cases with p1 ≤ p′2 are also included in (5).
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Assume that p∗1 > p∗2 ≥ pd2(q∗1) and D(p∗2) = q∗2. Then in an equilibrium we must have
q∗1 = 0, p∗2 = p′2 and q∗2 = q′2. Furthermore, it can be checked that these profiles specify
equilibrium profiles if and only if equation (8) is satisfied.

Clearly, p∗1 > p∗2 ≥ pd2(q∗1) and D(p∗2) < q∗2 cannot be the case in an equilibrium since
the private firm could increase its profit by producing q2 = D(p∗2) at price p∗2.

Case C: In this case p∗2 = pm2 (q∗1) and q∗2 = qm2 (q∗1) must hold, since otherwise the
private firm’s payoff would be strictly lower. In particular, if the private firm sets a price
not greater than p∗1, we are not anymore in Case C. Furthermore, if q∗2 > Dr

2(p∗2, q
∗
1),

then the private firm produces a superfluous amount; if q∗2 < min{Dr
2(p∗2, q

∗
1), k2}, then

the private firm could still sell more than q∗2; and if q∗2 = min{Dr
2(p∗2, q

∗
1), k2}, then the

private firm will choose a price-quantity pair maximizing profits with respect to its residual
demand curve Dr

2(·, q∗1) subject to its capacity constraint. In addition, in order to prevent
the private firm from undercutting the public firm’s price we must have p∗1 ≤ pd2 (q∗1).

Clearly, for the given values p∗1, p
∗
2 and q∗2 from our equilibrium profile the public firm

has to choose a quantity q′1 ∈ [0, k1], which maximizes function f(q1) = π1 (p∗1, q1, p
∗
2, q
∗
2)

on [0, k1]. We show that q′1 = q∗1 must be the case. Obviously, it does not make sense for
the public firm to produce less than q∗1 since this would result in unsatisfied consumers.
Observe that for all q1 ∈ [q∗1,min {D (p∗2) , k1}]

f(q1) =

∫ D(p∗2)−q1

0
(R2(q, q1)− c) dq +

∫ q1

0
(P (q)− c) dq − c(q1 − q∗1) =

=

∫ D(p∗2)

0
P (q)dq −D(p∗2)c− c(q1 − q∗1). (9)

Since only −c(q1 − q∗1) is a function of q1 we see that f is strictly decreasing on
[q∗1,min {D (p∗2) , k1}].

Subase (i): In case of k1 ≤ D (p∗2) we have already established that q∗1 maximizes f
on [0, k1]. Moreover, (p∗1, q

∗
1) maximizes π1 (p1, q1, p

∗
2, q
∗
2) on [0, p∗2) × [0, k1] since equa-

tion (9) is not a function of p∗1. Hence, for any p1 < p∗2 and p1 ≤ pd2 (q∗1) we have
that (p1, q

∗
1, p

m
2 (q∗1) , qm2 (q∗1)) specifies a Nash equilibrium for any q1 ∈ (0, k1] satisfying

k1 ≤ D (pm2 (q∗1)). However, note that in case of q∗1 ∈ [0, q̃1] and p1 = pd2 (q∗1) we are leaving
Case C and obtain a Case A Nash equilibrium.

Observe that pm2 (k1) > max {pc, c} implies that k1 < D (pm2 (k∗1)), and therefore we
always have Subcase (i) equilibrium profiles. If k1 = D (pm2 (q1)) has a solution for q1 ∈
[0, k1), then we shall denote its solution by q̃, and otherwise let q̃ = 0. Since D (pm2 (·)) is
a continuous and strictly increasing function, interval [q̃, k1]∩ (0, k1] determines the set of
quantities yielding an equilibrium for Subcase (i).

Subase (ii): Turning to the more complicated case of k1 > D (p∗2), we also have to
investigate function f above the interval [D (p∗2) , k1] in which region the private firm does
not sell anything at all at price p∗2 and

f(q1) =

∫ min{q1,D(p∗1)}

0
(P (q)− c) dq − cq∗2 − c (q1 −D (p∗1))

+ . (10)

Observe that we must have P (k1) < p∗2. If the public firm is already producing quantity
q1 = D (p∗2), the private firm does not sell anything at all and contributes to a social loss
of cq∗2. Therefore, f(q) is increasing on [D (p∗2) ,min {D (p∗1) , k1}].
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Assume that k1 ≤ D (p∗1). Then for any p1 ≤ pd2 (q∗1) we get that
(p1, q

∗
1, p

m
2 (q∗1) , qm2 (q∗1)) is a Nash equilibrium if and only if

π1

(
pd2 (q∗1) , q∗1, p

m
2 (q∗1) , qm2 (q∗1)

)
≥ π1

(
pd2 (q∗1) , k1, p

m
2 (q∗1) , qm2 (q∗1)

)
=

= π1 (P (k1) , k1, p
m
2 (q∗1) , qm2 (q∗1)) , (11)

where the last equality follows from the fact that social welfare is maximized in function
of (p1, q1) subject to the constraint that the private firm does not sell anything at all if
the public firm sets an arbitrary price not greater than P (k1) and produces k1.

Assume that k1 > D (p∗1). Therefore, f(q) would be decreasing on [D (p∗1) , k1]. However,
it can be checked that the public firm could increase social welfare by switching to strategy
(P (k1), k1) from strategy (p∗1, D (p∗1)). In addition, any strategy (p1, k1) with p1 ≤ P (k1)
maximizes social welfare subject to the constraint that the private firm does not sell
anything at all. Therefore,

(
pd2 (q∗1) , q∗1, p

m
2 (q∗1) , qm2 (q∗1)

)
is a Nash equilibrium if and only

if condition (6) is satisfied. Comparing equation (11) with equation (6), we can observe
that we have derived the same necessary and sufficient condition for a strategy profile
being a Nash equilibrium, which is valid for Subcase (ii).

So far we have established that there exists a function g, which uniquely determines
the highest equilibrium price as a function of quantity q produced by the public firm.
Clearly, g(q) = pd2(q), where the domain of g is not entirely specified. At least we know
from Subcase (i) that the domain of g contains [q̃, k1]. Observe also that the equilibrium
profiles of Subcase (i) satisfy condition (6). Let u (q1) = π1

(
pd2 (q1) , q1, p

m
2 (q1) , q

m
2 (q1)

)
and v (q1) = π1 (P (k1) , k1, p

m
2 (q1) , q

m
2 (q1)). Hence, q1 determines a Nash equilibrium

profile if and only if u(q1) ≥ v(q1). It can be verified that u and v are continuous, and
therefore, set H = {q ∈ [0, k1] | u(q) ≥ v(q)} is a closed set containing [q̃, k1].

3.2 Public firm moves first

We continue with the case of public leadership.

Proposition 2 (Public firm moves first). Let Assumptions 1-3 be satisfied. Then the set
of SPNE prices and quantities are given by

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, k1, p

m
2 (k1) , q

m
2 (k1)) (12)

for any p1 ≤ pd2 (k1).

Proof. First, we determine the best reply (or more precisely, the almost best reply)
BR2 = (p∗2(·, ·), q∗2(·, ·)) of the private firm. Observe that the private firm’s best response
correspondence can be obtained from the proof of Proposition 1. Assuming that q1 > 0,11

BR2(p1, q1) =
(pm2 (q1), q

m
2 (q1)) if p1 ≤ pd2(q1);

(p1,min {k2, D(p2)})− ε if pd2(q1) < p1 ≤ max{P (k2), p
M},(

max{P (k2), p
M}, D

(
max{P (k2), p

M}
))

if max{P (k2), p
M} < p1.

for an arbitrarily small positive value ε. In fact the best reply does not exist if pd2(q1) <
p1 ≤ max{P (k2), p

M} since the private firm will undercut the public firm’s price. However,
this does not pose a problem since the public firm chooses a first stage action such that
p1 ≤ pd2(q1). In particular, the public firm maximizes social welfare in the first period by
choosing price p∗1 = pd2(k1) and quantity k1.

11It is easy to see that if q1 = 0, then BR2(p1, 0) =
(
max{P (k2), pM}, D

(
max{P (k2), pM}

))
.
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3.3 Private firm moves first

Now we consider the case of private leadership.

Proposition 3 (Private firm moves first). Let Assumptions 1-3 be satisfied. If
π1(p

′
2, 0, p

′
2, q
′
2) > π1(P (k1), k1, p

′
2, q
′
2), where p′2 = max{P (k2), p

M} and q′2 =
D(max{P (k2), p

M}), then the equilibrium actions of the firms associated with an SPNE
are the following ones

(p∗1, q
∗
1, p
∗
2, q
∗
2) =

(
p1, 0, p

′
2, q
′
2

)
, (13)

where p1 ∈ [0, b] can be an arbitrary price. If π1(p
′
2, 0, p

′
2, q
′
2) < π1(P (k1), k1, p

′
2, q
′
2), then

the equilibrium actions of the firms associated with an SPNE are the following ones:

(p∗1, q
∗
1, p
∗
2, q
∗
2) = (p1, D

r
1(p̃2, k2), p̃2,min{D(p̃2), k2}) (14)

where p1 ∈ [0, p̃2] and

p̃2 = sup
{
p2 | π1(p1, Dr

1(p2, k2), p2,min{D(p2), k2) ≥ π1(P (k1), k1, p
′
2, q
′
2)
}
.

In addition, if π1(p
′
2, 0, p

′
2, q
′
2) = π1(P (k1), k1, p

′
2, q
′
2), then both (13) and (14) are SPNE.

Proof. If π1(p
′
2, 0, p

′
2, q
′
2) > π1(P (k1), k1, p

′
2, q
′
2), then the private firm becomes a mo-

nopolist on the market or sells its entire capacity since this is the best outcome for
the private firm which it can also enforce. Considering the other case π1(p

′
2, 0, p

′
2, q
′
2) <

π1(P (k1), k1, p
′
2, q
′
2), just like in the previous sequential case, we determine the reaction

function of the second mover, that is the best reply function BR1 = (p∗1(·, ·), q∗1(·, ·)) of the
public firm. BR1(p2, q2) ={

{(p1, Dr
1(p2, q2) | p1 ≤ p2)} if π1(p1, D

r
1(p2, q2), p2, q2) < π1(P (k1), k1, p2, q2);

{(p1, k1) | p1 ≤ P (k1)} if π1(p1, D
r
1(p2, q2), p2, q2) > π1(P (k1), k1, p2, q2).

Concerning the reaction function given by BR1, the private firm maximizes its profit in
the first period by selling its entire k2 capacity at the highest p2 price, at which it is still
not worth for the public firm to sell its entire k1 capacity.

4 Endogenous order of moves

Assume that there are two periods available to make price-quantity announcements and
that both firms are free to choose between the two periods. In stage 1 of the timing game
the two firms decide in which time period they will make their decisions. After observing
each other’s stage 1 choice, they will play in stage 2, as a function of their stage 1 decisions,
a public leadership game, a private leadership game, a simultaneous-move game in period
1 or or simultaneous-move game in period 2.

At first sight the continuum of pure-strategy equilibria makes the solution of the timing
game difficult without additional assumptions. However, comparing the solution of the
public leadership game with the solutions of the simultaneous-move game, we can see that
for the public firm only the best pure-strategy equilibria of the simultaneous-move game
is as good as any of the public leadership equilibira (all public leadership SPNE solutions
are social welfare equivalent). Hence, it makes no sense for the public firm to delay its
price-quantity decision. In an analogous way we can see that private leadership is better
for the private firm than the simultaneous-move game. Hence, we obtain the following
proposition.

Proposition 4. The equilibrium of the timing game lies at simultaneous moves for both
the strong and the weak private firm case.
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5 Conclusion

Our main results are collected in the following corollaries. We focus on the differences
between the PTO case and the PIA case from the point of view of equilibrium strategies,
social welfare effects and equilibrium analysis of the timing game.

Corollary 1. We have at least one pure-strategy equilibrium in both cases for all three
orderings of moves.

Corollary 2. In the PTO case the timing of price decisions does not matter, all arising
equilibria are payoff-equivalent. In the PIA case both firms want to become the first mover,
therefore the equilibrium of the timing game lies at simultaneous moves.

Corollary 3. Comparing the social welfare of the mixed PTO game with the mixed PIA
game, we can observe that for any of the three exogenously given ordering of moves the
PTO case results in higher social welfare than the PIA case. The same holds for the
solutions of the timing games.
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Tasnádi, A. (2003): “Endogenous Timing of Moves in an Asymmetric Price-setting
Duopoly,” Portuguese Economic Journal, 2, 23–35.

(2004): “Production in Advance versus Production to Order,” Journal of Eco-
nomic Behavior and Organization, 54, 191–204.

Tomaru, Y., and K. Kiyono (2010): “Endogenous Timing in Mixed Duopoly with
Increasing Marginal Costs,” Journal of Institutional and Theoretical Economics, 166,
591–613.

van den Berg, A., and I. Bos (2011): “Collusion in a Price-Quantity Oligopoly,” Maas-
tricht University, METEOR Working Paper RM/11/039.

Zhu, Q.-T., X.-W. Wu, and L. Sun (2013): “A generalized framework for en-
dogenous timing in duopoly games and an application to price-quantity compe-
tition,” Journal of Economics (Zeitschrift für Nationalökonomie), pp. forthcoming
(http://dx.doi.org/10.1007/s00712–013–0347–3).

10


