
Creating Responsive Information Systems with the Help of SSADM

Outline of a methodology to integrate performance and software engineering within a
structured method

Bálint Molnár

Information Technology Foundation of Hungarian Academy of Sciences
H-1525 Budapest 114. P.O.B. 49, Hungary,

Telephone: +36 1 169-9499, Fax: +36 1 1695-395
e-mail: h4445mol@ella.hu, H4445Mol@HUELLA.BITNET,

molnar@camel.itf.kfki.hu

Errol Simon

University of Wolverhampton
School of Computing and Information Technology

Wulfrun Street, Wolverhampton WV1 1SB, United Kingdom
Telephone: +44 902-322616, Fax: +44 902-322680

e-mail: cm1951@ccub.wlv.ac.uk

Abstract. In this paper, a program for a research is outlined. Firstly, the concept of
responsive information systems is defined and then the notion of the capacity planning
and software performance engineering is clarified. Secondly, the purpose of the
proposed methodology of capacity planning, the interface to information systems
analysis and development methodologies (SSADM), the advantage of knowledge-based
approach is discussed. The interfaces to CASE tools more precisely to data dictionaries
or repositories (IRDS) are examined in the context of a certain systems analysis and
design methodology (e.g. SSADM).

I. Introduction

The software performance engineering can be considered as "lost knowledge" in the
system analyst and designer community. The software developers were involved in the
early years of computing. The storage space used up and the time required to run the
programs had to be carefully controlled to force the programs into the relatively small
machines. As the performance of the hardware grew, the performance engineering and
modelling did not get enough attention only on those fields where the strict
performance requirements made it cost-effective (e.g. flight-control, mission critical
embedded systems).
At the information systems engineering field, the "fix-it-later" approach proliferated; the
early structured systems analysis and design methods (e.g. [Yourdon75],
[Longworth86], [Brodie82], [Cameron83], [Jackson82], etc.) deferred the performance
considerations to the technical and physical design or implementation stage.
The other side of the problem is that relatively few experts are available and many
analysts and designers who need their services; these services can be considered
especially valuable in a country with an ageing equipment base and shortage of capital
to renew that base or to procure the most sophisticated and advanced equipment.
In the following sections, we outline a methodology to integrate a structured analysis
and method (namely SSADM, [NCC90]) and the performance engineering methods.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Corvinus Research Archive

https://core.ac.uk/display/12355799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. The concept of the capacity management

The aims of the capacity management
– appropriately sizing the hardware resources in order

– to run new applications
– to meet the service level commitments
– to maintain the service level of all existing systems

The capacity planning is part of capacity management and it is used to predict the
capacity of resources needed to support the existing applications as they are grow and
new applications as they are implemented.
Capacity planning techniques are used to influence the design of application systems to
optimise the performance of applications sharing the same hardware with existing
systems thus helping organisations to make the most effective and efficient use of
hardware resources within the limits of the budget.
The SSADM, MERISE, SDM, Information Engineering, etc. ([NCC90], [Matheron90],
[Turner90], [Martin81]) widely known structured methods concentrate on the
functionality of information systems; they generally do not have a peculiar technique or
procedure for assessment of the level of performance. However, these methods collect a
lot of non-functional requirements and service level demands systematically and
steadily during the various stages of the systems analysis and design.
So there is an opportunity to ground the performance modelling on these hard data,
naturally the accuracy of the prediction would fit to the available knowledge-level; so
this model would be refined the same way as the design of information system.

III. The Notion of a Design Space

A multidimensional design space classifies the software system architecture. Each
dimension of a design space represents a design alternative or options of the systems,
within a dimension the variations or range of the possible system characteristic is
shown; the values along a dimension correspond to alternative requirements or design
choices. For example, the required response time could be a dimension, the values of
this concrete dimension can be continuous but it may take up discrete values (low,
medium, high); in most cases the content of a dimension is a few discrete values
corresponding the design alternatives and need not possess any useful metric (distance
measure). For example, a dimension that represents a structural choice (physical design
or initial system decomposition) is likely to have a discrete set of possible values, which
may or may not have any meaningful meaning. Methods for specifying the behaviour
aspect of an information system include entity-event modelling, state transition
diagrams, Petri-nets, etc., they represent logical or technical design dimension where
the different techniques display the variations along the dimension.
The different dimensions are not necessarily independent, in fact, it is important to
discover correlation between the dimensions to create design rules describing
appropriate and inappropriate combinations of choice.
A key part of the design space approach is to choose some dimension that reflects
requirements or evaluation criteria (e.g. performance or functional) while other
dimensions reflect structures. Then any correlation found between these dimensions
can provide direct guidance: they show which design choices are most likely to meet the
functional and non-functional requirements to a new system.

The requirement specifications can be considered as the functional (sub)space while
the results of the technical and physical design stage during the system decomposition
can be regarded as the structural design (sub)space.

IV. A design and modelling methodology of capacity planning

As we mentioned above, the idea is to integrate performance engineering into software
engineering.
The main stages of the proposed methodology:

– specification of the information systems
– performance model construction and evaluation
– analysis of the model and feedback to the systems specification
– alternative specification and refinement of the design
– steady verification and validation of the performance model

There is a so called subject guide [CCTA90] that provides the skeleton of a methodology
and yields some clues how to interface SSADM and performance engineering but it is
not sufficiently detailed.

A. The specification

During the analysis and design stages of information systems, the analyst collects data
about

– the functional and non-functional requirements (service level, security, etc.);
– the designer supplies the software architecture attributes,
– the initial software structures and the proposed hardware configuration.

SSADM provides several methods to refine the design and various models of
information systems and at the selection of the Business System Options (BSO) and
Technical System Options there are points where the capacity planning can offer
assistance in assessing how well the new application will work. Hares stresses that "the
logical design = physical design" equivalence [Hares90] in contrast of the "fix-it-later"
general approach and this means that we should incorporate the performance
estimating in the method, more exactly, every deliverable should be subjected to a
performance modelling activity to refine the design in terms of non-functional services.
The responsiveness of an information system [Smith90] means the response time or
throughput as seen by the users. Nevertheless, the main aim of the performance
engineering is not an ideal performance (not cared about the costs) but it wants to
achieve a performance that is cost-effective and fits into the user functional and non-
functional requirements.
The general experience shows that the tuning of the physical design and the
implementation is too late.
To assess the application's responsiveness, the specification should provide sufficient
performance data. The Logical Data Structure, the Function Catalogue, the
Requirements Catalogue contains volumetric and volatility data and several cross-
references.
The performance requirements must be specific and measurable ("rapid response is
required" is vague statement); they appear in the form of non-functional requirements
in Requirements Catalogue, during the analysis, the accuracy of the requirements' data
and the hard fact, functional requirements should be steadily refined. This procedure
corresponds to the selection along the dimensions of functional design space.

The structural dimensions include the hardware configuration data (processors,
network, etc.) and initial software structure, module decomposition.
The software model specification consists of:

– performance goals
– workload specifications
– software execution structure
– execution environment
– resource usage

The workload specification means the determination of
– system uses or requests for system function
– the rate at which each is requested
– any special patterns of requests

This information can be gained from the entity-event model and function definition in
SSADM.
The software execution structure makes up

– the software components that execute
– the order of execution
– component repetition and conditional execution

The execution environment
– hardware configuration
– abstract machine - operating system, other support software

Resource usage
– the number of instructions to be executed
– the number of I/O operations for each device
– the number and types of abstract machine service routines
– the amount of memory for code and for data

V. Model Construction and Evaluation

There is a variety of performance modelling techniques:
– queuing model [Kleinrock75]
– Petri net model [Peterson77]
– execution graph models [Smith90]

The analyst faces several choices, e.g.
– fix an appropriate performance modelling technique and tool for the whole

project
– or select among the various methods and tools that seem suitable for a stage

or step in the structured methods or use several one at the same time.
A methodology should provide guidance in this question and should supply a detailed
explanation how to use the results of the analysis and in which model should be used
up; that is, the interface points should be precisely defined.

A. SSADM interface points

The SSADM subject guide proposes [CCTA90] that the first performance engineering
activity should be carried out at the so called Technical Options stage to create a
workload model. But if we are serious about the equivalence principle (logical design =
physical design) we should start the performance assessment at an earlier stage, namely
at the Business System Options stage to create preliminary performance predictions.
What is the base on which we establish our rough calculations?

There is a first cut logical data model and logicalised data flow model enhanced with the
functional requirements and attached with modest volumetric data. The analyst should
be committed to collect the facts about the planned workload and the service level
details at this early stage in such a detail. To work out the alternatives and to justify
them, we need some approximation of the system's capacity.
Summarising, the needed information to effectively satisfy the service level demands
are:

– to construct (initial) workload model
– Service Level Requirements attached to the single workloads
– Technical Environment Descriptions (at least vague idea of the planned

hardware and software circumstances)
The capacity planning exercise underpins the selection between the different Business
System Options. Thereby the unreasonable and excessive ch oices can be avoided at the
early phase in the project.
The above mentioned information is available in a much more detailed format at the
later stages. Namely, the Technical System Option is the first point before the Logical
Design where the analysis achieved a certain depth, more precisely, three perspectives
of an information system are thoroughly investigated:

– the data oriented
– process or function oriented
– behaviour oriented

The different perspectives are cross-referenced according to the dichotomy principles
([NCC90], [Molnár91], [Molnár92]) in SSADM, that is there are well-grounded models
for the information system to depict the functional requirements, but beside the models
have strictly coupled information to them about the non-functional requirements
including the service level demands.

B. Connections to the Technical Options, Logical Design and Physical Design

The Technical Options describe various ways of physically implementing the model of
the information system. This is the first opportunity for capacity planning to provide
outputs to the analyst to make decision and to select among the possible hardware and
software environment. There is sufficient information to construct a preliminary
workload for input to a capacity modelling tool that can be a general-purpose tool, such
as spreadsheets and statistical analysis packages or database management package that
provides calculation functions. A commercial software analysis tool can be used or a
special-purpose program can be designed and created; any of them means real value to
the analyst only in the case when they are integrated to a CASE tool used in the
modelling activities of information system.
There is an important document the Technical Environment Description for each
Technical Option, some first cut hardware and software configurations are put together
in sufficient detail for capacity modelling purposes, but the later stages can modify them
significantly, that are the Logical and Physical Design stage.
On selecting a Technical Option, the capacity planning techniques can be used to help
assess the likely technical environments that support the functional requirements
incorporated in the model of information systems and do not lessen the responsiveness
according to the service level demands; the practicability and reasonability of the
desired service level requirements are tested, moreover it supplies relevant inputs to
the Organisational Impact and Cost/Benefit Analyses.

On calculating the data storage requirements, the analyst can use the detailed and
precise volumetric information in the Entity Descriptions and Logical Design Volumes.
On constructing the workload model, the analyst can estimate the arrival rates of user
requests based upon:

– the Function Catalogue along with the Event frequency rate
– the Enquiry and Update Process Model
– the Dialogue Design including the Menu and Command structure

The number of accesses to each device, the resource usage, can be estimated from the
event frequency rates utilising the Effect Correspondence and Entity Life History
diagrams where the analysts can see the Entity Effects, the Operations in the
(hierarchical) database management terms, and the Logical Success Units. These data
make up the sound base for database transaction execution modelling ([Smith90]). So
the analyst can decompose the functions into tasks, the tasks into logical success units,
the logical success units are built up from database operations. So the processor
occupancy can be computed from these data and compared to the service level
requirements attached to the functions and tasks; in conflicting cases when the
responsiveness of the system seems to be not implementable there should be followed
some conflict resolution strategy and principles to guide the decisions when the
different alternatives and trade-off situation are evaluated.
During the design of responsive information systems, the important part is continual
verification of the performance model specifications and validation of model
predictions.
In SSADM, the capacity planning techniques can be used to validate and verify the
Logical System Design in sense of performance. The viability of running the Logical
System Design on the hardware and software configuration depicted in the Technical
Environment Description.
The V&V (Verification and Validation) effort matches the impact of the results and the
Design Objectives regarding the Service Level Requirements. The analyst/designer
should ensure that the Logical System design fulfils the non-functional demands not
only the functional ones. In the Logical Design Stage, the capacity planning evaluates the
completed logical design and the verification of the specification might mean changes in
both models of information system and its performance model.

1. Physical Design Stage and Capacity Planning

In the Physical Design Stage, the capacity planning techniques can play a central role in
developing the physical design. Based on the performance model, the analyst/designer
should create performance predictions more exactly and tune design. The analyst
should take into account the 80/20 rule (the 20% of the transactions yields the 80% of
workloads) to construct representative workloads considering the relevant functions.
The evaluation and validation of the results should be continually carried out in the
same way like in the Logical System Design Stage.
The software design space can be used as a direct design guidance, if we have a set of
design rules that orient the analyst/designer in the selection in the different structural,
functional and capacity/performance dimensions.
This is an iterative process while the logical design is converted to physical design, the
physical process specification, the physical data design and the process data interface
provides sufficient information to create software execution graph. The Function
Component Implementation Map gives the opportunity to make an overall estimation
about the responsiveness of the information system. The detailed database

management transactions, batch jobs and utility programs can be used to make precise
performance predictions, to create tune design plan and to refine the workload models.

VI. Conclusions and Research Directions

Hardware and software manufacturers are generating new products including network
products at an alarming rate, the system analysts and designers are struggling how
these new products can be used cost-effectively to build responsive information
systems. This paper outlines the basic elements of a methodology to integrate the
performance engineering and a structured method, namely SSADM. The methodology
should give a steady feed-back to the modelling activities of the information system.
Application of the design space concept allows to analyse the consequences and
correlation of the design decisions and gives a good analytic tool to collect the relevant
design rules and test them.
The design space approach can help in collecting the patterns of design knowledge and
rules, after the knowledge acquisition phase this knowledge should be structured
according to the KADS methodology ([Wielinga92]).
The future work can be to build a powerful tool that can employ some knowledge-based
approach and integrate the performance modelling to CASE environment beyond the
simple or complex performance calculations for which there are available various tools
([Simon91], [Simon92]).
After developing the capacity planning methodology, the techniques, the proposals their
application and the required input will be defined in detail. The various models of the
functional perspectives of the information systems are stored in a CASE tool or more
precisely in the repository. The repository concept was the subject of standardisation
efforts, and the premature endeavours have merit ([IRDS88], [IRDS88b], [ISO90],
[ISO91]), the differences between the repository standards are matters of detail, not of
basic notions. So we establish the design of a tool on the features of a standard
repository and input data can come from the repository to execute the performance
modelling calculations and it can be used as a fact base to knowledge-based inferences.
The knowledge-base of such a tool should store:

– knowledge of the problems to be solved
– the technologies and environment available for implementing the software

(hardware, software)
– the systems analysis and design methodology, and the capacity planning

techniques.
For implementation of such a system, several technologies can be used, e.g. object-
oriented or expert database technology, expert systems technology. Here is needed
much work to construct a precise specification of such a system and to clarify what
technology would be suitable for such a modelling tool.

VII. Bibliography and References

[Brodie82] Brodie, M. L., Silva, E., 'Active and passive component modelling:

ACM/PCM' in Olle, T. W., Sol, H. G., Verrijn-Stuart, A. A. (eds.),

Information system design methodologies: A comparative view,

Elsevier Science Publishers B. V. (North-Holland), (1982).

[Cameron83] Cameron, J.R., JSP and JSD: The Jackson Approach to Software

Development, IEEE Computer. Soc., (1983).

[CCTA90] CCTA, SSADM Version 3 and Capacity Planning, Information Systems

Engineering Division, CCTA, Norwich, (1990).

[Gane90] Gane, C., Computer Aided Software Engineering, the methodologies, the

products and the future, Prentice-Hall, (1990).

[Essink86] Essink, L. J. B., 'A modelling approach to information system

development', in Olle, T. W., Sol, H. G., Verrijn-Stuart, A. A. (eds.),

Information system design methodologies: Improving the practice,

Elsevier Science Publishers B. V. (North-Holland), (1986).

[Eva92] Eva, M., SSADM Version 4: A user's guide, McGraw-Hill, (1992).

[Hares90] Hares, J. S., SSADM for the Advanced Practitioner, John Wiley & Sons,

Chichester, England, (1990).

[Hesse88] Hesse, W., Bosman, J. W., ten Damme, A. B. J., 'A four-level metamodel

for application system development', in Bullinger, H.-J., et al. (eds.),

EURINFO '88, Information Technology for Organizational Systems,

Elsevier Science Publishers B. V. (North-Holland), pp 575-581, (1988).

[IRDS88] IRDS: Information Resource Dictionary System, American National

Standard for Information Systems, X3.138-1988, (1988).

[IRDS88b] IRDS: Information Resource Dictionary System Services Interface, draft

proposed American National Standard for Information Systems,

(1988b).

[ISO90] ISO 10 0027: Information Resource Dictionary System - Framework,

(1990).

[ISO91] ISO 10 0728: Information Resource Dictionary System - Services

Interface, draft International Standard, (1991).

[Jackson82] Jackson, M., A., System Development, Englewood Cliffs, Prentice Hall,

(1982).

[Kleinrock75] Kleinrock, L., Queuing Systems Volume 1: Theory, John Wiley and Sons,

New York, 1975.

[Longworth86] Longworth, G., Nichols, D. SSADM Manual Vol. 1-2, NCC Blackwell,

(1986).

[Martin81] Martin, J., Finkelstein, C., Information Engineering, Vols. 1. and 2.,

Prentice Hall, Englewood Cliffs, New Jersey, (1981).

[Matheron90] Matheron, J.P., Comprendre Merise, Outils Conceptuels et

Organisationnels, Editions EYROLLES, (1990).

[Molnár91] Molnár, B., Frigó, J., 'Application of AI in Software and Information

Engineering', Engineering Applications of Artificial Intelligence, Vol. 4,

No. 6., pp 439-443, (1991).

[Molnár92] Molnár, B., 'A Framework for Reconciliation of the Meta-Structure of

Repositories and Structured Methodologies', R. Mittermeir (ed.)

Shifting Paradigms in Software Engineering, Springer-Verlag, Wien,

(1992).

[NCC90] NCC (National Computing Centre), SSADM Manual Version Four, NCC

Blackwell, (1990).

[Peterson77] Peterson, J., L., 'Petri Nets', ACM Computing Surveys, September,

(1977).

[Simon91] Simon, E., S., MacEachern, P., 'Integrating Performance Modelling and

CASE: A knowledge-based approach', Proc. UKCMG (1991).

[Simon92] Simon, E., S., MacEachern, P., 'Integrating Performance Modelling and

CASE', Proc. UKCMG Modelling Subgroup, pp 73-97 (1991).

[Smith90] Smith, C., U., Performance Engineering of Software Systems, Addison-

Wesley, Reading, Massachusetts, (1990).

[Turner90] Turner, W. S., Langenhorst, R. P., Hice, G. F., Eilers, H. B., Uijttenbroek, A.

A., SDM system development methodology, Elsevier Science Publishers

B.V. (North-Holland)/Pandata, (1990).

[Wielinga92] Wielinga, B., J., Schreiber, A. Th., Breuker, J. A., 'KADS: a modelling

approach to knowledge engineering', Knowledge Acquisition, Vol. 4. No.

1, pp 5-53, (1992).

[Yourdon75] Yourdon, E., Constantine, L.L., Structured Design, Yourdon Press,

(1975).

Technical options Workload models

Selected Technical
Options

Logical System Workload models
Design

Confirmed
Logical
Design

Workload modelsPhysical
Design

Impact on
existing infrastructure

SSADM

Task
Identification

Data
Storage

Workload

Model

Creation

Hardware

Configuration

Construction

Capacity
Planning

Evaluation

Existing
Infrastructure

	Introduction
	The concept of the capacity management
	The Notion of a Design Space
	A design and modelling methodology of capacity planning
	The specification

	Model Construction and Evaluation
	SSADM interface points
	Connections to the Technical Options, Logical Design and Physical Design
	Physical Design Stage and Capacity Planning

	Conclusions and Research Directions
	Bibliography and References

