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Abstract

We consider the problem of axiomatizing the Shapley value on the
class of assignment games. We first show that several axiomatizations
of the Shapley value on the class of all TU-games do not characterize
this solution on the class of assignment games by providing alterna-
tive solutions that satisfy these axioms. However, when considering
an assignment game as a communication graph game where the game
is simply the assignment game and the graph is a corresponding bi-
partite graph buyers are connected with sellers only, we show that
Myerson’s component efficiency and fairness axioms do characterize
the Shapley value on the class of assignment games. Moreover, these
two axioms have a natural interpretation for assignment games. Com-
ponent efficiency yields submarket efficiency stating that the sum of
the payoffs of all players in a submarket equals the worth of that sub-
market, where a submarket is a set of buyers and sellers such that
all buyers in this set have zero valuation for the goods offered by the
sellers outside the set, and all buyers outside the set have zero valu-
ations for the goods offered by sellers inside the set. Fairness of the
graph game solution boils down to valuation fairness stating that only
changing the valuation of one particular buyer for the good offered by
a particular seller changes the payoffs of this buyer and seller by the
same amount.

Keywords: Assignment game, Shapley value, communication graph game,
submarket efficiency, valuation fairness.
JEL code: C71, C78

1 Introduction

The history of assignment games goes back to the XIX. century to Böhm-
Bawerk’s [1] horse market model. Later Shapley and Shubik [21] introduced
the formal, modern concept of assignment games.
One of the most popular solution concepts for TU-games is the Shapley
value (Shapley [19]). Numerous axiomatizations of the Shapley value are
known in the literature. In this paper we focus on the following ones: (1)
Shapley’s original axiomatization [19] by efficiency, the null player property
(originally stated together as the carrier axiom), symmetry and additivity
(also discussed by Dubey [6] and Peleg and Sudhölter [15]), (2) Young’s [22]
axiomatization replacing additivity and the null player property by strong
monotonicity (also discussed by Moulin [12] and Pintér [16]), (3) Chun’s [5]
replacing strong monotonicity by coalitional strategic equivalence, (4) van
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den Brink’s [2] replacing (in Shapley’s original axiomatization) additivity
and symmetry by fairness, and (5) Hart and Mas-Colell’s [10] approaches
using the potential function and a related reduced game consistency.
First, we examine these characterizations of the Shapley value on the class of
assignment games, and conclude that none of these characterizations is valid
on this class in the sense that they do not characterize a unique solution.
After this negative result we show that when considering an assignment game
as a communication graph game where the game is simply the assignment
game and the graph is a corresponding bipartite graph where buyers are
connected with sellers only, Myerson [13]’s component efficiency and fairness
axioms do characterize the Shapley value on the class of assignment games.
Moreover, the axioms have a natural interpretation for these games.
An assignment game is fully described by the assignment situation being a
set of buyers, a set of sellers, and for every buyer a valuation of the good
offered by each seller. Instead of defining an assignment game as a commu-
nication graph game, we will directly work on the class of these assignment
situations. For such assignment situations, component efficiency of a graph
game solution boils down to submarket efficiency stating that the sum of
the payoffs of all players in a submarket equals the worth of that submarket,
where a submarket in an assignment situation is a set of buyers and sellers
such that all buyers in this set have zero valuation for the goods offered by
the sellers outside the set, and all buyers outside the set have zero valuations
for the goods offered by sellers inside the set.
Fairness of the graph game solution boils down to valuation fairness stating
that only changing the valuation of one particular buyer for the good of-
fered by a particular seller changes the payoffs of this buyer and seller by the
same amount. We show that these two axioms do characterize the Shapley
solution for assignment situations being the solution that is obtained by ap-
plying the Shapley value to the corresponding assignment game. Since there
is a one-to-one correspondence between assignment games and assignment
situations on given sets of buyers and sellers, we will refer to the Shapley
solution for assignment games simply as their Shapley value, and it follows
that submarket efficiecy and valuation fairness also give an axiomatization of
the Shapley value on the class of assignment games. So, we obtain a positive
result by viewing an assignment game as a communication graph game.
Besides introducing and axiomatizing his solution, Myerson [13] also shows
that it is stable for superadditive graph games in the sense that two players
never get worse off when building a link between them. The Shapley value
for assignment situations is stable in the sense that the payoffs of a buyer
i and seller j do not decrease if only the valuation of buyer i for the good
offered by seller j increases.
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The setup of the paper is as follows. Section 2 contains preliminaries. In
Section 3 we apply the axiomatizations of the Shapley value for TU-games
mentioned above to the class of assignment games, and show that they do
not give uniqueness on this class. In Section 4 we consider assignment games
as communication graph games and characterize the Shapley value for as-
signment situations by submarket efficiency and valuation fairness.

2 Preliminaries

2.1 TU-games

Let N be a non-empty, finite set, let |N | be its cardinality, and let P(N)
denote the power set of N . A transferable utility (TU) game with player
set N is a pair (N, v) with characteristic function v : P(N) → R such that
v(∅) = 0. The class of all transferable utility games is denoted by G, and the
class of all characteristic functions on player set N is denoted by GN . When
there is no confusion about the player set we will often speak about game v

instead of game (N, v). We define GN = {(N, v) | v ∈ GN}.
It is well known that GN is isomorphic with R2|N|−1. Therefore we regard
GN and R2|N|−1 as identical. Moreover, for v ∈ GN and β ∈ RN , the game
v ⊕ β ∈ GN is defined as v ⊕ β(S) = v(S) +

∑
i∈S βi for all S ⊆ N , where βi

is component i of vector β.
For any v ∈ GN , i ∈ N and T ⊆ N , let mT

i (v) = v(T ∪ {i})− v(T ) be player
i’s marginal contribution to coalition T in game v. Obviously, mT

i (v) = 0 if
i ∈ T .
Players i, j ∈ N are symmetric in game v ∈ GN , if mT

i (v) = mT
j (v) for all

T ⊆ N \ {i, j}. Furthermore, we say that i ∈ N is a null player in game v
if mT

i (v) = 0 for all T ⊆ N . The set of null players in game v is denoted by
NP (v).
For T ⊆ N , T 6= ∅, the game uT given by uT (S) = 1 if T ⊆ S, and uT (S) = 0
otherwise, is called the unanimity game on coalition T . A game (N, v0) is a
zero game if v0(T ) = 0 for all T ⊆ N .
A (single-valued) solution on C ⊆ GN , is a function φ : C → RN . On G a
solution is defined similar, assigning payoffs to any game on any player set
N .
In this paper we focus on the Shapley value (Shapley [19]) φSh : GN → RN ,
for every v ∈ GN , given by

φShi (v) =
∑

T⊆N\{i}

|T |!(|N \ T | − 1)!

|N |!
mT
i (v) for all i ∈ N.
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We refer to φShi (v) as the Shapley value of player i in game v ∈ GN . On G the
Shapley value is defined similar, assigning the above payoffs to any game on
any player set N , but in case the player set is not obvious we write φSh(N, v)
instead of φSh(v).
For v ∈ GN and T ⊆ N , T 6= ∅, the subgame of v on T , vT ∈ GT , is given by
vT (S) = v(S) for all S ⊆ T .
Next, we recall some axioms that a solution can satisfy:
Solution φ on C ⊆ GN

• is Pareto optimal (or efficient), if
∑

i∈N φi(v) = v(N) for all v ∈ C;

• satisfies the null player property, if φi(v) = 0 for all v ∈ C and i ∈
NP (v);

• is anonymous, if φ(v) ◦ π = φ(v ◦ π), for all v ∈ C and permutation π
on N such that v ◦ π ∈ C;

• satisfies the equal treatment property, if φi(v) = φj(v) for all v ∈ C and
symmetric players i, j in v;

• is covariant under strategic equivalence, if φ(αv ⊕ β) = αφ(v) + β, for
all v ∈ C, α > 0 and β ∈ RN such that αv ⊕ β ∈ C;

• is additive, if φ(v+w) = φ(v)+φ(w) for all v, w ∈ C such that v+w ∈ C;

• satisfies strong monotonicity, if φi(v) ≤ φi(w), for all v, w ∈ C and
i ∈ N such that mT

i (v) ≤ mT
i (w) for all T ⊆ N ;

• satisfies marginality, if φi(v) = φi(w), for all v, w ∈ C and i ∈ N such
that mT

i (v) = mT
i (w) for all T ⊆ N ;

• satisfies coalitional strategic equivalence1, if φi(v) = φi(v+αuT ), for all
v ∈ C, i ∈ N , T ⊆ N \ {i} and α > 0 such that v + αuT ∈ C;

• satisfies fairness, if φi(v+w)−φi(v) = φj(v+w)−φj(v) for all v, w ∈ C
and i, j ∈ N such that i, j are symmetric in w and v + w ∈ C.

In order to discuss the approach of Hart and Mas-Colell [10] we need to
consider classes of games that contain a player set N and all its subsets. Let
C ⊆ G be such a class of games, φ be a solution on C, and for all (N, v) ∈ C,
T ⊆ N , T 6= ∅, such that (S ∪ (N \ T ), vS∪(N\T )) ∈ C, let

1Notice that Chun’s [4] original definition of this axiom is different from ours, but the
two definitions are equivalent.
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vT,φ(S) = v(S ∪ (N \ T ))−
∑
i∈N\T

φi(v
S∪(N\T )) for all S ⊆ T, S 6= ∅,

and vT,φ(∅) = 0. Then vT,φ ∈ GT is called the φ-reduced game of v on coalition
T . Solution φ defined on C ⊆ G

• is HM-consistent, briefly consistent, if for all T ⊆ N , v ∈ C ∩ GT and
S ⊆ T , S 6= ∅, such that (S, vS,φ) ∈ C, it holds that φi(vS,φ) = φi(v) for
all i ∈ S.

From the literature it follows that the Shapley value is the unique solution
on GN that satisfies the following sets of axioms:

• Pareto optimality, the null player property, the equal treatment prop-
erty and additivity (Shapley [19]);

• Pareto optimality, the equal treatment property and strong monotonic-
ity (Young [22]);

• Pareto optimality, the equal treatment property and marginality (also
by Young [22]);

• Pareto optimality, the equal treatment property and coalitional strate-
gic equivalence (Chun [5]);

• Pareto optimality, the null player property and fairness (van den Brink
[2]).

Further, it is the unique solution on G that satisfies2

• Pareto optimality, covariance, the equal treatment property and con-
sistency (Hart and Mas-Colell [10]).

2The definitions of the axioms given for classes C ⊆ GN are straightforwardly extended
to classes C ⊆ G.
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2.2 Assignment games

Next we focus on the class of assignment games (Shapley and Shubik [21]).
Let B, S ⊆ N be two non-empty sets such that B ∩ S = ∅ and B ∪ S = N .
The interpretation is the following, B and S are the sets of buyers and
sellers, respectively. Every buyer wants one good, and every seller owns one
good. These goods are not exactly the same, so a buyer can have different
valuations for the goods owned by different sellers. We assume that the
sellers have reservation value zero for every good. The nonnegative valuation
(reservation value) of buyer i ∈ B for the good offered by seller j ∈ S is
denoted by ai,j ≥ 0. So, buyer i and seller j can make a deal and earn worth
ai,j. Buyers cannot trade among each other (since they do not own a good),
and also sellers cannot earn a worth among themselves since their valuation
is zero.
Let A be the |B| × |S| non-negative matrix with ai,j its (i, j)-th element.
We refer to this matrix A as an assignment situation or valuation matrix
on (B, S). We denote the collection of all assignment situations on (B, S)
by AB,S. Furthermore for all T ⊆ N , a matching on T is a set of sets
M ⊆ {{i, j} ⊆ T | i ∈ B ∩ T, j ∈ S ∩ T} such that for every g ∈ T ,
|{{h, k} ∈ M | g ∈ {h, k}}| ≤ 1. So, buyers can only be matched with
sellers, sellers can only be matched with buyers, and every buyer (seller)
can be matched with at most one seller (buyer). Let M(T ) be the set of
all matchings of T . Taking the sets of buyers B and sellers S fixed, the
assignment game for valuation matrix A is the game vA on N = B∪S, given
by3

vA(T ) = max
M∈M(T )

∑
{i,j}∈M

ai,j for all T ⊆ B ∪ S.

Henceforth, let GB,S be the class of assignment games with buyer and seller
sets B, S. The elements of

arg max
M∈M(T )

∑
{i,j}∈M

ai,j

are called the maximal matchings of coalition T . For any set of buyers and
sellers T , the worth of this coalition is the maximum aggregated worth of
the deals the involved players can achieve contingent on every player trading
with at most one other player from the other type.
Since in the definition of assignment games, B and S are non-empty, in this
paper every assignment game has at least two players. It is worth noting

3We use the convention that the empty sum is 0.

7



that if uT ∈ GB,S then |T | = 2, and that for all v ∈ GB,S and β ∈ RB∪S such
that v ⊕ β ∈ GB,S, β = 0.

2.3 Communication graph games

Myerson [13] introduced a model in which it is assumed that the players
in a game v are part of a communication structure that is represented by
an undirected graph (N,L), with the player set N as the set of nodes and
L ⊆ {{i, j} | i, j ∈ N, i 6= j} being a collection of edges or links , that is,
subsets of N such that each element of L contains precisely two elements of
N . Since in this paper the nodes in a graph represent the players in a game
we use the same notation for the set of nodes as the set of players, and refer
to the nodes in a graph just as players.
If there is no confusion about the player set N , we denote a graph on N
just by its set of links L and refer to this as the graph. We denote the class
of all possible sets of links on N by LN . A sequence of k different nodes
(i1, . . . , ik) is a path between players i1 and ik in L ∈ LN if {ih, ih+1} ∈ L for
h = 1, . . . , k − 1. A coalition S ⊆ N is connected in graph L if every pair of
players in S is connected by a path that only contains players from S, that
is, for every i, j ∈ S, i 6= j, there is a path (i1, . . . , ik) such that i1 = i, ik = j
and {i1, . . . , ik} ⊆ S. Coalition T ⊆ S is a component of S in graph L if it
is a maximally connected subset of S, that is, T is connected in L(S) and
for every h ∈ S \ T the coalition T ∪ {h} is not connected in L(S), where
L(S) = {{i, j} ∈ L | {i, j} ⊆ S}. We denote the set of components of S ⊆ N
in L by CL(S).
A pair (v, L) ∈ GN × LN is referred to as a graph game on N . Following
Myerson [13], in the graph game (v, L) players can cooperate if and only
if they are able to communicate with each other, that is, a coalition S can
realize its worth v(S) if and only if S is connected in L. Whenever this
is not the case, players in S can only realize the sum of the worths of the
components of S in L. This yields the (Myerson) restricted game vL ∈ GN
given by

vL(S) =
∑

T∈CL(S)

v(T ) , S ⊆ N. (1)

The Myerson value is the solution µ : GN × LN → RN that is obtained by
taking the Shapley value of the restricted game vL, that is,

µ(v, L) = φSh(vL), for all v ∈ GN and L ∈ LN .
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Besides introducing this value, Myerson [13] gives a characterization by the
axioms of component efficiency and fairness. Solution φ on C ⊆ GN × LN
satisfies

• component efficiency, if for every graph game (v, L) ∈ GN × LN and
component S ∈ CL(N), it holds that

∑
i∈S φi(v, L) = v(S);

• graph game fairness4, if for every graph game (v, L) ∈ GN × LN and
pair of players i, j ∈ N , it holds that φi(v, L) − φi(v, L \ {i, j}) =
φj(v, L)− φj(v, L \ {i, j}).

Component efficiency states that the sum of the payoffs of all players in a
component equals the worth of that component. Graph game fairness states
that deleting the link between two players changes their payoffs by the same
amount. Moreover, Myerson [13] shows that his solution is stable in the
sense that for superadditive games adding a link never hurts the two players
incident with that link. Game v is superadditive if v(S ∪ T ) ≥ v(S) + v(T )
for all S, T ⊆ N with S ∩ T = ∅.

Theorem 2.1. (Myerson [13])
(i) The Myerson value is the unique solution on GN ×LN that satisfies com-
ponent efficiency and graph game fairness.
(ii) For each graph game (v, L) ∈ GN ×LN with v superadditive, it holds that
µi(v, L) ≥ µi(v, L \ {l}), i ∈ l ∈ L.

3 Axioms of the Shapley value on the class

of assignment games

In this section we consider two basic types of axiomatizations of the Shapley
value that are mentioned in Subsection 2.1 for the class of all TU-games, but
now on the class of assignment games: the first where the player set is fixed,
and the second where it is not fixed.

3.1 Axiomatizations on a fixed player set

We start this subsection with a slight and trivial, but positive result stating
that for two-player assignment games, that is, a game with one seller and one
buyer, there is only one solution satisfying Pareto optimality and the equal
treatment property. (We omit the obvious proof.)

4Myerson [13] just refers to this as fairness, but we call it graph game fairness to
distinguish it from TU-game fairness as discussed in Section 2.1.
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Theorem 3.1. If |B ∪ S| = 2, then solution φ on GB,S satisfies Pareto
optimality and the equal treatment property if and only if it is the Shapley
value.

Henceforth we assume that |B ∪ S| > 2, that is, the class of assignment
games under consideration is not the ”trivial” one. We show that none of
the axiomatizations of the Shapley value on the class of all TU-games on
a fixed player set mentioned before characterize the Shapley value on the
class of assignment games. We do this by presenting another solution that
satisfies the properties. Let OR(N) be the set of all (linear) orderings on set
N . Consider the following two solutions for assignment games with buyer
and seller sets B and S.
First, let

ORB = {τ ∈ OR(B ∪ S) | τ(i) ≤ |B| ⇒ i ∈ B} ,

be the orders where the buyers come first, and let

ORS = {τ ∈ OR(B ∪ S) | τ(i) ≤ |S| ⇒ i ∈ S} ,

be the orders where the sellers come first.
Now, for all v ∈ GB,S and i ∈ B ∪ S, let

φBi (v) =
1

|ORB|

( ∑
τ∈ORB

(v({j ∈ B ∪ S | τ(j) ≤ τ(i)})

−v({j ∈ B ∪ S | τ(j) < τ(i)}))
)
,

be the average marginal contribution of buyer or seller i over all orders where
the buyers come first, and

φSi (v) =
1

|ORS|

( ∑
τ∈ORS

(v({j ∈ B ∪ S | τ(j) ≤ τ(i)})

−v({j ∈ B ∪ S | τ(j) < τ(i)}))
)

be the average marginal contribution of buyer or seller i over all orders where
the sellers come first. Then, for all v ∈ GB,S, let

φB,S(v) =
φB(v) + φS(v)

2
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be the average of these two solutions. It turns out that φB,S also satisfies
properties on the class of all assignment games that characterize the Shapley
value on the class of all TU-games.

Proposition 3.2. Solution φB,S is a convex combination of random order
values and satisfies anonymity, the equal treatment property, covariance, ad-
ditivity, and strong monotonicity on GB,S.

Proof. It is easy to verify that φB,S is a convex combination of random order
values that satisfies covariance, additivity and strong monotonicity. (The
proof is left for the reader.)
Anonymity: Since the sets B and S are fixed, one can apply only permuta-
tions which permute buyer with buyer and seller with seller, otherwise sets B
and S would change. Therefore, both solutions φBi and φSi satisfy anonymity,
and so do their convex combinations.
Equal treatment property: If i, j ∈ N are symmetric in game v, then there
can be two cases:
(1) Suppose that both players are buyers or both are sellers. In this case
anonymity implies the equal treatment property.
(2) Otherwise, suppose w.l.o.g. that i ∈ B and j ∈ S. Then ai,h = 0 for
all h ∈ S \ {j} and ah,j = 0 for all h ∈ B \ {i}. Then mT

i (v) = 0 for
all T ⊆ N \ {j}, and mT

i (v) = v({i, j}) for all T ⊆ N , j ∈ T . Similar,
mT
j (v) = 0 for all T ⊆ N \ {i}, and mT

j (v) = v({i, j}) for all T ⊆ N , i ∈ T .
Then φBi (v) = 0 and φBj (v) = v({i, j}). Similarly, φSi (v) = v({i, j}) and

φSj (v) = 0. Therefore φB,Si (v) = φB,Sj (v). �

Solution φB,S being different from the Shapley value on the class of assign-
ment games follows from the following simple example.

Example 3.3. Consider B = {1, 2}, S = {3}, and v ∈ GB,S determined by
a1,3 = 1 and a2,3 = 2, that is, v({1, 3}) = 1, v({2, 3}) = v({1, 2, 3}) = 2
and v(T ) = 0 otherwise. Then φB(v) = (0, 0, 2), φS(v) = (1

2
, 3
2
, 0), and thus

φB,S(v) = (1
4
, 3
4
, 1). However, φSh(v) = (1

6
, 2
3
, 7
6
).

From Proposition 3.2 and Example 3.3, it follows that the in Subsection 2.1
mentioned axiomatizations of the Shapley value on GN are not valid on GB,S
in the sense that the corresponding axioms do not give uniqueness.5

Corollary 3.4. On the class GB,S of assignment games,

5Here we also use that strong monotonicity implies marginality, marginality implies
coalitional strategic equivalence, the equal treatment property and additivity imply fair-
ness, and every random order value satisfies Pareto optimality and the null player property.
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• Shapley’s axiomatization (Pareto optimality, the null player property,
the equal treatment property (anonymity) and additivity ),

• Young’s axiomatization (Pareto optimality, the equal treatment prop-
erty and strong monotonicity (marginality)),

• Chun’s axiomatization (Pareto optimality, the equal treatment property
and coalitional strategic equivalence) and

• van den Brink’s axiomatization (Pareto optimality, the null player prop-
erty and fairness),

of the Shapley value are not valid.

Remark 3.5. Roth [17] showed that the Shapley value can be interpreted as
a von Neumann-Morgenstern utility function. His set-up can be adapted to
the class of assignment games as well. However, since his result is closely con-
nected to the axioms of Pareto optimality, the null player property, anonymi-
ty and additivity, that is, to Shapley’s original axiomatization, this charac-
terization is not valid on the class of non-trivial assignment games either.

Finally, we notice the following.

Remark 3.6. On the class of assignment games, coalitional strategic equiv-
alence is strictly weaker than marginality, and marginality is strictly weaker
than strong monotonicity.

3.2 Variable player set

In this subsection we consider Hart and Mas-Colell’s [10] two approaches on
a variable player set.

Definition 3.7. Let C ⊆ G. For every function P : C → R, T ⊆ N , T 6= ∅,
and for all v ∈ GT such that (T, v) ∈ C and i ∈ T such that |T | = 1 or
(T \ {i}, vT\{i}) ∈ C, let

P ′i (v) =

{
P (v), if |T | = 1
P (v)− P (vT\{i}) otherwise.

(2)

If ∑
i∈T

P ′i (v) = v(T ),

for all v ∈ GT such that (T, v) ∈ C such that either |T | = 1 or (T \
{i}, vT\{i}) ∈ C for all i ∈ T , then P is called a potential on C.
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Definition 3.8. A collection C ⊆ G is subgame closed, if (T \{i}, vT\{i}) ∈ C
for all T ⊆ N with |T | > 1, i ∈ T and v ∈ GT such that (T, v) ∈ C.

Since every game has at least one player, in the above definition we require
that subgame vT\{i} is in the set under consideration only if there are at least
two players in T .

Proposition 3.9. Let C ⊆ G be a subgame closed set of games. Then func-
tion P on C is a potential, if and only if P ′i (v) = φShi (v) for all T ⊆ N ,
T 6= ∅, v ∈ GT such that (T, v) ∈ C and i ∈ T .

Proof. It comes directly from Hart and Mas-Colell [10] and Peleg and Sudhöl-
ter [15] Theorem 8.4.4. (pp. 216-217). �

Next we look into the case of assignment games with at least one seller and
buyer.

Corollary 3.10. On the class of assignment games there is a potential P
such that there exists an assignment game v and a player i such that P ′i (v) 6=
φShi (v).

Proof. Let B = {i}, S = {j} and v ∈ GB,S. In this case, neither v(B∪S)\{i}

nor v(B∪S)\{j} are assignment games.
In general, the potential is not well defined on the class of assignment games
with two players, therefore one can give any value to these games. Since the
potential is defined recursively (see Definition 3.7), its value on any game is
determined by these arbitrarily fixed values. Summing up, there are as many
as continuum different potentials on the class of assignment games. �

Remark 3.11. If we allow assignment games where the set of buyers and/or
the set of sellers can be empty sets then Hart and Mas-Colell’s potential
function characterization becomes valid on this redefined class of assignment
games.

Next we demonstrate that Hart and Mas-Colell’s approach applying the ax-
ioms Pareto optimality, covariance, the equal treatment property and con-
sistency, see Subsection 2.1, does not work on the class of assignment games
either. We do this by defining the following solution.
First, let Ga be the collection of all assignment games, that is, Ga = {(N, v) ∈
G | there exist B, S ⊂ N , B 6= ∅, S 6= ∅, B ∩ S = ∅, B ∪ S = N such that
(N, v) ∈ GB,S}. Moreover, let solution φ on Ga for each v ∈ Ga ∩ GB,S be
given by
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φi(v) =


v(B ∪ S)

|(B ∪ S) \NP (v)|
, if i /∈ NP (v)

0 otherwise.

It is worth noticing that for any assignment game v and player i /∈ NP (v),
φi(v) > 0.

Proposition 3.12. Solution φ satisfies Pareto optimality, anonymity, the
equal treatment property, covariance and consistency on Ga.

Proof. It is left for the reader to verify that φ satisfies Pareto optimality,
anonymity and the equal treatment property.
Covariance follows since v ⊕ β ∈ Ga implies that β = 0.
Consistency: If |B ∪ S| = 2 then for all v ∈ GB,S, φ(v) = φSh(v), so we are
done.
Let |B ∪ S| > 2, v ∈ GB,S and T ⊆ B ∪ S be such that vT,φ is an assignment

game. To prove that φi(vT,φ) = φi(v) for all i ∈ T , it is sufficient to prove
that for all i ∈ T it holds that: i ∈ NP (vT,φ) if and only if i ∈ NP (v). First,
suppose that i ∈ NP (v). Then v(S∪{i}∪((B∪S)\T )) = v(S∪((B∪S)\T ))
for all S ⊆ T . But then vT,φ(S ∪ {i}) = vT,φ(S) for all S ⊆ T , and so
i ∈ NP (vT,φ).
To show the other direction, now suppose that i ∈ NP (vT,φ) and that there
exists j ∈ (B ∪ S) \ T such that v({i, j}) 6= 0. Then vT,φ({i}) = v({i} ∪
((B ∪ S) \ T )) −

∑
k∈(B∪S)\T φk(v

{i}∪((B∪S)\T ) 6= 0, which contradicts both

i ∈ NP (vT,φ) and vT,φ ∈ Ga. So, there exists no j ∈ (B ∪ S) \ T such that
v({i, j}) 6= 0, that is, i ∈ NP (v). �

Solution φ being different from the Shapley value on the class of assignment
games follows from the following example.

Example 3.13. Consider the assignment game of Example 3.3 which Shap-
ley value equals φSh(v) = (1

6
, 2
3
, 7
6
). However, φ(v) = (2

3
, 2
3
, 2
3
).

From Proposition 3.12 and Example 3.13, it follows that the mentioned (in
Subsection 2.1) approaches of Hart and Mas-Colell are not valid on Ga.

4 An axiomatization of the Shapley value for

assignment situations

Given an assignment situation with buyer-seller partition (B, S), consider
the communication graph on N in which the links reflect all matching possi-
bilities. So, the graph on N is the complete bipartite graph LB,S = {{i, j} ⊆
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N | i ∈ B, j ∈ S}. Since every coalition that contains at least one seller
and at least one buyer is connected in LB,S, and all coalitions that contain
only buyers or only sellers have worth zero in the assignment game vA, for
every graph restricted assignment game (vA, L

B,S), A ∈ AB,S, it holds that
the Myerson restricted game (vA)L

B,S
is equal to vA, and thus, an assignment

game vA is a graph game on the corresponding complete bipartite graph.
A general bipartite graph on (B, S) is a graph L ⊆ LB,S with {i, j} ∈ L
only if i ∈ B and j ∈ S or vice versa. We denote the class of all bipartite
graphs on (B, S) by LB,S. Typically, a matching is a bipartite graph that
is not complete. Note that if for an assignment situation A ∈ AB,S it holds
that vA = (vA)L for some bipartite graph L ∈ LB,S, then also vA = (vA)L

′

for every bipartite graph L′ ⊃ L. The minimal bipartite graph LmA such that
vA = (vA)L

m
A is LmA = {{i, j} ⊂ N | i ∈ B, j ∈ S and ai,j > 0}.

Although not explicitly written, Theorem 2.1 (i) holds more general in the
sense that component efficiency and graph game fairness characterize the
Myerson value on any restricted class of graph games GN × C such that
C ⊆ LN is comprehensive, that is, for any L ∈ C and L′ ⊆ L it holds that
L′ ∈ C. For example, the class LB,S of all bipartite graphs between the sets
of buyers B and sellers S satisfies this property.
Next, we show that component efficiency and graph game fairness character-
ize the Shapley value (on the class of assignment games) when we consider
this class as graph games on bipartite graphs GB,S × LB,S. Instead of work-
ing on this class of graph games, we state this axiomatization directly for
assignment situations.6

We refer to the solution that assigns to every assignment situation A ∈ AB,S
the Shapley value of the corresponding assignment game vA as the Shapley
value for assignment situations, and denote it by φSh(A) = φSh(vA).
A submarket in assignment situation A ∈ AB,S is a set of buyers and sellers
such that all buyers in the set have zero valuation for the goods offered by
the sellers outside the set, and all buyers outside the set have zero valuation
for the goods offered by sellers inside the set.

Definition 4.1. Let A ∈ AB,S be an assignment situation. Then B′ ∪ S ′,
B′ ⊆ B, S ′ ⊆ S, B′ ∪ S ′ 6= ∅, is a submarket of A if ai,j = 0 for all
(i, j) ∈ (B′ × (S \ S ′)) ∪ ((B \B′)× S ′).

Applied to assignment situations, component efficiency of a solution implies
that the sum of the payoffs of all players in a submarket equals the worth

6Note that there is a one to one correspondence between assignment games and as-
signment situations in the sense that every assignment situation obviously yields a unique
assignment game, but also for every assignment game the two player coalitions containing
a buyer and a seller uniquely determine the assignment situation.

15



of that submarket. Graph game fairness of a solution applied to assignment
situations implies that decreasing the valuation of one particular buyer for
the good offered by a particular seller to zero, changes the payoffs of this
buyer and seller by the same amount.

Definition 4.2. Solution f on AB,S satisfies

• submarket efficiency, if for all A ∈ AB,S and for all submarkets (B′, S ′)
of A, it holds that

∑
i∈B′∪S′ fi(v) = vA(B′ ∪ S ′),

• valuation fairness, if for every buyer i ∈ B, every seller j ∈ S and
every pair of assignment situations A,A ∈ AB,S such that ai,j = 0 and
ag,h = ag,h for all (g, h) ∈ ((B \ {i}) × S) ∪ (B × (S \ {j})), it holds
that fi(A)− fi(A) = fj(A)− fj(A).

Next, similar to the proof of Theorem 2.1. (i) (see Myerson [13]) the following
can be shown.

Theorem 4.3. The Shapley value φSh is the unique solution for assignment
situations that satisfies submarket efficiency and valuation fairness.

Proof. We first prove that the Shapley value satisfies the two axioms.
(i) Note that (B′, S ′) being a submarket in the assignment situation A ∈ AB,S
implies that C = B′ ∪ S ′ is a game-component in vA, that is, vA(T ) =
vA(T ∩C) + vA(T \C) for all T ⊆ B ∪ S. The Shapley value for assignment
situations satisfying submarket efficiency then follows from the Shapley value
for TU-games satisfying component efficiency, that is,

∑
i∈C φ

Sh
i (v) = v(C)

for every game-component C in any game v ∈ GN , see Chang and Kan [3].
(ii) If ag,h = ag,h for all (g, h) ∈ ((B \ {i}) × S) ∪ (B × (S \ {j})), then
all coalitions which worth in vA is different from its worth in vA should
contain both players i and j. So, i and j are symmetric players in vA −
vA. The Shapley value for assignment situations satisfying valuation fairness
then follows from the Shapley value for TU-games satisfying fairness (see
Subsection 2.1).

We prove uniqueness7 by induction on the number of non-zero valuations
k(A) = |K(A)|, where K(A) = {(i, j) ∈ B × S | ai,j > 0}. Suppose that
f : AB,S → RN satisfies submarket efficiency and valuation fairness. If
k(A) = 0, then all singleton player sets form a submarket, and thus f(A) is
determined (uniquely) by submarket efficiency.

7This goes along similar lines as Myerson [13] proves uniqueness of the Myerson value
for graph games by induction on the number of links |L|.
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Proceeding by induction, assume that f(A′) is (uniquely) determined when-
ever 0 ≤ k(A′) < k(A). Take any submarket C = B′ ∪ S ′, B′ ⊆ B, S ′ ⊆ S.
If |C| = 1 then submarket efficiency determines fi(A) for i ∈ C. If |C| = 2,
then fi(A), i ∈ C, is determined (uniquely) by submarket efficiency and
valuation fairness.
Otherwise, if |C| > 2, then C is connected in LmA . Then for all (i, j) ∈
(C ∩B)× (C ∩S) such that ai,j > 0, let Ai,j ∈ AB,S denote the matrix where
for all (k, l) ∈ B × S:

ai,jk,l =

{
0, if (k, l) = (i, j)
ak,l otherwise

.

From valuation fairness it follows that for all (i, j) ∈ (C ∩B)× (C ∩ S) such
that ai,j > 0,

fi(A)− fi(Ai,j) = fj(A)− fj(Ai,j) . (3)

Since C is a component, there is a tree T ⊆ LmA (C) connecting all nodes in
C. Since the values fi(A

i,j) and fj(A
i,j) are determined by the induction

hypothesis, taking the equations (3) for the buyer-seller pairs (i, j) such that
(i, j) ∈ T , yields |C| − 1 linear independent equations in the |C| unknown
payoffs fi(A), i ∈ C. Together with the equation

∑
i∈C fi(A) = vA(C) which

follows from submarket efficiency, the |C| unknown payoffs fi(A), i ∈ C, are
uniquely determined. Since this can be done for all submarkets, the payoffs
f(A) are uniquely determined. �

Note that from the proof it follows that the Shapley value satisfies an even
stronger valuation fairness property which states that changing the valuation
of one particular buyer for the good offered by a particular seller in any way,
changes the payoffs of this buyer and seller by the same amount. Again
this follows from fairness (see Subsection 2.1) of the Shapley value and the
fact that this buyer and seller are symmetric players in the difference game.
However, for the characterization the weaker version looking at valuation
zero is sufficient.
The Shapley value for assignment situations also satisfies a stability property
similar to that of the Myerson value. This property states that the payoffs
of buyer i and seller j do not decrease if we only increase the valuation of
buyer i for the good offered by seller j.

Theorem 4.4. Consider assignment situations A,A ∈ AB,S such that for
some i ∈ B, j ∈ S it holds that ai,j ≥ ai,j, and ag,h = ag,h for all (g, h) ∈
((B\{i})×S)∪(B×(S\{j})). Then φShi (A) ≥ φShi (A) and φShj (A) ≥ φShj (A).
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Proof. This theorem follows straightforward from the marginal contributions
of the players in the corresponding assignment games, that is, from the Shap-
ley value satisfying strong monotonicity (see Subsection 2.1).
Take assignment situations A,A ∈ AB,S such that for some i ∈ B, j ∈ S it
holds that ai,j ≥ ai,j, and ag,h = ag,h for all (g, h) ∈ ((B \ {i}) × S) ∪ (B ×
(S \ {j})).
Take any T ⊆ N with i ∈ T . If j 6∈ T , then vA(T ) = vA(T ) and vA(T \{i}) =
vA(T \ {i}), and thus mT

i (vA) = mT
i (vA). On the other hand, if j ∈ T , then

vA(T ) ≥ vA(T ) and vA(T \ {i}) = vA(T \ {i}), and thus mT
i (vA) ≥ mT

i (vA).
Since this holds for all T ⊆ B∪S, i ∈ T , strong monotonicity of the Shapley
value for TU-games implies that φShi (A) ≥ φShi (A). Similar it follows that
φShj (A) ≥ φShj (A). �

We conclude by remarking that the axiomatization provided in Theorem 4.3
also holds when we consider all assignment situations, that is, assignment
situations with arbitrary sets of buyers and sellers.
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