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Abstract

In this paper we allow the firms to choose their prices and quantities simultaneously.
Quantities are produced in advance and their common sales price is determined by
the market. Firms offer their “residual capacities” at their announced prices and the
corresponding demand will be served to order. If all firms have small capacities, we
obtain the Bertrand solution; while if at least one firm has a sufficiently large capacity,
the Cournot outcome and a model of price leadership could emerge.
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1 Introduction

We consider a game in which the firms simultaneously choose their price and quantity
decisions. This work complements Tasnádi (2006 and 2010) in which firms could choose
their decision variable (price or quantity). In Tasnádi (2006) the firms chose between price
and quantity, and second, they selected their prices or quantities with respect to their
first-round decisions. Given the firms’ first-stage decisions the price setters, if there were
at least two of them, had to play mixed strategies like in the capacity-constrained Bertrand-
Edgeworth game. Therefore, we had to limit ourselves to the case of symmetric capacities
for which we found under reasonable assumptions the emergences of the Cournot game. In
Chapter 5 of Tasnádi (2010) we considered the case in which the firms must choose their
decision variables and their magnitudes simultaneously, by which approach we could avoid
the problem of dealing with mixed strategies, and therefore, we could also investigate the
case of asymmetric capacities. We found that for a large region of capacity constraints
both the Cournot and the Forchheimer outcome could arise.

In contrast to the above mentioned two works, in which the firms had to make a binary
choice, we allow in this paper the firms to make a smooth decision. The two extreme cases of
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setting zero quantity or setting a sufficiently large price would give us a purely price-setting
firm and a purely quantity-setting firm, respectively. In particular, firms can produce a
quantity for which the market determines price by equating supply and demand, and firms
can choose the price for their additional production. In the interesting range of capacities
we find the emergence of the Cournot and the Forchheimer outcome.

The endogenous choice of decision variables has been investigated in the literature
for homogeneous good oligopoly markets by Dastidar (1996) and Qin and Stuart (1997).
Dastidar (1996) considered a two-stage duopoly game in which the firms choose their
decision variables in stage 1 and the magnitude of the selected decision variable in stage
2. In case of two quantity setters a Cournot duopoly game is played in stage 2, in case
of two price setters a Bertrand duopoly game is played in stage 2, while in case of one
price-setter and one quantity setter we have that the quantity setter takes the price set by
the price setter as given. Dastidar (1996) finds that a mixed equilibrium never occurs, the
Cournot game always emerges as an equilibrium, while the Bertrand game may emerge as
the outcome of the two-stage game. Qin and Stuart (1997) formulated an oligopoly game in
which some firms set their quantities and the remaining firms set their prices. They showed
that if the firms are free to choose their decision variable, then both the Bertrand and
the Cournot outcome could emerge. Tasnádi (2006 and 2010) and this paper considers
Bertrand-Edgeworth-type price-setting instead of Bertrand-type price-setting behavior.
For more on the role of decision variables in the homogeneous good framework we refer to
Friedman (1988).

The seminal paper allowing the duopolists to choose their decision variable, is due to
Singh and Vives (1984) that investigates a heterogeneous goods two-stage duopoly market.
Singh and Vives (1984) demonstrated the emergence of the Cournot game if goods are
substitutes and the emergence of the Bertrand game if goods are complements. Klemperer
and Meyer (1986) investigates a one-stage heterogeneous goods duopoly game and reports
that a multiplicity of equilibria is possible. For more on the endogenous choice of the
decision variable in the heterogeneous goods framework see, for instance, Szidarovszky
and Molnár (1992), Tanaka (2001a and 2001b) and Reisinger and Ressner (2009), among
others.

The remainder of the paper is organized as follows. Section 2 presents our framework.
Section 3 contains our analysis. Finally, we conclude in Section 4.

2 Framework

Suppose that there are n firms on the market, where we shall denote the set of firms by
N = {1, . . . , n}. We assume that the firms have zero unit costs.1 We shall denote by ki the
capacity constraint of firm i and by K =

∑n
i=1 ki the aggregate capacity of the firms. Let

the capacity constraints be ordered decreasingly, that is k1 ≥ . . . ≥ kn > 0. We summarize
the assumptions imposed on the oligopolists’ cost functions below:

Assumption 1. There are n firms on the market with zero unit costs and capacity
constraints k1 ≥ k2 ≥ . . . ≥ kn > 0.

The demand is given by function D on which we impose the following restrictions:

1Since the firms, which set also prices, basically compete in a residual production-to-order game (that
is, production takes place after the firms’ prices are revealed), the real assumption here is that the firms
have identical unit costs.
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Assumption 2. The demand function D intersects the horizontal axis at quantity a and
the vertical axis at price b. D is strictly decreasing and twice continuously differentiable
on (0, a); moreover, D is right-continuous at 0, left-continuous at b and D(p) = 0 for all
p ≥ b.

Clearly, a price-setting firm will not set its price above b. Let us denote by P the
inverse demand function. Thus, P (q) = D−1 (q) for 0 < q ≤ a, P (0) = b, and P (q) = 0
for q > a. In addition, we shall denote by pc the market clearing price, i.e. pc = P (K).

The following technical assumption is needed to ensure the existence of an equilibrium
in our model.

Assumption 3. The function pD′(p) +D(p) is strictly decreasing on (0, b).

We shall denote by Dr
i (p) = (D (p)− (K − ki))+ the residual demand curve of firm i

and its inverse by P r
i (q). It can be easily verified that P r

i (q) = P (q + (K − ki)). Assuming
efficient rationing, the function πri (p) = pDr

i (p) will equal firm i’s profit whenever it sets
the highest price in the pure price-setting game and p ≥ pc. We ensure that every firm
will be active in the market by the next assumption.

Assumption 4. We assume that K − kn < a.

We shall denote by pmi the unique revenue maximizing price on the residual demand
curve Dr

i and by qmi the unique revenue maximizing output on the inverse residual demand
curve P r

i , i.e. pmi = arg maxp∈[0,b] pD
r
i (p) and qmi = arg maxq∈[0,a] qP

r
i (q) for any i ∈ N . Of

course, qmi = Dr
i (pmi ). Furthermore, it can be checked that pm1 ≥ pm2 ≥ . . . ≥ pmn because

of Assumptions 1-4. Let πi = πri (pmi ). Clearly, pc and pmi are well defined whenever
Assumptions 1-4 are satisfied. Note that Assumption 4 also ensures that pmi > 0 and
πi > 0.

Let pi ∈ [0, b] be the price and qi ∈ [0, ki] be the quantity decision of firm i ∈ N .
Hence, the price decisions and the quantity decisions are contained in vectors p ∈ [0, b]n

and q ∈ ×n
j=1[0, kj ], respectively. If firm i sets a positive quantity qi, then it will sell this

amount at a price determined by the market. Furthermore, if firm i sets its price pi below
b, then it is willing to produce in addition an amount of at most ki − qi units at price pi,
which we shall call the residual capacity of firm i. We to refer to firm i as a pure price
setter if pi < b and qi = 0 and as a pure quantity setter if pi = b and qi > 0. Otherwise, a
firm is a price and quantity setter at the same time. We denote by Jp,q = {j ∈ N | qj > 0}
the set of quantity-setting firms and by Ip,q = N \ Jp,q the set of purely price-setting
firms. For fixed decisions (p,q) the aggregate supply of the firms at price p is given by
Sp,q (p) =

∑
i∈N qj +

∑
i∈N,pi≤p(ki − qi).

We have to specify a demand-allocating mechanism and the price of the quantity-
setting firms’ product as a function of the price and quantity actions taken by the firms.
We define the quantity-setting firms’ sales price, denoted by p∗ (p,q), to be the lowest
price at which the demand is less or equal to the aggregate supply of the firms. Formally,
p∗ (p,q) =

inf {p ∈ [0, b] | D (p) ≤ Sp,q (p)} = min {p ∈ [0, b] | D (p) ≤ Sp,q (p)} .

We can write min instead of inf becauseD (p)−Sp,q (p) is a decreasing and right-continuous
function in p. Observe that p∗ (p,q) is even defined in case of Ip,q = N .

At price level p∗ (p,q) aggregate supply may exceed market demand. This case is
illustrated in Figure 1 in which there are two price-setting firms and one quantity-setting
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Figure 1: Quantity-setting firms product price

firm. In the situation presented in Figure 1 the sales price for the quantity-setting firm’s
product equals p3 (where p1 = b and q2 = q3 = 0). In case of price ties, we assume for
simplicity, that the demand is allocated first to the quantity-setting firms and afterwards
the remaining demand is shared by the price-setting firms in proportion of their capacities.
The first part of this assumption, i.e. that the demand is allocated first to the quantity-
setting firms, expresses our intuition that price setters shall face quantity adjustment,
while quantity setters shall face price adjustment. The demand satisfied by firm j ∈ Jp,q
at price p∗ (p,q) is given by

∆q
j (p,q) =

{
qj if p∗ (p,q) > 0,

min
{
qj ,

qj∑n
l=1 ql

D(0)
}

if p∗ (p,q) = 0;

and therefore, its profit equals πqj (p,q) = p∗ (p,q) qj from producing quantity qj . In
addition, let πqi (p,q) = 0 for any i ∈ Ip,q. We define the demand satisfied by firm i ∈ N
resulting from its price-setting activity by

∆p
i (p,q) =


0 if pi > p∗ (p,q) or qi = ki,

ki−qi∑
pl=pi

kl−ql

(
D (pi) −

∑n
j=1 qj −

∑
pl<pi

(kl − ql)
)+

if pi = p∗ (p,q) and qi < ki,

ki − qi if pi < p∗ (p,q) and qi < ki.

Thus, firm i ∈ N makes πpi (p,q) = pi∆
p
i (p,q) profit from selling its residual capacity at

price pi. Finally, we shall define the profit of firm i ∈ N by πi (p,q) = πpi (p,q)+πqi (p,q).

3 The analysis

In this Section we determine those conditions under which an equilibrium in pure strategies
exists. We will proceed step by step in order to obtain a better understanding of the
equilibrium behavior of our oligopoly game. The following Lemma states that in a pure-
strategy equilibrium the purely price-setting firms must set the same prices.
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Lemma 1. Under Assumptions 1-4, if (p,q) is a pure-strategy equilibrium, then pi = pj
for any i, j ∈ Ip,q.

Proof. The statement is obviously true if |Ip,q| ≤ 1. Thus, we have only to consider the
case of |Ip,q| > 1. Let firm j be one of the firms setting the lowest price; that is, pj ≤ pi
for all i ∈ Ip,q. Suppose that pj < pi holds for a firm i ∈ Ip,q. If ∆p

i (p,q) > 0, then firm j
can increase its profit by setting its price arbitrarily close to but below pi. If ∆p

i (p,q) = 0,
then πi (p,q) = 0. But firm i can make positive profit, for instance, by switching its price
to P

(
1
2 (K − ki + a)

)
so that it faces a positive demand because of Assumption 4. Thus,

firm i would deviate, and therefore, pj < pi cannot be the case.

Next, we prove that in a pure-strategy equilibrium every purely price-setting firm’s
price must be equal to the sales price of the quantity-setting firms.

Lemma 2. Let Assumptions 1-4 be satisfied and (p,q) be a pure-strategy equilibrium. If
|Jp,q| > 0, then pi = p∗ (p,q) for any i ∈ Ip,q.

Proof. Clearly, the Lemma holds if |Ip,q| = 0. Therefore, in what follows we can assume
that |Ip,q| > 0. Suppose that pi 6= p∗ (p,q) for some i ∈ Ip,q. Recall that any firm i ∈ Ip,q
setting its price below p∗ (p,q) can sell its entire capacity ki. Moreover, observe that
p∗ (p,q) will not change if prices lower than p∗ (p,q) change as long as they remain lower
than p∗ (p,q). Thus, if pi < p∗ (p,q), firm i can increase its profit by setting a price slightly
below p∗ (p,q), since it is still selling ki but at a higher price. If pi > p∗ (p,q), then firm
i does not sell anything and makes zero profit. But firm i can achieve positive profit by
making a sufficiently large price reduction because of Assumption 4; a contradiction.

Furthermore, if the equilibrium market price is larger than the market-clearing price
and there is at least one purely price-setting firm in the market, then in a pure-strategy
equilibrium the quantity-setting firms produce at their capacity limits, and thus there are
no “partially” price-setting firms in the market.

Lemma 3. Let Assumptions 1-4 be satisfied and (p,q) be a pure-strategy equilibrium. If
|Jp,q| > 0, |Ip,q| > 0 and p∗ (p,q) > pc, then we must have qj = kj for all j ∈ Jp,q in any
pure-strategy equilibrium.

Proof. From Lemma 2 we know that in a pure-strategy equilibrium pi = p∗ (p,q) must
hold for all i ∈ Ip,q. Moreover, every firm’s profit must be positive because of Assumption
4, which implies ∆p

i (p,q) > 0 for any i ∈ Ip,q and ∆q
j (p,q) > 0 for any j ∈ Jp,q.

Suppose that qj < kj for a firm j ∈ Jp,q. Then we have to distinguish the following
three cases: (i) pj < p∗ (p,q), (ii) pj = p∗ (p,q) and (iii) pj > p∗ (p,q). In case (i) firm
j can increase its profit by increasing its output to kj because this will not decrease
p∗ (p,q), since its previously sold kj − qj units can be now sold at price p∗ (p,q). In case
(ii) a purely price-setting firm could capture market from j by unilaterally undercutting
price pj .

2 Finally, in case (iii) firm j selling a positive amount at price pj would be in
contradiction with the definition of p∗ (p,q). Hence, quantity-setting firm j could increase
its profits by increasing its quantity since this would just result in a decrease of sales for
the purely price-setting firms. We obtained in any of the three cases a contradiction, and
therefore we must have qj = kj in any pure-strategy equilibrium with an equilibrium price
larger than the market-clearing price.

2At this point we are employing p∗ (p,q) > pc.
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Now we are ready to prove the main propositions considering our oligopoly game.
The next proposition establishes that the Bertrand solution is the only possible Nash
equilibrium candidate in the presence of at least two purely price-setting firms.

Proposition 1. Let Assumptions 1-4 be satisfied and (p,q) be a pure-strategy equilibrium.
If |Ip,q| ≥ 2, then the only possible pure-strategy Nash equilibrium candidate is qj = kj or
pj = pc for all j ∈ Jp,q and pi = pc for all i ∈ Ip,q.

Proof. Suppose that |Jp,q| = 0. By Lemma 1 we know that in a possible equilibrium
every purely price-setting firm sets the same price. But, if that price level exceeds pc, then
their sales will be less than their capacity level, and therefore, any of them can gain from
undercutting its opponents.

Now, we consider case |Jp,q| > 0. By Lemma 2 we must have pi = p∗ (p,q) for any
i ∈ Ip,q. Of course, pc ≤ p∗ (p,q). Suppose that pc < p∗ (p,q). Then we know by Lemma 3
that qj = kj for all j ∈ Jp,q. But if pc < p∗ (p,q), then any price-setting firm i ∈ Ip,q will
sell less than ki products. Therefore, by just unilaterally undercutting price p∗ (p,q), any
price-setting firm can increase its sales radically, and thus, increase its profits. Hence, in an
equilibrium we must have pc = p∗ (p,q) and only strategy profiles specified by Proposition
1 remain.

If ki ≤ qmi , then we will say that firm i ∈ N has scarce capacity, while otherwise we will
say that firm i ∈ N has sufficient capacity. Note that a firm with scarce capacity will be
eager to produce at its capacity limit. We shall denote by H the set of those firms having
only scarce capacity, i.e. H = {i ∈ N | ki ≤ qmi }. It can be verified that condition ki ≤ qmi
is equivalent to pc ≥ pmi . Thus, H = {i ∈ N | h ≤ i ≤ n} for some h ∈ {1, . . . , n+ 1} since
the sequence pmi is nonincreasing.

In the following proposition we establish that the Bertrand solution is the unique Nash
equilibrium solution in pure strategies of any mixed oligopoly game if every firm has scarce
capacity.

Proposition 2. Under Assumptions 1-4, if H = N and (p,q) is an equilibrium in pure
strategies, then it must be payoff and price equivalent with the Bertrand solution, i.e. the
equilibrium price equals the market-clearing price and all firms sell their entire capacity.

Proof. We can verify that qj = kj or pj = pc for any j ∈ Jp,q and pi = pc for any i ∈ Ip,q
is a Nash equilibrium because of Assumptions 2, 3 and ki ≤ qmi for all i ∈ N .

Assume that |Ip,q| = 0. Then the partial price setter selecting the highest price above
pc would reduce its price because of pmi ≥ pc. In addition, if there are more partial price
setters choosing the same highest price above pc, then each of them could benefit from a
slight price reduction. Hence, only profiles specified in Proposition 2 can be equilibrium
profiles.

We turn to the analysis of case Ip,q = {i}. Suppose that pc < p∗ (p,q). Then by Lemma
3 each quantity-setting firm j ∈ Jp,q sets qj = kj and by Lemma 2 the purely price-setting
firm i should set price pi = p∗ (p,q). Since by pc ≥ pmi firm i has an incentive for a price
reduction pc < p∗ (p,q) cannot be the case in an equilibrium. Again, only profiles specified
in Proposition 2 can be equilibrium profiles.

Finally, if |Ip,q| ≥ 2, then Proposition 1 yields the desired result.

Let us denote by pdi the smallest price satisfying pdi min{ki, D
(
pdi
)
} = pmi D

r
i (pmi ).

Suppose that firm i has sufficient capacity (implying pdi < pmi ), then firm i is indifferent
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to whether serving residual demand at price level pmi or selling its entire capacity at the
lower price level pdi . We will need the following Lemma established for the two firm case
by Deneckere and Kovenock (1992) and for the n firm case by (Tasnádi 2010, Lemma 7).

Lemma 4. Suppose that firm i and j have both sufficient capacity and that Assumptions
1-4 are satisfied. If i < j, then pdi ≥ pdj . In addition, if ki > kj, then pdi > pdj .

Next, we investigate the case of only one purely price-setting firm. Because of Propo-
sition 2 we may assume in what follows that there is a firm having sufficient capacity.

Proposition 3. Under Assumptions 1-4, if (p,q) is an equilibrium in pure strategies such
that Ip,q = {i} ⊂ N \H = {1, . . . , h− 1} then the equilibrium is given by

∀j ∈ Jp,q : qj = kj and pi = pmi = arg max
p∈[0,b]

pDr
i (p) . (1)

In addition, the above type of equilibrium exists if and only if pd1 ≤ pmi .

Proof. First, we demonstrate that if pd1 ≤ pmi , then the strategy profile given by equation
(1) is an equilibrium. Suppose that a quantity-setting firm chooses a strategy (pj , qj)
different from (b, kj). Clearly, firm j would reduce its profits by selling its residual capacity

at a price pj < pmi . If pj > pmi , then it can sell q′j =
(
D(p)− qj −

∑
l 6=j kl

)+
units at price

pj , which means that firm j faces its residual demand curve. Hence, firm j would be better
off by selling kj units at price pmi because of pdj ≤ pd1 ≤ pmi . For quantity-setting firm j
the case of pj = pmi remains to be investigated. In the latter case a unilateral output
decrease from ki to at most qmi will not change the sales price for the quantity-setting
firms’ product, but only increase the purely price-setting firm’s sales. Moreover, if firm j
reduces its output below qmi , then the sales price for the quantity-setting firms’ product

will equal to P r
j

(
qj +

∑
l 6=j kl

)
. Thus, a unilateral output decrease by any firm j ∈ Jp,q

with j > i will inevitably lead to a decrease in its own profit level because of pmj ≤ pmi and
Assumptions 2 and 4. Furthermore, an output reduction by firm j ∈ Jp,q with j < i will
increase its profits if and only if pdj > pmi , because then a decrease in output to qmj yields

pdjkj profits, which is greater than pmi kj . Regarding that the sequence pdj is nonincreasing,
we have shown that the quantity-setting firms will not deviate from qj = kj . It can be
easily checked that firm i will not deviate from price pmi . Hence, equation (1) determines a
Nash equilibrium profile, which determines the set of equilibrium profiles in the presence
of one purely price-setting firm because of Lemmas 2 and 3.

Second, we establish that if pd1 > pmi , then there is a lack of Nash equilibrium with
one purely price-setting firm. We already know by Lemmas 2 and 3 that in an equilibrium
qj = kj for all j ∈ Jp,q and pi = p∗ (p,q) must hold. Therefore, price-setting firm i sets
price pmi and sells qmi amount of product. This means that pi = pc (p,q) must be equal to
pmi in a Nash equilibrium. But, then firm 1 will unilaterally decrease its outputs, because
pm1 q

m
1 = pd1k1 > pmi k1 and we conclude that a Nash equilibrium does not exist.

Checking the proof of Proposition 3, we obtain the following Corollary.

Corollary 1. Let Assumptions 1-4 and pd1 ≤ pmi be satisfied, and let i ∈ N \ H =
{1, . . . , h− 1}. Then

∀j ∈ N \ {i} : qj = kj , qi ∈ [0, qmi ] and pi = pmi = arg max
p∈[0,b]

pDr
i (p) (2)

determines all equilibria with one partial or pure price-setting firm.
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We have to emphasize that by Proposition 3 our oligopoly game, with a price-setting
firm i having sufficient capacity and fulfilling condition pd1 ≤ pmi , yields an implementation
of Forchheimer’s model of dominant firm price leadership, because the price-setting firm
sets its price by maximizing profits with respect to its residual demand curve and the sales
price for the remaining firms’ product equals that price. Let us remark that, to act as a
price leader, a firm does not have to possess the largest capacity on the market so far the
requirements of Proposition 3 are satisfied. For more on price leadership we refer to Ono
(1982), Deneckere and Kovenock (1992), van Damme and Hurkens (2004), Tasnádi (2004)
or Yano and Komatsubara (2006).

We still have to consider the Cournot game, that is the case in which every firm behaves
as a pure quantity setter. The existence of a Nash equilibrium in the Cournot game has
been investigated extensively in the literature (see for instance Szidarovszky and Yakowitz,
1977; Novshek, 1985; Amir, 1996; Forgó, 1996). Regarding our assumptions, the results
known to us cannot be applied directly to demonstrate existence in our model. Particularly,
we assume that the function pD (p) is strictly concave, which does not even imply that
qP (q) is concave. To verify this consider demand function D (p) = 1− 4

3p
3/4, which satisfies

Assumption 2 and 3, but for which qP (q) is convex in the interval (6/7, 1). Moreover, it
can be verified that the concavity of pD(p) does not even imply the log-concavity of P (q).
Hence, even Amir’s (1996) existence theorem cannot be applied. However, we will prove
the existence of a Nash equilibrium by applying Debreu’s (1952) existence theorem.

Proposition 4. Under Assumptions 1-4, the Cournot game has an equilibrium in pure
strategies.

Proof. Firm i’s strategy set [0, ki] is compact and its payoff function qi P
(∑

j∈N qj

)
is

continuous. In order to apply Debreu’s (1952) existence theorem we still have to show
that the firms’ payoff functions are quasiconcave in their own decision variable. We will
demonstrate that Πi (qi, Q−i) = qiP (qi +Q−i) is single peaked in qi for any fixed value of
Q−i ∈ [0,K − ki], which in turn implies quasiconcavity.

Pick an arbitrary value for Q−i from interval [0,K − ki]. Let us define the function
F : [0, a−Q−i] → [0, c] by F (q) = P (q +Q−i), where c = P (Q−i). We shall denote by
G the inverse function of F . It can be checked that G (p) = D (p) − Q−i. Let Π∗i (p) =
p (D (p)−Q−i)+. Of course, Π∗i (0) = 0, Π∗i (p) = 0 for any p ≥ c, and Π∗i is strictly
concave in (0, c). Hence, it has a unique maximum, denoted by p∗ ∈ (0, c), which can be
determined by the following equation:

d

dp
Π∗i (p) = G (p) + pG′ (p) = 0 (3)

The first-order condition corresponding to problem maxqi Πi (qi, Q−i) is

d

dq
Πi (q,Q−i) = F (q) + qF ′ (q) = 0. (4)

We check that q∗ = G (p∗) satisfies equation (4):

d

dq
Πi (q∗, Q−i) = F (q∗) + q∗F ′ (q∗) = p∗ +G (p∗)

1

G′ (p∗)
= 0,

where the last equality holds clearly because p∗ is a solution of equation (3) andG′ (p∗) 6= 0.
Furthermore, q∗ is the unique solution of equation (4) since otherwise equation (3) will
not have a unique solution. Finally, output level q∗ corresponds to a maximum since
Πi (q∗, Q−i) > 0 and Πi (0, Q−i) = Πi (a−Q−i, Q−i) = 0.
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The next theorem summarizes our results concerning our oligopoly game:

Theorem 1. Under Assumptions 1-4 the following statements hold true concerning our
oligopoly game:

1. If qmi ≥ ki for all i ∈ N , then any Nash equilibrium yields the Bertrand solution.

2. If i < h and pd1 ≤ pmi , then the second type of equilibria result in a model of price
leadership.

3. If there exists an i ∈ N such that qmi < ki, then third type of equilibria are given by
the Cournot solutions.

4. Another type of Nash equilibrium does not exist.

Proof. Points 1 and 2 follow from Proposition 2 and Corollary 1.
Next, we show point 3, that is (p, yi) for all i ∈ N is a Nash equilibrium, where y

denotes a Cournot solution and p ≥ p∗ = P (
∑n

i=1 yi). Suppose that firm i ∈ N considers to
become a pure or partial price setter, and thus switches to another strategy (pi, qi) 6= (p, yi).

Since in any case firm i faces residual demand curve
(
D(pi)− qi −

∑
j 6=i yj

)+
as a partial

(qi > 0) or pure (qi = 0) price setter it can be easily verified that (p, yi) is a best response
to the other firms strategies.

Finally, point 4 follows from our established facts that the presence of at least one
pure price setter implies that there cannot be a partial price setter (Lemma 3), scarce
capacities have to result in the Bertrand solution (Proposition 2), the presence of a pure
or partial price setter has to result in a kind of price leadership (Corollary 1) and in the
absence of a pure and partial price setter we obtain a Cournot outcome.

4 Concluding remarks

Let us remark that if pd1 > pmh−1, then the only price leadership equilibrium that emerges
yields an implementation in Nash equilibrium of the classical dominant firm model of price
leadership.

If every firm has scarce capacity, where by scarce we mean that the unconstrained
profit-maximizing output with respect to its residual demand curve exceeds its capacity
constraint, then any firm will produce at its capacity limit. Thus, the Bertrand solution
arises. We want to highlight that if at least one firm does not have scarce capacity, then
either the Cournot game or price leadership emerges. Therefore, if some additional as-
sumptions are satisfied, we have also given a game-theoretic foundation of Forchheimer’s
model of dominant-firm price leadership (see Scherer and Ross, 1990).

In a follow up research we would like to single out either the Cournot solution or the
dominant firm model of price leadership if both of these two types of equilibria exist.
Investigating their stability properties, might help us in solving the problem of multiple
equilibria.
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