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Abstract

We study bankruptcy games where the estate and the claims have stochastic

values. We use the Weak Sequential Core as the solution concept for such games.

We test the stability of a number of well known division rules in this stochastic setting

and find that most of them are unstable, except for the Constrained Equal Awards

rule, which is the only one belonging to the Weak Sequential Core.

Keywords: transferable utility games, uncertainty, weak sequential core, bankruptcy

games

JEL Classification: C71, C73

1 Introduction

The classical bankruptcy problem originating in the Talmud has drawn the attention of

game theorists a long time ago. In the original Talmudic version, there is a dying man

who has three wives. Upon his death his estate is to be divided among the wives who
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have claims over the estate, where it is assumed that the sum of these claims exceeds the

worth of the estate. The question is how this division or allocation should be done, based

on the claims of the players. The game theoretic relevance of this issue was first noticed

by O’Neill (1982), who has transformed the original problem into a cooperative game.

Later, Aumann and Maschler (1985) also analyzed the problem in a game theoretic setup

and related the Talmudic solution to the nucleolus. Since then the bankruptcy problem

triggered a wide range of literature with many applications, interpretations and extensions.

Many allocation rules have been suggested as a solution; a thorough inventory of them can

be found in Thomson (2003).

The entire literature on bankruptcy games assumes that the value of the estate, as well

as the value of the claims, are deterministic. However, prior to the bankruptcy situation,

typically these values are stochastic as they depend on currently unknown future market

values. Nevertheless, coalitions of players can form prior to the resolution of uncertainty

and they can discuss divisions of the estate conditional on its value and conditional on

their claims. In this paper we therefore introduce the class of stochastic bankruptcy games.

A stochastic bankruptcy game is a special case of a transferable utility game with

uncertainty, or briefly TUU-game, as introduced in Habis and Herings (2011). A TUU-

game is a two-period cooperative game. In period 0, agents may decide to cooperate or

not, facing uncertainty about the state of nature in period 1. In period 1, one state of

nature materializes and a state-dependent TU-game is played. When applied to bankruptcy

games, we have that the worth of the estate and the claims of the agents (wives) my depend

on the state of nature; i.e. in each state of nature a different bankruptcy game may be

played.

In a classical, static cooperative game it is implicitly assumed that the players can make

fully binding agreements on the allocation of payoffs. When such an assumption is made in

our stochastic setting, then coalitions can make fully binding state-contingent allocations of

payoffs in period 0, and the game becomes formally equivalent to a non-transferable utility

game. We, on the other hand, study the case where agents cannot make such fully binding

agreements. Instead, agents will not stick to their agreements concerning the future if after

the resolution of uncertainty, they are better off when deviating. Hence, we only allow for

self-enforcing agreements.

An agreement is said to be self-enforcing if there is no coalition of players with a credible

deviation in some period. All deviations by singleton coalitions that lead to higher utility
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are credible. More generally, credible deviations are inductively defined by the requirement

that a deviation is credible in some period if there is no further credible deviation by any

sub-coalition, now or in the future. In static transferable utility games, the set of deviations

and the set of credible deviations coincide (Ray, 1989).

In our setting, credibility plays a crucial role and leads to the concept of the Weak

Sequential Core, introduced by Kranich, Perea, and Peters (2005) for finite determinis-

tic sequences of TU-games, by Predtetchinski, Herings, and Perea (2006) for two-period

exchange economies with incomplete markets, and by Habis and Herings (2011) for TUU-

games. Moreover, Habis and Herings (2011) give a characterization of the Weak Sequential

Core, and show its non-emptiness if all the state-contingent games played in period 1 are

convex. Since Aumann and Maschler (1985) show that bankruptcy games are convex, the

Weak Sequential Core of stochastic bankruptcy games is non-empty.

Similarly to core-compatibility in a static problem, we use the Weak Sequential Core

to test the robustness to uncertainty of the most important allocation rules as suggested

in the literature; the Proportional rule, the Adjusted Proportional rule, the Constrained

Equal Awards rule, the Constrained Equal Losses rule, and the Talmud rule. It is well-

known that all rules are stable in a deterministic bankruptcy game, being an element of

the classical core. In a stochastic setting, however, each of them is unstable, with the

exception of the Constrained Equal Awards rule.

The outline of the paper is as follows. We specify the TUU model in Section 2 and give

the formal definition of the Weak Sequential Core in Section 3. The bankruptcy problem

itself and the division rules are analyzed in Section 4. Section 5 concludes.

2 Preliminaries

Consider a game with two periods, t ∈ T = {0, 1}. In period 1, one state of nature s out

of a finite set of states of nature S occurs. We define the state of nature for period 0 as

state 0, so the set of all states is S ′ = {0} ∪ S. In period 1 the players are involved in

a cooperative game with transferable utility, or briefly TU-game, where the game itself is

allowed to be state-dependent. Period 0 serves as a point in time prior to the resolution

of uncertainty.

The TU-game Γs played in state s ∈ S is a pair (N, vs), where N = {1, 2, . . . , n}
is the set of players and vs : 2N → R is a characteristic function which assigns to each
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coalition C ⊆ N its worth vs(C), with the convention that v(∅) = 0. Player i ∈ N

evaluates his payoffs by a utility function ui : RS → R, which assigns to every profile of

payoffs xi = (xi1, . . . , x
i
S) ∈ RS a utility level ui(xi) and is assumed to be continuous and

state-separable, i.e. ui(xi) =
∑

s∈S u
i
s(x

i
s), where uis(x

i
s) is monotonically increasing. A

well-known example of utility functions satisfying these assumptions are von Neumann-

Morgenstern utility functions.

A TU-game with uncertainty is defined by Habis and Herings (2011) as follows.

Definition 2.1. A TU-game with uncertainty (TUU-game) Γ is a tuple (N,S, v, u) where

v = (v1, . . . , vS) and u = (u1, . . . , un).

Note that there are no payoffs in state 0. State 0 is merely introduced as a point in time

when the players face the uncertainty in the future and may decide to cooperate. Payoffs

in state 0 could be incorporated into our model but our main interest is in analyzing the

effect of future uncertainty on the stability of payoff allocations.

Another observation is that when the cardinality of S is one, the concept of a TUU-

game collapses with the one of a TU-game. In the absence of uncertainty, all monotonic

transformations of utility functions are equivalent, and it is without loss of generality to

take ui(xi) = xi. Our interest is obviously in the cases with non-degenerate uncertainty.

The central question in a TUU-game is how the worth vs(N) of the grand coalition is

distributed among its members in every state s ∈ S. A distribution of worth, represented

by a matrix x = (x1, . . . , xn) ∈ RS×N , is called an allocation. The state-s component

xs = (x1s, . . . , x
n
s ) ∈ RN of an allocation is referred to as the allocation in state s ∈ S.

The total worth obtained by coalition C in state s is xs(C) =
∑

i∈C x
i
s. An allocation for

a coalition C is a matrix xC = (xi)i∈C ∈ RS×C , with a state-s component xCs ∈ RC . The

restriction of a TUU-game Γ to coalition C is denoted by (Γ, C).

3 The Weak Sequential Core WSC(Γ)

We study the stability of allocations in a TUU-game Γ. In general, x̄ is stable if there is

no state s′ ∈ S ′ and coalition C ⊆ N such that C has a profitable deviation from x̄ at s′.

There are various ways in which the notion of profitable deviation might be formulated.

Here we concentrate on the Weak Sequential Core, introduced in Kranich, Perea, and

Peters (2005) for finite deterministic sequences of TU-games, in Predtetchinski, Herings,

4



and Perea (2006) for two-period exchange economies with incomplete markets, and in Habis

and Herings (2011) for TUU-games.

Full commitment may be a strong and unrealistic assumption in the presence of time

and uncertainty. Once the state of nature is known, there are typically players which have

no incentives to stick to the previously arranged allocation of payoffs. One problem with

full commitment is that the state of nature may not be verifiable by an outside court,

implying that previously made arrangements cannot be enforced. The Weak Sequential

Core applies to the case with absence of commitment and looks for agreements which are

self-enforcing.

Following Habis and Herings (2011), we first define what allocations and thereby devi-

ations are feasible for coalitions at different states, then we formalize the notion of credible

deviations and finally we define the Weak Sequential Core of a TUU-game. We start with

feasibility at future states.

Definition 3.1. Let some allocation x̄ be given. The allocation xC is feasible for a coalition

C at state s ∈ S if

xC−s = x̄C−s,

xs(C) ≤ vs(C).

The first condition requires that the members of a coalition take allocations outside

state s as given. Since utility functions are assumed to be state-separable, this assumption

is harmless. According to the second condition, in state s the members of a coalition can

redistribute at most their worth.

We turn next to feasibility as state 0.

Definition 3.2. Let some allocation x̄ be given. The allocation xC is feasible for a coalition

C at state 0 if

x(C) ≤ v(C).

Note that this concept says that the allocation must be feasible for coalition C in every

state; it requires
∑

i∈C x
i
s ≤ vs(C) to hold for all states in period t = 1.

We continue by defining deviations as feasible allocations that improve the utility of

every coalition member.
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Definition 3.3. Let some allocation x̄ be given. A coalition C can deviate from x̄ at state

s′ ∈ S ′ if there exists a feasible allocation xC for C at s′ such that

ui(xi) > ui(x̄i), for all i ∈ C.

The allocation xC in Definition 3.3 is referred to as a deviation. Definition 3.3 can be

extended in an obvious way to define deviations from an allocation xC by a sub-coalition

D of C.

Since deviations should be self-enforcing, we introduce the notion of credible deviations.

In defining credibility, we follow the approach developed in Ray (1989) for the static case.

Ray (1989) shows that in a static environment the set of deviations coincides with the set

of credible deviations. This is no longer true in our setting.

Credible deviations are defined recursively and by backwards induction. At any future

state, any deviation by a singleton coalition is credible. A 2-player coalition has a credible

deviation at a future state if there is no singleton sub-coalition with a credible counter-

deviation at that state. A credible deviation at a future state for an arbitrary coalition is

then defined by recursion. More formally, a credible deviation at state s ∈ S by a coalition

C is defined as follows.

Definition 3.4. Let some allocation x̄ be given. Any deviation xC from x̄ at state s ∈ S
by a singleton coalition is credible. A deviation xC from x̄ at state s by coalition C is

credible if there is no sub-coalition D ( C such that D has a credible deviation from xC

at state s.

At state 0, again, any deviation by a singleton coalition is credible. A 2-player coalition

has a credible deviation at state 0 if there is no singleton sub-coalition with a credible

counter-deviation at any state, current or future. A credible deviation at state 0 by an

arbitrary coalition is then defined by recursion. More formally, we have the following

definition.

Definition 3.5. Let some allocation x̄ be given. Any deviation xC from x̄ at state 0 by a

singleton coalition is credible. A deviation xC from x̄ at state 0 by coalition C is credible

if there is no sub-coalition D ( C and state s′ ∈ S ′ such that D has a credible deviation

from xC at s′.

Definition 3.6. The Weak Sequential Core WSC(Γ) of the game Γ is the set of feasible

allocations x̄ for the grand coalition from which no coalition ever has a credible deviation.
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It is possible to characterize the Weak Sequential Core by means of the classical core

of suitably chosen subgames.

Definition 3.7. The Core C(N, v) of a TU-game (N, v) is the collection of allocations x̄

such that x̄(N) = v(N) and there is no coalition C that can improve upon x̄.

Habis and Herings (2011) provides the following characterization of the Weak Sequential

Core.

Theorem 3.8. The following two statements are equivalent:

(a) x̄ ∈ WSC(Γ),

(b) x̄ is such that x̄s ∈ C(Γs) for all s ∈ S, and there is no C ⊂ N and allocation xC

such that xCs ∈ C(Γs, C) for all s ∈ S, and ui(xi) > ui(x̄i) for all i ∈ C.

For an allocation to belong to the Weak Sequential Core of the TUU-game Γ, the

allocation should belong to the Core of the TU-game Γs in every state s ∈ S. Moreover,

no coalition should be able to pick an element of the Core of the game restricted to C in

every state, and in doing so improve utility in an ex ante sense.

The Weak Sequential Core is non-empty if all state-contingent TU-games in the TUU-

game are convex.

Definition 3.9. A TU-game (N, v) is convex if for all C ⊂ N and for all S ( T ⊂ N\C
it holds that v(S ∪ C)− v(S) ≤ v(T ∪ C)− v(T ).

Habis and Herings (2011) proves the following result.

Theorem 3.10. Let the TUU-game Γ be such that Γs is convex for all s ∈ S. Then

WSC(Γ) 6= ∅.

The class of convex TU-games admits a wide range of interesting applications. Ex-

amples are airport games (Littlechild and Owen, 1973), bankruptcy games (Aumann and

Maschler, 1985), sequencing games (Curiel, Pederzoli, and Tijs, 1989) and standard tree

games (Granot, Maschler, Owen, and Zhu, 1996).
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4 Bankruptcy games and division rules

In this section we analyze the application of the Weak Sequential Core to bankruptcy

games. Bankruptcy games originate in a fundamental paper by O’Neill (1982). The prob-

lem is based on a Talmudic example, where a man dies, leaving behind an estate, E, which

is worth less than the sum of his debts. The question is how the estate should be divided

among the creditors.

A bankruptcy problem is defined as a pair (E, d), where d = (d1, . . . , dn) is the vector

of individual debts, and
∑

i∈N d
i ≥ E ≥ 0. Following Aumann and Maschler (1985), the

problem can be transformed into a cooperative game. The characteristic function vE,d is

defined to be

vE,d(C) = max{E −
∑

i∈N\C

di, 0}, C ⊂ N, (1)

so the worth of a coalition C in the game vE,d is that amount of the estate which is not

claimed by the complement of C. It has been shown by Curiel, Maschler, and Tijs (1987)

that vE,d is convex.

A rule is a function that associates with each (E, d) an allocation x ∈ RN such that∑
i∈N xi = E and 0 ≤ x ≤ d. A thorough inventory of the rules can be found in Thomson

(2003). The best-known rule is the Proportional rule (P) which allocates the estate propor-

tional to the claims. The Adjusted Proportional rule (AP) selects the allocation at which

each claimant i receives his minimal right max{E−
∑

j 6=i d
j, 0}, then each claim is revised

down accordingly, and finally, the remainder of the estate is divided proportionally to the

revised claims. The Constrained Equal Awards rule (CEA) is in the spirit of equality; it

assigns equal amounts to all claimants subject to no one receiving more than his claim.

More formally, we have the following.

Definition 4.1 (Constrained Equal Awards rule). For i′ ∈ N, for each (E, d), CEAi′(E, d) =

min{di′ , α}, where α ≤ maxi∈N d
i is chosen so that

∑
i∈N min{di, α} = E.

The Constrained Equal Losses rule (CEL), as opposed to the CEA rule, is focusing

on losses claimants incur, and makes these losses equal, with no one receiving a negative

amount. The recommendation of the Talmud, later formalized in Aumann and Maschler

(1985) as the Talmud rule (TR), is a combination of the CEA rule and the CEL rule,

depending on the relation of the half-claims and the value of the estate. The Piniles’ rule
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(Piniles, 1861) is an application of the CEA rule to the half-claims in two different ways,

again depending on the relation of the half-claims and the value of the estate. In our setup

it coincides with the Talmud rule. The Constrained Egalitarian rule (Chun, Schummer,

and Thomson, 2001) also gives a central role to the half-claims, and guarantees that the

awards are ordered as the claims are. In our case it also coincides with the Talmud rule.

The Random Arrival rule (RA) takes all the possible orders of claimants arriving one at a

time, compensates them fully until money runs out, and takes the arithmetic average over

all orders of arrival.

Many rules are related to the solutions of bankruptcy games. The AP rule corresponds

to the τ -value (Curiel, Maschler, and Tijs, 1987), the CEA rule to the Dutta-Ray solution

(Dutta and Ray, 1989), the TR rule to the prenucleolus (Aumann and Maschler, 1985),

and the RA rule to the Shapley value (O’Neill, 1982). Any rule belongs to the Core of the

bankruptcy game. Indeed, let x̄ be the allocation that the rule associates to the bankruptcy

problem (E, d). It holds obviously that x̄(N) = v(N) = E. Moreover, we have

v(C) = max{0, E −
∑

i∈N\C

di} ≤ max{0, E −
∑

i∈N\C

x̄i} = max{0,
∑
i∈C

x̄i} = x̄(C),

so no coalition can improve upon x̄.

In the original estate division problem of the Talmud a man has 3 wives whose marriage

contracts specify that upon his death they should receive 100, 200 and 300 respectively.

When the man dies, his estate is found to be worth 100, 200 or 300 in three different

scenarios.

The characteristic function of the resulting TU-games, with d =100, 200 and 300, is

shown in Table 1.

Table 1: Characteristic function of estate division
vE,d ∅ {1} {2} {3} {1,2} {1,3} {2,3} {1,2,3}

v100,d 0 0 0 0 0 0 0 100

v200,d 0 0 0 0 0 0 100 200

v300,d 0 0 0 0 0 100 200 300

Table 2 summarizes the outcomes of the rules described before when applied to the

estate division problem.

We are interested in the question to what extent the rules lead to allocations that are

self-enforcing in the presence of uncertainty regarding the value of the estate and the size
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Table 2: Estate allocation
Player Estate TR P AP CEA CEL RA

d1 = 100

100 33 1/3 16 2/3 33 1/3 33 1/3 0 33 1/3

200 50 33 1/3 40 66 2/3 0 33 1/3

300 50 50 50 100 0 50

d2 = 200

100 33 1/3 33 1/3 33 1/3 33 1/3 0 33 1/3

200 75 66 2/3 80 66 2/3 50 83 1/3

300 100 100 100 100 100 100

d3 = 300

100 33 1/3 50 33 1/3 33 1/3 100 33 1/3

200 75 100 80 66 2/3 150 83 1/3

300 150 150 150 100 200 150

of the debts. A stochastic bankruptcy problem is defined as a tuple (S,E, d, u), where S is

a finite set of states of nature, E = (Es)s∈S is the value of the estate in state s, d = (ds)s∈S

is the state-dependent vector of debts, and u = (ui)i∈N are the continuous, state-separable,

weakly monotonic utility functions of the claimants, where ui : RS → R. Extending the

approach of Aumann and Maschler (1985) to the stochastic case, we can transform a

stochastic bankruptcy problem into a stochastic bankruptcy game Γ = (N,S, v, u), the

TUU-game where we set

vs(C) = max{Es −
∑

i∈N\C

dis, 0}, s ∈ S, C ⊂ N.

The observation that bankruptcy games are convex (Aumann and Maschler, 1985)

combined with Theorem 3.10 leads to the following result.

Theorem 4.2. The Weak Sequential Core of a stochastic bankruptcy game Γ = (N,S, v, u)

is non-empty.

We have already argued that a rule leads to an allocation in the Core of the bankruptcy

game. This implies that for a stochastic bankruptcy game, blocking is not possible after the

resolution of uncertainty. However, it might be possible to block the allocation described

by a rule ex ante.

As an example, consider the estate division problem of the Talmud, where the claims

of the three wives are fixed, but the exact value of the estate is uncertain, and the possible
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values 100, 200, and 300 are equally likely. After the uncertainty regarding the estate’s

value is resolved in period 1, one of the three TU-games is played, arising from the original

three scenarios of the problem. Suppose the wives evaluate the payoffs with the utility

function,

ui(xi) =
∑
s∈S

1

3
(1000xis − (xis)

2),

whenever 0 ≤ xis ≤ 300 for s ∈ S.1

We demonstrate that the grand coalition has a credible deviation from the allocation

specified by all the rules mentioned before at state 0, with the exception of the Constrained

Equal Awards rule. Table 3 lists the credible deviations, denoted by x, and Table 4 the

implied utilities, as well as the utilities of the allocations x̄ implied by the various rules.

Table 3: Credible deviations
Player E TR P AP CEL RA

d1 = 100

100 25 0 25 0 29

200 40 33 35 0 29

300 70 70 65 0.01 60

d2 = 200

100 25 30 25 0 34

200 75 63 80 49 83

300 110 108 110 101.13 100

d3 = 300

100 50 70 50 100 37

200 85 104 85 151 88

300 120 122 125 198.86 140

We show next that the Constrained Equal Awards rule belongs to the Weak Sequential

Core of the stochastic bankruptcy game quite generally.

Theorem 4.3. For i ∈ N , let the utility function be given by ui(xi) =
∑

s∈S ρsw(xis),

where ρs is the objective probability of state s and w is a differentiable, concave function.

Then the allocation following from the Constrained Equal Awards rule belongs to the Weak

Sequential Core of the stochastic bankruptcy game Γ = (N,S, v, u).

1Outside this domain the utility function can be anything, as long as it is continuous, state-separable

and monotonically increasing.
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Table 4: Utilities
Player u TR P AP CEL RA

d1 = 100
u1(x̄1) 42407.41 32037.04 39374.07 0.00 37314.81

u1(x1) 42625.00 32337.00 39641.67 3.33 37572.67

d2 = 200
u2(x̄2) 63865.74 61481.48 65274.07 45833.33 66203.70

u2(x2) 63883.33 61489.00 65291.67 45833.91 66318.33

d3 = 300
u3(x̄3) 76365.74 88333.33 77774.07 125833.33 78703.70

u3(x3) 76958.33 88466.67 78216.67 125837.90 78762.33

Proof. Let x̄ be the allocation following from the Constrained Equal Awards rule. We

have already argued that x̄s ∈ C(Γs) holds for all s ∈ S. By 3.8 it remains to be shown

that there is no xC such that xCs ∈ C(Γs, C) for all s ∈ S, and ui(xi) > ui(x̄i) for all i ∈ C.
Consider a stochastic bankruptcy problem with set of players C ⊂ N , estate in state s

equal to max{Es −
∑

i∈N\C d
i
s, 0} and claims equal to dis for i ∈ C. The corresponding

stochastic bankruptcy game is denoted by (C, S, vC , (ui)i∈C). Let ȳC be the allocation

resulting from the CEA rule.

Note that for D ⊂ C, the worth of coalition D in game vCs coincides with its worth in

the original game, since

vCs (D) = max{vCs (C)−
∑

i∈C\D

dis, 0}

= max{max{Es −
∑

i∈N\C

dis, 0} −
∑

i∈C\D

dis, 0},

where either (a) Es −
∑

i∈N\C d
i
s > 0, and so vCs (D) = max{Es −

∑
i∈N\D d

i
s, 0} = vs(D),

or (b) Es −
∑

i∈N\C d
i
s ≤ 0, and so vCs (D) = 0 = vs(D).

We have that ȳCs ∈ C(Γs, C) for all s ∈ S. We show next that ȳC maximizes the sum

of the players utilities over allocations xC with xCs ∈ C(Γs, C) for all s ∈ S.

Consider the following constrained maximization problem,

max
xC

∑
i∈C

ui(xi)

s.t.
∑
i∈C

xis = vs(C), s ∈ S, (2)∑
i∈D

xis ≥ vs(D), s ∈ S, ∅ 6= D ( C, (3)
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where condition (2) is required for ex post efficiency and inequality (3) is a no-blocking

condition. A solution to the maximization problem maximizes the sum of the players’

utilities among those allocations that belong to C(Γs, C) for all s ∈ S.
We form the Lagrangian,

L(x, λ, µ) =
∑
i∈C

∑
s∈S

ρsw(xis)−
∑
s∈S

µs(
∑
i∈C

xis − vs(C))−
∑
s∈S

∑
D(C

λDs (
∑
i∈D

xis − vs(D)).

The first-order conditions, which are necessary and sufficient for a maximum, are given by

ρsw
′(xis)− µs −

∑
D(C|D3i

λDs = 0, s ∈ S, i ∈ C, (4)

∑
i∈C

xis − vs(C) = 0, s ∈ S, (5)

λDs (
∑
i∈D

xis − vs(D)) = 0, s ∈ S, ∅ 6= D ( C, (6)∑
i∈D

xis − vs(D) ≥ 0, s ∈ S, ∅ 6= D ( C, (7)

λDs ≤ 0, s ∈ S, ∅ 6= D ( C. (8)

We will show that together with an appropriate choice of λ and µ, ȳC satisfies these first-

order conditions. Conditions (5) and (7) hold since ȳCs ∈ C(Γs, C) for all s ∈ S. To show

that the remaining conditions hold as well, we introduce two subsets of players for each

state, and distinguish two cases. For s ∈ S, let Is = {i ∈ C|ȳis = dis} be the set of those

agents whose claim is fully paid in state s.

1. Is = ∅
For all ∅ 6= D ( C we set λDs = 0, thereby satisfying conditions (6) and (8). Since

Is = ∅, it holds for all i ∈ C that ȳis > dis. By the definition of the CEA rule, ȳis is

independent of i. It follows that ρsw
′(ȳis) is also independent of i, thus we can define

µs = ρsw
′(ȳis) for all i ∈ C to satisfy condition (4).

2. Is 6= ∅
Let C = {i1s, . . . , ics}, where di

1

s ≤ di
2

s ≤ . . . ≤ di
c

s and c denotes the cardinality of C.

Then, using the definition of the CEA rule, for some k ≥ 1, Is = {i1s, . . . , iks}. For

1 < j ≤ k + 1 we define Dj
s = {ijs, . . . , ics}, so C \ Dj

s ⊂ Is and C \ Dk+1
s = Is. We

define µs = ρsw
′(ȳi

1

s ), i.e. the marginal utility of the player with the lowest claim in

state s. For 1 < j ≤ k + 1 we define λD
j
s

s = ρsw
′(ȳi

j

s )− ρsw′(ȳi
j−1

s ). By the definition

13



of the CEA rule it holds that ȳi
j

s ≥ ȳi
j−1

s , so λD
j
s

s ≤ 0. For other coalitions D we set

λDs = 0. It follows that condition (8) is satisfied. The definition of the CEA rule and

equation (1) imply that∑
i∈Dj

s

ȳis = vs(C)−
∑

i∈C\Dj
s

ȳis = max{Es −
∑

i∈N\C

dis, 0} −
∑

i∈C\Dj
s

dis. (9)

Since
∑

i∈Dj
s
ȳis ≥ 0,

max{Es −
∑

i∈N\C

dis, 0} −
∑

i∈C\Dj
s

dis = max{Es −
∑

i∈N\Dj

dis, 0} = vs(D
j
s). (10)

It follows from equation (9) and (10) that
∑

i∈Dj
s
ȳis − vs(Dj

s) = 0, so condition (6) is

satisfied.

It only remains to show that condition (4) is satisfied as well. All coalitions D that

contain player i1 have λDs = 0, so for player i1 this is immediate. Consider player ij
′

for 1 < j′ ≤ k. The only coalitions D such that ij
′ ∈ D and λDs 6= 0 are of the form

{ij, . . . , ic}, for 1 < j ≤ j′. Equation (4) reduces to

ρsw
′(ȳi

j′

s )− ρsw′(ȳi
1

s )−
j′∑

j=2

(ρsw
′(ȳi

j

s )− ρsw′(ȳi
j−1

s )) = 0.

Finally, consider i ∈ C\Is. Note that all such players receive the same payoff in state

s, and equal to ȳi
k+1

. Since player i is part of all the coalitions Dj
s, we have that

equation (4) reduces to

ρsw
′(ȳi

k+1

s )− ρsw′(ȳi
1

s )−
k+1∑
j=2

(ρsw
′(ȳi

j

s )− ρsw′(ȳi
j−1

s )) = 0.

Thus ȳC satisfies all the first-order conditions. It follows that there is no xC such that

xCs ∈ C(Γs, C) for all s ∈ S, and ui(xi) > ui(ȳi) for all i ∈ C.

We show next that ui(x̄i) ≥ ui(ȳi) for all i ∈ C. For all s ∈ S, it follows from the

definition of a rule that
∑

i∈C ȳ
i
s = vs(C) and vs(C) ≤

∑
i∈C x̄

i
s. Using the definition of the

CEA rule it follows that for all s ∈ S and i ∈ C, ȳis ≤ x̄is. Since the utility function is

monotonically increasing, we have that ui(x̄i) ≥ ui(ȳi) for all i ∈ C. Therefore, there is

no xC such that xCs ∈ C(Γs, C) for all s ∈ S, and ui(xi) > ui(x̄i) for all i ∈ C, thereby

showing part (b) of Theorem 3.8.
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2

In cooperative game theory, it is standard to motivate allocation rules by providing

convincing axiomatizations. For bankruptcy games, many appealing axiomatizations exist,

leading to many possible rules. Theorem 4.3 implies that if one cares about enforceability

of rules in the absence of commitment, and one would like to use a rule with a convincing

axiomatization, one should use the Constrained Equal Awards rule.

5 Conclusion

In this paper we have introduced uncertainty into bankruptcy games. Since in reality the

values of assets in a bankruptcy situation, as well as the claims of the players involved, are

uncertain, this is a natural and important extension. In this paper we consider allocations,

which are stable in the absence of commitment possibilities. Stability would mean here

that no coalition has a credible deviation at any decision node. These considerations lead

us to apply the concept of the Weak Sequential Core to stochastic bankruptcy games.

A rule assigns an allocation to each bankruptcy game, where the allocation divides

the estate in such a way that every player gets a non-negative amount not exceeding

his claim. For deterministic bankruptcy games, it is well-known that a rule leads to an

allocation in the core. For a stochastic bankruptcy game, a rule assigns a state-contingent

allocation with the property that the state-contingent estate is divided in such a way that

every player gets a non-negative amount not exceeding his state-contingent claim. It is

straightforward to apply the well-known allocation rules as suggested in the literature on

deterministic bankruptcy games to the stochastic setting. We demonstrate that none of the

rules typically proposed for bankruptcy situations belongs to the Weak Sequential Core,

with the exception of the Constrained Equal Awards rule.
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