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Abstract

Ely and Peski (2006) and Friedenberg and Meier (2010) provide
examples when changing the type space behind a game, taking a ”big-
ger” type space, induces changes of Bayesian Nash Equilibria, in other
words, the Bayesian Nash Equilibrium is not invariant under type mor-
phisms.

In this paper we introduce the notion of strong type morphism.
Strong type morphisms are stronger than ordinary and conditional
type morphisms (Ely and Peski, 2006), and we show that Bayesian
Nash Equilibria are not invariant under strong type morphisms either.
We present our results in a very simple, finite setting, and conclude
that there is no chance to get reasonable assumptions for Bayesian
Nash Equilibria to be invariant under any kind of reasonable type
morphisms.
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1 Introduction

In incomplete information situations the uncertainties about the situation
and about the players’ information about the situation etc. are modeled
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by types (Harsányi, 1967-68). A type gives the complete description of the
players’ epistemological and non-epistemological characteristics, that is, of
what the players believe about the situation, what the players believe about
the other players’ beliefs about the situation, and so on to infinity, and
the players’ preferences, tastes among others. The formal definition of type
spaces is introduced by Heifetz and Samet (1998).

Incomplete information situations can be modeled by Bayesian games. A
Bayesian game, more precisely its description, encapsulates the descriptions
of the players’ epistemic and non-epistemic properties, that is, it contains
a type space (see Definition 3). Concrete problems, situations, ”call for”
concrete type spaces. However, it can happen that the modeler misses a
type, so the applied model (Bayesian game and the corresponding type space)
is inadequate. Then it is necessary to incorporate the missed type into the
Bayesian game, that is, to consider a type space which contains the previously
missed type too.

In general, a modeler never can be sure that she does not miss any type,
so it is recommended to work with a universal type space (Heifetz and Samet,
1998), with a type space which encapsulates all types. It is well known that
whether a universal type space exists or not depends on the model setting
(Heifetz and Samet, 1998; Pintér, 2010). In this paper we ignore this problem,
since in the simple setting we apply, this problem is not relevant1.

A type space is bigger than an other type space if the former contains
all types of the latter. Formally, type space T1 is broader (bigger) than type
space T2 if there is a type morphism from type space T2 to type space T12;
where the type morphism is a function, which maps the types of a type space
into an other type space (see Definition 2).

In other words, if a model misses a type, then we have to take a bigger
type space (a type space into which the original type space can be mapped
by a type morphism) which encapsulates the missed type.

The Bayesian Nash Equilibrium is introduced by Harsányi (1967-68), and
it is a commonly used solution concept for Bayesian (incomplete information)
games. By an example Ely and Peski (2006) demonstrate that even if two
type spaces induce the same beliefs hierarchies for the players, the Bayesian
Nash Equilibria can be different in the two games with the different type
spaces Friedenberg and Meier (2010) also notice that if we change the type
space in a Bayesian game to a bigger type space, then the Bayesian Nash

1We mean the purely measurable and the topological settings coincide in our simple
setting.

2Notice that it is common in mathematics to use mappings for comparing sets (objects).
E.g. set A is “bigger“ than set B, i.e. A has more elements than that B has, if there is
an injective mapping from set B to set A.
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Equilibria may change. In other words, examples show that the Bayesian
Nash Equilibrium is not invariant under type morphisms.

Furthermore, we can see an interesting duality. While in simple models,
for Bayesian games with ”simple” type spaces, we can give the Bayesian Nash
Equilibria, in these models we never can be sure that all relevant types are
considered. However, if we consider the universal (or a ”big”) type space,
when we can be sure that we do not miss any relevant type, then we get a
Bayesian game (with the universal or a ”big” type space) for which we can
hardly give the Bayesian Nash Equilibria.

An attempt to get invariance is made by Ely and Peski (2006) who intro-
duce conditional type morphisms (the authors call it type morphism which
preserves conditional beliefs). By the conditional type morphisms less type
spaces are related to each other, so there is smaller chance for violating the
invariance. We must mention that Ely and Peski (2006)’s goal is not to
ensure the invariance of Bayesian Nash Equilibrium, so our results are not
directly related to theirs.

We also remark that as the above mention papers (except Harsányi (1967-
68)), the literature of type spaces use advanced mathematical tools (see
Mertens and Zamir (1985); Brandenburger and Dekel (1993); Heifetz (1993);
Mertens et al. (1994); Heifetz and Samet (1999); Battigalli and Siniscalchi
(1999); Pintér (2005); Dekel et al. (2006, 2007) among others)

In this paper we introduce the notion of strong type morphism (see Def-
inition 6). The strong type morphism is stronger than the (ordinary) type
morphism and the conditional type morphism (Ely and Peski, 2006), it pre-
serves not only the hierarchies of beliefs and the conditional hierarchies of
beliefs of the players, but it does the ”aggregated” beliefs of the players as
well. By ”aggregated” beliefs we mean that if players pool their information,
then they can refine their beliefs, they can use an ”aggregated” belief which
reflects all information the considered players have. The strong type mor-
phism is a very strong concept, it relates two states of the world in two type
spaces only if at the two considered states of the world the players pooled
(aggregated) information is the same.

By an example we demonstrate that the Bayesian Nash Equilibria are not
invariant under strong type morphisms either. Therefore, since in our opinion
the strong type morphism is the strongest reasonable type morphism notion,
we conclude that there is no relevant concept of type morphisms under which
the Bayesian Nash Equilibrium is invariant.

Therefore, contrary to the notions of interim correlated and interim inde-
pendent rationalizable actions which are invariant under ordinary and con-
ditional type morphisms (in the two player case) respectively – see Dekel et
al. (2007) for interim correlated rationalizability and Ely and Peski (2006)
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for interim independent rationalizability – the Bayesian Nash Equilibrium is
a problematic solution concept for incomplete information games.

Furthermore, we provide all results and concepts in a simple, finite game
and finite type space setting. By doing so (1) we make our results accessible
for readers who are not familiar with advanced mathematics (e.g. with mea-
sure theory), (2) we demonstrate that the discussed problem (the invariance
of Bayesian Nash Equilibrium) does not call for tools of advanced mathemat-
ics, and last but not least, (3) we can avoid certain technical difficulties.

In point (3) above, we refer to the following problem. When we introduce
a type morphism which work with not only beliefs, but conditional beliefs,
or aggregated beliefs, then we should introduce these concepts for the type
spaces too. In the abstract settings (see e.g. Heifetz and Samet (1998); Pintér
(2010)) it could be very difficult to introduce conditional and aggregated
beliefs. In the finite setting we consider, we can introduce these notions
(conditional beliefs and aggregated beliefs) in very simply ways and forms.

The setup of the paper is as follows: in Section 2 we introduce the main
notions of type spaces, Bayesian games and type morphisms. Section 3
presents the main results. The last section briefly concludes.

2 Type spaces and other notions

Harsányi (1967-68) introduces the notion of types so as to avoid that the play-
ers’ hierarchies of beliefs3 come in models explicitly. A type of a player gives
a complete description of the player, it encompasses her all relevant beliefs,
knowledges, features and properties. Heifetz and Samet (1998) introduce the
formal concept of type spaces. The type space is a tuple, a mathematical
object, which collects certain types of the players, and explicitly gives the
players’ beliefs at their types.

In the following definition we present the notion of type spaces we use in
this paper.

Definition 1. A type space based on parameter space P is a tuple (P, {Ti}i∈N ,
Π) such that

• P is the non-empty, finite parameter set,

• Ti is the non-empty, finite type set of player i, i ∈ N ,

• Π is a probability distribution on P × T , it is called common prior,

3Harsányi (1967-68) calls them ”infinite regress in reciprocal expectations”.
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where N = {1, 2, . . . , n} is the player set, and T = ×i∈NTi.

Parameter set P is a set containing all states of nature, that is, it consists
of parameters which are relevant for the modeled situation, but cannot be
assigned to any player. In this paper we assume that the parameter set is
finite, and every subset of it is an event, put it differently, the players are
capable of recognizing (naming) any subset of P .

Ti is the type set of player i, it consists of parameters which are relevant
for the modeled situation and can be assigned to player i. Typically, the
players’ taste and beliefs are represented by types. We can also say that the
parameter set P is the type set of the nature, in this sense the nature is a
player. As in the case of the parameter set, we assume that the type sets are
finite sets, and every subset of a type set is an event.

The space P × T is the state space, its points are the states of the world.
Each state of the world is a complete description of a possible state: of the
state of nature (the component belonging to P ) and of the players’ types (the
components belonging T ). Therefore, at state of the world (p, t) ∈ P × T ,
where t = (t1, t2, . . . , tn), p is the state of nature, and ti is the type of player
i.

Harsányi (1967-68) assumes a common prior from which the players’ be-
liefs can be deduced. The assumption of common prior is also called Harsányi
Doctrine. The Harsányi Doctrine’s philosophical basis is well discussed in the
literature (see e.g. the original paper Harsányi (1967-68)), so we do not dis-
cuss it here. The common prior assumption heavily restricts the class of type
spaces we can consider. In this paper, however, it is enough to consider this
narrow class of type spaces, because any counterexample in this setting is
valid in the general setting (Heifetz and Samet, 1998) as well.

In this paper we assume that each type has positive Π-probability, that
is, for each player i and type ti ∈ Ti

Π(P × T1 × · · · × Ti−1 × {ti} × Ti+1 × · · · × Tn) > 0 . (1)

By Assumption (1) we avoid technical difficulties and can provide our
message in a simple setting. If player i’s type is ti ∈ Ti, then player i’ belief
at type ti is given by the probability distribution Π(· | P × T1 × · · ·Ti−1 ×
{ti} × Ti+1 × · · ·Tn), which is a conditional distribution. Put it differently,
for any event A ⊆ P ×T , player i believes at type ti that event A occurs (by
Bayes’ rule) with probability

Π(A | P × T1 × · · · × Ti−1 × {ti} × Ti+1 × · · · × Tn)

=
Π(A ∩ P × T1 × · · · × Ti−1 × {ti} × Ti+1 × · · · × Tn)

Π(P × T1 × · · · × Ti−1 × {ti} × Ti+1 × · · · × Tn)
.
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Therefore, for each player at each type the type space tells us what the
player believes. For each player we can define a function τi : Ti → ∆(P ×
T−i), where ∆ is the set of probability distributions (measures) and T−i =
×j∈N\{i}Tj, which gives what player i believes at her types. We call function
τi player i’s type function.

In the general setting (see e.g. Heifetz and Samet (1998); Pintér (2010))
type spaces contain type functions instead of priors. It is because, in general,
even if the players’ have priors we cannot apply Bayes’ rule to get the type
functions since usually the probability of a type is zero (the denominator is
zero in Bayes’ rule). Therefore, our definition of type space (see Definition
1) is purely a simplified version of the general definition of type space (see
Heifetz and Samet (1998)), and it reflects the same intuitions as that the
general notion does.

When we would like to compare two type spaces, intuitively, we can say
that a type space is bigger than an other, if it contains every type the other
does. Moreover, as in the case of sets, where the cardinality of sets are related
to each other by functions, in this case we also use functions to establish
relations between type spaces. These functions are called type morphisms.

Definition 2. Mapping (idP , ϕ) – which is the product mapping of the iden-
tity mapping on P and ϕ = (ϕi)i∈N , ϕi : Ti → T ′i , i ∈ N – is a type morphism
between type spaces T = (P, {Ti}i∈N ,Π) and T ′ = (P, {T ′i}i∈N ,Π′), if for each
player i ∈ N , type ti ∈ Ti and set A ⊆ P × T ′

Π′(A | P × T ′1 × · · · × T ′i−1 × {ϕi(ti)} × T ′i+1 × · · · × T ′n)

= Π((idP , ϕ)−1(A) | P × T1 × · · · × Ti−1 × {ti} × Ti+1 × · · · × Tn) .
(T1)

The type morphism formalizes the intuition that player i has the same
information at types ti ∈ Ti and ϕi(ti) ∈ T ′i . However, when one considers
players’ information, we can mean different things by the word information.
Usually (Heifetz and Samet, 1998), we say that player i has the same beliefs
at types ti ∈ Ti and ϕi(ti) ∈ T ′i . More precisely, player i’s belief hierarchies
at types ti ∈ Ti and ϕi(ti) ∈ T ′i coincide.

Therefore, a type morphism maps states of the world of a type space to an
other type space’s states of the world in the way that it preserves the players’
hierarchies of beliefs. It is worth noticing, however, that type morphisms
preserve not only the belief hierarchies but more. Ely and Peski (2006)’s
example (in the Introduction) clearly shows this fact. In that example Ely
and Peski (2006) give two different type spaces in which every type induces
the same belief hierarchy, that is, all types in the two type space represent
the same belief hierarchy. Then they put the type space in a Bayesian game
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and show that the Bayesian Nash Equilibria are different in the two games.
However, even if the two considered type space represent the same belief
hierarchy, those are not equal by type morphisms, that is, one of the two is
strictly bigger than the other, we can type-map the smaller into the bigger,
but cannot the bigger into the smaller. Therefore, even if the two type spaces
represent the same belief hierarchy those are not equal by type morphism,
that is, type morphism preserve not only the belief hierarchies, but something
more. For further discussion on this topic see Friedenberg and Meier (2011).

As a consequence of that type morphisms do not only preserve belief
hierarchies, we can say that our results are different from Ely and Peski
(2006)’s and Sadzik (2010)’s results who focus on the problem that the belief
hierarchies are not sufficient to determine interim correlated rationalizable
actions and Bayesian Nash Equilibria respectively. In this paper, however,
we focus on type morphisms and not on belief hierarchies, and consider type
spaces which may reflect different (hierarchies of) beliefs for the players.

Back to the discussion of the intuitions lying behind the notion of type
morphisms, by type morphisms we can compare type spaces. We say that
type space T ′ is bigger than type space T , if there is a type morphism from
type space T to type space T ′. As we mentioned it in the Introduction, miss-
ing relevant types is an important issue in modeling incomplete information
situations. If we want to put a missing type in the model, then we have to
give a type space, which is bigger than the previously used and encompasses
the missing type. In this finite setting, it is easy to incorporate missing types
in a model.

We emphasize that, even if the notion of type morphisms used in this
paper is different from the general concept introduced by Heifetz and Samet
(1998), both formulations capture the same idea, so we do not depart from
the main stream of discussing type spaces and type morphisms.

Next, we introduce notion of Bayesian game, the model of incomplete
information situations we consider in this paper.

Definition 3. A Bayesian game is a tuple (N, {Ai}i∈N , {Si}i∈N , {ui}i∈N , T )
such that

• N is the non-empty, finite set of players,

• Ai is the non-empty, finite action set of player i, i ∈ N ,

• si : Ti → Ai is a strategy of player i, Si is player i’s strategy set, i ∈ N ,

• ui : P × A→ R is the payoff function of player i, i ∈ N ,

• T is a type space,
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where A = ×i∈NAi.

The definition above is a simple textbook definition of Bayesian games
(see e.g. Mas-Colell et al. (1995)) except that instead of giving the type sets
and the common prior explicitly, we refer to the type space encompassing
those.

Harsányi (1967-68) introduces also the notion of Bayesian Nash Equilib-
rium.

Definition 4. Strategy profile s∗ ∈ S = ×i∈NSi is a Bayesian Nash Equilib-
rium in Bayesian game (N, {Ai}i∈N , {Si}i∈N , {ui}i∈N , T ), if for each player
i ∈ N and strategy si ∈ Si∫

P×T

ui(s
∗) dΠ ≥

∫
P×T

ui(si, s
∗
−i) dΠ ,

where (si, s
∗
−i) = (s∗1, s

∗
2, . . . , s

∗
i−1, si, s

∗
i+1, . . . , s

∗
n)4.

It is well-known that in this finite setting the two notions of Bayesian
Nash Equilibrium – first when it is defined as a Nash Equilibrium in the ex-
ante strategic form, and second when it is defined as a Nash Equilibrium in
the interim strategic form – coincide. Therefore, our results are meaningful
for both approaches.

Furthermore, it follows from the above definitions that in this paper we
do not allow the players to play mixed actions, so we do not consider mixed,
but pure Bayesian Nash Equilibria. This assumption also helps us to keep
the setting simple, to avoid (unnecessary) technical difficulties. As we dis-
cuss it in Subsection 3.1 that we use pure Bayesian Nash Equilibria instead
of the more general mixed Bayesian Nash Equilibria has no impact on the
message of this paper. Our results are valid in any reasonable general setting,
including the setting when one considers mixed Bayesian Nash Equilibria.

3 Results

In this section we present an example for Bayesian Nash Equilibria being not
invariant under type morphisms. Even if the example is very simple, it grabs
the very essence of the problem, and clearly shows that there is no chance
for assumptions ensuring the invariance of Bayesian Nash Equilibria under
type morphisms.

4It is worth noticing that in the above definition ui(s
∗) is a composite function.
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3.1 Invariance under ordinary type morphisms

First, we take (ordinary) type morphisms (see Definition 2).

Example 5. Consider a 2 × 2 game, and let the parameter space (which
contains the basic uncertainties of the model, the states of nature) be P
= {θ1, θ2}, the payoffs be given by Tables 1 and 2.

Player 2
L R

Player 1
U
D

(0,0)
(0,0)

(0,0)
(0,0)

Table 1: The state of nature is θ1

Player 2
L R

Player 1
U
D

(0,1)
(1,0)

(1,0)
(0,1)

Table 2: The state of nature is θ2

Type space 1: Consider the following type space T1 = (P, {{ti}}i=1,2,Π),
where

Π({x}) =

{
1, if x = (θ1, t1, t2)
0 otherwise

,

that is, it is commonly believed that the actual state of nature is θ1
5. There-

fore, it is enough to consider the game in Table 1, so every strategy profile
((s1 = U, s2 = L), (s1 = U, s2 = R), (s1 = D, s2 = L), and (s1 = D, s2 = R))
is a Bayesian Nash Equilibrium.

Type space 2: Consider the following type space T2 = (P, {{t1i , t2i }}i=1,2,
Π′), where

Π′({x}) =

{
1
2
, if x = (θ1, t

1
1, t

1
2) or x = (θ2, t

2
1, t

2
2)

0 otherwise
,

5We mean both players believe with probability one that the state of nature is θ1, both
players believe with probability one that the other player believes with probability one
that the state of nature is θ1, and so on to infinity.

9



that is, at type profile (t11, t
1
2) it is commonly believed that the state of the

world is (θ1, t
1
1, t

1
2), and at type profile (t21, t

2
2) it is commonly believed that

the state of the world is (θ2, t
2
1, t

2
2).

Since at type profile (t21, t
2
2) it is commonly believed that the players play

a game having no Nash Equilibrium, there is no Bayesian Nash Equilibrium
in this game.

Let mapping ϕ = (ϕi)i=1,2 be defined as ϕi(ti) = t1i , i ∈ N . Then, it is a
slight calculation to see that (idP , ϕ) is a type morphism from type space T1
to type space T2.

Since at type space T1 there are four Bayesian Nash Equilibria and at type
space T2 there is no Bayesian Nash Equilibrium, we can conclude that the
Bayesian Nash Equilibrium is not invariant under (ordinary) type morphisms.

As we have mentioned earlier, in this paper we do not allow the players
to play mixed actions, that is, we consider pure Bayesian Nash Equilibria
(see Definition 4). It is obvious, however, that all results and anomalies we
present in this paper remain valid in a more complex setting, where e.g.
mixed Bayesian Nash Equilibria are considered. The more complex setting
could only make the discussion more technical, it could not add anything to
the message of this paper.

In order to demonstrate this argument, consider the following example.
Take two complete information game, one where at each action profile all
players get 0 payoff, and an other in which there is no mixed Nash Equilib-
rium. Then in the first game there are many Nash Equilibria, more precisely,
every strategy profile is a Nash Equilibrium. Moreover, w.l.o.g. we can as-
sume that in the two games the players’ sets coincide and so do the strategy
sets6. Let the parameter set (P ) consist of states: θ1 represents the case
when the first (the trivial) game is played, and θ2 stands for the case when
the second game (having no mixed Nash Equilibrium) is played.

Consider the two following type spaces: first when each player has only
one type, and it is commonly believed that the players play the first game,
that is, it is commonly believed that the state of nature is θ1. In this game
there are many Bayesian Nash Equilibria7.

The second, when each player has two types, we refer to the types as the
first type and as the second type of a given player. Moreover, at the type
profile, where each player’s type is the first type, let commonly believed that
the state of the world is that where the state of nature is θ1, and the type

6Notice that, we can define the first game as it is played by the players of the second
game, and the players’ strategies are also coincide with the strategies of the second game.
The two games differ only in the payoffs.

7The analogy with type space T1 of Example 5 is clear.
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profile is as it is. Therefore, at the ”first type” type profile it is commonly
believed that the players play the first (trivial) game. At the type profile,
where each player’s type is the second type, let commonly believed that
the state of the world is that where the state of nature is θ2, and the type
profile is as it is. Therefore, at the ”second type” type profile it is commonly
believed that the players play the second game, the game having no mixed
Nash Equilibrium8.

Therefore, at the first type space there are many Bayesian Nash Equilib-
ria, while at the second type space there is no Bayesian Nash Equilibrium.
Finally, consider the function, which maps the types of the first type space
into the first types of the second type space. Then, it is easy to see that the
product of the identity mapping on the parameter set and this function is a
type morphism9, so we can conclude again that the Bayesian Nash Equilibria
are not invariant under (ordinary) type morphisms.

If we liked to present the above example precisely not only “verbally“,
however, then we would have to define all notions in an abstract setting,
therefore we would care about many technical details, which as the above
discussion clearly shows, is unnecessary for the results of this paper.

3.2 Invariance under strong type morphisms

Ely and Peski (2006) introduce the notion of conditional type morphism.
Conditional type morphisms are type morphisms that preserve not only the
players’ beliefs, but their conditional beliefs too10. Ely and Peski (2006)
consider only the two player setting, where the conditional beliefs of player
i give at each type of player i that what she believes about the parameter
set contingent on the types of the other player. Practically, the conditional
beliefs give what the given player believes about that what information she
and the other player would have together if they pooled their information.
Therefore, in a certain sense, the conditional beliefs are aggregated beliefs of
two given players.

In the following we ”extend” the definition of conditional type morphism
by Ely and Peski (2006), and introduce a notion where not only two, but all
players can pool (aggregate) their information. We call this notion strong
type morphism. In our simple, finite setting, however, it is possible to for-
mulate aggregated beliefs without sophisticated mathematical tools, and we
can ignore certain conceptual aspects either. Since we use type spaces with

8The analogy with type space T2 of Example 5 is obvious.
9The analogy with mapping (idP , ϕ) of Example 5 is apparent.

10We are not precise here, since the conditional type morphisms preserve not only the
players’ conditional beliefs, but their hierarchies of conditional beliefs too.
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common prior, we implicitly assume that all players believe the same about
their aggregated beliefs, that is, e.g. both players i and j believe the same
about what information they would have if they pooled their information.

In order to consider the aggregated beliefs of two or more players we must
have introduced these beliefs in the type spaces too. Doing so, however, may
cause many technical difficulties, but does not add anything new for the
message of the paper. E.g. in type space T2 (see Example 5) the aggregated
beliefs of the players at type profiles (t11, t

1
2) and (t21, t

2
2) are well defined by

the common prior and the Bayes’ Rule. However, at type profiles (t11, t
2
2)

and (t21, t
1
2) this type space says nothing, since the probabilities of these type

profiles are zero, so we cannot apply the Bayes’ Rule. In this case we can
introduce an ”aggregated type” function, fa : T1 × T2 → ∆(P ), into the
model, which tells us the two players’ beliefs about the states of nature at
their type profiles.

At type profiles (t11, t
1
2) and (t21, t

2
2) the common prior tells us the ag-

gregated beliefs of the players, fa(t
1
1, t

1
2)({x}) =

{
1, if x = θ1
0 otherwise

, and

fa(t
2
1, t

2
2)({x}) =

{
1, if x = θ2
0 otherwise

. In the cases of the two remaining

type profiles, however, we must explicitly give the aggregated beliefs, e.g.
let fa(t

1
1, t

2
2)({θ1}) = fa(t

1
1, t

2
2)({θ2}) = fa(t

2
1, t

1
2)({θ1}) = fa(t

2
1, t

1
2)({θ2}) = 1

2
,

that is, the players believe at both considered type profiles that both states
of nature occur with equal probability.

In order to avoid giving the technically non trivial definition of “extended“
type spaces (which encapsulate aggregated beliefs), we define the notion of
strong type morphism as follows:

Definition 6. Mapping (idP , ϕ) – which is the product mapping of the iden-
tity mapping on P and ϕ = (ϕi)i∈N , ϕi : Ti → T ′i , i ∈ N – is a strong type
morphism between type spaces T = (P, {Ti}i∈N ,Π) and T ′ = (P, {T ′i}i∈N ,Π′),
if for each set of players S ⊆ N , S 6= ∅, types ti ∈ Ti:

Π(P × {tS} × T−i) > 0 , (S1)

and for any set A ⊆ P × T ′:

Π′(A | P × {ϕS(tS)} × T ′−S) = Π((idP , ϕ)−1(A) | P × {tS} × T−S) , (2)

where tS = ×i∈S{ti}, T−S = ×i∈N\STi and ϕS = ×i∈Sϕi.

Intuitively, strong type morphisms preserve not only the players’ beliefs
and conditional beliefs, but their aggregated beliefs too. In other words,
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a strong type morphism maps a type profile to such an other type profile
at which the players have the same aggregated information (as that at the
original type profile). In our setting with two players Ely and Peski (2006)’s
conditional type morphism and the strong type morphism coincide. On the
other hand, in our setting we deviate from Ely and Peski (2006)’s more
technical definition in two points:

(1) In point (S1) we require that a strong type morphism can take only
type spaces as domain where the common prior determines the aggregated
beliefs. This is because we do not want to introduce the notion of an ”ex-
tended” type space. Point (2) also imposes a requirement on the involved
type spaces, it says (among others) that at the type profiles in the range of
a strong type morphism the aggregate beliefs must be deducible from the
common prior. It is clear that in a general setting, e.g. in Ely and Peski
(2006)’s setting, much more type space can be related than that in our set-
ting. Therefore, our results are valid in any reasonable general setting as
well.

(2) An other, but minor point is that in Ely and Peski (2006)’s approach
different players can have different aggregated beliefs at the same type profile.
In our example, we give only one aggregated beliefs for the two players in
type space T1 (of Example 5). First, as we said in Point (1) we do consider
aggregated beliefs deducible from the common prior. Second, since we assume
a common prior, it is very natural to suppose that the aggregated beliefs of
the two players are the same. We mean, this implicit assumption fits the
setting we consider.

It is easy to see that strong type morphisms are stronger than (ordinary)
type morphisms. That is, if there is a strong type morphism from type space
T to type space T ′, then that is also an ordinary type morphism between
the two type spaces.

It is also straightforward that type morphism ϕ in Example 5 is a strong
type morphism from type space T1 to type space T2. To sum up, Bayesian
Nash Equilibria are not invariant under strong type morphisms either. More-
over, since in the two player setting the notions of strong morphism and of
Ely and Peski (2006)’s conditional type morphism coincide, we can also con-
clude that Bayesian Nash Equilibria are not invariant under conditional type
morphisms either.

Finally, we close our discussion with some remarks on a related paper,
on Friedenberg and Meier (2010). Friedenberg and Meier (2010) give two
results on invariance of Bayesian Nash Equilibria under type morphisms (see
Proposition 7.1 on p. 23 and Section 8). They assume that either (i) the
two involved type spaces can differ in only countably many types or (ii) each
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type has positive probability under the common prior11. Since Friedenberg
and Meier (2010) work in general setting, we compare the general setting
consequences of our results to their results.

As we have already mentioned in the Introduction, there is an interesting
duality in the relation of Bayesian Nash Equilibria and type spaces. For
Bayesian games with simple type spaces we can determine the set of Bayesian
Equilibria, but in this case we cannot be sure that we do not miss (important)
types. If we consider a “big“ (the universal if it exists) type space (Heifetz and
Samet, 1998), then we can be sure that we do not miss any type, however
for Bayesian games with a ”big” type space we can hardly give the set of
Bayesian Nash Equilibria.

Considering Friedenberg and Meier (2010)’s results we can see the follow-
ings. If we take a “big“ (the universal if it exists) type space, then any type
space differing from it in only countable many types is so big (practically as
big as the “big“ is) that we can hardly determine the Bayesian Nash Equi-
libria. Put it differently, Friedenberg and Meier (2010)’s Result (i) does not
answer the problem of how we can make conclusions about Bayesian Nash
Equilibria for big type spaces from simple, easy to handle type spaces.

Furthermore, the interesting (”big”) type spaces are uncountably infinite
type spaces, so it is impossible that each type has positive probability by the
common prior. Therefore, Friedenberg and Meier (2010)’s positive Result
(ii) is not a solution for the problem we consider in this paper either.

However, it is also worth mentioning that Friedenberg and Meier (2010)’s
goal is different from ours, they show that even if an analyst works with
the universal type space (or a ”big” type space, since the universal type
space might not exist), her predictions will not coincide with the players’
own predictions (assuming they know more and can preclude certain types).
This is an alternative way to consider the problem discussed in this paper.

4 Conclusion

In this paper we have showed that Bayesian Nash Equilibria are not invariant
under type morphisms. We have presented our results in a very simple,
finite setting, by doing so we have demonstrated that this problem can be
examined without any heavy mathematical tools. The example we have
provided clearly shows that there is no chance for assumptions ensuring the
invariance of Bayesian Nash Equilibria under either ordinary or conditional
or strong type morphisms.

11Friedenberg and Meier (2010) use mixed Bayesian Nash Equilibria, so our results do
not contradict with their results.
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Our conclusion is as follows: contrary to the notions of interim correlated
and interim independent rationalizable actions which are invariant under
ordinary and conditional type morphisms respectively (see (Dekel et al., 2007;
Ely and Peski, 2006) respectively)12, the Bayesian Nash Equilibrium is a
problematic solution concept for incomplete information games.
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