
Existence of Pure Strategy Nash Equilibrium
in Bertrand-Edgeworth Oligopolies

Attila Tasnádi
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Abstract: This article is searching for necessary and sufficient conditions
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1 Introduction

We will investigate Bertrand-Edgeworth oligopoly with capacity constraints.
We assume that the oligopolists’ products are homogeneous. Furthermore
we assume that there is no advertising, no possibility of outside entry into
the market, and that the oligopolists possess complete information. In the
Bertrand-Edgeworth game quantities and prices are both decision variables.

For a full specification of the model we need a so-called rationing rule. The
aggregate demand function and the rationing rule together contain enough
information on the determination of the sales of the oligopolists. We will
only consider the two most frequently used rationing rules in the literature:
the efficient and the proportional rationing rules. For a description of these
rationing rules see for example Tirole (1988).

It has been shown for linear demand curves that when capacities are ei-
ther small or large, then the Bertrand-Edgeworth duopoly with capacity con-
straints has an equilibrium in pure strategies (see Tirole (1988) or Wolfstet-
ter (1993)). However, for capacities in an intermediate range, the model only
has an equilibrium in mixed strategies. The mixed strategy equilibrium was
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computed in closed form by Beckman (1965) for proportional rationing and
by Levitan and Shubik (1972) for efficient rationing. Dasgupta and Maskin
(1986) demonstrated the existence of mixed strategy equilibrium in the case
of proportional rationing for demand curves which intersect both axes.

In section 2 we will show that if we impose assumptions on the elasticity
of the demand curve, then pure strategy equilibrium will exist at all capacity
levels in a Bertrand-Edgeworth duopoly. So for a certain class of demand
curves a nondegenerate mixed strategy equilibrium will never arise.

In section 3 we will consider the oligopolistic case. We will show that as
the number of firms increases, the Nash equilibrium price approaches the
oligopolists’ marginal costs. Similar convergence results have been obtained
by Vives (1986) for efficient rationing and by Allen and Hellwig (1986) for
proportional rationing. Due to the assumptions imposed on the demand curve
our proof will be very simple.

2 Duopoly

First we need to specify the class of demand functions we will investigate.

Assumption 2.1 ∀p > 0 : D(p) > 0 and D′(p) < 0.

We denote by ε(p) the price elasticity of the demand curve. Regarding the
oligopolists we make the following assumptions:

Assumption 2.2 There are N oligopolists on the market with zero marginal
costs and 0 < ki capacity constraints (i ∈ [1..N ]). Each of them can set his
price (pi) and quantity (qi) simultaneously.

In this section we will only consider duopolies.
The following proposition formulates a necessary and sufficient condition,

which has to be imposed on the demand curve to guarantee the existence of
pure strategy equilibrium in the case of efficient rationing.

Proposition 2.3 Under the assumptions of 2.1, 2.2 and efficient rationing
we can formulate the statements below about the corresponding Bertrand-
Edgeworth duopoly game:

1. If
∀p > 0 : ε(p) ≤ −1, (1)

then there exists a unique pure strategy Nash equilibrium for all k1 > 0
and k2 > 0. The equilibrium is given by

q∗i = ki and p∗1 = p∗2 = D−1(k1 + k2). (2)

2



2. If D′ is continuous and ∃p > 0 : ε(p) > −1 then there are positive k1

and k2 capacity constraints, such that pure strategy Nash equilibrium
does not exist.

Proof: 1. First we check that (1) implies limp→0 D(p) = ∞. Assume not;
then limp→0 D(p) < ∞ because D is decreasing, and so limp→0 pD(p) = 0
would follow. From (1) we obtain, that pD(p) is nonincreasing on (0,∞).
Hence we get ∀p > 0 : pD(p) ≤ 0, which contradicts the obviously true
∀p > 0 : pD(p) > 0 statement. So we can conclude that a demand curve
satisfying (1) does not cut the horizontal axis. Hence, D−1(k1 + k2) is well
defined and p∗i > 0.

Now we will show that only (2) can be an equilibrium. No equilibrium can
exist with p1 < p2 because, if D(p1) > k1, firm 1 will want to increase its price,
and if D(p1) ≤ k1, firm 2 will wish to reduce its price below p2. Similarly, no
equilibrium is possible with p2 > p1. There cannot be an equilibrium with
p1 = p2 > p∗i , since both firms have the incentive to lower their prices slightly.
It is obvious that a price below p∗i cannot be rational for any firm. Hence, we
can rule out prices below p∗i .

Finally, we have to show that raising prices unilaterally above p∗i will not
increase firm i’s profit. We will show this for firm 1. Therefore we can establish
that the residual profit function for firm 1 using the residual demand func-
tion does not increase in price. Under efficient rationing the residual profit
function is: πr(p) = pDr(p) = p(D(p)− k2) for p > p∗2. The nonpositivity of
the first derivative is a sufficient condition, or formally

dπr

dp
(p) = pD′(p) + D(p)− k2 ≤ 0 ⇔ ε(p) ≤ −1 +

k2

D(p)
. (3)

This inequality is satisfied because of assumption (1).
2. Define the function F (p) := pD′(p)+D(p). We can pick an open interval

I = (a, b) from F−1((0,∞)) and fix any p̃ ∈ I. Obviously we can choose a
capacity 0 < k1 < D(b) for firm 1 such that F (p̃)−k1 > 0. We can verify that
D(p̃) > k1 also holds. So we can set the capacity for firm 2 as k2 = D(p̃)−k1.

Reasoning similar to that in point 1 shows that only pi := p̃ could be an
equilibrium price. But in the case of pi = p̃ firm 2 has an incentive to raise
its price because p̃D′(p̃) + D(p̃)− k1 = F (p̃) > 0. 2

For example the demand function D(p) = p−
1
α , where p ≥ 0 and 0 <

α ≤ 1, satisfies the assumptions of point 1 of proposition 2.3. So for these
the Bertrand-Edgeworth game will have a pure strategy equilibrium.

Assumption 2.1 can be replaced in proposition 2.3 with ∀p > p > 0 :
D(p) > 0, D′(p) < 0 and ∀p ≥ p : D(p) = 0. We have only to consider that
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both firms will set a price below p. We can check that if limp→p−0 D′(p) is
bounded, then limp→p−0 ε(p) = −∞. Hence, there are demand curves that
are price elastic at all price levels and cut the vertical axis. As we already
showed in the proof of proposition 2.3 they cannot cut the horizontal axis.

Dasgupta and Maskin (1986) proved in their third annotation that in case
of random rationing a pure strategy Nash equilibrium may not exist, if the
demand function is price inelastic at the D−1(k1 + k2) price. So an identical
proposition to 2.3 holds for proportional rationing. This can be demonstrated
as proposition 2.3. One difference is that we have to use the

πr(p) = pDr(p) = pD(p)

(
1− k2

D(p∗2)

)
(4)

residual profit function. The other difference is that the nonexistence part can
be shown more easily. Particularly for k1 = k2 = D(p̃)/2 capacity constraints,
there does not exist a pure strategy equilibrium. Allen and Hellwig (1986)
gave also in their proposition 3.1 a necessary and sufficient condition for the
existence of pure strategy equilibrium for proportional rationing.

Considering the proof of proposition 2.3 we can recognize that the se-
lection of such capacity levels for which the Bertrand-Edgeworth game has
no pure strategy equilibria can require the selection of a very small capac-
ity constraint for firm 1. Therefore we can say more in the case of efficient
rationing.

Proposition 2.4 Under the assumptions of 2.1, 2.2, efficient rationing and
assuming that the set of admissible capacities is

Kα := {(k1, k2) ∈ R2 |ki > 0,
ki

k1 + k2

≥ α, i = 1, 2} (5)

for some 0 < α ≤ 1
2
, we can make the following statements about the corre-

sponding Bertrand-Edgeworth duopoly game:

1. If
∀p > 0 : ε(p) ≤ −1 + α (6)

then there exists a unique pure strategy Nash equilibrium for all
(k1, k2) ∈ Kα. The equilibrium is given by (2).

2. If D′ is continuous and

∃p > 0 : ε(p) > −1 + α (7)

then there are (k1, k2) ∈ Kα so that pure strategy equilibrium does not
exist.
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Proof: 1. As in the proof of proposition 2.3 we have to show that (6) implies
limp→0 D(p) = ∞. First we have to prove that limp→0 Dr(p) = ∞. By using
now the residual demand function we can do this similarly to the proof of
proposition 2.3. From that limp→0 D(p) = ∞ follows immediately.

As we have already seen in the proof of proposition 2.3 the only candidate
for an equilibrium price is p∗ := p∗1 = p∗2. We have to show that raising prices
unilaterally above p∗i does not increase firm i’s profit. We will prove this for
firm 1. Again, condition (3) has to be verified. But (3) is satisfied, because we
have for all p > p∗2 : D(p) < k1 + k2 and in consideration of our assumption
(6)

ε(p) ≤ −1 + α ≤ −1 +
k2

k1 + k2

< −1 +
k2

D(p)
(8)

holds for all (k1, k2) ∈ Kα. So we can conclude that it is not worthwhile for
firm 1 to set its price above p∗1.

2. Define the function G(p) := pD′(p) + (1 − α)D(p). G is continuous.
Therefore, we can pick an open interval I = (a, b) from G−1((0,∞)), because
we assumed (7). Fix any p̃ ∈ I. Let k1 := αD(p̃) and k2 := (1 − α)D(p̃).
It is obvious that (k1, k2) ∈ Kα and D(b) < k1 + k2 < D(a). But now in
the case of p1 = p2 = p̃ firm 2 has an incentive to raise its price because
p̃D′(p̃) + D(p̃)− k1 = G(p̃) > 0. 2

Restricting the capacities to Kα implies that one firm’s capacity could not
be arbitrarily small relative to the other firm’s capacity. This restriction is
quite acceptable for some α because if we want to model a duopoly, then we
essentially will not be interested in a market in which one firm is relatively
negligible with respect to the other firm.

The result of proposition 2.4 is that as long as the size of both firms is
significant relative to each other, we can assure the existence of pure strategy
equilibrium even if the demand curve has price elastic parts. This result
is considerable because we now know that there are demand curves with
price elastic parts and with corresponding ranges of capacities for which the
Bertrand-Edgeworth game possesses equilibrium in pure strategies, such that
even a monopoly without capacity constraint has a profitmaximizing price.
Particularly when α = 1

2
the two firms have the same capacity.

One must also be aware that efficient rationing cannot be replaced by
proportional rationing in proposition 2.4.

3 Oligopoly

We can state analogous propositions to those in section 2 for oligopolies.
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Proposition 3.1 Under the assumptions of 2.1, 2.2, the continuity of D′

and efficient or proportional rationing the Bertrand-Edgeworth oligopoly
game has a unique pure strategy Nash equilibrium for all ki > 0 capacities, if
and only if the demand curve satisfies (1). If (1) holds, then the equilibrium
is ∀i ∈ [1..N ] :

q∗i = ki and p∗i = D−1(
N∑

i=1

ki). (9)

Proof: The proof of sufficiency can be done similarly to the proof in propo-
sition 2.3. We have to prove that if the firms’ prices are not all identical, then
we cannot have a pure strategy equilibrium. Furthermore we have to show
that (9) is an equilibrium.

In order to prove the necessity we can choose for the first N − 1 firms
capacity constraints such that F (p̃) − ∑N−1

i=1 ki > 0. Now we can set the
capacity for firm N as kN = D(p̃)−∑N−1

i=1 ki. It can be verified that firm N
has an incentive to raise its price. 2

Corollary 3.2 If the aggregate capacity
∑

i ki tends to infinity as we increase
the number of oligopolists to infinity, then the equilibrium price approaches
zero, which is assumed to equal the oligopolists’ marginal costs.

Similar results have been obtained by Vives (1986) for efficient rationing and
by Allen and Hellwig (1986) for proportional rationing. Our proof was very
simple because due to our assumptions imposed on the demand curve we did
not have to deal with mixed strategy equilibria.

According to proposition 2.4 we can state more in the case of efficient
rationing and equal capacities.

Proposition 3.3 Under the assumptions of 2.1, 2.2, the continuity of D′,
efficient rationing, and equal capacities (k) our Bertrand-Edgeworth oligopoly
game has a unique pure strategy Nash equilibrium for all k > 0, if and only
if

∀p > 0 : ε(p) ≤ −1 +
1

N
. (10)

If (10) holds, then the equilibrium is given by ∀i ∈ [1..N ] :

q∗i = k and p∗i = D−1(Nk). (11)

Proof: The proof is analogous to that of proposition 2.4. 2

To guarantee the existence of a pure strategy Nash equilibrium at all
capacity levels under the assumptions of proposition 3.3, we need not assume
a price elastic demand curve. But the more oligopolists we have, the less
demand curves secure equilibrium at all capacity levels.

6



4 Conclusions

We have shown that for a special class of demand functions the lack of pure
strategy equilibrium does not arise in the Bertrand-Edgeworth game with
capacity constraints. Furthermore for demand functions outside of this class
there always can be found capacity constraints, such that pure strategy equi-
librium does not exist. However demand functions in this special class do not
intersect the horizontal axis. For efficient rationing and equal capacities they
still can be price elastic.
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