
Which rationing rule does a single
consumer follow?∗

Attila Tasnádi†
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Abstract

We will investigate the amount of residual demand in a market consisting
of only one consumer and two producers. Since there is only one consumer, we
cannot really speak about a rationing rule, but we can ask ourselves whether
a known rationing rule reflects the consumer’s utility maximizing behavior.
We will show that, if the consumer has a Cobb-Douglas utility function, then
the amount purchased by the consumer from the high-price firm lies between
the values determined according to the efficient rationing rule and the random
rationing rule. We will show further, that if the consumer has a quasilinear
utility function, then in the economically interesting case his residual de-
mand function will be equal to the residual demand function under efficient
rationing.

1 Introduction

In Bertrand-Edgeworth duopolies quantities and prices are both decision variables.
At first sight the simultaneous admittance of these two control variables leads to
an underspecified model. Particularly, in the context of partial equilibrium analysis,
where the consumers’ side of the duopoly market is given by the aggregate demand
curve, we can not determine the quantity demanded from the high-price firm. The
missing item in the model is called a rationing rule. The aggregate demand function
and the rationing rule together contain enough information to determine the sales
of both duopolists. The only case in which the knowledge of the aggregate demand
curve suffices is when the low-price firm covers the entire market. In Bertrand-
Edgeworth type duopolies the low-price firm typically is not able or not interested
in covering the entire market at the low-price. The cause for this behavior can be
either capacity constraints or a U-shaped marginal cost functions.

There are many applicable rationing rules, but the two most frequently used
rationing rules are the so called random rationing rule and the efficient rationing
rule.
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2 Rationing rules

First we give a formal definition of a rationing rule. Let us denote the set of the
admissible demand curves with D ⊂ IR

IR+

+ .

Definition 1. A function is called a rationing rule if it assigns to every admissible
demand function and to the duopolists’ every quantity and price choices the saleable
amount of products. Formally a rationing rule is a h : D × IR2

+ × IR2
+ → IR2

+ function.

It is of main interest to find reasonable rationing rules. We will only discuss the
two main rationing rules, namely the random and the efficient one.

In case of the random rationing rule the ratio of the satisfied demand at the low-
price to the entire demand remains constant for all price levels above the low-price.
In fact from the definition below the ratio is 1− qi/D(pi).

Definition 2. A rationing rule h : D × IR2
+ × IR2

+ → IR2
+ is called random, if

∀j ∈ [1..2] :

hj(D, p1, p2, q1, q2) :=


D(pj) if pj < pi, i 6= j;

qj

q1+q2
D(pj) if pj = pi, i 6= j;

max
(
(1− qi

D(pi)
)D(pj), 0

)
if pj > pi, i 6= j.

By the efficient rationing rule the consumer with a higher reservation price is
served before a consumer with a lower reservation price. Therefore, if we shift the
demand curve leftward by the amount of sales at the low-price, then we will obtain
the residual demand curve. This rationing rule is called efficient because at given
prices and quantities it maximizes consumer surplus (see Tirole (1988)). Let us give
also a formal definition for the efficient rationing rule.

Definition 3. A rationing rule h : D × IR2
+ × IR2

+ → IR2
+ is called efficient, if

∀j ∈ [1..2] :

hj(D, p1, p2, q1, q2) :=


D(pj) if pj < pi, i 6= j;

qj

q1+q2
D(pj) if pj = pi, i 6= j;

max(D(pj)− qi, 0) if pj > pi, i 6= j.

For market situations in which the application of the efficient or the random
rationing rule is reasonable see, for example, Allen and Hellwig (1986), Gelman and
Salop (1983), Tirole (1988) and Wolfstetter (1993).

3 The behavior of a single consumer market

Now we turn to the case, where the demand side of the market contains only one
consumer. We have now two possibilities to determine the residual demand of the
single consumer. First, given the microeconomic theory of consumer behaviour, we
can formulate and solve the adequate consumer’s utility maximizing problem explic-
itly for a given type of utility function. Second, we can determine the consumer’s
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residual demand from the consumer’s individual demand with the help of an ex-
plicitly chosen rationing rule. Of course the first method gives the right solution
for the residual demand. But it is an interesting task to compare the results of the
two methods. Of course, we cannot really speak about a rationing rule in a single
consumer market, but we ask ourselves, which rationing rule is applicable.

Now we formulate of our problem. Following the main oligopolistic literature, our
analysis will be of partial nature. Our consumer’s utility function is U(x, m), where x
is the amount consumed from the duopolists’ product and m is his consumption from
a composite commodity, which we call from now on simply money. Furthermore, we
assume that U is twice continuously differentiable, Ux > 0, Um > 0. We denote with
m our single consumer’s amount of money and assume that this value is strictly
positive. Assuming the first firm to be the low-price firm (p1 < p2), our consumer’s
utility maximizing problem takes the form as below:

U(x1 + x2, m− p1x1 − p2x2) → max
x1 ≤ q1

p1x1 + p2x2 ≤ m
x1, x2 ≥ 0

(1)

The purchased amount of products from firm 1 and 2 are denoted by x1 and x2.
From our consumer’s utility function we can derive his demand function. So we

can determine the residual demand function belonging to a given rationing rule.
To compare the residual demand function obtained by the second method with the
solution of problem (1) is quite demanding, perhaps even impossible, because for
general utility functions we can not solve problem (1) explicitly. But we can get
positive results for special types of utility functions.

3.1 Cobb-Douglas utility function

In the Cobb-Douglas case we can relate the solution to the two main rationing rules.
The results are summarized in the next proposition.

Proposition 1. Assume that there is only one consumer on a duopoly market with
utility function u(x, m) = Axαmβ, where 0 < α, 0 < β and α + β ≤ 1. His money
stock is positive and denoted by m. The duopolists’ prices are given, and let 0 < p1 <
p2. The low-price firm is offering q1 > 0. Then the there exists a unique solution to
the consumer’s utility maximizing problem. Furthermore

1. if

m > p1q1 +
β

α
p2q1, (2)

then the optimal solution will be x∗1 = q1,

x∗2 =
αm− q1(αp1 + βp2)

(α + β)p2

(3)

and x∗2 is lying between the values suggested by the efficient and the random
rationing rule;
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2. if m ≤ p1q1 + β
α
p2q1, then x∗2 = 0.

Proof: Our utility maximizing consumer has to solve the following problem:

A(x1 + x2)
α(m− p1x1 − p2x2)

β → max
x1 ≤ q1

p1x1 + p2x2 ≤ m
x1, x2 ≥ 0

(4)

We can check that the object function is strictly concave because of our restric-
tions imposed on the parameters α and β. Hence, uniqueness is guaranteed. The
Lagrangian belonging to problem (4) is

L(x1, x2, λ1, λ2) = A(x1 +x2)
α(m−p1x1−p2x2)

β−λ1(x1−q1)−λ2(p1x1 +p2x2−m)

and the appropriate Kuhn-Tucker conditions (5) are as follows.

∂L
∂x1

= Aα(x1 + x2)
α−1(m− p1x1 − p2x2)

β−
Aβp1(x1 + x2)

α(m− p1x1 − p2x2)
β−1 − λ1 − λ2p1 ≤ 0

∂L
∂x2

= Aα(x1 + x2)
α−1(m− p1x1 − p2x2)

β−
Aβp2(x1 + x2)

α(m− p1x1 − p2x2)
β−1 − λ2p2 ≤ 0

∂L
∂λ1

= q1 − x1 ≥ 0
∂L
∂λ2

= m− p1x1 − p2x2 ≥ 0 and

x1 ≥ 0, x2 ≥ 0, λ1 ≥ 0, λ2 ≥ 0 and
x1

∂L
∂x1

= 0, x2
∂L
∂x2

= 0, λ1
∂L
∂λ1

= 0, λ2
∂L
∂λ2

= 0.

(5)

Observe that the Kuhn-Tucker conditions are not defined on set

S := {(x1, x2) ∈ IR2
+|p1q1 + p2q2 = m}. ∪ {(0, 0)} (6)

The values in S cannot be optimal, since their associated utility level is zero, but
positive utility levels are obviously attainable. Therefore, λ∗

2 = 0.
1. First let us assume that the optimal solution x∗2 is positive. We will show that

x∗2 > 0 implies x1 > 0 and λ1 > 0. Let us assume that λ1 = 0. Hence, if the first
condition in (5) is satisfied, then the second condition will hold as strict inequality.
Thus, x2 = 0 would follow; a contradiction. Therefore, we conclude λ1 > 0. Now
λ1 > 0 implies x1 > 0 because x1 = q1 holds by the third complementary condition.
Therefore, we have equalities in the first three condition of (5). We now have to look
for nonnegative λ1 fulfilling the first two equalities. From the second equality in (5)
we can get

Aα

p2

(q1 + x∗2)
α−1(m− p1q1 − p2x

∗
2)

β − Aβ(q1 + x∗2)
α(m− p1q1 − p2x

∗
2)

β−1 = 0

From the first equality in (5) the existence of nonnegative λ1 follows because of
p1 < p2. We can express x∗2 from the second equality in (5) and we will get (3). We
can check that condition (2) is equivalent to x∗2 > 0 given in (3). It can be verified
that x∗2 satisfies the budget constraint.

4



Now we show that the value in (3) lies really between the values suggested by

the efficient (xe
2 := D(p2)− q1) and by the random (xr

2 := D(p2)− q1
D(p2)
D(p1)

) rationing
rules. We need the demand function of the Cobb-Douglas utility function

D(p) =
αm

p(α + β)
, (7)

which is well known (see for example Varian (1992)). Hence,

x∗2 = D(p2)− q1

(
α

α + β

D(p2)

D(p1)
+

β

α + β

)
(8)

Now using the fact that D(p2) < D(p1) because of p1 < p2, we can verify that
xe

2 < x∗2 < xr
2 regarding the equalities below.

1 >
α

α + β

D(p2)

D(p1)
+

β

α + β
>

D(p2)

D(p1)
(9)

To complete the proof of the first part of the proposition we still have to show
that if x2 = 0 is a solution of (4), then (2) cannot hold. We have to consider three
cases: x1 = 0, 0 < x1 < q1 and x1 = q1.

(i) x1 = x2 = 0 cannot be a solution to (4) because u(0, m) = 0 and a positive
utility level is attainable.

(ii) If 0 < x1 < q1, then from (5) λ1 = 0 follows immediately. We already know
that λ2 = 0. Solving now for x1, we will get x1 = αm

(α+β)p1
. But substituting this into

the third inequality in (5), we will get a contradiction with (2).
(iii) If x1 = q1, then from the budget constraint we will obtain p1q1 ≤ m. This

is in contradiction with (2).
2. Controversially, let us assume that x2 > 0 is a solution and (2) does not hold.

We already saw in the first part that if x2 > 0 is a solution, then x2 must take the
value given by (3). But by our assumption this has to be positive. Hence, (2) must
hold. Therefore, we obtained a contradiction. 2

Remark 1. Considering equation (8), we can see that if β is close to zero, than our
consumer will act approximately according to the random rationing rule, while if α
is close to zero, than our consumer will act approximately according to the efficient
rationing rule.

3.2 Quasilinear utility function

Now, we assume that the single consumer has a quasilinear utility function. In
particular, his utility function is U(x, m) = u(x) +m. Furthermore, we assume that
u is twice continuously differentiable, u′ > 0 and u′′ < 0. Assuming that the first
firm is the low-price firm (p1 < p2), the consumer’s utility maximizing problem is

u(x1 + x2) + m− p1x1 − p2x2 → max
x1 ≤ q1

p1x1 + p2x2 ≤ m
x1, x2 ≥ 0

(10)
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Let us write down the Lagrangian belonging to problem (10):

L(x1, x2, λ1, λ2) = u(x1 + x2) + m− p1x1− p2x2− λ1(x1− q1)− λ2(p1x1 + p2x2−m)

The object function is twice continuously differentiable, strictly concave and the
constraint functions are convex. Furthermore, Slater’s condition is satisfied because
of the assumptions q1 > 0 and m > 0. Therefore, the Kuhn-Tucker conditions (11)
are equivalent to our problem (10).

∂L
∂x1

= u′(x1 + x2)− p1 − λ1 − λ2p1 ≤ 0 and ∂L
∂x1

= 0, if x1 > 0;
∂L
∂x2

= u′(x1 + x2)− p2 − λ2p2 ≤ 0 and ∂L
∂x2

= 0, if x2 > 0;
∂L
∂λ1

= q1 − x1 ≥ 0 and ∂L
∂λ1

= 0, if λ1 > 0;
∂L
∂λ2

= m− p1x1 − p2x2 ≥ 0 and ∂L
∂λ2

= 0, if λ2 > 0.

(11)

We can obtain the demand function for the quasilinear utility function easily.
The individual demand function of a consumer with a quasilinear utility function is

d(p) =

{
(u′)−1(p), if u′(m/p) < p,

m/p, if u′(m/p) ≥ p.
(12)

Now let us turn back to our original problem (11). As a first step let us regard
the following proposition:

Proposition 2. Assume that 0 < p1 < p2, q1 > 0, there is only one consumer with
money stock m > 0 and utility function U(x, m) = u(x) + m, where u ∈ C2(IR+),
u′ > 0 and u′′ < 0 in the market. Then there exists a unique solution to problem
(10) denoted by x∗1, x∗2. Moreover,

1. if x∗2 > 0, u′(q1 + x∗2) > p2

(a) and u′( m
p1

) ≥ p1, then the consumer behaves according to the random
rationing rule;

(b) and u′( m
p1

) < p1, then the consumer demands even more than determined
by the random rule;

2. if x∗2 > 0 and u′(q1 + x∗2) = p2, then the consumer behaves according to the
efficient rationing rule.

Proof: Let x∗1, x∗2, λ∗
1 and λ∗

2 be a solution of problem (11). Our assumptions about u
assures the existence and the uniqueness of solution x∗1, x∗2 of problem (10), since the
constraint set is nonempty, compact and convex and the object function is strictly
concave.

First, we will show that x∗2 > 1 implies x1 > 0 and λ1 > 0. Let us assume that
λ1 = 0. Hence, if the first condition in (11) is satisfied, then the second condition
will hold as strict inequality. Thus, x2 = 0 would follow; a contradiction. Therefore,
we conclude that λ1 > 0. Now λ1 > 0 implies x1 > 0, since x1 = q1 holds by the
third complementary condition. We only have to consider two cases in function of
the last inequality of (11).
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We have to examine the conditions under which there exist λ∗
1 > 0, λ∗

2 ≥ 0, such
that together with x∗1, x

∗
2 we obtain a solution of (11). The first two equalities are[
u′(q1 + x2)− p1

u′(q1 + x2)− p2

]
=

[
1 p1

0 p2

] [
λ1

λ2

]
(13)

This equality system has to be solvable for positive λ1 and nonnegative λ2. The
matrix of (13) is invertible and we can obtain the next equivalent system.[

λ1

λ2

]
=

1

p2

[
p2 −p1

0 1

] [
u′(q1 + x2)− p1

u′(q1 + x2)− p2

]
(14)

λ1 > 0 results from p2 > p1 and u′ > 0. For λ2 we have to consider two cases.

1. In the first point of the proposition we made the following assumption.

u′(q1 + x∗2) > p2 (15)

λ2 > 0 is equivalent to assumption (15) by (14). Furthermore, λ2 > 0 implies
that equality holds in the last inequality of (11) by the complementary conditions.
Therefore, our consumer spends his whole money. Solving the last two equalities,
we get x∗1 = q1 and x∗2 = m−p1q1

p2
.

(a) Now we will show that if (15) and u′( m
p1

) ≥ p1 holds, our consumer acts

according to the random rationing rule. Because m/p2 < q1 + x2 we conclude
u′(m/p2) > p2 from condition (15). Now using (12), we obtain d(p2) = m/p2. If
we use (12) again, we will get d(p1) = m/p1 because of our u′(m/p1) ≥ p1 assump-
tion. Therefore, the

x∗2 =
m− p1q1

p2

=
m

p2

(1− q1

d(p1)
) = d(p2)(1−

q1

d(p1)
) = xr

2 (16)

equalities hold true. We can verify, that q1 ≤ D(p1), because otherwise, we would
get x∗2 = 0. We recognize the random rationing rule in (16).

(b) Now we assume that (15) and u′(m/p1) < p1 holds true. This second
assumption is equivalent to m/p1 > (u′)−1(p1). We apply (12) again. Hence,
d(p1) = (u′)−1(p1). Thus, on the one hand we get inequality

x∗2 =
m− p1q1

p2

=
m

p2

(1− q1

m/p1

) >
m

p2

(1− q1

d(p1)
) = d(p2)(1−

q1

d(p1)
), (17)

which is what we wanted to prove. As a limiting case we will get that if the amount
of money spent at the low-price firm is almost negligible in relation to the money
stock, then the residual demand would almost be equal to the demand.

Economically condition (15) means, that our consumer’s marginal utility is
greater than the high-price. So our consumer is willing to spend his entire money
stock on the product.

2. We have to consider the case of λ2 = 0. In the second point of the proposition
we assumed that the optimal solution satisfies the following equality.

u′(q1 + x∗2) = p2 (18)
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This is exactly equivalent to λ2 = 0 by (14). Hence, x∗2 = (u′)−1(p2)− q1. Therefore,
our consumer acts according to the efficient rationing rule. Economically, condition
(18) means that our consumer’s marginal utility is equal to the price of the high-price
firm. We saw that the utility of holding money could hinder our consumer to spend
his entire money stock on the product, since the equality in the forth condition in
(11) is not assured. 2

At first sight the condition for the efficient rationing rule is more plausible. If we
accepted that money means in this context a composite commodity, then it would
be quite unrealistic to assume that our consumer consumes only the product offered
by our duopolists. In defense for the random rationing rule we could bring forward
the extreme case in which the product sold by the duopolists is the only basic good
for survival and that our consumer is too poor to spend money on other goods.

Without calculating too much, one would surely suggest the efficient rationing
rule to be applied for the following reason. The individual demand function tells our
consumer how many products he will buy at the high-price, particularly d(p2). At the
low-price he bought q1. Now he obviously wants to buy max{d(p2)− q1, 0} products
from the high-price firm. The only pitfall in this argument is, that we neglect the
income effect, which results from the fact that he bought the first q1 products cheaper
and so we must not use directly d(p2) to calculate his extra demand at price level
p2. In fact, in case of a quasilinear utility function, there will be only an income
effect, if the consumer’s budget constraint is binding.

The next proposition summarizes the entire solution of problem (10).

Proposition 3. Under the assumptions of proposition 2 the explicit solution of
problem (10) is:

1. if u′(0) ≤ p1, then x∗1 = 0 and x∗2 = 0;

2. if u′(0) > p1 and m ≤ p1q1, then x∗1 = min{(u′)−1(p1), m/p1} and x∗2 = 0;

3. if u′(0) > p1, m > p1q1 and u′(q1+
m−p1q1

p2
) > p2, then x∗1 = q1 and x∗2 = m−p1q1

p2
;

4. if u′(0) > p1, m > p1q1, u′(q1) > p1 and u′(q1 + m−p1q1

p2
) ≤ p2, then x∗1 = q1

and x∗2 = max{(u′)−1(p2)− q1, 0}.

5. if u′(0) > p1, m > p1q1, u′(q1) ≤ p1 and u′(q1 + m−p1q1

p2
) ≤ p2, then x∗1 =

(u′)−1(p1) and x∗2 = 0.

Proof: 1. Let us assume that in spite of our assumption x∗1 or x∗2 is positive. Hence,
p2 > p1 ≥ u′(0) > u′(x∗1 + x∗2). Thus, the first two conditions in (11) could not been
satisfied; a contradiction.

2. Obviously, m ≤ p1q1 implies x∗1 ≤ q1. If we suppose that (u′)−1(p1) ≥ m
p1

, then

we can verify that x∗1 = m/p1, x∗2 = 0, λ∗
1 = 0 and λ∗

2 = u′(m/p1)−p1

p1
is a solution of

problem (11).
Otherwise, x∗1 = (u′)−1(p1), x∗2 = 0, λ∗

1 = 0 and λ∗
2 = 0 is a solution of problem

(11).
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3. We have to verify that if u′(0) > p1, m > p1q1 and u′(q1 + m−p1q1

p2
) > p2, then

x∗1 = q1 and x∗2 = m−p1q1

p2
will be a solution of (11). We immediately see that the

last two conditions in (11) hold as equalities for x∗1 and x∗2. Therefore, we have to
show that there exist nonnegative λ∗

1 and λ∗
2, which are together with x∗1 and x∗2 a

solution of (11). But regarding our assumptions, we have already shown this in the
proof of the previous proposition.

4. We have to consider two cases. In the first case let us assume that u′(q1) > p2.
This implies that there exists a value x̂2 ∈ (0, m−p1q1

p2
) such that u′(q1 + x̂2) = p2.

Now applying the second part of proposition 2 we obtain what has to be proved.
In the second case we now assume the opposite. In particular, we assume that

u′(q1) ≤ p2. We now show that x∗1 = q1 and x∗2 = 0 is the solution. Obviously, the
last two conditions in (11) are satisfied. From the last one we further get λ2 = 0.
The second condition can now be written as u′(q1) ≤ p2 which is now fulfilled by our
assumption. The first condition takes the form u′(q1) = p1 + λ1 because of x∗1 > 0.
This equation is solvable for nonnegative λ1 because p1 < p2 and in point 4 we
already assumed that u′(q1) > p1.

5. We have only to verify that x∗1 = (u′)−1(p1), x∗2 = 0, λ∗
1 = 0 and λ∗

2 = 0 is a
solution to problem (11). But this is obvious. 2

4 Summary

We have investigated the residual demand of a single consumer in a duopoly market.
We have deduced the behavior of a single consumer in a duopolistic market in cases
of quasilinear and Cobb-Douglas utility functions. Finally we have compared the
obtained results with the values suggested by the two most frequently used rationing
rules.
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