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(Weighted) Sum of n Correlated Lognormals:
convolution integral solutio@an 2011)

Tamas Nagy

all of the efforts were done trying to define bette

Abstract— Probability density function (pdf) for sum of n
correlated lognormal variables is deducted as a spil
convolution integral. Pdf for weighted sums (whereweights can
be any real numbers) is also presented. The resufor four
dimensions was checked by Monte Carlo simulation.

Index Terms— amount of fading, cochannel interference,
lognormal distribution

. INTRODUCTION

HE original problem as stated by Fenton [1] in 1&6the
following: “Given several random variables, eactia
log-normal probability distribution, what is the gability
distribution of the sum of the random variables?”
By mathematical notation: let we have n
variables, defined by the corresponding
multidimensional normal distribution (X), where ortains

expected values arklis the covariance matrix. We try to find
the probability density functionf) of sum of (correlated) h(K) = J' f(X)[g(K-x)dx=f Og

lognormal variables (S(C)LN):
exp(X,)

exp(X,) | X ~ N(,E,Z) iYI] =?
i=1

exp(X,)

Examples for S(C)LN can be found in almost eveigrame,
in wireless communications applications include fagling
and shadowing modeling, and assessing
interference. In finance the evaluation of exotiagket, Asian)
options [3], portfolio level Value at Risk and apél portfolio
selection are the most relevant S(C)LN problems.

Fenton [1] has written about (without
specifications) a numerical integration solution dase of

Y =

lognormal 1.
correlated In a general, 2 dimensional independent case, dhefdwo

approximations [4]-[7], or lower and/or upper boantbr
cumulative density function [8-9], [2] and lessearsches were
done on numerical integral solution for problenS¢C)LN.

In the literature there are some direct integrgdressions
formulating the pdf or cdf of SCLN. For 2 dimensibn
correlated case Zacks and Tsokos [10] presentedraufa of
characteristic function. Leipnik [11] demonstrathd pdf of n
dimensional uncorrelated SLN.

In the following, an exact, convolution integralig@mn for
probability density function is presented for n-dimsional
correlated case, which - based on my best knowledges not
published before. Pdf of weighted sum of n coresat
lognormals is also provided.

CONVOLUTION INTEGRAL SOLUTION

convoluted variables is the following:

1)
In n dimensional case there are n-1 integrals atigeiment
n-1
of last probability density function iK —Z X
i=1
For getting the right pdf of SCLN, few problems aeeded
to be handled:
e The random variables are correlated (the coioglat

cochannglycture is defined on the level of correspondirgmal

factors)
» The integral variable is dx, but the argumenbigmnormal
pdf is In(x)

detailed Based on the linear transformation property [12}y an

multidimensional normal distributionX(is the covariance

uncorrelated summands. He concentrated on finding natrix) can be built form uncorrelated standard nmedr

approximate solution for uncorrelated case for divg (with
his own words) the “tedious” work of numerical igtation.
He presented an approximation of distribution ofamelated
SLN by moment matching. After Fenton’s initial woakmost
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distribution (2):
LZ+u~NgzLmm)

A 3)
z-Np1,)  z=LOT
The formula for reversed way transformation is:
Lt ON(w2)-1)=2 4)

Let Y; denote the i-th dependent lognormal variable, znd
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the i-th independent standard normal variable:

InY, z,
Ns)=|™2 | z=na)=| 5)
InY, z,

Uncorrelated standard normal variables can be exdehy
first decreasing the logarithm of correlated lognakvariables
by their expected values and then creating lineankination
by corresponding elements of L-1 matrix. The irtdépendent
standard normal variable can be calculated asvslgvhereas
L™ matrix is lower triangular, only k i elements have non
zero weights):

7 = Z[L K)dinY, - 1.)]= Z[L

A. Joint probability density function

In the multidimensional dependent lognormal factpace
the probability density related to a given pointalg to the
probability density related to the correspondingnpn the
multidimensional independent standard normal fasjoace.
Joint probability density function of multidimensial
correlated lognormal variables (f) can be expredsgdne
dimensional standard normal distributions (denotifg
multivariate standard normal pdfp is one dimensional

KdinY, -1)] ©)

standard normal pdﬂ,_i_i the ith row of matrixL™ ):

()=l dn¥ - )= ] (7 hnfy)- )

B. Moadificationsrelated to integral variables

For integrating function f, we have to make modifions
related to integral variables. The relevant questi® the
following: if we change the correlated lognormalrisbles
infinitesimally, what will be the n-volume of theulsspace

()

determined by changing of corresponding uncorrdlate

standard normal variables?

Let us change the lognormal variables one by (B16A_Vi
denote the change vector, where all of items atautOi-th

element isAY. Vector g, means the corresponding change
vector in uncorrelated standard normal factor spaesed by  for {K - D/i:|/an >0
i=1

Ni , it can be calculated as follows:
g, = L din(Y + &Y )- )~ L din(Y) - 1) (8)
In continuous caseAlY —0), if Lj is the i-th column of
matrix, andL denoting element wise multiplication, then:
-1 c(de ©
Y
Based on g vectors an M matrix can be built, stptime
changes in space of independent standard normébles

value of M’s determinant. Whereas M is triangulaatnix, its
determinant is the product of diagonal elements:

C. Probability density function of SCLN

Based on the result we can construct the pdf of N6@Ln
dimensional case. First in 3 dimensions (for th&esaf
illustration):

nv = (10)

Osin (K):
i vy P ) )l )~ )+ ictnte)- )
"o0p(ah lin(%) - ) + L lin(Y,) - )+ L Hin(K =¥, =) - o)) ca, b,

forK-Y,-Y,>0
(11)
In n dimensional case the pdf of SCLN will be the
following (for getting simpler structure let us uaeb vector
containing notations of variables):

0 K)=] . ju{" (mmn ﬂkﬂq—JdY

where

(12)

for

D. Probability density function of weighted SCLN
(WSCLN)

We can extend the problem of SCLN to weighted case
(where weights o) can be any real numbers). The weighted
sum of correlated lognormals (WSCLN) problem isid¢gpin
finance (e.g. a portfolio where we can hold negatjuantity
of asset, and the prices are lognormally distridute

iy

Pdf of WSCLN can be expressed as follows:

(13)

n-1

K_Zaiwi
where b=Y, Yy, ., Y., iz
C’r‘l
n-1

where c:{Yl, Yy, v Yo, K Zaﬂi}
i=1

I
The numerical validation was done for wSCLN (wegght

NUMERICAL VALIDATION

caused by one by one changing of correlated logalornSLCN). The convolution integral was computed by dwurilt

variables. M determines an n-dimensional
parallelepiped, its n-volume (nV) can be calculasdbsolute

hypemlgorithm. When designing such an algorithm sigaifit

amount of computational time can be spared by ¢pkive
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x 10°
condition in (13) into account. ol Fre‘quency‘ J
For potential values of underlying N
lognormal variables (Y symmetric intervals 8 A .
were supposed, defined by d times the giv 6 q g
standard deviation: ak ]
expl - d (&) <, < exp(, +d L) i oo
An initial lower (||b|) and upper bound 0 == i - 0H\H\HH\[\)g\HHH\H[\)\-\A\l\H\\H\Hg.\[\iHHHH 1 . e 1\.4

(iubi) for the givenaiYi can be calculated
(the min and max functions are required fi
handling the potential negative signodf

Fig. 1. Comparison of theoretical (convolutioregral) and simulated frequencies

il = min[ai lexp, —dlo,),a, lexp, +dlo, )] (15) As we can see the simulated and theoretical freziegrare
iub, = max{a'i fexp(, —d & ), 0, Exp +d @, )] very close to each other.

For further purposes a reversed-way cumulated safrtise IV. CONCLUSION
iubi and iubi vectors were used: The exact form of pdf of SCLN and wSCLN can be

L. 2. . calculated based on convolution integrals.
rdb:{iz_l:”q’ ;”q’ ”bl} (16) In numerical validation a 4 dimension weighted cases
n 2 presented (which can not be handled by simple logab
rCUb:{ZiUh, ey D lUb, iUbl:| approximation (logarithm of negatives are not ValidBy
. = special designing of numerical integral algorithigngicant
computational time can be spared, the total contiputeby
suggested algorithm required 11.5 minutes in alesifaptop.
rcl b(l) <K< rcub(l) (17) By using more sophisticated algorithm and poweréuhputer,
If we calculate value 06(K) by multi-level nested loops, the exact convolution solution can be a feasibly fea also
and the order of calculation is determined by inditonal high dimensions.

(narrowed) bounds for;¥an be determined based on:

Based on these vectors the potential values of KK =
restricted (by increasing d, the intervals widen):
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