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Summary

The three-dimensional conformation of a protein is central to its biological function. 

Mass spectrometry (MS) has become an important tool for the study of various 

aspects of protein structure. This project investigates the use of MS for diagnosis of 

hemoglobinopathies, through primary structure identification, and for three-

dimensional protein structure analysis, through comparison to established methods 

and application to protein systems.

Travelling-wave ion mobility mass spectrometry (TWIM-MS) was used to 

investigate the biological significance of gas-phase protein structure. Protein 

standards were analysed by TWIM-MS. Cross-sections were estimated for proteins 

studied, for charge states most indicative of native structure, and were found to be in 

good agreement with those calculated from published X-ray crystallography and 

nuclear magnetic resonance structures. These results illustrated that the TWIM-MS 

approach can provide biologically-relevant data on three-dimensional protein 

structure.

TWIM-MS was then used to study the structural properties of the hemoglobin 

tetramer and its components. Results showed that globin monomers exist in similar 

conformations whether in apo- or holo- forms and that a heme-deficient dimer is 

unlikely to be a prerequisite for hemoglobin tetramer assembly. TWIM-MS was used 

to successfully differentiate between normal and sickle hemoglobin tetramers.

The conformational changes occurring in VanS, a histidine kinase, upon 

autophosphorylation were investigated by TWIM-MS. Results provided insights into 

the mechanism of autophosphorylation. MS was used to follow the rate of the

autophosphorylation and results obtained compared well with those from an 

established method. This demonstrated that MS offers a simple, reproducible 

alternative to conventional methods for the study of phosphorylation rates.

MS was used to provide positive identification of a range of hemoglobinopathies 

caused by single point mutations. A high-throughput method was used to screen for 

hemoglobinopathies in South Asians with and without cardiovascular disease. 

Results showed a positive correlation between patients with hemoglobinopathies and 

those with cardiovascular disease. 
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1.1 Mass spectrometry

Mass is a highly specific characteristic of any molecule and the ability to measure it 

precisely is fundamental to many scientific investigations. The technique of mass 

spectrometry was developed in the quest to understand the nature of cathode rays. 

Some researchers believed they were electromagnetic in nature whilst others 

believed they consisted of particles. For those who believed in the particle theory, 

the solution was to measure the mass of the particles (Griffiths 2008). This was 

achieved in 1899 by Joseph John Thomson, who successfully measured these 

particles, which he named electrons (Thomson 1899). This pioneering work, for 

which Thomson was awarded the 1906 Nobel Prize in Physics, led to the 

development of the first mass spectrometer. This instrument, termed the parabola 

spectrograph, was used to separate the isotopes of neon (Thomson 1911). Thomson’s 

work was continued by his student Francis W. Aston, who designed and built a new 

mass spectrometer with improved resolving power. This allowed him to study the 

isotopes of many other elements (Aston 1919) and he was subsequently awarded the 

Nobel Prize for his work in 1922.

Since the pioneering work of Thomson the field of mass spectrometry has been 

transformed. Mass spectrometry started as a physicists’ tool for studying the nature 

of the atom but as instrument design improved the potential applications of MS 

began to be envisaged. By the 1940s, mass spectrometers were commercially 

available and industrial chemists used them to quantify levels of known substances. 

In the 1950s, the relationship between the mass spectra produced and the molecular 

structure of the compound being analysed was investigated and the use of MS to 

identify unknown compounds was established (Griffiths 2008). Pivotal 

developments in ionisation methods have followed and mass spectrometry has been 

coupled with other separation techniques, such as chromatography and ion mobility. 

These developments, along with improvements in instrument design and the 

commercial availability of instruments, have greatly expanded the application range 

of mass spectrometry such that it is now an important tool for scientists from 

multiple disciplines. 
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1.1.1 What is a mass spectrometer?

A mass spectrometer is an instrument that can measure the mass-to-charge ratio 

(m/z) of an ion in the gas phase. To analyse a sample of interest ions are first 

generated from the sample. These ions are then separated according to their m/z, 

detected by a detector and their relative abundances recorded. Figure 1.1 shows a 

schematic of the major components of a modern mass spectrometer. 

Sample 
introduction

Ionisation
source

Mass analyser Ion detector
Computer 

system

Mass spectrum

Vacuum pumps

Figure 1.1: Schematic representation of a modern mass spectrometer

An analyte of interest is introduced into the mass spectrometer and ionised within the 

ion source. The ions produced are then separated within a mass analyser, according 

to their m/z. A detector registers the ions detected at each m/z and a computer system 

records this information and converts it into a comprehensible format. Variations in 

each of the major components of the mass spectrometer have resulted in a broad 

array of instrument types for multiple applications.

1.1.2 Ionisation methods

A number of ionisation methods can be used to generate ions for subsequent mass 

analysis by mass spectrometry. Up until the 1980s, the predominant ionisation 

techniques applied were electron impact (EI) and chemical ionisation (CI). EI and 

CI can only be used to ionise molecules within an already vaporised sample. This 

limits their application to the analysis of volatile thermally-stable compounds and so 

they have been used extensively to characterise small organic molecules. Biological 
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molecules are usually polar and thermally-labile and so cannot be analysed by EI- or 

CI-MS without prior derivatisation (Griffiths et al. 2001). 

The routine MS analysis of polar thermally-labile molecules, of a few thousand 

Dalton (Da) in mass, was made possible by the introduction of fast atom 

bombardment (FAB) (Barber et al. 1981). Other ionisation techniques, such as field 

desorption and thermospray ionisation, were also being applied to the analysis of

small biomolecules,  at a similar time, but with limited success (Griffiths 2008). The 

development of both matrix-assisted laser desorption/ionisation (MALDI) and 

electrospray ionisation (ESI), at the end of the 1980s, transformed the field of 

biological mass spectrometry. MALDI and ESI are still the dominant ionisation 

methods used for biomolecule analysis to date and their application areas are still 

growing. 

MALDI is a pulsed soft ionisation technique whilst ESI is a continuous ionisation 

method. MALDI involves the co-crystallisation of a sample, in low concentration, 

with a matrix. A sample is first dissolved in a suitable solvent and mixed with an 

appropriate matrix.  The mixture is spotted onto a MALDI plate (commonly made of 

stainless steel) and air-dried. A laser is used to ablate the analyte:matrix mixture. The 

matrix absorbs this laser energy and this leads to desorption and ionisation of the 

analyte. A nitrogen laser at a wavelength of 337 nm is most commonly used (de 

Hoffmann and Stroobant 2002).  Matrices are chosen depending on the properties of 

the analyte but must be able to absorb radiation at the wavelength of the laser. α-

cyano-4-hydroxycinnamic acid (CHCA) is often the matrix of choice for peptide 

analysis whilst sinapinic acid (3,5-dimethoxy-4-hydroxycinnamic acid) is used for 

the analysis of intact proteins. The exact mechanism of the MALDI ionisation 

process is not fully understood but there are several hypotheses. The generally 

accepted theory is that protons are transferred from the matrix molecules to the 

analyte molecules, either during the desorption process or just subsequently to it 

(Zenobi and Knochenmuss 1998) (see Figure 1.2).  The majority of ions formed 

during MALDI are singly-charged species resulting from the attachment of a single 

proton. 
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Figure 1.2: Schematic representation of the proposed MALDI ionisation process.  

ESI takes place at atmospheric pressure and is a very gentle ionisation technique. For 

ESI, the sample to be analysed must first be dissolved in an aqueous/organic

solution. The most appropriate solvent system to use depends on the properties of the 

analyte and whether ionisation in positive or negative mode is required. For 

ionisation in positive mode, a sample is routinely prepared in an aqueous solution 

that contains appropriate concentrations of an organic solvent (such as acetonitrile 

(ACN) or methanol) and an acid, such as formic or acetic.  The sample solution is 

sprayed through a capillary needle, which is held at a high electrical potential with 

respect to the entrance of the mass spectrometer.  Charge accumulation at the 

meniscus of the solution, at the end of the capillary, is induced by the electrical 

potential. A Taylor cone is formed at the end of the capillary that minimises the 
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charge-to-surface ratio. At a critical limit, the tip of the cone extends into a filament 

and highly-charged droplets are released from it (Kebarle 2000). The production of 

droplets is aided by a nebulising gas (usually nitrogen) that flows around the outside 

of the capillary, towards the inlet of the mass spectrometer. The formation of gas-

phase ions from these highly-charged droplets is thought to proceed through two 

mechanisms, the ion evaporation model (IEM) and the charge residual model 

(CRM). Solvent evaporates from the droplets, leading to a decrease in droplet radius 

but no change in charge. At a particular radius, for a given charge, the charge 

repulsion (or Coulombic repulsion) within a droplet exceeds the surface tension, 

which results in Coulombic fission. The point at which this occurs is known as the 

Rayleigh Limit. The IEM proposes that these solvent evaporation and Coulombic 

fission cycles continue until droplets are of a certain radius at which direct emission

of ions into the gas phase occurs. The CRM model suggests that these 

evaporation/fission cycles continue until no more solvent remains and only the 

charged analyte remains (see Figure 1.3). There is a general consensus that ions with 

a small number of charges, at low m/z values, are preferentially formed by the IEM 

whilst multi-charged ions, at high m/z values, are formed by the CRM (Kebarle 

2000). 

MALDI was developed by Michael Karas and Franz Hillenkamp in 1988 (Karas and 

Hillenkamp 1988). The original work on soft laser desorption as an ionisation 

method, however, was carried out by Koichi Tanaka in 1985. ESI was invented by 

John Fenn (Fenn et al. 1989). In 2002, Tanaka and Fenn were awarded the Nobel 

Prize in Chemistry for their development of soft desorption ionisation methods for 

mass spectrometric analyses of biological macromolecules.
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Figure 1.3: Schematic representation of the two proposed ESI ionisation mechanisms.  Adapted from Kerbale (2000).
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1.1.3 Mass analysers

The separation of ions, according to their m/z, is performed by a mass analyser. 

Scanning mass analysers, such as quadrupoles and magnetic sectors, detect ions of 

each m/z sequentially whilst others, such as the time-of-flight mass analyser and ion 

traps, allow the near-simultaneous detection of all ions (de Hoffmann and Stroobant 

2002). Mass analysers, dependent on their type and design, can transmit ions with a 

given efficiency and have an upper mass detection limit and resolving power.  The 

transmission efficiency of an analyser is the ratio of the number of ions it detects to 

the number of ions produced in the ion source. The upper mass detection limit of an 

analyser is the highest m/z that it can measure. The resolving power of a mass 

analyser is a measure of its ability to distinguish between ions of similar m/z. It is 

usually defined as (m/Δm) where Δm represents the smallest mass difference for 

which two peaks with masses m and Δm are resolved. For an isolated peak, 

resolution can be estimated by m/Δm where Δm is the full width of the peak at half-

maximum (FWHM). 

Quadrupole mass analysers are comprised of four round or hyperbolic rods, arranged 

in parallel as two pairs of electrically connected rods (see Figure 1.4).  A 

combination of radio frequency (RF) and direct current (DC) voltages are applied to 

each pair of rods. As ions traverse the quadrupole mass analyser, within a particular 

electric field, they undergo a complex oscillating motion. The RF and DC voltages 

applied allow ions of particular m/z to have a stable trajectory within the quadrupole 

and to be transmitted through to the detector.  The remaining ions collide with the 

sides of the rods, or are lost at the walls of the analyser. A broad packet of ions can 

be transmitted through the quadrupole if it is operated in RF-only mode or ions of a 

specific m/z can be selected for transmission by application of a specific electric 

field. Multipoles, with different numbers of parallel rods, to which only RF voltages 

are applied, are often used as ion beam focussing devices. 
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Detector

Quadrupole

+

+ +
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Figure 1.4: Schematic representation of a quadrupole mass analyser. 

An ion with a stable trajectory through the quadrupole to the detector is shown in red whilst 

an ion with an unstable trajectory is shown in green.

The time-of-flight mass analyser was originally described by Wiley and McLaren in 

1955 (Wiley and McLaren 1955). A time-of-flight mass analyser measures the time 

it takes an ion to traverse a field-free region.  This time can then be related to the m/z

of the ion. If ions of different mass (m) possess a fixed kinetic energy (E ) then they 

will have different velocities (v) (Equation 1.1). This means that they will traverse a 

field-free region of fixed distance in different times (Equation 1.2). This time can be 

analyser, ions are first accelerated by a potential ( ) which gives each ion a fixed 

flight tube, where they travel at a velocity which is inversely proportional to the 

electronic charge, will have a velocity determined by:

=
ଶ୉ౡ

௠
=

√ଶ

Equation 1.1

௠

௭௘௏
ටݒ

)ݒ(

is the ݁is the number of charges andݖ), where ݁ݖarge () and total ch݉with a mass (

, an ion ୩E. For a fixed (de Hoffmann and Stroobant 2002)square root of their mass 

free region, known as the -amount of kinetic energy. The ions then enter the field

ܸ

flight mass -of-timerelated to their mass and charge (Equation 1.3). Within the 

୩
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proportional to :

=

Equation 1.2

Given that is constant and and 

= ×

Equation 1.3

A linear TOF mass analyser is highly sensitive and does not have, in theory, an 

upper mass detection limit. The resolving power of a linear TOF mass analyser is 

affected by multiple factors. Variations in the initial kinetic energy of an ion, the 

length of the ion formation pulse and the length of the flight tube all change the 

resolving power of a TOF mass analyser (de Hoffmann and Stroobant 2002). If ions 

of the same m/z have different initial kinetic energies they will traverse the flight 

tube with slightly different velocities. They will reach the detector at slightly 

different times, a broad ion peak will be recorded and resolution will be reduced. 

Conversely, as mass resolution is proportional to ion flight time, the longer the flight 

tube the higher the resolving power of the analyser. 

Peak broadening at the detector can be reduced by compensating for differences in 

the initial kinetic energies of ions by use of delayed pulsed extraction (Vestal et al.

1995). When this technique is used ions are initially allowed to move into the flight-

tube, with their velocities determined by their initial kinetic energy. An extraction 

pulse is then applied, which provides ions that have moved a smaller distance into 

the flight tube, whose kinetic energy was initially too low, with more kinetic energy. 

This reduces the kinetic energy spread among ions with the same m/z.

݊ܿ݋ ݐܽݏ ݐ݊
ݖ

݉
ටݐ

are known:ܸ݀ݒ

ݒ

݀
ݐ

ݒ

inversely ) is ݀) an ion takes to traverse a flight tube of fixed length (ݐThe time (
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Higher mass resolution has also been achieved in modern TOF instruments by the 

addition of a reflectron. The use of a reflectron effectively doubles the flight path of 

an ion and additionally compensates for differences in initial kinetic energies of ions. 

A reflectron consists of a series of ring electrodes and creates a retarding field that 

acts as an ion mirror (Mamyrin et al. 1973), see Figure 1.5. Ions are accelerated into 

the flight tube and reflected back, when they reach the reflectron, down the flight 

tube to a detector. The distance an ion travels before it is reflected is related to its 

initial kinetic energy. Instruments with a reflectron can often be operated in V- or W-

mode where ions are reflected once or twice by the reflectron respectively. A 

compromise is made when a reflectron is used as, although resolution is improved, 

there is an accompanying loss in sensitivity and a reduction in the upper mass limit 

of detection.

S
o

u
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D
et
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r

Reflectron

Ions of same m/z but different 

initial kinetic energies

Figure 1.5: Schematic illustration of a reflectron TOF mass analyser.

The path of two ions, of the same m/z, through the analyser is represented. The ion with 

more initial kinetic energy (green) travels further into the reflectron before it is deflected 

than the ion with less initial kinetic energy (red).  Both ions reach the detector 

simultaneously.
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1.1.4 Detectors

Once ions have been separated within the mass analyser they are detected by a 

detector. Numerous types of detector have been developed which either directly 

measure ions arriving at a detector, such as photographic plates, or detect an 

amplification signal produced as a consequence of an ion signal, such as electron 

multipliers. 

Photographic plates were the first detectors to be used. An ion of a particular m/z hits 

a plate in a specific place and a calibration scale can be used to derive m/z value. The 

intensity of any spot observed on the photographic plate gives an indication of the 

relative intensity of ions present within the beam at the corresponding m/z value (de 

Hoffmann and Stroobant 2002). The disadvantages of this type of detector include 

poor sensitivity, short dynamic range and the requirement for off-line image 

development and calibration (Koppenaal et al. 2005). 

Electron multiplier (EM) detectors are the most commonly used and measure ion 

currents produced following amplification of an ion signal. Ions exiting the mass 

analyser strike a conversion dynode and emit secondary electrons. These electrons 

are accelerated and collide with subsequent dynodes (in discrete-dynode EMs) or 

repeatedly with a continuous dynode (in continuous-dynode EMs) creating an 

electron cascade, which results in a measureable current (see Figure 1.6). The signal 

from a single ion can thus be amplified by 106 or more (Koppenaal et al. 2005).

A widely used detector in modern mass spectrometry, which is a variant of the 

continuous-dynode EM, is the microchannel plate (MCP) detector (Wiza 1979) (see 

Figure 1.6). Within a MCP, an array of microchannels, each a few tens of 

micrometers in diameter and a few millimetres in length, forms the amplifying 

volume (Koppenaal et al. 2005). An ion striking the MCP will emit secondary 

electrons and create electron cascades in nearby microchannels. Only a few channels 

will be affected by a single ion and so other channels can be used to detect the 

presence of different ions simultaneously. The electron current exiting a 

microchannel can be directed onto an anode for electronic detection of the current or 

onto a fluorescent surface for ion-beam imaging (Koppenaal et al. 2005). MCP 
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detectors use very short electron paths and very short electron pulse widths which 

means they can record the precise arrival time of an ion very accurately. This makes 

them the ideal detectors to couple with TOF mass analysers. The performance of an 

MCP detector can be affected by dead time effects, when the MCP becomes 

saturated with ions; the microchannels need time to recover before they can detect 

new signals effectively. 

a.) b.)

c.)

Figure 1.6: Schematic representations of a.) a discrete-dynode EM b.) a continuous-dynode 

EM and c.) a MCP detector. Adapted from Koppenaal et al. (2005). 

Modern EM detectors use either an analog-to-digital converter (ADC) or time-to-

digital converter (TDC) to process ion currents into m/z values. ADCs register the 
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ion current created, amplify its signal and filter it to remove high frequency noise. 

The voltage derived from the ion current is then plotted on a m/z scale with respect to 

previously acquired calibrated data. TDCs register the time at which an ion strikes 

the detector and process this into an m/z value, again with respect to previously 

acquired calibrated data. Spectra are then produced by summing together individual 

ion recordings. TDC detectors have the advantage of greater speed of detection and 

sensitivity, whereas ADC detectors have an improved dynamic range. A dual 

ADC/TDC detector can be used to achieve fast acquisitions of data with both high 

sensitivity and dynamic range (Koppenaal et al. 2005).

1.1.5 Tandem mass spectrometry

Tandem mass spectrometry (MS/MS) refers to the use of at least two mass analysis 

steps within an experiment. MS/MS is often used in conjunction with a dissociation 

process to determine the product ions produced by fragmentation of a precursor ion. 

In this experiment, the first mass analyser is used to isolate the precursor ion, which 

then undergoes some fragmentation process. The product ions produced are then 

analysed by the second mass analyser. Interpretation of the resulting product ion 

spectrum can provide structural information about the precursor ion. 

The MS/MS analysis of a peptide, for example, can provide peptide sequence 

information. The nomenclature used to describe peptide product ions was proposed 

by Roepstorff, Fohlmann and extended by Biemann, and is represented in Figure 1.7 

(Roepstorff and Fohlman 1984; Biemann 1992).

One of the most commonly used fragmentation methods employed in MS/MS 

experiments is collision-induced dissociation (CID), pioneered by Jennings and 

McLafferty in the 1960s (McLafferty and Bryce 1967; Jennings 1968).  In CID, an 

ion is subjected to collisions with inert gas molecules.  These collisions transfer 

energy to the ion and the subsequent increase in the internal energy of the ion 

induces fragmentation. In peptides, this fragmentation occurs mostly at amide bonds 

to give b and y fragment ions.
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Figure 1.7: Peptide ion nomenclature, as proposed by Roepstorff, Fohlmann and Biemann.

N-terminal fragment ions are termed a, b or c ions whilst C-terminal fragments are termed x, 

y or z ions. A subscript denotes the number of residues within a fragment ion.

Complementary fragmentation methods include electron capture dissociation (ECD) 

and electron transfer dissociation (ETD).  ECD is based on ion-electron reactions in 

which the capture of electrons by a gaseous positive ion leads to fragmentation and 

neutralisation of that positive ion (Zubarev et al. 1998). In peptides, ECD leads to 

extensive cleavage of the peptide backbone between nitrogen atoms and α-carbon 

atoms to yield c and z ions.  The production of fragment ions by ECD is an available 

option on commercial Fourier transform ion cyclotron resonance (FT-ICR) 

instruments.  ETD is a similar fragmentation approach to ECD, which is applicable 

to other instrumentation. 

MS/MS experiments can either be performed in-space, by use of two or more 

spatially separated mass analysers, or in-time. In-space MS/MS experiments are 

commonly performed by use of a Q-TOF (a quadrupole mass analyser coupled to a 

TOF instrument), TOF-TOF or triple quadrupole (QQQ) instrument. Four main scan 

modes are used; product ion scan, precursor ion scan, neutral loss scan and selected 

reaction monitoring (see Figure 1.8). The choice of the most appropriate experiment 

depends on the information required. QQQ instruments are the most flexible and are 

able to operate in all four scan modes (but with limitations on sensitivity). Q-TOF 

and TOF-TOF instruments have largely been used for product ion scanning 

experiments.
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Figure 1.8: The main scan modes in tandem mass spectrometry.

CID stands for collsion-induced dissociation. Adapted from de Hoffmann and Stroobant 

(2002). 
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1.1.6 Ion mobility mass spectrometry 

Ion mobility spectrometry (IMS) is a well-established analytical technique that is 

used throughout the industrial world to characterise drugs, explosives and chemical 

welfare agents (Hill et al. 1990). IMS, invented in the 1970s and also known as 

plasma chromatography or ion chromatography, is a technique that separates ions 

based on their mobility (Cohen and Karasek 1970; Karasek 1974). The mobility of 

an ion is a measure of how rapidly it moves through a buffer gas under the influence 

of a weak electric field and is related to its rotationally averaged collision cross-

section, mass and charge (Karasek 1974). 

used to propel ions through a drift cell whilst collisions with the buffer gas decelerate 

the motion of these ions.  This process gives each ion a quasi-constant velocity ( , 

cm2 s-1). The velocity of an ion, under these conditions, is directly proportional to the 

of an ion ( , cm2 s-1 V-1) is given by:

=

Equation 1.4

If the time taken to traverse a drift cell of length (cm) is t (s), then:

=
tୢ

Equation 1.5

The mobility of an ion is routinely expressed as the reduced mobility (K0) under 

standard temperature T0 and pressure P0 (T0 273 Kelvin and P0 760 Torr):

଴ =
଴

଴
=
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Equation 1.6
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The reduced mobility K0 of an ion can be related to its collision cross-section by 

means of the following equation, deduced from kinetic theory (Mason and McDaniel 

1988).

଴ܭ =
ݖ3݁

16ܰ଴
×

1

ߪ
ඨ൬

2

݇ߤ

Equation 1.7

where z is the number of charges, e is the electronic charge, N0 the buffer gas 

number density at standard temperature and pressure, is the average collision 

cross-section, μ is the reduced mass of the buffer gas and ion, kB is the Boltzmann 

constant and T is the effective temperature.  

The mobility of an ion, at a given drift gas pressure and temperature, is therefore 

determined by the reduced mass, charge and collision cross-section of that ion 

(Creaser et al. 2004). The average collision cross-section of an ion can therefore be 

obtained from the average of all possible collision geometries of that ion (Clemmer 

and Jarrold 1997). Models may be used to calculate collision cross-section, estimate 

ion mobility and establish structure/mobility correlations (Creaser et al. 2004).

Several methods have been proposed to calculate the average collision cross-section

of an ion from a three-dimensional model of its structure. The simplest model is the 

projection approximation (PA), first described by Mack in 1925 (Mack 1925) and 

since developed by Bowers and co-workers (von Helden et al. 1991; Jarrold and 

Bower 1993; von Helden et al. 1993). This approach treats each atom within an ion 

as a hard sphere. Each geometric cross-section of an ion is measured by its

projection (shadow) and all the projections created by every possible orientation of 

the ion are averaged to provide a rotationally-averaged collision cross-section. The 

PA is an adequate approximation for small molecules but can underestimate the 

cross-section of proteins when interactions with the buffer gas become important

(Jarrold 1999).  Extensions of this model have thus been described which take into 

account scattering effects of collisions between ions and buffer gas molecules and 

long-range interactions between ions and the buffer gas, which affect ion mobilities 

(Mesleh et al. 1996; Shvartsburg and Jarrold 1996).
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The technique of ion mobility spectrometry has been coupled with MS to produce 

several different types of ion mobility mass spectrometry (IM-MS) instrumentation. 

ESI and MALDI ionisation sources have been used to generate ions prior to IM 

analysis and quadrupole mass analysers (Shelimov et al. 1997), TOF mass analysers 

(Srebalus et al. 1999) and FT-ICR spectrometers (Bluhm et al. 2000) have all been 

used after IM separation to perform mass analysis. Recently an instrument which 

uses two and three drift cells in tandem has also been described (Koeniger et al.

2006; Merenbloom et al. 2006). Two main forms of ion mobility have been 

developed for use with MS, drift-cell ion mobility (DCIM) and travelling-wave (T-

Wave) ion mobility (TWIM). 

DCIM-MS instruments contain a drift cell (IMS cell) to which a constant electric 

field is applied, as described above. The majority of DCIM-MS instruments have 

been designed, developed and built in-house by specialist labs that possess the 

necessary engineering, electrical, mechanical and software expertise required. A 

DCIM device has been incorporated into a commercial instrument (McCullough et 

al. 2008) and a drift cell has been added into a commercial Q-ToF hybrid instrument 

(Thalassinos et al. 2004).  The coupling of IM separation with a TOF mass analyser 

offers the advantage that mass spectra can be acquired on the microsecond time scale 

whilst mobility separation occurs on the millisecond time scale. A large number of 

mass spectra can thus be obtained by a TOF mass analyser during a single mobility 

experiment. DCIM-MS instruments have been used to conduct experiments to 

investigate the structural properties of an extensive range of molecules such as 

carbon clusters (von Helden et al. 1993), polymers (Gidden et al. 2002), peptides

(Kaleta and Jarrold 2003), proteins (Wyttenbach et al. 1996; Shelimov et al. 1997)

and nucleic acids (Gidden and Bowers 2003). 

1.1.7 Travelling-wave ion mobility mass spectrometry 

In contrast to DCIM, in which a constant low electric field is applied to the mobility 

cell, TWIM uses a travelling-wave, comprised of a series of transient DC voltages, to 

propel ions through an inert gas in a stacked ring ion guide (SRIG) (Giles et al.

2004). The SRIG is composed of a series of ring electrodes that are arranged 

orthogonally to the ion transmission axis. Opposite phases of RF voltage are applied 
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to adjacent rings; this creates a radially-confining effective potential barrier (Giles et 

al. 2004) (Figure 1.9). This stabilises the trajectory of ions as they traverse the SRIG 

and prevents ion loss via radial diffusion. 

RF(+)

RF(-)

Ion 
entry

Ion 
exit5

 m
m

Figure 1.9: A schematic representation of a stacked ring ion guide. 

Adapted from Giles et al. (2004).

Ions are propelled through the SRIG by superimposing a DC potential on the 

confining RF of each pair of adjacent electrodes in succession. The movement of this 

potential along the ion guide provides a travelling voltage wave on which the ions 

can surf. Ions move along the SRIG in waves and it is thus referred to as a travelling-

wave ion guide (TWIG). The TWIG can be used as a mobility separation device as 

the ability of an ion to surf along a travelling voltage wave through an inert gas 

depends on its mobility. Mobility separation of ions is thus achieved within the 

TWIG, under a given gas pressure, travelling-wave height and velocity conditions, 

because ions with high mobility are carried with the wave and exit the device faster 
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than ions of lower mobility that roll over the wave top and, as a consequence, exit 

the device later (Giles et al. 2004) (see Figure 1.10).

Travelling-Wave
Ion Guide

Ring Electrode

Time

Travelling-Wave
Voltage Pulse

High Mobility Ion

Low Mobility Ion

Figure 1.10: Schematic illustration of mobility separation in a TWIG. 

Here high mobility ions surf upon the wave whilst low mobility ions roll back over the top 

of the wave. Adapted from Giles et al. (2004).

TWIGs have been incorporated into a Q-ToF instrument to create the commercially-

available Synapt HDMS system (Waters, Manchester, UK) (Pringle et al. 2007). A 

schematic of this instrument is shown in Figure 1.11. The instrument is a hybrid 

quadrupole ion mobility orthogonal acceleration time-of-flight (oa-ToF) mass 

spectrometer. Samples are ionised by means of ESI, and more recently MALDI, and 

enter the instrument via a z-spray source. Three TWIGs form the TWIM separator, 

named the TriWave or T-Wave (see Figure 1.11), which is situated between the 
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quadrupole and oa-TOF with the first TWIG referred to as the trap, the second as the 

mobility cell, and the third as the transfer.

oa-TOF

DC only

31 electrode 
pairs

31 electrode 
pairs

61 electrode 
pairs

Figure 1.11: Schematic representation of the Synapt instrument with an enlargement of the 

TriWave ion mobility device inset. Adapted from Pringle et al. (2007).

The trap and transfer regions are 100 mm long and consist of 31 electrode pairs. A 

travelling-wave voltage pulse is not applied to the trap. The final electrode of the 

trap is DC-only and its voltage is modulated so that it periodically gates ion packets 

into the mobility cell for separation to occur. The mobility cell is 185 mm long and 

consists of 61 electrode pairs.  The flow of buffer gas within the mobility cell can be 

optimised for each sample and a maximum pressure of 1 mbar can be sustained. The 

travelling-wave velocity is given in m/s which is derived from the distance between 

pairs of electrodes divided by the time the pulse remains in each pair. The travelling-

wave voltage is applied to the 1st and 7th pair of electrodes then the 2nd and 8th pair of 
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electrodes and so on. A 10 ms pulse time will result in an average velocity of 300 

m/s since the distance between each pair of electrodes is ~ 3 mm. The transfer region

has a travelling-wave voltage pulse applied to it continually in order to maintain the 

mobility separation of the ions achieved within the mobility cell as they are 

transferred to the oa-TOF. The initial push of the oa-TOF pusher is synchronised 

with the gated release of ion packets from the trap into the mobility cell.  The gate is 

typically opened for 100 µs. For each gate pulse, 200 orthogonal acceleration pushes 

of the TOF analyser are recorded to form one ion mobility experiment. The overall 

mobility recording time is 200 x tp, where tp is the pusher period, which is 

determined by the mass acquisition range (Pringle et al. 2007). The synchronisation 

of gated release of ions into the ion mobility separator with TOF acquisition allows 

both arrival time distribution (ATD) information and mass spectral data to be 

obtained simultaneously.  The process is repeated until a mass spectrum with the 

desired signal-to-noise is obtained. This mode of mobility acquisition is one of the 

major advantages of the Synapt instrument.

Within the Synapt, CID experiments can be performed in the trap or transfer regions 

which means that a variety of different experiments can be performed. To add to this 

flexibility, the quadrupole present before the T-Wave can be operated in RF-only 

mode, to allow passage of all ions, or in resolving mode to selectively isolate ions of 

particular m/z. Another advantage of the Synapt instrument is that the TWIM cell 

does not compromise the intrinsic sensitivity of the hybrid Q-TOF instrument, unlike 

the majority of DCIM devices. Experiments conducted within the Synapt instrument 

show excellent reproducibility and the instrument is easy to use. The Synapt is 

available with a MALDI or ESI interface and with quadrupoles of different upper 

mass detection limits, it can therefore be tailored to a range of applications and 

subsequently its commercial availability has significantly increased the number of 

ion mobility users. The Synapt does currently have a number of limitations relating 

to resolving power, mobility cell design and the method of mobility separation. The 

resolving power of the T-Wave is not as high as that obtained within specialized in-

house developed DCIM-MS instruments. The mobility cell has an upper pressure 

limit of 1 mbar and its temperature cannot be controlled. The physical principles 

behind DCIM are well characterised and data obtained can be used to measure the 

absolute collision cross-section of an ion. The mobility of an ion through the TWIM 
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cell cannot be directly related to it absolute collision cross-section. The electric field 

applied within the cell is non-uniform and time-dependent and the motion of an ion 

through the TWIM cell is complex and not fully understood. Several calibration 

approaches have been proposed, however, to obtain estimates for the collision cross-

sections of ions from their mobilities, as measured by the TWIM device (Ruotolo et 

al. 2005; Scrivens et al. 2006; Wildgoose et al. 2006; Ruotolo et al. 2008; 

Thalassinos et al. 2009).

1.1.8 Travelling-wave calibration

It has been shown that reliable estimates of collision cross-sections for unknown 

compounds can be obtained from their mobilities through the T-Wave by reference 

to the mobilities of standards with known cross-sections (Ruotolo et al. 2005; 

Wildgoose et al. 2006; Thalassinos et al. 2009).  Standards that have had their 

absolute collision cross-sections determined by means of DCIM-MS experiments are 

generally used (Clemmer ; Shelimov et al. 1997; Valentine et al. 1997a; Valentine et 

al. 1997b). A universal calibration method has not been developed and slightly 

different approaches are used by different research groups. The calibration method 

which is used in this work has been developed by the Scrivens research group 

(Scrivens et al. 2006; Williams and Scrivens 2008; Thalassinos et al. 2009) and is 

adapted from the method described by Wildgoose et al. (2006). To perform the 

calibration, standards are analysed by TWIM-MS, under the experimental conditions 

at which the analyte is analysed. The following steps are undertaken to create a 

calibration:

1.

which each calibrant ion arrives at the detector is recorded 

This is converted into an arrival time ( ௗ) by:

= × ℎ ( )

Equation 1.8

3. The arrival time is corrected for m/z independent flight time (T-Wave offset)

ݎ݅ݏ݉ ݐௗ݊ݏݑ݌ݎ݁݁݌݀݋

.2ݐ

in ))݊The orthogonal acceleration push of the TOF analyser (scan number (
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The T-Wave offset is the time it would take an ion to traverse the mobility region 

and the transfer region at a particular wave velocity in the absence of a buffer gas. At 

a wave velocity of 300 m/s, it would take an ion 10 µs to traverse one pair of ring 

electrodes. The mobility cell contains 61 electrode pairs and the transfer region 

contains 31 electrode pairs. [(61 × 10) + (31 × 10)] µs = 920 µs.  The m/z

independent corrected drift time ( ′ ), corrected for the T-Wave offset at a wave 

′ௗ = ௗ −
920 × 300

Equation 1.9

4. The arrival time is further corrected for m/z dependent flight time

The m/z dependent flight time is proportional to the square root of the m/z value. It 

must be subtracted to obtain the corrected effective drift time ( " ), i.e. the time 

taken to traverse the mobility cell. At 1000 m/z, the time taken for an ion to traverse 

the TOF mass analyser is 44 µs and the transit time from being expelled from the 

transfer region to the TOF mass analyser is 41 µs.  The addition of these two times is 

equal to 85 µs. The corrected effective drift time ( ) is thus given by:

ௗ"ݐ = ௗ′ݐ − ඨ
݉

⁄ݖ

1000

Equation 1.10

5. Calibration coefficients are obtained from published absolute cross-section 

data (σ).  Published cross-sections are corrected to take into account the 

is the mass of the ion and 

′ߪ =
ߪ

݁× ටቀ
1
݉ ௜

+

Equation 1.11

ቁ
௡݉

1

sections are given by:-cross

is the mass of the mobility gas, normalised ௡݉௜݉

is the charge on the ion, ݁here effects of reduced mass and charge state.  W

085.0×

ௗ"ݐ

ௗݐ

൰
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, can thus be calculated from the following equation:ܹ ܸvelocity 

ௗݐ
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6. is plotted against 

A 

points is applied. A power series fit has been shown to provide a more 

reliable calibration for large compounds, such as proteins, whereas a linear 

relationship has been found to be more appropriate for smaller molecules, 

such as peptides (Thalassinos et al. 2009).

8. Experimental T-Wave mobility measurements obtained for an analyte are 

converted into estimated cross-sections by correction for reduced mass and 

charge and application of the power series fit (Equation 1.12) or the linear

series fit (Equation 1.13) as appropriate.

ߪ = ܣ × ௗ"ݐ
஻ × ݁ × ඨ൬

1

݉ ௜

Equation 1.12

ߪ = ܣ)] × (ௗ"ݐ + [ܤ × ݁ × ඨ൬
1

݉ ௜

Equation 1.13

The T-Wave height, wave velocity and pressure of the buffer gas within the mobility 

cell can all have an effect on the arrival time of an ion but these parameters do not 

affect the calibration provided that mobility measurements for the calibration 

standard are obtained under the same experimental conditions as the analyte (Leary

et al. 2009).  The corrected arrival times of the calibration standards must also 

bracket those of the analyte for the calibration to be valid (Shvartsburg and Smith 

2008).  

൰
௡݉

1
×

൰
௡݉

1
×

) to the data ݕ=ݔܣ+ܤlinear series fit () or a ஻ݕ=ܣݔpower series fit (7.

.ௗ"ݐᇱߪ
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1.2 Investigating Protein Structure

Determination of protein structure, function and interactions is vital to our 

understanding of biological processes. Many biophysical methods have been 

developed to investigate protein structure, protein dynamics and protein interactions, 

in the quest to relate protein structure to function. 

1.2.1 What is protein structure?

Protein structure may be divided into four main categories, primary, secondary, 

tertiary and quaternary structure. The primary structure of a protein relates to its 

amino acid sequence. The secondary structure of a protein relates to the local spatial 

arrangement of atoms within the backbone of a polypeptide chain. The tertiary 

structure of a protein is its three-dimensional arrangement in space. Many proteins 

consist of multiple polypeptide chains, loosely termed subunits, and the spatial 

arrangement of these forms the quaternary structure of a protein (Voet and Voet 

1995). Complete functional protein assembly may also require the association of 

ligands, for example metal ions or heme.

The primary structure of a protein is ultimately responsible for its three-dimensional 

conformation and function. Knowledge of a protein’s primary structure can be used 

to indicate its functionality, evolutionary relationships and cellular localisation 

(Nelson and Cox 2005). Many inherited diseases are caused by proteins with 

modifications in their primary sequences, which give rise to proteins with altered 

three-dimensional structures that do not function correctly. Some aspects of primary 

protein structure are not uniquely determined by gene sequence. Post-translational 

modifications (PTMs) are often applied to amino-acid sequence such as 

glycosylation to asparagine residues and phosphorylation to threonine, serine or 

tyrosine residues. PTMS are of significant importance and greatly influence the 

functionality of proteins. PTMs can determine the cellular localisation of a protein, 

target a protein for degradation, activate a particular function of a protein or 

conversely deactivate it (Mann and Jensen 2003). 
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The secondary structure of a protein is determined by local intra-chain interactions, 

typically hydrogen bonds between backbone carboxyl- and amino-groups. These 

interactions produce secondary structure elements such as alpha-helices and beta-

sheets. The complete three-dimensional structure of a folded polypeptide chain is 

held together by non-covalent interactions (van der Waals forces, hydrophobic 

interactions, electrostatic interactions and hydrogen bonding) between secondary 

structural elements and disulphide bonds between cysteine residues (Voet and Voet 

1995). These non-covalent interactions also preserve quaternary protein structure.

1.2.2 Protein structure vs. protein conformation

Proteins within their native-states are not static entities; they are flexible. The degree 

of this flexibility ranges widely, from local structural fluctuations to global 

conformational changes, but is often vital for protein function (Kaltashov and Eyles 

2002). Correct understanding of protein function therefore not only requires a good 

knowledge of a protein’s structure but also how this structure may change its 

conformation.

1.2.3 Classic tools of structural biology

The field of structural biology deals with the determination of molecular structure of 

biological macromolecules and how these structures affect their functions. The 

secondary structure of a protein is often analysed by spectroscopic techniques such 

as circular dichroism, infrared and Raman spectroscopy  (Pelton and McLean 2000). 

The best tools a structural biologist currently has to characterise the three-

dimensional structure of a protein are solid-phase X-ray crystallography, solution-

phase nuclear magnetic resonance (NMR) spectroscopy and cryo-electron 

microscopy.

X-ray crystallography is a spectroscopy technique based upon the diffraction pattern 

of X-rays striking a crystal. A computer-controlled diffractometer is used to record 

diffraction data and high-speed computers are used to analyse the data collected in 

order to determine the position of atoms within a crystal (Deschamps and George 
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2003). The application of X-ray crystallography is therefore limited to the study of 

proteins which form crystals.

NMR spectroscopy exploits the fact that certain nuclei, such as 1H, 13C and 15N, have 

nuclear spin. Nuclear spin generates a magnetic dipole so that when a strong 

magnetic field of uniform strength is applied to a protein solution, the magnetic 

dipoles are aligned either parallel or anti-parallel to the field (Nelson and Cox 2005). 

Short pulses of electromagnetic energy are then applied at right angles to the nuclei 

aligned in the magnetic field. The nuclei absorb some of this energy and this 

provides information about the identity of the nuclei and their chemical environment 

(Nelson and Cox 2005). NMR spectroscopy is largely used to study the three-

dimensional structure of proteins that have a molecular weight less than 30,000 Da 

and do not form crystals (Delepierre and Lecroisey 2001). Solution-phase NMR can 

be used to investigate protein dynamics, providing information pertaining to 

transient conformational states (Delepierre and Lecroisey 2001). 

Cryo-electron microscopy involves imaging a specimen at a temperature near to that 

of liquid nitrogen (–196 °C) with an electron microscope. It can be used to study 

macromolecular assemblies in different forms, symmetries, sizes and shapes but only 

at low-medium resolutions (Chiu et al. 2006).

NMR spectroscopy and X-ray crystallography provide atomic resolution of protein 

structure and are assumed to reflect biological form but do have limitations. Whilst 

X-ray crystallography provides detailed structural information, this relates to only 

one static structure sampled by the protein and is reliant on the production of protein 

crystals that will diffract. Production of protein crystals is often considered an art 

rather than a science and is a laborious process (Nelson and Cox 2005). NMR 

experiments have the advantage of being conducted in solution but typically require 

that the sample be isotopically labelled and in a high concentration, which can be 

difficult to obtain. Interpretation of NMR data also becomes more difficult when 

analysing higher molecular weight species due to spectral complexity (Nelson and 

Cox 2005).
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1.3 Analysing protein structure by mass spectrometry

The main application of mass spectrometry to protein analysis has been primary 

structure analysis within the field of proteomics. Proteomics involves the large-scale 

analysis of the complement of proteins expressed by a cell at a particular point in 

time. Proteomic studies aim to identify the proteins within a proteome and measure 

their expression levels, modifications, localisations, interactions and functions 

(Heuvel and Heck 2004). Mass spectrometry has been at the forefront of these 

studies, initially being used to identify proteins, then in quantitative studies and in 

studies of post-translational modifications (Aebersold and Mann 2003). The 

application of mass spectrometry to secondary structure analysis has been limited. It 

is the application of mass spectrometry to higher order protein structure analysis, 

however, which is of most interest with regard to this thesis.

Over the last ten to twenty years, with the advancements in instrumentation and 

ionisation methods as discussed above and extensive research efforts, mass 

spectrometry has become a valuable structural biology tool for the study of three-

dimensional protein structure and the quaternary structure of non-covalent protein 

complexes.

1.3.1 Probing three-dimensional protein conformation with ESI-MS

The first use of mass spectrometry to obtain information regarding protein 

conformation was reported by Chowdhury et al. in 1990. They observed changes 

which occurred in the charge state distribution of cytochrome c mass spectra as a 

function of solution pH. They stated that the multiply-charged ions produced in the 

ESI process are primarily a result of proton attachment to exposed basic sites of the 

protein and that the availability of these sites is dependent on the conformation of the 

protein under the conditions of the study. A tightly folded conformation will have 

fewer exposed basic sites, and would accommodate fewer charges on the protein 

surface, than an unfolded conformation of the same protein (Chowdhury et al. 1990). 

If the charge states of gas-phase ions observed in the ESI mass spectrum of a protein

reflect the charge states of that protein in solution, then the spectrum would provide 
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conformational information relating to the protein’s solution state. At low pH, they 

observed that cytochrome c unfolded and accepted a large number of protons. At 

higher pH, cytochrome c accepted far fewer protons and was in a more tightly-folded 

conformation. These observations demonstrated the viability of ESI-MS as a new 

physical method to probe conformational changes in proteins under varying 

conditions, such as changes in pH, temperature and solvent composition. 

A wealth of research into the use of mass spectrometry to provide information 

relating to three-dimensional protein structure has since followed. The following 

points are thus generally accepted. A typical ESI mass spectrum of a monomeric 

protein, obtained under controlled, non-denaturing, experimental conditions, will 

contain a narrow charge state distribution with a single maximum. The observation 

of a wide charge state distribution, with more than one maximum, within the 

spectrum, is indicative of the presence of more than one conformational state 

(Chowdhury et al. 1990). The lowest charge states detected in the spectrum for a 

protein are thought to be most representative of the native structure of that protein 

(Hoaglund-Hyzer et al. 1999). Conversely, partially-folded protein conformers have 

larger solvent-exposed surface areas and therefore can accept more charge upon 

transition from the solution phase to the gas phase (Mohimen et al. 2003). 

1.3.2 Studying protein interactions, dynamics and complexes

Soon after the initial work of Chowdhury et al. (1990) non-covalent interactions of 

proteins began to be studied by ESI-MS (Ganem et al. 1991; Katta and Chait 1991; 

Smith et al. 1992). The gentleness of the ESI process allowed non-covalent 

interactions, present in solution, to be preserved in the gas phase. This meant that 

ESI-MS could be used to study quaternary protein structure and protein interactions 

with nucleic acids, ligands and cofactors. The introduction of nanoflow-ESI (Wilm 

and Mann 1994) increased the applicability of ESI-MS to the analysis of protein 

complexes and interactions as it made the study of minute amounts of sample 

possible without a compromise in sensitivity (Wilm and Mann 1996). MALDI has 

also been used to study protein assemblies (Kiselar and Downard 2000; Strupat et al.

2000) but, due to the sample preparation required and the relatively higher internal 

energy of the ions formed, is not as applicable as ESI to the analysis of large 
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proteins, or protein assemblies, under near-physiological conditions (Heck and van 

den Heuvel 2004). As such it is not discussed further here.

Approaches based upon mass spectrometry have been used to investigate subunit 

stoichiometry and interactions within protein complexes, protein-ligand interactions, 

protein-DNA/RNA interactions, acid-denaturation and non-covalent complex 

assembly and disassembly. Examples of these investigations by mass spectrometry 

have been described in several extensive reviews (Loo 1997; Loo 2000; Kaltashov 

and Eyles 2002; Heck and van den Heuvel 2004; Ashcroft 2005) and will not be 

repeated in detail here. Some of the methods used are discussed below. 

MS and MS/MS experiments have been used to determine the stoichiometry of 

subunits within a protein complex. Given an intact mass of a complex its 

composition can be determined by the sum of the masses of individual subunits 

(Hernandez and Robinson 2007). The arrangement of subunits within a complex can 

be investigated by MS/MS experiments as subunits on the outside of a complex are 

generally the most readily dissociated (Sharon et al. 2006). As the number of charges 

accepted by a protein complex, upon ESI, is related to the number of exposed basic 

sites, which can accept charge, this ionisation method can be used with MS to 

determine the oligomeric state of a complex. If the number of charges accepted by a 

tetrameric complex were on average double the number accepted by a dimeric 

compex then they would not be so easily distinguished (Heck and van den Heuvel 

2004). As subunits are dissociated from a protein complex, by CID, they tend to 

retain a large portion of the charge which was on the intact complex. This 

asymmetric charge portioning, with respect to mass, has been shown to be symmetric 

with respect to surface area (Benesch et al. 2006). Monomers, which are dissociated 

from a complex, are proposed to be largely unfolded (Jurchen and Williams 2003). 

The surface area of a stripped oligomer (an oligomer from which a subunit has been 

stripped by CID), can thus be estimated from the charge partitioning observed within 

mass spectra, between stripped oligomer and subunit, and the surface area of the 

unfolded subunit (Benesch et al. 2006).

The analysis of large proteins and protein complexes has largely been conducted 

within Q-TOF mass spectrometers. TOF mass analysers have extensive m/z ranges, 
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high sensitivity and fast acquisition rates. The combination of a quadrupole mass 

analyser with a TOF mass analyser allows MS/MS experiments to be conducted. The 

m/z range of the quadrupole mass analyser obviously limits the size of complex 

which can be investigated by mass spectrometry. Within the Robinson group, a 

tandem mass spectrometer for improved transmission and analysis of large 

macromolecular assemblies, up to 2-3 mDa in size, has been developed (Sobott et al.

2002b). Recently, Q-TOF instruments with 32 kDa quadrupoles have become 

commercially-available.

MS has also been applied to the analysis of protein dynamics and folding (Kaltashov 

and Eyles 2002; Eyles and Kaltashov 2004) and the structural elucidation of dynamic 

protein complexes (Sharon and Robinson 2007). Subunit exchange in solution has 

been observed by MS, by use of real-time monitoring (Sobott et al. 2002a; Painter et 

al. 2008). The folding and self-assembly of non-covalent protein complexes (Boys 

and Konermann 2007) and kinetic studies of protein-refolding/unfolding reactions 

(Konermann et al. 1997a; Konermann et al. 1997b) have also been measured by 

means of similar approaches. 

1.3.3 The role of IM-MS

The development of higher resolution ion mobility spectrometry  techniques coupled 

with MS has provided a powerful tool for the determination of molecular structure 

(Kanu et al. 2008), providing information on shape as well as mass. IM-MS can be 

used to investigate the conformational states exhibited by a protein or protein 

complex within the gas phase. It has been applied to most of the applications areas 

discussed above. IM-MS can be used to investigate conformational changes that 

occur within proteins as they unfold/refold. It can be used to study global changes in 

protein structure occurring upon ligand-binding (Sharon and Robinson 2007). In the 

analysis of protein complexes, IM-MS can simultaneously provide information 

regarding subunit composition and overall topology (Ruotolo et al. 2005; Ruotolo et 

al. 2007; Ruotolo et al. 2008). An important outcome of the application of IM-MS to 

protein structure analysis is that it provides additional evidence that solution-phase 

structure is reflected in the gas phase.
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1.3.4 Solution-phase vs. gas-phase structure

Key to the applicability of ESI-MS to native protein structure analysis is whether the 

solution-phase structure is conserved within the gas phase. There is now increasing 

evidence to suggest that protein conformations in the gas phase can mirror those in 

the solution phase, particularly over short time periods (Badman et al. 2005; Ruotolo

et al. 2005; Ruotolo and Robinson 2006; Breuker and McLafferty 2008). Studies 

have shown that under controlled ESI conditions protein conformations can be 

preserved upon ionisation and gas-phase ions can retain conformational properties of 

structures present in the solution phase over the time they exist within the mass 

spectrometer (Hoaglund-Hyzer et al. 1999). 

Evidence that proteins retain a memory of their solution-phase conformations in the 

gas phase has come from ion mobility studies where cross-sections, for the lowest 

charge states observed, for proteins studied have compared well with those 

calculated from X-ray and NMR structures (Shelimov et al. 1997; Shelimov and 

Jarrold 1997; Myung et al. 2002; Ruotolo et al. 2005; Scarff et al. 2008). Evidence 

has also been gained from the study of binding interactions and subunit 

stoichiometry (Loo 1997; Heck and van den Heuvel 2004) and charge partitioning 

upon dissociation of a complex (Jurchen and Williams 2003). 

Solution-phase structures may not be preserved in the gas phase in all cases, 

however. Native protein structure is stabilised by a range of non-covalent 

interactions in solution but in the gas phase electrostatic interactions are heightened 

and hydrophobic interactions are weakened (Robinson et al. 1996; Loo 2000). It 

therefore may not be possible to observe/maintain an intact protein complex in the 

gas phase if its interactions are predominantly hydrophobic (Hernandez and 

Robinson 2007).  Nevertheless, examples of the maintenance of hydrophobic 

interactions within the gas phase have been shown (Liu et al. 2009). In general, it is 

now widely accepted that under controlled experimental conditions and over short 

timescales gas-phase protein structure reflects that in the solution phase.

Breuker and McLafferty have proposed that globular proteins undergo a temporal 

evolution of structures after ESI, summarised in Figure 1.12 (Breuker and 
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McLafferty 2008). Molecular dynamics (MD) simulations have shown that 

following desolvation, on the picosecond timescale, structural changes occur on the 

exterior of the native protein (Steinberg et al. 2008). Charged amino acid side chains 

form a network of electrostatic interactions on the protein surface, which stabilise the 

native fold. MD results have shown that this structure can remain essentially 

unchanged for milliseconds and this has been supported by experimental evidence. 

Ion mobility studies conducted on cytochrome c ions, where ions were trapped prior 

to mobility analysis for different time periods, showed that a native-like structure 

persisted for 30 ms within the gas phase (Badman et al. 2005). After this time, 

hydrophobic interactions and subsequently electrostatic interactions dissociate and 

protein ions refold into stable gas phase structures over a timescale of seconds to 

minutes (Breuker and McLafferty 2008). 

Figure 1.12: Stepwise evolution of globular protein structure after ESI.

(A) Native protein is covered with a monolayer of water, water is lost and concomitant 

cooling occurs to give the native protein with exterior ionic functionalities still hydrated (B), 

further water loss and cooling results in a dry protein (C). The dry protein undergoes 

collapse of its exterior ionic functionalities, millisecond loss of hydrophobic bonding (D) 

and millisecond loss of electrostatic interactions (E). Transiently unfolded ions form new 

non-covalent bonds in seconds (F) and refold into stable gaseous ion structures in minutes 

(G). Adapted from Breuker and McLafferty (2008).
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1.3.5 Preserving protein structure in the gas phase

To maintain protein structures in the gas phase that reflect solution-phase structures 

MS experiments (termed native MS experiments) need to be conducted under 

controlled, non-denaturing conditions. Controlled non-denaturing conditions are 

obtained by careful optimisation of solvent and instrument settings. Hernandez and 

Robinson have produced a general protocol for this optimisation, detailing the main 

requirements for maintaining intact protein complexes within the gas phase 

(Hernandez and Robinson 2007). The key requirements are given below and are also 

relevant for the intact analysis of monomeric proteins.

Native MS measurements are usually performed in a buffered spray solution at the 

physiological pH of the analyte. The buffers commonly used for protein purification 

and storage, such as Tris and HEPES, are often non-volatile and are therefore 

incompatible with native MS (van Duijn 2010). Non-volatile substances are not 

amenable to the electrospray ionisation process and cause suppression of ionisation 

and/or extensive adduct formation (Hernandez and Robinson 2007). Protein samples 

are therefore buffer-exchanged into an ESI-compatible buffer, such as aqueous 

ammonium acetate at neutral pH. Ammonium acetate salt concentrations used 

typically range from 5 mM to 1M (Heck 2008) with 3 M concentrations found to be 

beneficial in some cases (Hernandez and Robinson 2007). High concentrations of 

ammonium acetate within the buffer aid in reducing the effects of non-volatile buffer 

components (Iavarone et al. 2004) but may cause dissociation of the protein complex 

under investigation. 

The correct instrument conditions are vital to maintaining protein complexes intact 

in the gas phase. The major considerations are electrospray flow rate, mass range and 

voltage and pressure settings in the ESI source (Hernandez and Robinson 2007). 

Most native MS experiments are now conducted by nanoflow-ESI instead of 

standard ESI as the lower flow rate improves sensitivity and increases tolerance to 

buffer salts whilst requiring less sample volume (Hernandez and Robinson 2007).  

Non-covalent complexes and large proteins exhibit ions of high m/z. The 

transmission of high m/z ions can be improved by collisional-cooling or damping 

(Krutchinsky et al. 1998; Chernushevich and Thomson 2004). Collisional-cooling 
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involves cooling the ions by reducing their energy so they are more effectively 

transmitted into the mass spectrometer. One way to achieve this is to increase the 

pressure in the transfer region of the instrument between the source and the analyser 

(Tahallah et al. 2001). This increase in pressure reduces the energy of high m/z ions 

and helps to focus the ion beam, improving transmission (Heuvel and Heck 2004). 

The m/z range of TOF mass analysers, typically used for native MS experiments, is 

only limited by ion detection and the use of collisional-cooling can significantly 

improve this limit of detection. 

1.3.6 Native MS as a structural biology tool

Mass spectrometry-based analysis of global protein structure can be especially useful 

when structural characterisation by more conventional techniques, such as NMR 

spectroscopy or X-ray crystallography, is difficult or not possible. Recently, 

however, MS has been established as a structural biology tool in its own right, 

providing useful complementary information to other methods and possessing some 

distinct advantages.

MS has the unique advantage of being able to analyse heterogeneous populations and 

can be applied to the analysis of large protein complexes over a mDa in size, well 

beyond the scope of NMR. MS is a very sensitive and selective technique and thus 

allows the analysis of endogenous protein complexes (Heck and van den Heuvel 

2004; Benesch et al. 2007). MS can be used to determine unambiguously the 

stoichiometry of protein complexes (Hernandez and Robinson 2007; Sharon and 

Robinson 2007). MS has also successfully been applied to the analysis of membrane 

proteins (Barrera et al. 2008), one of the most important yet difficult protein families 

to study. An initial analysis of a protein sample by MS under various conditions can 

provide X-ray crystallographers with information to expedite X-ray structural 

determination (Cohen and Chait 2001).

The time frame of a typical native MS experiment means that the dynamics of 

proteins, protein complexes and protein interactions can all be studied in real-time. 

X-ray crystallography structures provide a static snapshot of a protein or protein

complex and thus do not provide information on dynamic processes. NMR has 
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widely been used to study dynamic processes but it cannot be used to provide 

information about individual protein complexes within a mixture. MS can be used to 

study the dynamics of multiple protein subpopulations in real-time experiments 

(Sharon and Robinson 2007). Native MS can be coupled with ion mobility to 

conduct experiments which provide information on shape as well as mass. Whilst 

IM-MS only provides a rather crude measurement of protein global structure it can 

be performed using small concentrations of protein and within a short time scale in 

comparison to X-ray crystallography or NMR spectroscopy.

The applicability of native MS is however limited by a number of factors. To 

perform a native MS experiment on a protein or protein complex it must be within a 

buffer compatible with MS and be of a sufficient purity. Some proteins are not stable 

within these buffers and so cannot be analysed, others require the presence of 

cofactors or salts, which interfere with sample ionisation. The quality of the sample 

is thus the main factor that affects the outcome of a native MS experiment (van 

Duijn 2010). Although heterogeneous populations can be studied by MS, their 

spectra are highly complicated and it can be extremely difficult to correctly assign 

peaks; protein complexes of similar mass give rise to overlapping charge states 

within mass spectra. Differences in the ionisation, charging and transmission 

efficiencies of different species means that spectra provide only qualitative and not 

quantitative information (Hernandez and Robinson 2007). Some protein complexes 

may not maintain conformations that reflect their native solution-phase 

conformations upon transmission into the gas phase if they contain a large 

proportion of hydrophobic interactions. Ultimately, MS is limited by mass range. As 

the mass of an analyte increases, desolvation, ion transmission and detection become 

less efficient (Hernandez and Robinson 2007). 
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1.4 Aims and Objectives

The work presented in this thesis involved the investigation of the use of mass 

spectrometry-based approaches to study aspects of protein structure. The three-

dimensional structure of various protein systems is studied by means of travelling-

wave ion mobility mass spectrometry and the use of mass spectrometry as a 

diagnostic tool for hemoglobinopathies is investigated.

The use of travelling-wave ion mobility mass spectrometry to study three-

dimensional structure is a relatively new concept. The Synapt HDMS system was 

only made commercially-available in January 2007. Assessment of the use of this 

approach was conducted in initial work and then applied to two different systems; 

hemoglobin and VanS from the vancomycin resistance pathway in Enterococcus 

faecium. 

The application of mass spectrometry to the diagnosis of hemoglobinopathies is not 

a new concept. Mass spectrometry is used to identify disorders in rare cases, which 

cannot be identified by classic approaches. It is not, however, considered an 

alternative approach for population screening due to cost and data interpretation 

skills required. Here an established mass spectrometry-based method for 

hemoglobinopathy diagnosis is adapted for application on a Q-TOF instrument and 

used to provide diagnosis of hemoglobin disorders. A potential method for high-

throughput screening by mass spectrometry is introduced. The prospect of 

establishing a method based upon mass spectrometry as the routine approach for 

population screening is discussed. 

The aims of this project were to:

1. Utilise travelling-wave ion mobility mass spectrometry to study protein 

structure and assess the biological significance of measurements made by 

comparison to those from X-ray crystallography and nuclear magnetic 

resonance studies (Chapter Two).
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2. Investigate the structure of hemoglobin tetramers and their constituents by 

means of travelling-wave ion mobility mass spectrometry (Chapter Three). 

3. Analyse conformational changes occurring in VanS, a histidine kinase, upon 

autophosphorylation. Investigate the properties of autophosphorylation by 

mass spectrometry-based approaches (Chapter Four).

4. Investigate the practical use of mass spectrometry for hemoglobinopathy 

diagnosis (Chapter Five).

1.5 Research Papers

The research presented in this thesis has already resulted in two peer-reviewed and 

published papers.

Scarff, C. A., Patel, V. J., Thalassinos, K. and Scrivens, J. H. (2009). Probing 

hemoglobin structure by means of travelling-wave ion mobility mass spectrometry.

Journal of the American Society for Mass Spectrometry. 20, 625-631.

Scarff, C. A., Thalassinos, K., Hilton, G. R. and Scrivens, J. H. (2008). Travelling-

wave ion mobility mass spectrometry studies of protein structure: biological 

significance and comparison with X-ray crystallography and nuclear magnetic 

resonance spectroscopy measurements. Rapid Communications in Mass 

Spectrometry. 22, 3297-3304.

1.6 Conference papers (Peer-reviewed)

Patel, J. V., Chackathayil, J., Tracey, I., Lovick, A., Gill, P. S., Scarff, C. A., 

Thalassinos, K., Scrivens, J.H., Lip, G.Y.H. and Hughes, E.A. Haemoglobin 

disorders and low HDL cholesterol in South Asians – Are they connected? Proc. 24th

HEART UK Annual Conference, 2010, Edinburgh, UK.
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Scarff, C. A., Kondrat, F. D. L., Booyjzsen, C., Mukherjee, A., Sadler, P. J. and 

Scrivens, J. H., Probing transferrin-metal interactions by means of travelling-wave 

ion mobility mass spectrometry, Proc. 58th ASMS Conf. on Mass Spectrometry and 

Allied Topics, 2010, Salt Lake City, USA.

Kondrat, F. D. L., Scarff, C. A., Leszczyszyn, O. I., Kowald, G. R., Blindauer, C. A. 

and Scrivens, J. H., Conformational changes associated with the removal of zinc ions 

from proteins in a cyanobacterial Zn2+ homeostatic system, Proc. 58th ASMS Conf. 

on Mass Spectrometry and Allied Topics, 2010, Salt Lake City, USA.

Scrivens, J. H., Scarff, C. A. and Snelling J., Thermally-assisted extractive 

electrospray ion mobility mass spectrometry characterisation of medicinal spray 

formulations, Proc. 58th ASMS Conf. on Mass Spectrometry and Allied Topics, 2010, 

Salt Lake City, USA.

Harvey, D. J., Crispin, M., Scalan, C., Bonomelli, C., Sobott, F., Scarff, C. A., 

Thalassinos, K., Scrivens, J. H., Use of Ion Mobility and Negative Ion CID Mass 

Spectrometry for the Identification of N-glycans from Nanomolar Amounts of 

Glycoprotein, Proc. 58th ASMS Conf. on Mass Spectrometry and Allied Topics, 2010, 

Salt Lake City, USA.

Kondrat, F. D. L., Scarff, C. A., Leszczyszyn, O. I., Blindauer, C. A. and Scrivens, 

J. H., An ion mobility mass spectrometry-based study of the metalloprotein SmtB, 

Proc. 18th International Mass Spectrometry Conference, 2009, Bremen, Germany.

Scarff, C. A., Quigley, A. M., Lloyd, A. J., Roper, D. I. and Scrivens, J. H., Mass 

spectrometry-based studies of the Vancomycin resistance pathway in Enterococcus 

faecalis, Proc. 57th ASMS Conf. on Mass Spectrometry and Allied Topics, 2009, 

Philadelphia, USA.

Scrivens, J. H., Kondrat, F. D. L., Scarff, C. A., Blindauer, C. A., Sanghera, N., 

Hilton, G. R., Gill, A. C., Pinheiro, T. and Thalassinos, K., A shape selective study 

of conformational changes in metal containing proteins, Proc. 57th ASMS Conf. on 

Mass Spectrometry and Allied Topics, 2009, Philadelphia, USA.
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Scrivens, J. H., Thalassinos, K., Scarff, C. A., Hilton, G. R., and Patel, V. J., Gas 

phase protein structure: Biological significance and comparison with X-ray and 

NMR measurements, Proc. 56th ASMS Conf. on Mass Spectrometry and Allied 

Topics, 2008, Denver, USA.

Jennings, K. R., Patel, N., Scarff, C. A., Slade, S. E., Thalassinos, K. and Scrivens, 

J. H., A comparative analysis of electron transfer dissociation and collision-induced 

dissociation of non-phosphorylated and phosphorylated peptides, Proc. 30th Annual 

Meeting of the British Mass Spectrometry Society, 2008, University of York, York.

Scarff, C. A., Thalassinos, K., Efstathiou, G., Williams, J. P., Green, B. N. and 

Scrivens, J. H., An expert-based system approach for the identification of single 

point human hemoglobin variants from mass spectrometric data, Proc. 55th ASMS 

Conf. on Mass Spectrometry and Allied Topics, 2007, Indiana, USA.

Patel, V. J., Scarff, C. A., Thalassinos, K., Williams, J. P. and Scrivens, J. H. 

Structure-property relationships of hemoglobin tetramers studied by travelling-wave-

based ion mobility-mass spectrometry, Proc. 29th Annual Meeting of the British 

Mass Spectrometry Society, 2007, Herriot-Watt University, Edinburgh.

1.7 Oral Presentations
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Chapter 2: Travelling-Wave Ion Mobility 

Mass Spectrometry Studies of Protein 
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The tertiary conformation of a protein is vital in determining its biological activity 

and as such is a key structural feature. The most established methods for studying 

protein conformation are X-ray crystallography and nuclear magnetic resonance 

(NMR) spectroscopy. These techniques do not allow for the analysis of all proteins; 

many proteins do not form crystals and NMR studies require high concentrations of 

labelled protein. This excludes the use of proteins obtained directly from biological 

samples. Techniques that allow the measurement of protein conformation at 

biological concentration and within biological timescales are of great value in 

understanding biological processes.

The characterisation of aspects of three-dimensional protein structure by mass 

spectrometry is an area of much interest as the gas phase conformation, in many 

instances, can be related to that of the solution phase. Previous studies by drift-cell 

ion mobility mass spectrometry (DCIM-MS) have shown that cross-sections 

estimated for the lower ESI-generated charge states of several proteins, including 

bovine cytochrome c (Shelimov et al. 1997), bovine ubiqutin (Myung et al. 2002), 

and equine apomyoglobin (Shelimov and Jarrold 1997), compare well with those 

calculated from X-ray crystal structures. As the charge state increases there is an 

increase in overall cross-section of the molecule. This is thought to be attributable to 

the effects of Coulomb repulsion (Shelimov and Jarrold 1997; Badman et al. 2001).

In this work, the biological significance of gas-phase protein structure measurements 

made by the use of travelling-wave ion mobility mass spectrometry (TWIM-MS) 

was investigated. 

As described in Chapter 1 Section 1.1.7, the travelling-wave ion mobility separator 

(T-Wave) (Giles et al. 2004) has considerably increased the sensitivity and speed of 

analysis in comparison with many earlier drift-cell ion mobility devices, so enabling 

one to analyse samples at biologically-relevant concentrations. The T-Wave has been 

integrated into a commercial quadrupole time-of-flight instrument, the Synapt 

HDMS System (Waters Corporation, Milford, MA, USA) (Pringle et al. 2007). The 

.1 Introduction2
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Synapt operates with excellent reproducibility and mass accuracy, and is capable of 

providing a wealth of information since it is able to achieve ion mobility tandem 

mass spectrometry with the choice of performing collision induced dissociation 

before or after the mobility cell. For each ion mobility experiment, 200 complete 

mass spectra are acquired in a time of 15-30 ms. The nature of the T-Wave device 

means that the ion drift time is not inversely proportional to ion mobility as is the 

case when using DCIM-MS, and thus absolute collision cross-sections cannot be 

obtained directly from drift time measurements. It has been shown, however, that 

estimates of collision cross-sections can be obtained by reference to samples with 

known cross-sections (Ruotolo et al. 2005; Wildgoose et al. 2006; Thalassinos et al.

2008), provided that the data are obtained under the same experimental conditions; 

i.e. mobility gas, gas pressure, wave velocity, wave height, pusher frequency and 

injection energy. 

Protein standards were analysed by means of TWIM-MS under denaturing and near-

physiological solvent conditions. For each protein studied, mobility drift times for 

each of the charge states detected within spectra were recorded. Estimates of 

rotationally-averaged collision cross-sections for the charge states observed were 

obtained with reference to published cross-sections of known standards. These were 

compared with those calculated by the well-established MOBCAL program (Mesleh

et al. 1996; Shvartsburg and Jarrold 1996). Cross-sections were calculated, for the 

various proteins studied, from published X-ray crystallography structures and NMR 

structures held in the protein databank (Berman et al. 2000). 

The cross-section of a protein measured by ion mobility mass spectrometry varies 

with charge state. This allows the unfolding of proteins in the gas phase to be 

studied. The unfolding transition for disulphide-reduced and disulphide-intact 

lysozyme c was investigated by TWIM-MS to examine the restraints on protein 

unfolding attributable to the presence of disulphide bonds.
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2.2 Materials and Methods

2.2.1 Material suppliers

All chemical reagents (analytical grade) and protein standards were obtained from 

Sigma-Aldrich Ltd (Gillingham, UK), Fisher Scientific (Loughborough, UK) or GE 

Healthcare (Chalfont St Giles, UK) unless otherwise stated. Mass spectrometry 

solvents were supplied by Mallinckrodt Baker Inc. (Phillipsburg, NJ, USA).

2.2.2 Sample preparation

Protein standards (chicken lysozyme c, human lysozyme c, sperm whale myoglobin, 

equine myoglobin and equine cytochrome c) were diluted to a concentration of 10 

µM in 50 % acetonitrile 0.1 % formic acid for denaturing conditions and in 10 mM 

ammonium acetate pH 6.8 for near-native conditions. 

Prior to mass spectrometric analysis, samples were desalted by means of 

centrifugation. 500 µL of each sample was added to a pre-washed Ultrafree-0.5 5 

kDa cut-off (Millipore, Billerica, MA, USA) centrifugal filter which was then 

centrifuged at 11,500 g for 10 minutes. Sample retained on the filter was 

reconstituted in the appropriate solvent (either 50 % acetonitrile 0.1 % formic acid or 

10 mM ammonium acetate pH 6.8) and the centrifugation step repeated. The 

resulting samples were recovered from the filter devices into Eppendorf tubes and 

reconstituted to a volume of 500 µl in the appropriate solvent.

The disulphide-bonds within lysozyme samples were reduced by dithiothreitol 

(DTT). Human and chicken lysozyme c protein stocks were prepared at 1 mg/mL in 

a 10 mM ammonium bicarbonate solution. A solution of DTT was prepared at 60 

mg/mL in 100 mM ammonium bicarbonate. 10 µL of the DTT solution was added to 

90 µL of each lysozyme protein stock. The resulting solutions were incubated for 

five minutes at room temperature. Lysozyme c samples which had been treated with 

DTT (disulphide-reduced) and untreated (disulphide-intact) protein stocks were 
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diluted to a concentration of 10 µM in 50 % acetonitrile 0.1 % formic acid before 

undergoing mass spectrometric analysis. 

2.2.3 Travelling-wave ion mobility mass spectrometry experiments

Travelling-wave ion mobility mass spectrometry (TWIM-MS) experiments were 

performed on a Synapt HDMS System (Waters Corporation, Milford, MA, USA), 

described in detail in Chapter 1 Section 1.1.7 and elsewhere (Pringle et al. 2007). 

Samples were introduced into the source region of the Synapt HDMS system by 

direct infusion nano-ESI by means of fused silica nanospray needles (Waters 

Corporation, Milford, MA, USA). The instrument was operated in ESI positive mode 

with a capillary voltage of 1.2 kV, cone voltage of 70 V and source temperature of 

90 °C for all experiments. The TOF mass analyser was tuned in V-mode to give an 

operating resolution of 8,000 (FWHM) and was calibrated using 2 mg/ml cesium 

iodide in 50 % aqueous propan-2-ol. A mass acquisition range of 800-3000 m/z was 

used. The pressure within the ion mobility cell, containing nitrogen, was optimised 

by changing the nitrogen flow rate. Optimised separation was achieved at an 

indicated pressure of 0.55 mbar, corresponding to a flow rate of 30 mL/min. The 

travelling wave velocity and wave height were altered in increments from 100-600 

m/s and 8-20V respectively. The conditions that provided the optimal mobility 

separation, a travelling wave height and velocity of 9 V and 300 m/s respectively, 

were used for all following experiments.

MassLynx™ (v4.1) software (Waters Corporation, Milford, MA, USA) was used to 

acquire data and perform subsequent processing required. Mass spectra were 

recorded at an acquisition rate of two spectra/s with an interscan delay of 100 ms. 

Spectra obtained were deconvoluted onto a true mass scale with MaxEnt, a 

maximum entropy modelling program available within MassLynx™ (v4.1) software.

2.2.4 ATDs, calibration and estimation of cross-sections

The arrival time distributions for each ion of interest were extracted and interpreted.

Each peak observed within an ATD for a particular ion was identified as relating to a 

particular conformation of that ion. The scan number (TOF push number) at which 
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the apex of each peak occurred was taken and converted into an arrival time (the 

arrival scan number multiplied by the pusher frequency). 

Calibration methods for the T-Wave device, to allow estimations of rotationally-

averaged collision cross-sections from ion mobilities obtained, have been previously 

described (Ruotolo et al. 2005; Scrivens et al. 2006; Wildgoose et al. 2006; Ruotolo

et al. 2008; Thalassinos et al. 2008). Here calibrations were performed following an 

in-house procedure based on earlier work, described in detail in Chapter 1 Section 

1.1.8 and briefly below (Ruotolo et al. 2005; Scrivens et al. 2006; Wildgoose et al.

2006; Williams and Scrivens 2008). 

Equine myoglobin or sperm whale myoglobin at a concentration of 10µM in 50 %

aqueous acetonitrile containing 0.2 % formic acid was used as the T-Wave calibrant. 

The myoglobin was analysed under the same instrument conditions that were used to 

analyse the analyte of interest. Sperm whale myoglobin was used here.

Recorded arrival times were corrected to exclude time spent outside of the ion 

mobility cell. Mass-independent time, spent in the transfer region, and mass-

dependent time, spent between the transfer region and time-of-flight mass analyser, 

were subtracted. These corrected arrival times were used to create a calibration curve

for cross-section measurements against values obtained from drift cell ion mobility 

mass spectrometry (DCIM-MS) studies. Cross-section measurements from DCIM-

MS studies for sperm whale myoglobin were obtained from Clemmer’s on-line 

database whilst those for equine myoglobin were obtained from Prof. Michael T.

Bowers (personal communication). Normalised cross-sections (corrected for charge 

and reduced mass) were plotted against corrected arrival times to create a calibration 

with a power series fit. The calibration produced was then used to estimate the 

rotationally-averaged collision cross-sections for various charge states of the proteins 

studied under the same instrument operating conditions. 

A typical spectrum obtained for sperm whale myoglobin, for calibration purposes, is 

shown in Figure 2.1, along with corresponding extracted arrival time distributions 

for charge states [M + 11H]11+ to [M + 16H]16+. An example of a calibration curve is 

illustrated in Figure 2.2.

57



a.)

b.)

Figure 2.1: a.) A typical spectrum obtained for sperm whale myoglobin, for calibration 

purposes, with b.) corresponding extracted arrival time distributions for charge states [M + 

11H]11+ to [M + 16H]16+.
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Figure 2.2: Calibration curve of corrected arrival times for sperm whale myoglobin against 

normalised published cross-sections.

The calibration allows one to estimate the cross-section of a molecule of interest, 

when analysed under the same instrument conditions as the calibrant, provided that 

the mobilities (corrected arrival times) for that molecule lie within the mobilities 

observed for the calibrant. This is irrespective of the size range of cross-sections for 

the calibrant (Shvartsburg and Smith 2008; Thalassinos et al. 2008). The calibration 

produced was only used to estimate rotationally-averaged collision cross-sections for 

ions of interest if their corrected arrival times fell along the calibration curve.

2.2.5 Theoretical cross-section calculations

To evaluate the measurements for rotationally-averaged collision cross-section 

obtained experimentally, comparisons were made with theoretically calculated 

approximations of the measurement, where possible. MOBCAL, an open source

program to calculate mobilities (Mesleh et al. 1996; Shvartsburg and Jarrold 1996), 

was used to calculate cross-sections from published NMR and X-ray crystallography 

structures held at the RCSB Protein Data Bank (Berman et al. 2000).
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MOBCAL facilitates the use of three approximations to calculate cross-sections. The 

simplest method is the projection approximation (PA) which replaces the cross-

section of an ion with its projection (shadow) and averages the projections created by 

every orientation of the ion. The PA is an adequate approximation for small 

molecules but underestimates the cross-section of proteins with highly convex 

structures where interactions with the buffer gas become important (Jarrold 1999). 

The trajectory method (TM) gives the most reliable estimate, incorporating all 

interactions but is computationally intense. A compromise is to use a third model, 

the exact hard sphere scattering (EHSS) method. This ignores electrostatic 

interactions so requires substantially less computational time, and can calculate 

cross-sections to within a few percent of values obtained by the trajectory method

(Jarrold 1999).

To use MOBCAL to calculate cross-sections from NMR and X-ray structures an 

input file for MOBCAL needs to be generated and the MOBCAL code needs to be 

modified. Force 2.0 (free distribution software) was used to compile and edit the 

FORTRAN script. The input file needs to be in a specific format and contain the 

Cartesian coordinates from the PDB file. A Perl script was used to extract the 

coordinates from each appropriate PDB file and to create an input file. The 

MOBCAL code was originally written for the modelling of small molecules and so 

the pre-defined atom capacity is too small and needs to be increased. The ‘len’ 

variable was increased so that it was greater than the number of atoms within the

input file. The number of iterations used by MOBCAL to calculate cross-section 

from an input file was also increased as suggested within the MOBCAL instructions 

file. These required modifications have previously been discussed by Ruotolo et al. 

(2008).

PA and EHSS approximations were performed on a Dell workstation with a Dual 

Core Intel 3.0 GHz processor running Windows XP Professional. Repeats of these 

computations and TM approximations were performed on a Mac Pro with 2 Dual 

Core Intel Xeon 3.0 GHz processors running Mac OS X 10.4. Each TM 

approximation took 7 to 10 days to run on this system.

60



2.3 Results and Discussion

2.3.1 Theoretical cross-section calculations

Theoretical cross-sections, calculated by the PA, EHSS and TM models in 

MOBCAL from X-ray and NMR structures for the proteins standards studied, are 

shown in Table 2.1. Cross-sections calculated from X-ray crystallographic data and 

NMR structures, for the same protein, show remarkable agreement (within 3 % of 

each other here), as has been observed previously (Jarrold 1999). Nominal 

differences (approximately 2 %) are observed in the cross-sections calculated for the 

same protein from different organisms, which is not unexpected given their structural 

similarities and common functions. Cross-sections calculated, for the proteins 

studied, by use of the EHSS and TM approximations are in good agreement (within a 

few percent). 

Table 2.1: Theoretical cross-sections for standard proteins calculated from published NMR 

and X-ray structures using the MOBCAL program and the PA, EHSS and TM models.

Protein Theoretical cross-section 

(Å2)

Description Swiss-Prot ID Experimental 

Method

PDB

file

PA EHSS TM

Chicken 

lysozyme c 
LYSC_CHICK

X-ray 1DPX 1180 1475 1499

NMR 1GXX 1172 1451 1445

Human 

lysozyme c 
LYSC_HUMAN

X-ray 2NWD 1218 1523 1551

NMR 1IY3 1244 1568 1563

Sperm whale 

myoglobin 
MYG_PHYCA

X-ray 1VXG 1375 1734 1730

NMR 1MYF 1394 1754 1753

Equine 

myoglobin 
MYG_HORSE X-ray 1WLA 1366 1719 1716

Equine 

cytochrome c 
CYC_HORSE

X-ray 1HRC 1055 1318 1313

NMR 1LC1 1065 1324 1314
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Jarrold has previously noted that cross-sections calculated for proteins by the EHSS 

method are within a few percent of those calculated by the trajectory method. This 

indicates that performing the computationally intensive TM approximation is not 

necessary in these cases. The PA model, however, has been shown to underestimate

the cross-section of larger molecules. For larger molecules, interactions with the 

buffer gas have been observed to have a increased effect on mobility (Jarrold 1999).

Care needs to be taken when comparing estimated cross-sections generated by use of 

MOBCAL from different input structures and values obtained by experiment.  X-ray 

crystallography structures can contain ligands, which may have bound due to the 

crystallisation conditions and which may not be natural ligands. If MOBCAL is 

applied to a PDB structure with missing hydrogen atoms, or one containing a 

different ligand, the cross-section calculated may be quite different from the cross-

section calculated for the complete structure. Hopper and Oldham investigated 

collision induced unfolding of apo- and holo- protein ions in the gas phase by IM-

MS (Hopper and Oldham 2009). They used MOBCAL to give theoretical 

approximations for the collision cross-sections of these proteins and typically 

reported a difference in calculated cross-section between apo- and holo- forms of 5

%. All PDB files used here were modified appropriately, where possible, to make 

sure that all hydrogen atoms and ligands were accounted for.

2.3.2 TWIM calibration

Calibration of the TWIM device is made possible by comparing mobilities obtained 

for an analyte with those obtained for a standard, for which absolute cross-sections 

are known. The only publicly available database containing protein cross-sections, 

for multiple charge states, come from Clemmer’s group (Clemmer). The protein with 

the largest cross-sections for which data is available is apomyoglobin. The stated 

source of this myoglobin was sperm whale yet equine myoglobin is the more widely 

available standard. It was, therefore, of interest to compare the mobilities of these 

two species. The correlation between estimated cross-sections for sperm whale 

myoglobin and equine myoglobin obtained for various charge states, under 

denaturing conditions, is illustrated in Figure 2.3.
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For simplicity only charge states for which a single conformation was observed are 

shown. Equine myoglobin has a molecular weight of 16951.5 Da and sperm whale 

myoglobin, in its naturally occurring form, a molecular weight of 17199.9 Da. The 

sperm whale material used here was sourced from Sigma-Aldrich, UK as a 

recombinant product, expressed in E. coli, which has an N-terminus methionine 

present giving a molecular weight of 17331.1 Da. The equine and sperm whale 

myoglobins have an 87 % sequence identity (Altschul et al. 1997).
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Figure 2.3: Comparison of estimated cross-sections for sperm whale myoglobin and equine 

myoglobin obtained under denaturing conditions.

The cross-sections estimated for the various charge states of the two proteins are 

similar but distinct; consistently, equine myoglobin is estimated to have a smaller 

cross-section than sperm whale myoglobin. The difference in cross-section observed 

is approximately 2 % and reflects the powerful resolving ability of this technique. 

This result indicates that the same protein from a different organism cannot be 

assumed to have cross-sections of sufficient similarity for them to be interchangeable 

for calibration purposes.

Experimentally estimated cross-sections for equine cytochrome c under denaturing 

conditions are shown in Figure 2.4 and are compared to published values obtained 

from DCIM-MS experiments (Clemmer). By use of the calibration created from 
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sperm whale myoglobin data, equine cytochrome c cross-sections may be estimated 

to within 2 % of absolute values. This experiment was repeated regularly over 

several months, under multiple experimental conditions and results were extremely 

reproducible with estimated cross-sections consistently within 2 % of published 

values. This, along with previous studies (Ruotolo et al. 2005; Wildgoose et al.

2006; Thalassinos et al. 2008), provides substantial evidence to support that the 

Synapt TWIM cell can be calibrated successfully by use of standards with known 

cross-sections. Measurements for equine cytochrome c are within 1 % of published 

values, with the exception of the [M + 10H]10+ charge state. This anomaly has been 

observed on various occasions and given the agreement observed between the rest of 

the charge states it is plausible that this may be because the conformation observed 

in the TWIM-MS experiment is different to that observed and published in the 

DCIM-MS instrument. 
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Figure 2.4: Comparison of published with experimentally estimated cross-sections for 

different charge states of equine cytochrome c (under denaturing conditions). 

Cross-sections were estimated utilising a calibration of data obtained for sperm whale 

myoglobin against published values for sperm whale myoglobin and utilising a calibration of 

data obtained for equine myoglobin against published values for sperm whale myoglobin. 
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The agreement is not so impressive when the calibration curve is produced by using 

corrected arrival times for equine myoglobin but the absolute cross-sections for 

sperm whale myoglobin. Two of the seven cytochrome c charge states evaluated 

have estimated cross-sections within 2 % of published values when the calibration is 

performed as described above. All measurements are still, however, within 4 % of 

published values. These findings show that the use of equine myoglobin in place of 

sperm whale myoglobin can still produce reproducible results and yet highlights the 

resolving capabilities of the TWIM-MS approach.

It is the potential of this technique to probe biologically relevant conformations 

which is of the most prospective interest. The timescale of the TWIM-MS approach 

means that biologically relevant conformations can be preserved within the gas 

phase and not have time to rearrange into stable gas-phase structures (Badman et al.

2005; Breuker and McLafferty 2008). In order to evaluate this aspect of the 

technique, experiments were performed to obtain estimates of cross-sections for 

protein standards under denaturing and near-native conditions for different charge 

states. 

2.3.3 Estimated cross-sections

Figure 2.5 shows estimated cross-sections for chicken and human lysozyme c, 

respectively, obtained under both denaturing and near-physiological conditions. 

The estimates of cross-section obtained for the protein standards, based on 

measurements conducted over a number of months, are reproducible between 

datasets to within ± 2 %. This estimated error is indicated as error bars within the 

relevant Figures. 
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Figure 2.5: Experimentally estimated cross-sections for different charge states of a.) chicken 

and b.) human lysozyme c under denaturing and near-physiological conditions with average 

theoretical cross-sections for PA and TM models shown. Error bars are shown to illustrate 

measurements that would be within ±2 %.

Under physiological conditions conformations with significantly smaller cross-

sections are observed for charge states [M + 5H]5+ to [M + 7H]7+, in comparison to 

charge states [M + 8H]8+ to [M + 10H]10+. These values fall between those calculated 

by means of the PA and TM approximations. These conformations have similar 
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cross-sections suggesting that these three charge states exist within similar 

conformations within the gas phase.  Conformations determined under both 

denaturing and near-physiological conditions for charge states [M + 8H]8+ to [M + 

10H]10+ are significantly different. This may be attributable to the different solvent 

conditions used. 

Estimated cross-sections obtained for equine cytochrome c under both denaturing 

and near-physiological conditions are shown in Figure 2.6 below. 
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Figure 2.6: Experimentally estimated cross-sections for different charge states of equine 

cytochrome c under denaturing and near-physiological conditions with average theoretical 

cross-sections for PA and TM models shown. Error bars are shown to illustrate 

measurements that would be within ±2 %.

The change in cross-section with increase in charge state is quite different for 

cytochrome c from that of the two lysozymes. Lysozyme c possesses four disulphide 

bonds, which are maintained in the gas phase under denaturing as well as near-

physiological conditions. Despite lysozyme c having a larger molecular weight than 

cytochrome c, cross-sections calculated for lysozyme c (Figure 2.5) under denaturing 

conditions are smaller than those observed for cytochrome c (Figure 2.6). Fewer 

charge states are observed for lysozyme c than for cytochrome c. The difference in 
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cross-section between the most compact and least compact structures observed for 

cytochrome c is much greater than that observed for the lysozymes.

Estimated cross-sections obtained for equine myoglobin and sperm whale myoglobin 

under both denaturing and near-physiological conditions are shown in Figures 2.7 

and 2.8 respectively. 

Figure 2.7: Experimentally estimated cross-sections for different charge states of equine 

myoglobin under denaturing and near-physiological conditions with average theoretical 

cross-sections for PA and TM models shown. Error bars are shown to illustrate 

Multiple conformations, for some charge states are observed, under the same solvent 

conditions, for cytochrome c and both myoglobins but not for lysozyme c. 

Conformations observed under near-physiological conditions for cytochrome c and 

myoglobin vary more significantly in cross-section than those observed for lysozyme 

c. 
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Figure 2.8: Experimentally estimated cross-sections for different charge states of sperm 

whale myoglobin under denaturing and near-physiological conditions with average 

theoretical cross-sections for PA and TM models shown. Error bars are shown to illustrate 

measurements that would be within ±2 %.

Ion mobility mass spectrometry is able to resolve differences in protein conformation 

under denaturing and near-native solvent conditions. Different conformations for the 

same charge state of lysozyme c are witnessed under the two solvent conditions 

investigated. The differences observed may be related to differences in solvent 

interactions. Conformations observed under near-physiological conditions change in 

cross-section less significantly with increase in charge than those observed under 

denaturing conditions.

2.3.4 Unfolding restraints

The degree of protein unfolding in the gas phase can be indicated by the increase in 

estimated cross-section with increase in charge state. The rise in estimated cross-

section observed as charge state increases is shown for some of the proteins 

investigated, under denaturing conditions, in Figure 2.9. The unfolding transition is

driven by Coulomb repulsion and is thought to be similar to acid denaturation in 

solution (Jarrold 1999). The change in cross-section can be affected, however, by the 
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presence of intact disulphide bonds (Hoaglund-Hyzer et al. 1999) and, possibly, by 

the association of ligands. 
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Figure 2.9: Experimentally estimated cross-sections for different charge states of chicken 

lysozyme c, equine cytochrome c and equine myoglobin.

The change in cross-section with increase in charge is greater for myoglobin than for 

cytochrome c. The heme group contained within the native structure of these 

proteins is covalently bound within cytochrome c but not within myoglobin. The 

heme group is lost when myoglobin is analysed under denaturing conditions but 

retained within cytochrome c. The presence of the heme group potentially stabilises 

more compact gas-phase conformations.

Differences are also seen between the unfolding patterns of myoglobin and 

cytochrome c. The unfolding of the three-dimensional structure of myoglobin with 

increase in charge state appears to progress more quickly than that of cytochrome c 

providing support for the conjecture that the heme group stabilises gas-phase protein 

conformation. 
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This is in agreement with early work by Elieser and Wright which suggested that the 

removal of heme from myoglobin highly destabilises the structure of the globin fold

(Eliezer and Wright 1996) and supports previous DCIM-MS studies conducted by 

Shelimov and Jarrold (Shelimov and Jarrold 1997).

Under near physiological conditions, multiple conformations are observed for a 

number of charge states for myoglobin and cytochrome c but not for lysozyme c. 

This could suggest that the myoglobin and cytochrome c structures are less 

constrained in the gas phase and are able to adopt multiple stable conformations 

whereas the disulphide bond-constrained lysozyme c has less freedom of motion. 

The multiple conformations observed here are consistent with those that have been 

observed previously, in DCIM-MS studies, for cytochrome c equine (Jarrold 1999; 

Badman et al. 2001) and bovine (Clemmer et al. 1995; Shelimov et al. 1997) and 

equine apomyoglobin (Shelimov and Jarrold 1997).

The relative change in cross-section with increase in charge state for lysozyme c is 

smaller than for the other proteins studied, presumably because the presence of the 

disulphide bonds restricts how much the protein can unfold. To explore this concept 

lysozyme c was investigated further, under denaturing conditions, in which the 

disulphide-bonds were reduced by the addition of the reducing agent DTT. 

Figure 2.10 illustrates mass spectra obtained for chicken lysozyme c when analysed 

under oxidised near-physiological and denaturing conditions and under reduced 

denaturing conditions. Deconvoluted spectra obtained, by use of the MaxEnt 

processing algorithm, confirm that all disulphide bonds present have been reduced as 

an increase in mass of 8 Da is observed. 
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Figure 2.10: Chicken lysozyme c oxidised in 10 mM ammonium acetate (top spectrum), oxidised in 50 % ACN 0.2 % HCOOH (middle spectrum) and 

reduced in 50 % ACN 0.2 % HCOOH (bottom spectrum) with deconvoluted spectra inset.
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The shape of the charge state distributions observed in spectra obtained under 

oxidised conditions suggest that the protein predominantly occupies one 

conformation under these conditions. Under denaturing oxidised conditions the 

protein predominantly accepts two more charges than under near-physiological 

conditions. Under reduced conditions, however, the charge state distribution 

observed changes significantly suggesting that the protein has largely unfolded and 

now exists in more than one conformation. 

This observation is supported by the data produced from TWIM-MS experiments 

(see Figure 2.11). Arrival time distributions for various charge states suggest that 

under oxidised conditions the protein is able to maintain a similar conformation 

whether analysed under non-denaturing or denaturing solvent conditions. Arrival 

time distributions are generally broader for all charge states under denaturing solvent 

conditions suggesting conformations are more flexible under these solvent 

conditions. When disulphide-bonds are reduced, however, multiple peaks in arrival 

time distributions are observed at higher arrival times; the protein adopts 

conformations which are less folded. 
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Figure 2.11: Arrival time distributions for charges states [M + 6H]6+ to [M + 10H]10+ for chicken lysozyme c oxidised in 10 mM ammonium acetate (top), 

oxidised in 50 % ACN 0.2 % HCOOH (middle) and reduced in 50 % ACN 0.2 % HCOOH (bottom).
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The estimated cross-sections for the protein conformations producing the dominant 

peaks in the arrival time distributions are illustrated below in Figure 2.12. 
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Figure 2.12: Experimentally estimated cross-sections for different charge states of chicken 

lysozyme c under near-physiological conditions, denaturing conditions and under 

disulphide-reduced denaturing conditions.

The cross-section estimations obtained for lysozyme c analysed under denaturing 

conditions are very similar to those obtained in earlier experiments, as would be 

expected (see Figure 2.5). The cross-sections estimated for charge state [M + 6H]6+

of the protein under oxidised and reduced conditions are also comparable. This is a 

surprising result which suggests that a very similar structure to the oxidised structure 

can be maintained when disulphide bonds are reduced.

These results, observed for chicken lysozyme c under reduced and oxidised 

conditions, are also generally reflected for human lysozyme c (see Figures 2.13-

2.15).
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Figure 2.13: Human lysozyme c oxidised in 10 mM ammonium acetate (top spectrum), oxidised in 50 % ACN 0.2 % HCOOH (middle spectrum) and 

reduced in 50 % ACN 0.2 % HCOOH (bottom spectrum) with deconvoluted spectra inset.

76



Scan
50 100 150

%

0

100

50 100 150

%

0

100

50 100 150

%

0

100

6+

Scan
50 100 150

%

0

100

50 100 150

%

0

100

50 100 150

%

0

100

7+ 8+

Scan
50 100 150

%

0

100

50 100 150

%

0

100

50 100 150

%

0

100

9+

Scan
50 100 150

%

0

100

50 100 150

%

0

100

50 100 150

%

0

100

Scan
50 100 150

%

0

100

50 100 150

%

0

100

50 100 150

%

0

100

10+

Figure 2.14: Arrival time distributions for charges states [M + 6H]6+ to [M + 10H]10+ for human lysozyme c oxidised in 10 mM ammonium acetate (top), 

oxidised in 50 % ACN 0.2 % HCOOH (middle) and reduced in 50 % ACN 0.2 % HCOOH (bottom).
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Figure 2.15: Experimentally estimated cross-sections for different charge states of human

lysozyme c under near-physiological conditions, denaturing conditions and under 

disulphide-reduced denaturing conditions.

Valentine et. al. (1997) have previously investigated the conformations of 

disulphide-intact and reduced turkey lysozyme in the gas phase by means of DCIM-

MS. The results obtained in this study are in agreement with their findings. They 

found that reduced turkey lysozyme produced gas-phase ions with distinctly different 

conformations from those of oxidised lysozyme. They reduced turkey lysozyme by 

boiling the sample in DTT. They did not see the lower charge states observed here 

for the reduced lysozyme without adding gas-phase charge stripping reagents. It may 

be suggested that boiling the sample resulted in a greater unfolding of the lysozyme 

and thus more charge acceptance than would have been observed by simply reducing 

the sample. It is interesting to note that the [M + 6H]6+ charge state formed when the 

reduced sample was subjected to gas-phase charge stripping reagents had a similar 

conformation to that observed for the [M + 6H]6+ charge state from the oxidised 

sample. 

The unfolding pattern observed for chicken and human lysozyme c of increase in

cross-section with increase in charge state, under disulphide-reduced conditions, now 

reflects much more closely that observed for the other proteins studied. Table 2.2 
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illustrates the smallest and largest estimated cross-sections obtained for each of the

proteins studied reflecting the lowest charge state observed under non-denaturing 

conditions and the highest charge state observed under denaturing conditions 

respectively. 

Table 2.2: Estimated cross-sections (smallest and largest) for proteins studied, and 

differences between these cross-sections observed.

Protein
MW 
(Da)

Estimated cross-section 
(Å2)

Change in 
cross-section

Percentage 
increase in cross-

section
(smallest to 

largest)
Smallest Largest

myoglobin
1671 3508 1836 109.9

Equine 

Sperm whale 
17331

myoglobin
16952 1671 3446 1774 106.2

Equine 
cytochrome c

12359 1219 2559 1340 109.9

Chicken 
lysozyme c 

oxidised
14305 1314 2039 726 55.2

Chicken 
lysozyme c 

reduced
14313 1357 2736 1379 101.6

Human 
lysozyme c 

oxidised
14692 1363 2039 676 49.6

Human 
lysozyme c 

reduced
14700 1325 2578 1253 94.6

The percentage increase in cross-section for myoglobin and cytochrome c, from the 

smallest to the largest estimated cross-section, is approximately 105-110 % whilst 

this is only approximately 50-55 % for the oxidised lysozymes. Under reduced 

conditions, however, the lysozymes also show a percentage increase in cross-section 

close to 100 %. This demonstrates the restraints on protein unfolding attributable to 

the presence of the disulphide bonds. Once the disulphide bonds are reduced the 

change in cross-section observed with change in charge state is similar for all 

proteins studied. 
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If Figure 2.9 is reproduced replacing experimentally estimated cross-sections for 

different charge states of disulphide-intact chicken lysozyme c with disulphide-

reduced chicken lysozyme c, a clear pattern emerges (see Figure 2.16).
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Figure 2.16: Experimentally estimated cross-sections for different charge states of 

disulphide-reduced chicken lysozyme c, equine cytochrome c and equine myoglobin.

The cross-sections estimated for the higher charge states (11 and above), reflecting 

largely unfolded conformations, of each of the proteins, increase with increase in 

charge state at a similar rate. The smallest estimated cross-sections now represent the 

lowest molecular weight protein and the largest the highest. In general, a protein 

with a larger molecular weight would be expected to have a larger collision cross-

section (Ruotolo et al. 2005).
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2.3.5 Biological significance

For each protein studied in this work the lowest charge state has been observed to 

have an estimated cross-section between the theoretical approximations (PA and 

TM) (Figure 2.17). The smallest estimated cross-sections for the two myoglobins lie 

closer to the TM approximations whilst the smallest estimated cross-sections for the 

lysozyme c proteins sit firmly between the PA and TM calculations.

Figure 2.17: Estimations of native cross-sections for proteins studied calculated 

theoretically and experimentally and plotted against molecular weight.

Cross-sections estimated for the lowest charge states observed under physiological 

conditions are in good agreement with theoretical measurements calculated from 

published X-ray and NMR structures. Multiply charged ions produced by ESI are 

primarily thought to be the result of proton attachment to exposed basic sites of the 

protein. These results (Figure 2.17) support the hypothesis that the lowest charge 

states observed (under near-native conditions) are most representative of the native 

protein structure due to the fact that a tightly folded conformation has fewer exposed 
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basic sites than an unfolded conformation of the same protein (Chowdhury et al.

1990).

Estimated cross-sections for the lowest charge states are smaller than the TM 

approximation values. This is in agreement with previous work which has concluded 

that gas phase conformations can be more compact than the crystal  structure

(Hoaglund-Hyzer et al. 1999). In the gas phase, it is proposed that intramolecular 

interactions become more dominant and make the polar side chains collapse on to 

the protein surface. This results in the protein adopting a more compact 

conformation (Shelimov et al. 1997). 

The experimental time period is crucial to the maintenance of solution-phase 

structure as after an extended period it is known that gas-phase structures can 

rearrange to account for their change in environment. Badman et al. have shown 

evidence for unfolding and refolding of cytochrome c ions in the gas phase with 

transition from compact to unfolded structures occurring within 30-60ms, and 

unfolded structures refolding into an array of folded structures after ions are trapped 

for times exceeding 250 ms (Badman et al. 2005). The TWIM-MS experiment 

operates within a 15-30 ms time frame. This limits the opportunity for the solution-

phase structures to rearrange within the gas phase. 
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This work illustrates that TWIM-MS can be used to investigate the three-

dimensional structure of a protein and the stability of that structure within the gas 

phase. 

Cross-sections estimated experimentally for proteins studied, for charge states most 

indicative of native structure, are in good agreement with measurements calculated 

from published X-ray and NMR structures. These results illustrate that the TWIM-

MS approach can provide data on three-dimensional protein structure of biological 

relevance.

The results presented here are also in general agreement with data presented from 

DCIM-MS studies (Shelimov et al. 1997; Shelimov and Jarrold 1997; Valentine et 

al. 1997; Jarrold 1999; Badman et al. 2001). In general, it has been observed that the 

estimated cross-sections for protein charge states representative of denatured 

conformations favour a narrow distribution; a single highly-folded conformation is 

observed at low charge states and intermediate charge-states exist in multiple 

conformations with different cross-sections (Valentine et al. 1997).  This is reflected 

within this work. At low charge states, the protein remains highly-folded, 

strengthened by increased electrostatic intramolecular interactions (Breuker and 

McLafferty 2008) whereas at high charge states increased Coulomb repulsion 

between charges forces the protein to adopt more open conformations (Li et al.

1999). Various intermediate conformations are formed due to the interplay between 

attractive-folding and repulsive-Coulombic interactions (Valentine et al. 1997).

Recently, studies were conducted by Smith et al. on deciphering drift time 

measurements from TWIM-MS studies (Smith et al. 2009). They investigated 

chicken lysozyme c and equine cytochrome c by TWIM-MS and the estimated cross-

sections, for the lowest charge state observed, that they reported, were within 2 % of 

our estimated values.  This highlights the robustness and reproducibility of the 

TWIM-MS approach.

Conclusions2.4
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The cross-section of a protein calculated from IM-MS measurements varies with 

charge state. This allows the unfolding of proteins in the gas phase, with increase in 

charge, to be studied. This work, along with that previously conducted by Valentine 

et al. (1997) by DCIM-MS studies, illustrates that the unfolding transition of 

lysozyme c is restrained by the presence of disulphide-bonds. The unfolding 

transition is similar for each protein when the restraints of disulphide-bonds are 

removed. At high charge states, in particular, there is a similar relative increase in 

cross-section with increase in charge state for each protein studied. As described 

above, at these higher charge states increase in cross-section with increase in charge 

is largely due to the corresponding increase in Coulomb repulsion.

The T-Wave device has advantages over many homemade drift-cell devices in that it 

is able to operate at biologically-relevant sample concentrations and its ease of use 

facilitates its operation in an automated fashion. The mobility resolution of the 

Synapt HDMS system, however, is lower than in many drift-cell devices. When this 

work was conducted the TWIM-MS approach was in the early stages of its 

development. Since then further improvements in resolution of the technique have 

been made and a new commercial instrument the Synapt HDMS G2 (Waters, 

Manchester, UK) has been launched. This will likely extend the application range of 

TWIM-MS.
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Chapter 3: Probing Hemoglobin Structure
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3.1 Introduction

Hemoglobin (Hb) is a tetramer consisting of four globin chains, two α- and two β-, 

each associated with a heme group (see Figure 3.1).  It is the major oxygen-transport 

protein found in the red blood cells of all vertebrates.  Disorders of hemoglobin are 

the most common of all inherited disorders and consequently the molecule has been 

extensively studied. 

Figure 3.1: Representation of hemoglobin tetramer structure. α-chains are displayed in red 

and β-chains in yellow. Heme groups are shown in green.

The most debilitating Hb variant is that which causes sickle-cell anaemia. This

disease occurs when a person inherits two particular mutated copies of the β-globin 

gene. The sickle-cell mutation results in the production of a β-chain with a single 

amino acid substitution (β6 Glu→ Val) and changes the conformation of the 

assembled tetramer to allow molecular stacking. Polymerisation of this sickle-cell 

hemoglobin molecule (Hb SS), in deoxygenated blood, causes the characteristic 

alteration in shape of red-blood cells from biconcave discs to crescentic (Murayama 

1967).
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ESI-MS has been widely used to detect Hb variants in hemoglobin (Shackleton et al.

1991; Wild et al. 2001; Thalassinos et al. 2004; Daniel et al. 2005; Shimizu et al.

2006). These approaches are discussed in Chapter 5. ESI-MS has also been used to 

investigate the structural assembly of hemoglobin into a non-covalent complex 

(Ofori-Acquah et al. 2001; Griffith and Kaltashov 2003; Boys and Konermann 2007; 

Griffith and Kaltashov 2007) and its corresponding disassembly (Versluis and Heck 

2001).

Whilst there is extensive knowledge, on the atomic level, of hemoglobin quaternary 

structure, the exact assembly pathway for the hemoglobin tetramer is still a matter of

debate. It is known that one α- and one β-monomer come together to form a 

heterodimer and that two of these dimers associate to form the tetramer. α- and β-

monomers can exist in heme-free (apo, αa and βa) and heme-bound (holo, αh and βh) 

forms (Boys and Konermann 2007) and it is unclear as to whether the heme groups 

are attached to both α- and β-monomers prior to dimer formation, or if association 

leads to heme recruitment. 

Griffith and Kaltashov have suggested that the formation of a heme-deficient dimer 

intermediate (αhβa) occurs, consisting of a natively folded holo-α-globin (αh) and a 

partially unfolded apo-β-globin (βa), prior to complete dimer formation, to ensure 

correct tetramer structure arrangement (Griffith and Kaltashov 2003; Griffith and 

Kaltashov 2007).  The Konermann group have reported, however, that the heme-

deficient dimer is not observed when using freshly-prepared samples, in contrast to it 

being seen consistently when commercially-available samples, in the form of 

lyophilised powder, are used (Boys et al. 2007). They studied the acid-induced 

denaturation of bovine Hb and concluded that it followed a highly symmetric 

mechanism: (αhβh)2 → 2 αhβh → 2αh
folded + 2βh

folded → 2αa
unfolded + 2βa

unfolded + 4 

heme.

This work attempts to elucidate further the structural properties of the hemoglobin 

tetramer and its components and to determine whether conformational differences 

between the Hb A and Hb SS molecules can be observed by TWIM-MS.
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3.2 Materials and Methods

3.2.1 Samples and sample preparation 

Samples of fresh whole blood were supplied by University Hospitals Coventry and 

Warwickshire (UHCW) NHS Trust.  Commercially-prepared hemoglobin was 

purchased from Sigma Aldrich Ltd (Gillingham, UK) and prepared at a

concentration of 20 mg/mL in 10 mM ammonium acetate pH 6.8. Sample 

preparation for mass spectral analysis was adapted from that detailed by Ofori-

Acquah et al. (Ofori-Acquah et al. 2001). Samples (20 µl) were diluted 10-fold in 10 

mM ammonium acetate pH 6.8 and spun at 3000 g for 15 minutes in centrifugal 

filter units with a 10 kDa cut-off (Microcon® YM-10, Millipore Corporation, 

Billerica, MA, USA). Sample retained on the filter was diluted a further 20-fold with 

10 mM ammonium acetate and desalted by agitating for two ten-minute periods with 

approximately 5 mg of ion-exchange mixed bed resin (AG 501-X8, Bio-Rad 

Laboratories, Hercules, CA, USA) that had been prepared for use by rinsing twice in 

liquid chromatography MS grade water.

3.2.2 Ion mobility mass spectrometry

TWIM-MS experiments were conducted on a Synapt HDMS system, as described in 

Chapter 1 Section 1.1.7 and Chapter 2 Section 2.2.3. Instrument acquisition 

parameters were optimised, as described in Chapter 2, for hemoglobin tetramer 

analysis. Samples were introduced into the source region of the Synapt HDMS 

system by direct infusion nano-ESI by means of fused silica nanospray needles 

(Waters Corporation, Milford, MA, USA). The instrument was operated in ESI 

positive mode with a capillary voltage of 1.2 kV, cone voltage of 60 V and source 

temperature of 110 °C for all experiments. The TOF mass analyser was tuned in V-

mode to give an operating resolution of 8,000 (FWHM) and was calibrated using 2 

mg/mL cesium iodide in 50 % aqueous propan-2-ol. A mass acquisition range of 

1000-4500 m/z was used. The ion mobility cell was operated at an indicated pressure 

of 0.68 mbar, corresponding to a flow rate of 38 mL/min. 
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Calibration of data, protein cross-section estimation and theoretical cross-section 

calculations were performed as detailed in Chapter 2 Sections 2.2.4 and 2.2.5.

Equine myoglobin was used as the T-Wave calibrant. Data obtained for each 

hemoglobin tetramer over the m/z range 3000-4500 were deconvoluted on to a true 

mass scale using the MaxEnt processing algorithm, within MassLynx™ (v4.1) 

software, to provide an estimate of molecular mass. Experiments were carried out in 

triplicate.
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3.3 Results and Discussion

3.3.1 Instrument acquisition parameters

Considerable optimisation of instrument acquisition parameters is required for each 

individual application of ion mobility separation. These must be tailored to the 

sample of interest as optimal conditions are dependent on ionic species and mass-to-

charge ratio (Tahallah et al. 2001). Controlled optimisation of instrument acquisition 

parameters indicated that a backing pressure of between 6.6 and 6.8 mbar was ideal 

for intact hemoglobin tetramer analysis. The optimal ion mobility separation of the 

tetramer was achieved using a travelling wave velocity and wave height of 400 m/s 

and 18 V respectively.

3.3.2 Calibration

A calibration curve was used to allow the estimation of cross-sections for different 

constituents of hemoglobin in different charge states. Cross-sections calculated for 

equine myoglobin were within two percent of absolute values obtained by DCIM-

MS experiments. These results were reproducible across the three datasets acquired.

3.3.3 ESI-MS spectra

Representative spectra for normal (Hb A) and sickle (Hb SS) hemoglobin analysed 

by means of ESI-TOF-MS under non-denaturing conditions are shown in Figure 3.2. 

The data were deconvoluted to give masses of 64,454.7 Da for Hb A and 64,395.8 

Da for Hb SS which were very close to the theoretical masses of  64,453.2 Da and 

64,393.4 Da respectively (Ofori-Acquah et al. 2001).
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Figure 3.2: Mass spectra of  normal (Hb A) and sickle (Hb SS) hemoglobin analyzed by ESI-TOF-MS under near-physiological conditions.

Spectra are labelled with charge states of tetramer (Q), heterodimer (D), and apo- and holo-monomers (superscripts “a” and “h” refer to apo- and holo-forms, 

respectively).
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The hemoglobin spectra obtained show the presence of the tetramer ((αhβh)2), 

heterodimer (αhβh), and apo- and holo-monomer species. The trimer is not seen, as 

would be expected, as the accepted mechanism of formation of the hemoglobin 

tetramer involves the non-covalent association of two αhβh-dimers.  Carefully 

controlled near-physiological conditions were used in preparing the sample and the 

absence of any trimer supports the assertion that the species observed within the 

spectra represent those that exist naturally in solution. This is consistent with results 

from isotope labelling studies which showed that non-tetrameric ions in the spectrum 

corresponded to species present in solution (Hossain and Konermann 2006) rather 

than products of fragmentation formed during the ESI process (Kuprowski et al.

2007). 

The most intense charge state for the Hb A tetramer observed within spectra was                     

[M + 18H]18+ whilst that for the Hb SS tetramer was [M + 19H]19+. The substitution 

of a glutamic residue for a valine residue results in the β-chain carrying one less 

negative charge. As two β-chains are present within each tetramer the Hb A 

molecule may have been expected to routinely accept two fewer charges than the Hb 

SS tetramer at the pH at which this study was carried out. 

3.3.4 Alpha and beta monomers

Alpha and beta monomers are observed within the Hb A spectrum in both apo- and 

holo- forms. In a previous study, Griffith and Kaltashov suggested that an αh

monomer first becomes associated with an βa monomer to enable the beta-chain to 

incorporate the heme group (Griffith and Kaltashov 2003). This observation was 

based upon the absence of βh in the spectrum. A subsequent study by Boys and 

Konermann detected very small quantities of heme-deficient dimer and found that 

both α- and β-monomers were capable of binding heme. The discrepancies observed 

are thought to be attributable to differences between the commercially prepared and 

freshly obtained samples used (Boys et al. 2007) . In the work reported here, in 

which fresh blood samples were used, βh was observed in multiply-charged states, 

which is consistent with the above suggestion.
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3.3.5 Apo- or holo-?

It has been reported that without the attachment of the heme group, α- and β-

monomers adopt extensively unfolded conformations (Leutzinger and Beychok 

1981). Cross-sections for various charge states of α- and β-monomers in both the 

apo- and holo- forms have been estimated and our observations suggest that the 

predominant conformations of α- and β-monomers in the gas phase are similar to 

each other and show little change in the absence or presence of heme (Figure 3.3).

a.) 

b.)

Figure 3.3: Average estimated cross-sections for charge states of a.) apo-α and holo-α 

monomers and b.) apo-β and holo-β monomers observed within three datasets.
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3.3.6 Heme-deficient dimer

The heme-deficient dimer observed in previous studies is not observed here. The 

existence of both apo- and holo- forms of α- and β-monomers, all of similar cross-

sections, does not support the need for a βa to associate with αh in order for the β-

monomer to recruit heme. Analysis of commercially sourced human hemoglobin 

produced spectra containing additional peaks to those observed in spectra for fresh 

samples (see Figure 3.4 below). These peaks had mass-to-charge ratios consistent 

with those that would be produced by the presence of heme-deficient dimer with the 

addition of approximately 32 Da. This is in agreement with previous work conducted 

by the Konermann group on bovine hemoglobin. They attributed the mass shift to 

the occurrence of oxidative modifications in the commercial protein (Boys et al.

2007). 

a.)

b.)

Figure 3.4: Mass spectra of a.) commercially-sourced Hb A and b.) fresh Hb A analysed by 

ESI-TOF-MS under near-physiological conditions. Spectra are labelled with charge states of 

heterodimer (D), apo- and holo-monomers (subscripts “a” and “h” refer to apo- and holo-

forms, respectively) and heme-deficient dimer.
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In this work, many more charge states of αa than βa are observed. The number of 

charges accepted on a protein is related to the number of exposed basic sites on the 

protein’s surface. A more folded protein has fewer of its basic sites exposed than an 

unfolded conformation and thus cannot accept as many charges. This may suggest 

that the α-chain adopts more unfolded conformations in the gas phase than is 

possible for the β-chain but, alternatively, the absence of higher charge states of βa in 

the spectra may be due to differences in the desolvation behaviours of α- and β-

monomers. The α-chain ionises preferentially over the β-chain due to its greater non-

polar character, thereby competing more effectively for charge (Kuprowski et al.

2007). 

3.3.7 Hemoglobin tetramer assembly

By estimating the cross-sections of Hb A monomer, dimer and tetramer, one can 

obtain a picture of the assembly process (Figure 3.5). 

Figure 3.5: Average estimated cross sections for holo
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The [M + 12H]12+ charge state of dimer has an estimated cross-section of 3001 Å2. 

The [M + 6H]6+ charge states of αh and βh have estimated average cross-sections of 

1583 and 1488 Å2 respectively. If these two globin monomers came together to form 

a dimer and if one assumes no major structural changes occurred, the cross-section 

of that dimer would be approximately the sum of the cross-sections of the two 

constituent parts. One would further expect that the cross-section observed would be 

slightly smaller than the sum of the monomer subunits as the contact area on both of 

the monomers would be compacted and contribute less to the overall cross-section. 

The observed data supports this argument.

3.3.8 Hb A vs Hb SS

The arrival time distributions obtained for four different charge states of Hb A and 

Hb SS, for a single dataset, are illustrated below in Figure 3.6. 

18+17+16+15+

Figure 3.6: Arrival time distributions for charge states states [M + 15H]15+ to [M + 18H]18+

of Hb SS (top) and Hb A (bottom).
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For each charge state, the arrival time distribution for Hb A is similar to that of Hb 

SS and they are irresolvable. The average arrival time for Hb A is consistently 

shorter than that for Hb SS. This indicates that Hb A exists within a more compact 

conformation than Hb SS. 

The average estimated collision cross-sections for Hb A and Hb SS, for four 

different charge states, are illustrated in Figure 3.7. The data indicate a difference in 

cross-section between normal and sickle-cell hemoglobin, and a variation in cross-

section with charge state. 

Figure 3.7: Estimated cross sections for Hb A and Hb SS tetramers for three different 

For the charge states studied, the cross-sections observed for Hb SS are somewhat 

larger than those of Hb A. Secondary, tertiary and quaternary structural 

considerations make it difficult to determine what the charge state of a molecule 

should be, theoretically, within a particular solvent at a particular pH. It has been 

shown that the lowest charge states observed under near physiological conditions 

are, in many cases, most representative of the native protein structure (Scarff et al.

2008). The [M + 18H]18+ charge state, for Hb A and Hb SS, may represent a 

tetrameric structure which is beginning to denature. 
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The reproducibility of the cross-sections estimated for the [M + 15H]15+, [M + 

16H]16+ and [M + 17H]17+ charge states of Hb A, between the three replicate 

datasets,  is  ± 1 % and this is believed to be representative of the reproducibility 

capabilities of the experiment. The larger deviation in estimation of cross-section for 

the same charge states for Hb SS, of ± 3 %, may reflect the presence of a broader 

population of conformations of the Hb SS molecule, of similar cross-section. The 

arrival time distributions for the different charge states of Hb SS are also broader 

than those for Hb A. This provides further evidence to suggest that the Hb SS 

molecule exists in a broader population of conformations in comparison to the Hb A 

molecule.

The rotationally averaged cross-sections for Hb A and Hb SS calculated from X-ray 

crystallographic structures were 3313 Å2 and 3733 Å2 for the PA and 4343 Å2 and 

4775 Å2 for the EHSS respectively. 

Values estimated experimentally for the [M + 15H]15+, [M + 16H]16+ and [M + 

17H]17+ charge states of Hb A and Hb SS fall between these two theoretical 

approximations and agree with the X-ray observation that Hb SS has a larger cross-

section than Hb A. Gas-phase conformations, although illustrative of solution-phase 

structures under controlled conditions, have been shown previously to be smaller 

than those predicted by EHSS approximations (Hoaglund-Hyzer et al. 1999); a more 

compact conformation is thought to be adopted in the gas phase as increased 

intramolecular interactions cause polar side chains to collapse onto the protein’s 

surface (Shelimov et al. 1997).

Whilst differences in the overall quaternary structure of Hb A and Hb SS were 

detected no significant differences in mobility were observed between either normal 

and sickle beta monomers (Figure 3.8), or αβ and αβS dimers (Figure 3.9). 
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Figure 3.8: Average estimated cross-sections for βa, βh, βS
a and βS

h monomers, from three 
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Figure 3.9: Average estimated cross sections for heterodimers αhβh and αhβS
h, from three 

datasets.

This suggests that any differences present in the monomer structures are not of 

sufficient magnitude to enable them to be resolved by these experiments. The 

differences in the cross-sections of the intact tetramers are resolvable by this method.
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3.4 Conclusions

This work has demonstrated the use of TWIM-MS to probe gas-phase conformations 

of three-dimensional protein structure and non-covalent complexes. 

TWIM-MS has been successfully used to study hemoglobin tetramers. Cross-

sections calculated for intact hemoglobin tetramers are comparable to those 

estimated from published X-ray crystallography data and conformational differences 

are observed between the Hb A and Hb SS molecules. Non-tetrameric species 

observed, including apo- and holo- forms of α- and β-monomers and αhβh-dimers, 

are thought to be naturally present in equilibrium in solution and not products of 

fragmentation during the ESI process. 

α- and β-monomers have similar cross-sections to each other suggesting that they 

maintain a similar fold in the gas phase. Apo- and holo- forms of the monomers also 

have similar cross-sections suggesting that α- and β-monomers can retain a folded 

structure in the absence and presence of the heme group. Extensively disordered 

monomer structures are not observed.

A heme-deficient dimer is not observed in the analysis of fresh blood samples. The 

results do not suggest that the association of βa with αh is required in order for the β-

monomer to recruit heme. The results, obtained on fresh blood samples rather than 

commercially prepared samples, do not support the hypothesis that a heme-deficient 

dimer is an essential intermediate in the tetramer assembly process. 
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Chapter 4: A Quantitative and 

Conformational Study of the 

Autophosphorylation of the Histidine 

Kinase VanS 
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The investigation of protein structure by approaches based upon mass spectrometry 

can yield information relating to protein stoichiometry, non-covalent interactions, 

ligand interactions and three-dimensional conformation (Heck and van den Heuvel 

2004). When coupled with ion mobility separation, mass spectrometry can be 

exploited to provide information pertaining to global protein structure. IM-MS is 

particularly useful as a biophysical tool to study protein dynamics, in real time, when 

conformational changes occur upon interaction with a ligand. This is especially 

useful when structural characterisation by more conventional approaches, such as 

NMR spectroscopy or X-ray crystallography, is difficult if not impossible.  

Mass spectrometry can also be used to examine enzymatic protein function by 

monitoring the conversion of a substrate to a product (Liesener and Karst 2005). 

Multiple MS-based-assays and detection methods have been developed to follow 

enzyme kinetics and have been validated by comparison with results obtained by 

other methods such as UV-absorbance, fluorescence and radioactive labelling assays 

(Ge et al. 2001; Norris et al. 2001; Steinkamp et al. 2004). Methods based on MS 

have focussed on the analysis of small substrates and have used a multiple reaction 

monitoring (MRM) or selected ion monitoring (SIM) scan mode to quantify 

accurately the amount of product produced. Assays based on MS are an attractive 

alternative to established approaches as they do not require labels, are non-

radioactive, can simultaneously monitor the fate of multiple analytes and 

unambiguously identify reaction products (Liesener and Karst 2005). 

In this study TWIM-MS was used to probe conformational changes which are 

proposed to occur during autokinase activity of the sensor histidine kinase protein, 

VanSA, from the human pathogen Enterococcus faecium. The rate of 

autophosphorylation of this protein was also monitored by the use of a mass 

spectrometry-based method.

4.1 Introduction
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4.1.1 Histidine kinases

Histidine kinases (HKs), of which VanSA is an example, are the predominant 

mediators of  prokaryotic signal-transduction and often possess multiple functions 

such as autokinase, phospho-transfer and phosphatase activities (Stock et al. 2000; 

Marina et al. 2005). The majority are homodimeric membrane proteins with a 

predicted extracellular sensor domain and a cytoplasmic core comprising a minimum 

of two distinct functional domains: a catalytic ATP-binding (CA) domain and a 

dimerisation phosphotransfer (DHp) domain (Gao and Stock 2009). The different 

enzymatic activities HKs carry out require the involvement of one or both of these 

domains and are thought to relate to different conformational states.  A crystal 

structure representing the entire cytosolic portion of a sensor histidine kinase has 

recently been published (Marina et al. 2005). An additional structure containing the 

CA and DHp domains of a histidine kinase has also been obtained (Bick et al. 2009). 

These structures have both suggested that conformational changes are required for 

histidine kinase function. Several molecular structures have been reported for the CA 

and DHp domains of HKs in isolation but there is still limited structural 

characterisation of different functional states (Marina et al. 2005). HKs are therefore 

suitable candidates for study by IM-MS.

VanSA is of particular interest because it is the critical sensor kinase controlling the 

induction of high-level glycopeptide resistance in enterococci.

4.1.2 Vancomycin and vancomycin resistance

Vancomycin (Figure 4.1) is a naturally occurring glycopeptide antibiotic which is 

clinically important as a front-line treatment for Gram-positive bacterial infections 

including methicillin-resistant Staphylococcus aureus (Hong et al. 2008). 
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Figure 4.1: The structure of vancomycin. Adapted from Walsh et al. (1996).

Bacterial resistance to vancomycin was first reported in 1988 (Leclercq et al. 1988)

and since then the spread of vancomycin resistance through Enterococcal bacterial 

populations has become a severe public health concern.

Vancomycin targets the synthesis of the bacterial cell wall peptidoglycan. Mature 

peptidoglycan consists of polymerised glycan chains cross-linked by short peptides 

(Healy et al. 2000). The glycan chains consist of alternating β-1,4 linked N-

acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) residues. A 

pentapeptide stem replaces the D-lactoyl group of each MurNAc residue and usually 

comprises of L-Ala-γ-D-Glu-L-Lys-D-Ala-D-Ala in gram-positive bacteria (Vollmer

et al. 2008). Cross-linking of the pentapeptide stems generally occurs between the 

carboxyl group of D-Ala at position 4 and the amino group of the diamino acid at 

position 3, through transpeptidase action, and results in the loss of a terminal D-Ala 

(Hong et al. 2008; Vollmer et al. 2008). 

Vancomycin binds to the D-Ala-D-Ala termini of these pentapeptide chains and 

sterically prevents formation of cross-linking interactions between them, which are 

required for proper maturation of the cell wall (see Figure 4.2). Without this type of 
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interchain cross-linking, the peptidoglycan layer is weakened, such that it cannot 

withstand the internal osmotic pressure of the cell. This leads to cell lysis (Walsh et 

al. 1996). 

4.1.3 The mechanism of vancomycin resistance

Six vancomycin resistant phenotypic strains of Enterococci have been identified, 

designated VanA, B, C, D, E and VanG (Courvalin 2006). These phenotypes exhibit 

different mechanisms for conferring resistance, involving multiple genes. Resistance 

is caused by one of two different pathways which lead to the replacement of the 

terminal D-Ala on pentapeptide precursors with D-Lac or D-Ser (Pootoolal et al.

2002). Vancomycin no longer effectively binds to these precursors and so can not 

interrupt mature peptidoglycan synthesis.

The mechanism of vancomycin resistance in enterococci is controlled by a two-

component system (Stock et al. 2000) consisting of VanS, a sensor histidine kinase 

(HK), and VanR, a response regulator (RR) (Arthur et al. 1992a). The genes 

involved within the vancomycin resistance pathway depend on the phenotypic strain. 

Here VanS and VanR from the VanA phenotypic strain are investigated and are thus 

described as VanSA and VanRA to denote their resistance type. The VanA phenotype 

is carried on a transposon and confers high-level inducible vancomycin resistance. It 

is the phenotype of most clinical importance for which Vancomycin-

resistant Staphylococcus aureus strains have been reported (Courvalin 2006).

The pentapeptide stems of VanA phenotype strains are terminated by D-Ala-D-Lac 

(Arthur et al. 1992b). The replacement of the terminal D-Ala with D-Lac, reduces 

the affinity of vancomycin for this terminal stem by over 1000-fold (Bugg et al.

1991) (see Figure 4.2).
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a.)

b.)

Figure 4.2: The mode of action of vancomycin.

a.) Vancomycin binds to the D-Ala-D-Ala termini of extracellular peptidoglycan precursors. 

Transpeptidase is unable to access its substrate, cross-linking of pentapeptide chains cannot

occur and formation of mature peptidoglycan is blocked. b.) Vancomycin resistant bacteria

(VanA phenotype) produce peptidoglycan precursors terminating in D-Ala-D-Lac. The

affinity of vancomycin for D-Ala-D-Lac is much lower than for D-Ala-D-Ala so

transpeptidation is able to occur and mature peptidoglycan is synthesised. (Adapted from

Healy et al., 2000; Hong et al.,2008 and Walsh et al., 1996).
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4.1.4 The VanS-VanR two-component system

The VanS-VanR two-component system regulates the induction of vancomycin 

resistance. In response to a signal the sensor histidine kinase (VanSA) 

autophosphorylates on a conserved histidine residue (His164) and transfers this 

phosphate to an aspartic acid residue (Asp53) on the response regulator (VanRA) 

(Wright et al. 1993). Once phosphorylated, the response regulator then associates 

with the promoter region of the van operon (Holman et al. 1994). This leads to 

expression of the genes which induce vancomycin resistance (see Figure 4.3).

Figure 4.3: Mechanism of induction of vancomycin resistance by the VanSA-VanRA two-

component system. A signal is received by VanSA stimulating autophosphorylation on a 

conserved histidine residue. VanSA transfers this phosphate to a conserved aspartic acid 

residue of VanRA. Once phosphorylated, VanRA activates transcription of the genes which 

confer vancomycin resistance. Adapted from Healy et al. (2000). 
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In the absence of vancomycin, VanS is thought to work as a phosphatase, ensuring 

that VanR remains unphosphorylated so that the van genes are not expressed (Wright

et al. 1993). 

The autophosphorylation, phosphotransferase and dephosphorylation activities of 

VanS were demonstrated in a study by Wright et al. (1993) by use of a fusion protein 

construct (Wright et al. 1993). The following reaction schemes were characterised:

a) Autophosphorylation: VanS-His + ATP → HK-His~P +ADP

b) Phosphotransfer: HK-His~P + VanR-Asp → HK-His + VanR-Asp~P

c) Dephosphorylation: VanR-Asp~P + H2O → VanR-Asp + Pi

The nature of the direct molecular ligand that interacts with the VanS sensor domain 

has not been determined for any VanS-VanR signal transduction system (Hong et al.

2008). Signal transduction is initiated in the presence of vancomycin. It is therefore 

thought that VanS is activated either directly by vancomycin itself or by an 

intermediate in cell wall biosynthesis which accumulates due to vancomycin action 

(Hong et al. 2008).  

VanSA has a molecular weight of 44 kDa and contains 384 amino acid residues. It 

has an extracellular sensor domain, two transmembrane domains and a histidine 

kinase domain (amino acids 161-384). Within the histidine kinase domain amino 

acid motifs (the H, N, G1, F and G2 boxes) are found, which are conserved within 

the majority of HKs and are involved in autophosphorylation and ATP-binding (Gao 

and Stock 2009). The H box contains the histidine residue which is the site of 

autophosphorylation and is situated in the DHp domain whilst the N, G1, F and G2 

boxes are found in the CA domain and form the ATP binding site. Figure 4.4 below 

illustrates domain organisation within VanSA. 
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Dimerisation 

phosphotransfer domain

Catalytic ATP-binding 

domain

Figure 4.4: Schematic of VanSA domain organisation based upon protein sequence

information. Characteristic H, N, G1, F and G2 motifs, common to sensor histidine kinases

are highlighted. Adapted from (Depardieu et al. 2003).

There are currently no examples of a VanS sensor histidine kinase structure in the

Protein Data Bank despite extensive crystallisation trials (Quigley and Roper, 

unpublished results). How the VanS-VanR two-component system is controlled and 

the exact mechanisms of VanS autophosphorylation, phosphotransfer and 

phosphatase activity are not understood. In vivo, VanSA functions as a dimer and 

becomes phosphorylated in response to the activation of its sensor domain. In vitro, 

without the presence of its sensor domain, VanSA possesses autokinase activity 

(Wright et al. 1993).

In the present study these observations are investigated further by the use of TWIM-

MS. VanSA truncates, lacking the membrane-spanning domains, are examined as 

they undergo autophosphorylation. TWIM-MS is used to explore whether 

conformational changes in VanSA are associated with autokinase activity. An MS-

based method is also used to monitor autophosphorylation of VanSA over time and 

the results of this approach are compared to those obtained from radioactive labelling 

studies. 
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4.2 Materials and Methods

4.2.1 Expression and purification of VanSA truncates

Expression and purification of VanSA truncates was conducted by Andrew Quigley, 

Department of Biological Sciences, University of Warwick, as detailed below.

Truncated forms of the vanSA gene, were amplified, by PCR, from the full-length 

vanSA gene sequence, from Enterococcus faecium BM4147 (Leclercq et al. 1988), 

which had previously been cloned into the pTTQ18 vector (Saidijam et al. 2005). 

VanSA truncated forms were Δ110, Δ140, Δ150 and Δ155, lacking 110, 140, 150 and 

155 amino acids from the N-terminus of the full-length protein respectively. PCR 

primers incorporated 5’-BsaI and 3’-XhoI restriction sites allowing for ligation of 

each PCR construct into a pET28a expression vector, in frame with a C-terminal 

His6 tag. The His6-fused VanSA truncates were expressed in Escherichia coli

BL21(DE3) harbouring pRosetta in LB medium containing 35 g/mL kanamycin at 

25°C. Expression was carried out using the Studier auto-induction system (Studier 

2005) at 25 °C with shaking at 180 rpm. Cells were harvested and stored at -20°C in 

Buffer A (20 mM HEPES (adjusted to pH 7.8), containing 500 mM NaCl, protease 

inhibitor cocktail and 10 % (v/v) glycerol) supplemented by 20 mM imidazole. Cells 

were thawed and disrupted by three 1 minute cycles of sonication on ice and 

centrifuged at 10,000g in a Beckman JA-25.50 rotor to pellet cell debris. The 

resulting supernatant was clarified by centrifugation at 50,000g for 30 minutes and 

applied to a pre-packed, 5 mL, Chelating High performance Nickel-Sepharose 

column, previously equilibrated and washed with Buffer A and 20 mM imidazole. 

VanSA truncates were eluted with Buffer A supplemented by 500 mM imidazole.  

Protein eluate was concentrated before application to a Superdex 200 HR 10/300 size 

exclusion column pre-equilibrated in 20 mM HEPES (adjusted to pH 7.8) containing 

100 mM sodium chloride and 10 % (v/v) glycerol. A PD10 desalting column (GE 

Healthcare) in 20 mM HEPES (adjust to pH 7.8) was used to further desalt the 

protein. The protein was concentrated and reconstituted in fresh buffer to 5 mg/mL, 

flash frozen with liquid nitrogen, and stored at -80 °C. 
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4.2.2 Sample preparation for MS

Protein construct stocks were thawed and diluted to 10 µM in 10 mM ammonium 

bicarbonate (aq) adjusted to pH 7.8 (JT Baker, NJ, USA). Histidine phosphorylation 

is acid-labile so care was taken to keep the solution conditions above pH 7 to 

maintain the integrity of any phospho-histidine residues. Samples were desalted by 

use of centrifugal filter devices (Biomax-10 Membrane, Millipore, MA, USA).

Samples (100 µL) were diluted 5-fold in 10 mM ammonium bicarbonate (aq) pH 7.8

and spun at 10,000 g for 3 minutes. Sample retained on the filter was reconstituted in 

fresh solvent and the centrifugation step repeated three times. For each truncate, 

several samples were prepared as detailed above. The autophosphorylation reaction 

was induced by the incubation of a protein construct sample with 1 mM ATP 

solution and 1 mM MgCl2 solution. The reaction was quenched, if required, by the 

addition of 5 mM EDTA solution.

4.2.3 MS analysis

A Synapt HDMS System was used to perform all MS and TWIM-MS experiments 

described, under the conditions detailed in Chapter 2 section 2.2.3 unless otherwise 

stated. A mass acquisition range of 1000-4500 m/z and a source temperature of 110 

°C were used for all experiments.

Each of the VanSA truncates were analysed by mass spectrometry at 10 µM in 10 

mM ammonium bicarbonate solution (pH 7.8) before and after incubation with 1 

mM ATP solution and 1 mM MgCl2 solution for one minute. Differences observed 

with the spectra obtained before and after incubation with ATP and magnesium 

chloride were recorded. These observations were used to decide upon following 

experiments. Corresponding TWIM-MS experiments were then conducted on VanSA

truncates Δ140, Δ150 and Δ155.

VanSA truncates Δ110 and Δ155 were incubated with 1 mM ATP solution and 1 mM 

MgCl2 solution for different time periods (0, 2, 5, 10, 20, 30, 45, 60 minutes), before 

quenching the reaction by the addition of 5 mM EDTA solution. These samples were 

desalted again by use of centrifugal filter devices, in the manner described above, 
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prior to MS analysis. The results of the MS analysis were interpreted to determine 

the amount and rate of autophosphorylation of the VanSA truncates Δ110 and Δ155. 

The phosphorylation assay was repeated with two different batches of VanSAΔ110 to 

assess relative activity in each. The phosphorylation assay was repeated in triplicate 

for batch two of VanSAΔ110 to illustrate reproducibility with incubation time 

periods of 0, 2, 10, 15, 25, 30, 45 and 60 minutes. Incubation time periods were 

changed to allow examination of phosphorylation levels between previously used 

time points. The number of time points used was limited to reduce experimental time 

and sample use. The phosphorylation time course was only conducted on the 

smallest and largest VanSA truncates investigated due to availability of sample and 

time constraints.

To allow for the study of phosphorylated and ATP-bound species the 

autophosphorylation reaction was allowed to proceed without quenching with 

EDTA. To study non-phosphorylated protein the reaction mix was prepared without 

the addition of ATP.

4.2.4 Phosphorylation analysis

Spectra acquired for VanSA samples that were allowed to undergo phosphorylation 

for different time periods were deconvoluted onto a true mass scale, to provide a 

molecular mass measurement, with MaxEnt, a maximum entropy algorithm (Ferrige

et al. 1992). Mass measurements obtained for the different truncates were compared 

to theoretical masses expected for each construct. The relative amount of 

phosphorylation observed was calculated from the ratio of non-phosphorylated to

phosphorylated protein present, based on data derived from the deconvoluted 

spectra. This was only possible if spectra contained sufficient resolution such that the 

peak in the deconvoluted spectrum corresponding to phosphorylated protein was 

separated from those corresponding to alternative adduct peaks, i.e. tri-sodiated or 

tetra-sodiated peaks.

Data obtained on the amount of phosphorylated product produced over time were 

used to create enzyme progress curves, fitted to a non-linear regression model, in 

Prism (GraphPad Software Inc., CA, USA). 
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Results obtained for this phosphorylation assay for VanSAΔ110 batch one, were 

compared with results obtained by use of radioactive labelling.

4.2.5 Modelling the mechanism of autokinase activity

In order to relate experimental observations to the phosphorylation mechanism of 

VanSA a pictorial representation of the protein was used. This was based upon the X-

ray crystallographic structure of the cytosolic domain of a sensor histidine kinase 

(HK853) from Thermatoga maritima (Marina et al. 2005) illustrated in Figure 4.5 

below. This protein shares only 26 % sequence identity with VanSA but, as a 

histidine kinase, it possesses CA and DHp domains which are likely to be highly 

conserved.

Catalytic ATP-binding 

domains

Dimerisation 
phosphotransfer domain

In to membrane

Figure 4.5: Representation of the  crystal structure of the cytoplasmic domain of a sensor 

histidine kinase (HK853) from T. maritima (PDB; 2C2A). The two HK853 monomers (blue 

and green) exhibit a small dimerisation region within which the conserved histidine residue 

is shown in red. A non-hydrolysable ATP analog is located in each ATP binding site within 

each CA domain and is shown in orange. 
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4.3.1 ESI-MS spectra

Analysis of VanSA truncates, under non-denaturing conditions, by use of ESI-MS 

showed the presence of primarily monomeric species and suggested the presence of 

multiple conformational states (see Figure 4.6). 
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Figure 4.6: Comparison of ESI-MS spectra obtained for VanSA truncates a.) Δ110 b.) Δ140 

c.) Δ150 and d.) Δ155 with, inset, corresponding deconvoluted spectra respectively. m/z

species representative of dimer are illustrated by an asterisk (*).

Many more charge states were observed within the spectra than would be expected 

to be obtained from a protein having a single conformation, analysed under non-

denaturing conditions. A small amount of homodimer was also observed within the 

4.3 Results and Discussion
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spectra. Data were deconvoluted to give masses of 32,127.2 Da, 28581.8 Da, 

27514.3 Da and 26916.7 Da, for VanSA truncates Δ110, Δ140, Δ150 and Δ155

respectively, in good agreement with the theoretical masses of these constructs 

(32,127.5 Da, 28582.4 Da, 27514.3 Da and 26916.6 Da respectively).

Analytical gel filtration results suggest VanSA exists in solution as a dimer (Dr 

Quigley, personal communication). It may dissociate readily to monomer upon entry 

in to the gas phase because the interactions at the dimer interface are mainly 

hydrophobic. Hydrophobic interactions are not conserved well in the gas phase since 

they rely on the presence of surrounding solvent molecules. ESI-spectra obtained for 

VanSA indicated the presence of approximately 10 % dimer. The observation of an 

indication of a small amount of complexed species (10-20 %) within spectra is 

consistent with that observed in previous studies performed on non-covalent 

complexes where hydrophobic interactions were known to play a major role in their 

solution states (Robinson et al. 1996; Wu et al. 1997). Increasing the backing 

pressure did not lead to increased intensity of dimeric species within the mass 

spectra nor a change in the charge-state distribution observed. It is therefore likely 

that multiple dimeric conformations of the protein exist in solution with some 

relating to partially unfolded structures. Upon ionisation, interactions at the dimeric 

interface are lost but the structure of the monomer is likely preserved. Leary et al.

have shown evidence to support the suggestion that a protein subunit can be gently 

dissociated from a macromolecular complex and maintain the same structure as it 

possesses when examined individually (Leary et al. 2009). 

The charge-state distribution observed in the spectrum for VanSAΔ110 contains two 

maxima. This indicates that there are at least two monomeric gas-phase 

conformations of this protein construct. The spectra for the other truncates have 

charge-state distributions exhibiting at least three maxima, signifying that these 

truncates exist in a minimum of three monomeric gas-phase conformations. The 

additional distribution of multiply-charged ions is observed at low m/z within these 

spectra, which suggests that it relates to a more unfolded conformation. 
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4.3.2 Autokinase activity

The ESI-MS spectra acquired, after VanSAΔ110 had been allowed to phosphorylate 

for different time periods, illustrated a relative decrease in non-phosphorylated 

protein and a relative increase in phosphorylated protein over time (Figure 4.7). The 

profile of the charge state distribution observed within the spectrum for non-

phosphorylated protein was reflected in mass spectra obtained for all partially 

phosphorylated samples. 
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Figure 4.7: Mass spectra obtained for VanSAΔ110 samples allowed to phosphorylate for a.) 

0, b.) 20, and c.) 60 minutes respectively. Inset spectra show a magnified region of each 

spectra containing the dominant charge state [M + 12H]12+. A decrease in the intensity of 

peaks relating to non-phosphorylated protein is observed and an increase in the intensity of 

peaks relating to phosphorylated protein is observed over time.
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Figure 4.8 shows deconvoluted spectra obtained from spectra illustrated in Figure 

4.7 above. Phosphorylated VanSAΔ110 (VanSAΔ110-P) was observed at a mass 80 

Da higher than that of VanSAΔ110. This suggested that, following transfer of the γ-

phosphoryl group from ATP to the conserved histidine residue (H164), that ADP 

was released. This is in agreement with what is known about the mode of action of 

this protein. 
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Figure 4.8: Deconvoluted mass spectra obtained for VanSAΔ110 samples allowed to 

phosphorylate for a.) 0, b.) 20, and c.) 60 minutes respectively. VanSAΔ110-P is observed at 

a mass of 32208 Da (± 1 Da), 80 Da higher than that of VanSAΔ110 (32128 ± 1 Da ). 

Additional peaks observed within spectra are consistent with those expected to be observed 

for sodiated protein species.
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The ratios of VanSAΔ110 to VanSAΔ110-P, observed within spectra, were used to 

calculate the rate of autophosphorylation of VanSAΔ110. This is illustrated, for two 

different expression batches of this protein, in Figure 4.9. The phosphorylation assay 

was conducted in triplicate for the second batch of protein and phosphorylation 

levels calculated as an average. All data points were within ± 5 % of average values 

obtained, illustrating the reproducibility of this approach. 

Figure 4.9: The percentage of total protein phosphorylated after different time intervals for 

protein batch one (■) and protein batch two (▲) respectively. The averages of 

phosphorylation levels calculated, from three datasets for protein batch two, are shown. 

Error bars indicate the maximum and minimum values calculated for time points with three 

replicates.

Approximately 67 % of VanSA110 (batch one) was phosphorylated after 

phosphorylation had been allowed to proceed for 60 minutes but the second batch 

was somewhat less phosphorylated after the same time, suggesting that some of the 

protein was not functionally active. This was confirmed by allowing phosphorylation 

to take place overnight after which the batch one sample was virtually 100 %

phosphorylated whereas the second batch was only 69 % phosphorylated (see Figure 

4.10). This presumably accounts for the difference observed in phosphorylation 

levels after 60 minutes.
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Figure 4.10: Deconvoluted mass spectra obtained for VanSAΔ110 samples a.) batch one and 

b.) batch two allowed to autophosphorylate overnight. VanSAΔ110-P is observed at a mass 

of 32207 Da (± 1 Da), approximately 80 Da higher than that of VanSAΔ110 (32128 ± 1 Da ). 

Batch one is virtually 100 % phosphorylated whilst batch two exhibits only 69 %

phosphorylation.

The autophosphorylation of VanSAΔ110 batch one over time was also measured by 

means of a radioactive labelling assay (Quigley and Roper, unpublished data), 

performed as detailed in Wright et al. (Pootoolal et al. 2002). A comparison of the 

results obtained by this assay with those obtained by the MS-based-assay can be seen 

in Figure 4.11 below. 
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Figure 4.11: The percentage of total protein phosphorylated after different time intervals for 

protein batch one, measured by MS (■) and by means of a radioactive labelling assay (▲) 

respectively.

Good correlation between the levels of autophosphorylation measured by the two 

different methods at later time points is seen. Data collected by the two assays for the

earlier time points show significant discrepancies. The conditions used in the 

radioactive labelling assay may have meant that this assay underestimated the 

phosphorylation levels at lower time points.

The radioactive labelling assay involves the incubation of VanS with magnesium 

chloride and [γ-32P]ATP for different time periods. 32P-labelled γ-phosphate is

transferred onto the VanS protein from [γ-32P]ATP as autophosphorylation occurs. 

The reaction is stopped by the addition of SDS-PAGE loading buffer containing 25 

mM EDTA solution. The EDTA solution stops further phosphorylation by chelating 

the Mg2+ ions bound to ATP. Once all the time points are complete, the samples are 

resolved by SDS-PAGE to separate protein from unbound [γ-32P]ATP. The amount 

of protein phosphorylation is determined by phosphoimaging the SDS-PAGE gel 

and calculating the levels of radioactively-labelled phosphorous incorporated. The 

loading buffer used to stop the reaction, which is at pH 6.8, may destabilise the 

phospho-histidine bond and cause the protein to dephosphorylate. If this is the case, 

phosphate loss would be expected to be more pronounced in samples with smaller

reaction times as these samples would be exposed to the loading buffer for longer

125



time periods. This is what is observed. This may explain the differences in the 

experimental values obtained by the two assays at shorter reaction times. 

A phosphorylation time course was also followed for VanSAΔ155 but it 

phosphorylated much more slowly than VanSAΔ110, and to a much lesser extent, 

with only 25 % of the protein becoming phosphorylated after 60 minutes. The 

amount of phosphorylation observed at small incubation times meant it was difficult 

to quantify accurately phosphorylation amounts and so only the phosphorylation 

level reached after 60 minutes is reported. 

VanSAΔ155 reached 90 % phosphorylation after overnight incubation with ATP and 

magnesium chloride suggesting that the lower rate of phosphorylation observed was 

not due to the presence of significant amounts of functionally inactive protein (see 

Figure 4.12 below).

mass
26900 27000 27100

%

0

100
26997

26917

Figure 4.12: Deconvoluted mass spectrum obtained for VanSAΔ155 allowed to 

autophosphorylate overnight. VanSAΔ155-P is observed at a mass of 26997 Da (± 1 Da), 

approximately 80 Da higher than that of VanSAΔ155 (26917 ± 1 Da ). Approximately 90 %

of the protein is phosphorylated.

The difference in reaction rate observed between VanSAΔ110 and VanSAΔ155 

truncates therefore indicates that the additional residues deleted in the smaller 
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truncate either play a role in phosphorylation or provide conformational stability. 

The additional residues may aid in forming an interaction between the CA and DHp

domains, which is required for phosphorylation to occur.

This work illustrates the use of an alternative approach for the measurement of 

autokinase activity, which could be used in the study of other systems. Although 

multiple methods based on mass spectrometry have been developed to monitor 

enzymatic conversions they have concentrated on the quantitation of low molecular 

weight products. Wind et al. (Wind et al. 2005) analysed histidine phosphorylation 

of another histidine kinase, CheA, by means of ESI-MS and element mass 

spectrometry. They quantified the degree of phosphorylation observed after in vitro

phosphorylation for 60 minutes but did not conduct a phosphorylation time course. 

They did, however, elegantly illustrate the instability of histidine phosphorylation by 

following the rate of dephosphorylation occurring over time upon exposure of the 

sample to acidic conditions.

These results indicate that the use of this mass spectrometry-based approach to 

follow autokinase activity forms a valid alternative to more conventional biophysical 

methods. It provides reproducible results without requiring the use of radioactive 

material and can be completed within a shorter time period. The MS-based assay can 

be completed within one day whilst a radioactive labelling study takes two days. 

This work also suggests that the MS-based-assay can provide more accurate 

quantitation of phosphorylation at lower time points when compared to the 

radioactive labelling assay.

4.3.3 Conformational studies

ESI-MS spectra acquired for VanSAΔ140, VanSAΔ150 and VanSAΔ155, following 

incubation with ATP and MgCl2 for 1 minute at room temperature, exhibited 

additional peaks to those observed for protein alone (see Figure 4.13 in comparison 

to Figure 4.6). Deconvoluted spectra showed that these additional peaks related to 

the presence of a species 529 Da (± 1 Da) higher in mass than each protein species.  

This mass difference indicated that ATP and magnesium were non-covalently 

associating with the protein (as magnesium-bound ATP has a molecular weight of 
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529.5 Da) and this association was being conserved in the gas phase. The spectra 

provided no evidence of the presence of phosphorylated species.
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Figure 4.13: Comparison of ESI-MS spectra obtained for VanSA truncates a.) Δ140 b.) 

Δ150 c.) Δ155 at 10 µM in 10 mM ammonium bicarbonate pH 7.8 following incubation 

with ATP and MgCl2 for 1 minute at room temperature with, inset, corresponding 

deconvoluted spectra. Additional peaks (•) are observed at a mass 529 Da (± 1 Da) higher 

than those representing each protein species.

The observation of ATP-associated VanSA species in the gas phase provided an 

opportunity for an investigation of the three-dimensional structure of ATP-associated 

VanSA (VanSA-ATP) and VanSA to be carried out by means of TWIM-MS. ESI-

spectra acquired for VanSAΔ110, following incubation with ATP and MgCl2 solution 

did not show the presence of ATP-associated species at sufficiently high  intensity 

for them to be investigated. It is likely that, VanSA Δ110-ATP did not persist long 

enough to be observed because, once ATP-association had occurred, 

phosphorylation and ADP release happened too quickly.

128



Extracted arrival time distributions (ATDs) for the most abundant charge states of 

VanSAΔ140, VanSAΔ150 and VanSAΔ155 and corresponding ATP-associated 

VanSA species observed in TWIM-MS experiments are shown in Figure 4.14. 
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Figure 4.14: Extracted arrival time distributions for the most abundant charge state 

observed within spectra for a.) VanSAΔ140, b.) VanSAΔ150, c.) VanSAΔ155, d.) 

VanSAΔ140-ATP, e.) VanSAΔ150-ATP and f.) VanSAΔ155-ATP.

Each peak within an ATD for a particular ion is taken to represent at least one gas-

phase conformation of that ion. Examination of the ATDs for the most abundant 

charge states of VanSAΔ140, VanSAΔ150 and VanSAΔ155 (Figure 4.14 above) 

suggest that these constructs exist in multiple gas-phase conformations. Peaks 

observed within the ATDs are not resolved and whilst at least three maxima are 

observed within each ATD it appears that these constructs exhibit many more gas-

phase conformations that cannot be distinguished by this technique.
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The ATDs obtained for VanSA-ATP species and for VanSA species show a number 

of interesting features. The apexes of peaks observed in the ATDs for VanSA species 

and corresponding ATP-associated VanSA species occur at similar times but there are 

stark differences in the relative intensities of the peaks observed. This suggests that 

whilst both VanSA-ATP species and corresponding VanSA species exist in analogous 

gas-phase conformations, they adopt these conformations to different extents. When 

ATP is bound VanSA species appear to favour conformations of higher mobility, i.e. 

more compact conformations.

Ion mobility experiments were conducted on VanSAΔ110 and VanSAΔ110-P. As 

stated above, VanSAΔ110 was not observed in complex with ATP and magnesium in 

sufficient intensity in spectra for conclusions to be drawn about its conformational 

distribution. Extracted ATDs for the most abundant charge states of VanSAΔ110 and 

VanSAΔ110-P observed in spectra obtained from TWIM-MS experiments are shown 

in Figure 4.15. ATDs from three datasets, which were obtained at intervals of several 

months, are illustrated. Extracted ATDs for VanSAΔ110 charge state [M+12H]12+

contain two maxima indicating that this protein construct exhibits at least two gas-

phase conformations. ATDs for VanSAΔ110-P charge state [M+12H]12+ show 

primarily one peak. On comparison of ATDs for VanSAΔ110-P with those for 

VanSAΔ110 it can be seen that they exist mainly as conformations having similar

mobilities.

The maxima of each of the main peaks observed in the ATDs extracted from the 

three data sets are within ±0.36 ms of each other. The three datasets were obtained at 

intervals of several months on the same batch of protein. Caution has to be taken 

when comparing the ATDs across the three datasets as some protein degradation 

would be expected to occur over this time frame. This being said, the reproducibility 

of the data, over this period, gives confidence in the reliability and robustness of the

method.

130



10.00 20.00

%

0

100

10.00 20.00

%

0

100

10.00 20.00

%

0

100

Time (ms) Time (ms) Time (ms)

Figure 4.15: Extracted arrival time distributions for the most abundant charge state 

([M+12H]12+) for VanSAΔ110 (red) and VanSAΔ110-P (blue) observed within spectra 

obtained from TWIM-MS experiments for three different datasets.

4.3.4 Model of VanSA autokinase activity

The results from the ion mobility experiment conducted on non-phosphorylated, 

phosphorylated and ATP-bound forms of VanSA have been used, a long with prior 

knowledge, to suggest a mechanism for VanSA autokinase activity. This is depicted 

in Figure 4.16 and is similar to that suggested for HK853 by Marina et al. (Marina et 

al. 2005). 
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Figure 4.16: Pictorial representation of VanSA autokinase activity. The catalytic ATP-binding domain is represented in purple whilst the dimerisation 

phosphotransfer domain is represented in blue. a.) The kinase domain is free to move around the phosphotransfer domain, hinging around the linker region 

between the two domains. b.) Upon ATP-binding, VanSA favours a more compact conformation. c.) The kinase domain comes into close proximity to the 

phosphotransfer domain. d.) This allows for transfer of phosphate from the associated ATP molecule to VanSA (H164). e.) Once phosphorylated, VanSA no 

longer favours a more compact conformation. The kinase domain is free to move. This allows for ADP release.
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The CA domain is proposed to be free to rotate around the DHp domain, hinging 

around the linker region between the two domains. This results in an array of 

conformational states being exhibited by the protein. Upon ATP binding, the most

compact of the multiple conformations observed is favoured i.e. more protein 

preferentially occupies this state than any other. This more closed conformation 

likely permits the interaction between the ATP molecule and the site of 

phosphorylation, so phosphorylation can occur. No significant differences between 

the conformations occupied between phosphorylated and non-phosphorylated protein 

are observed and, therefore, after phosphorylation, the most compact conformation is 

no longer favoured. It is likely that the ATP-binding domain moves out to allow 

ADP release. In the cell, this would then permit the interaction between the 

phosphotransfer domain of VanSA and the response regulator, VanRA. 

This model is in agreement with others which have been suggested for different HKs 

(Marina et al. 2005; Bick et al. 2009) but these results give a further indication of 

protein dynamics. VanSA exists in similar conformational states whether ATP is 

associated or not; ATP-binding is not likely to cause a conformational transition. It is 

proposed that the bound ATP molecule interacts with the DHp domain when they are 

sufficiently close in a conformational state. 
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Ion mobility mass spectrometry has been used to provide information relating to the 

conformational states of the VanSA protein core under non-phosphorylated, ATP-

associated and phosphorylated conditions. MS has been used to confirm that VanSA

is able to autophosphorylate in the presence of ATP and MgCl2. The rate at which 

phosphorylation proceeds and the amount of phosphorylation observed has been 

studied. 

This work confirms that ATP association leads to protein phosphorylation and ADP 

release. Ion mobility experiments provide data enabling conformational changes 

occurring during VanSA autophosphorylation to be observed. When in complex with 

magnesium and ATP, which are required for phosphorylation to occur, VanSA

appeared to favour a more compact conformation. This conformational state is 

proposed to facilitate autokinase activity by bringing the ATP molecule and the site

of phosphorylation into sufficient proximity for phospho-transfer to occur. 

For all VanSA truncates studied, ion mobility experiments illustrated the presence of 

multiple protein conformations. They indicate that, in the gas phase, VanSAΔ155 

exists in a larger number of stable conformations than VanSAΔ110. This is supported 

by ESI-MS spectra obtained for these two species. The charge-state distribution 

observed in the spectrum for VanSAΔ110 contains fewer maxima than the charge-

state distribution observed in the spectrum for VanSAΔ155. The presence of multiple 

conformations, in solution, provides an explanation as to why histidine kinases have 

proved so difficult to crystallise. Mass spectrometry could be used as a tool to help 

determine protein constructs which would crystallise in this case. Mass spectrometry 

has previously been shown to be a valuable tool for the protein crystallographer as it 

can be used to verify correct protein expression (Chait 1994), elucidate protein 

domains (Cohen 1996) and analyse protein crystals (Cohen and Chait 2001).  

The use of mass spectrometry to study phosphorylation rates is a valuable technique, 

which offers a simple, reproducible alternative to conventional biophysical methods. 

4.4 Conclusions
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5.1 Introduction

5.1.1 Hemoglobin

Hemoglobin (Hb) is the oxygen-transport metalloprotein found in the red blood cells 

of all vertebrates; it binds oxygen in the lungs and supplies it to the organs and 

tissues. It is tetrameric in structure, consisting of four globular protein subunits: two 

alpha (α) chains and two non-α chains, each associated with a prosthetic heme group. 

The α-chains are encoded on chromosome 16 by two closely related genes, α1 and 

α2. The non-α chains, beta (β), delta (δ) and gamma (γ), are encoded by a cluster of 

genes on chromosome 11 (Hartwell et al. 2005). A diploid cell therefore has four α-

globin genes and two β-like genes (Clarke and Higgins 2000). The type of non-α 

chain within the tetramer is used to define the hemoglobin type. In the predominant 

form of adult hemoglobin, Hb A, the non-α chains are β-chains, in the minor form,

Hb A2 (2-3.5 %), these are δ-chains. In a fetus, the majority of hemoglobin is HbF 

(α2γ2). Hb F has increased oxygen affinity relative to that of adult hemoglobin. This 

allows oxygen to be effectively transferred from maternal to fetal cells, across the 

placenta. The α- and β-chains consist of 141 and 146 amino acid residues, 

respectively. There is some sequence homology between the two chains (64 

individual amino acid residues in identical positions), and the β-chain differs from 

the δ- and γ-chains by 10 and 39 residues, respectively (Clarke and Higgins 2000).

5.1.2 Hemoglobin disorders

Hemoglobin disorders may be characterised into structural variants and thalassemias. 

Structural variants are produced when the amino acid composition of a protein chain 

is altered. A thalassemia syndrome is caused when a mutation or deletion event leads 

to diminished or no production of one of the globin chains of the hemoglobin 

molecule. Mutations leading to thalassemia syndromes mostly occur within the non-

coding regions of the globin genes. Over 1000 structural variants and 300 mutations 

responsible for the thalassaemia syndromes have been detected so far. Details of 

these are housed in HbVar, a relational database of human hemoglobin variants and 

thalassaemia mutations, which may be found at the Globin Gene Server (Hardison et 
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al. 2002). The majority of the structural variants and thalassemia syndromes 

identified are clinically silent, creating no ill effects in the carrier, but a small 

number are of significant clinical importance (Clarke and Higgins 2000).

Hemoglobin variants are often named after their place of first discovery or family 

name of the primary case. A systematic nomenclature is used to characterise 

structural variants. Thus Hb S (β6 Glu→Val) describes that Hb S is produced by an 

amino acid mutation in the β-chain at position six from a glutamic acid to a valine. 

The common clinically significant structural variants are Hb S, C, DPunjab, E and 

OArab, caused by single amino acid substitutions in the β-chain, and the Lepores, 

which are δ:β chain hybrids. The mutations responsible for these variants and their 

clinical manifestations are summarised in Table 5.1 below.

Table 5.1: The common clinically significant structural variants, the mutations which cause 

them and their clinical manifestations (data obtained from HbVar). Mass change shown is 

the change in globin chain mass produced as a result of the mutation.

Hemoglobin Mutation Mass 
Change 
(Da)

Clinical manifestation
(Heterozygote/ Homozygote)

S β6 (Glu→Val) -30 Carrier, no symptoms/ Sickle cell 
disease

C β6 (Glu→Lys) -1 Carrier, no symptoms/ Mild 
anaemia

DPunjab β121 (Glu→Gln) -1 Carrier, no symptoms/ Mild 
anaemia

E β26 (Glu→Lys) -1 Mild microcytosis/ Thalassemia 
minor

OArab β121 (Glu→Lys) -1 Carrier, no symptoms/ Mild 
anaemia

Lepore-
Hollandia

Hybrid: δ 1:22, δ/β 23:49, 
β 50:146

-30 Thalassemia minor

Lepore-
Baltimore

Hybrid: δ 1:50, δ/β 51:85, 
β 86:146

-45 Thalassemia minor

Lepore-Boston-
Washington

Hybrid: δ 1:87, δ/β
88:116, β116:146

-2 Thalassemia minor

The inheritance of homozygosity for Hb S (Hb SS, sickle cell anaemia) or Hb S with 

Hb C (Hb SC disease), Hb DPunjab (Hb SD disease), Hb E (Hb SE disease) or Hb 

OArab (Hb SO disease) result in sickling disorders. The sickling disorders are so 
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named because the abnormal hemoglobins they produce precipitate and polymerise 

in red blood cells causing the cells to become sickle in shape (Clarke and Higgins 

2000). The sickling disorders are associated with severe anaemia and life-threatening 

vaso-occlusive crises.  Anaemia (meaning lack of blood) leads to poor oxygen 

supply to the organs and tissues. Sickle cell crises result when the sickled red blood 

cells obstruct blood vessels and restrict blood supply to the organs, causing severe 

pain (NHS Sickle Cell and Thalassaemia Screening Programme 2009). Numerous 

complications can result as a consequence of these afflictions and sickle cell 

sufferers require life-long treatment. Heterozygotes, possessing one normal and one 

sickle β-globin gene, have sickle cell trait but are symptom free.

The thalassemias produce a syndrome characterised by anaemia, the severity of 

which depends on the type of thalassemia syndrome present. The most severe 

thalassemias, α- and β-thalassemia major, result from homozygous genetic defects in 

the α-globin and β-globin synthesis, respectively (Hartwell et al. 2005). 

There are four α-globin genes and therefore a single α-globin gene deletion (-α/αα) 

gives α-thal-2 trait and has no effect on hemoglobin synthesis. A double deletion (--

/αα or -α/-α) results in mild microcytic hypochromic anaemia (production of small 

red blood cells with low levels of hemoglobin per cell) (Clarke and Higgins 2000). If 

three α-globin genes are deleted Hb H disease is produced. The excess production of 

β-chains leads to the formation of β4 tetramers. These precipitate in red cell 

precursors leading to ineffective red cell production and enlargement of the spleen 

and liver (Clarke and Higgins 2000). If all four α-globin genes are deleted 

(homozygous α-thal-1) Hb Bart’s hydrops fetalis is caused which is incompatible 

with postnatal life. 

Single β-globin gene deletion or diminished synthesis of one β-globin chain results 

in β-thalassemia minor. This disorder presents with mild microcytic hypochromic 

anaemia (Clarke and Higgins 2000). Sufferers of this disorder produce more Hb A2

than in normal individuals. Quantification of Hb A2 levels above 3.5 %, along with 

the recording of a low mean cell hemoglobin level (as part of a full blood count), is 

used to provide diagnosis of heterozygous β-thalassemia (Ryan et al. 2010).  Hb E 

and Hb Lepore have thalassemic manifestations that lead to decreased β-globin 
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production and microcytic hypochromic anaemia in homozygotes. Homozygous β-

thalassemia sufferers can present with β-thalassemia intermedia or major. This 

depends on whether the thalassemia results in greatly diminished (β+) or no β-chain 

production (β0). β-thalassemia major sufferers present with severe microcytic 

hypochromic anaemia and rely on life-long regular blood transfusions. About fifty-

percent of β-thalassemia major sufferers, in the UK, die before the age of 35 (Modell

et al. 2000).

As well as these common clinically significant hemoglobinopathies many more of 

the structural variants reported so far are of clinical relevance. A simple search of the 

HbVar database shows that there are 32 structural α-chain variants and 88 structural 

β-chain variants which lead to anaemia in heterozygotes (Hardison et al. 2002).

5.1.3 Incidence of hemoglobinopathies

Worldwide, in 1998, there was estimated to be 269 million carriers of hemoglobin 

disorders (Angastiniotis and Modell 1998). Hemoglobinopathies are a significant 

healthcare problem and the most common inherited disorders. Over 300,000 babies 

with major hemoglobin disorders are born every year and the majority die 

undiagnosed, untreated or under-treated (Angastiniotis and Modell 1998). The 

incidence of hemoglobinopathies is also on the increase; hemoglobinopathies such as 

Hb S, C and E have spread through migration from their native areas in the 

Mediterranean, Africa and Asia and are now endemic throughout Europe, the 

Americas and Australia (Angastiniotis and Modell 1998). Some variants have 

maintained a significant prevalence in certain areas because they provide some 

evolutionary advantage. Hb S is maintained at approximately 10 % frequency in 

malaria-endemic regions (Flint et al. 1998). Whilst Hb S homozygotes have sickle 

disease, heterozygotes have a 10-fold reduced risk of severe malaria (Ackerman et 

al. 2005). A similar protection is thought to be provided by E trait and β-thalassemia.

In the UK, the highest disease burden relates to sickling disorders in black ethnic 

groups (Angastiniotis and Modell 1998). In England, approximately 3000 babies 

(0·47 %) with sickle cell trait, 140-175 with sickle cell disease, 2800 (0·44 %) with 
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β-thalassemia trait and 10-25 with β-thalassemia major/intermedia are born annually 

(Hickman et al. 1999).

5.1.4 Hemoglobinopathy screening and diagnosis

Highly sensitive detection and quick and accurate identification of 

hemoglobinopathies is necessary to allow early initiation of treatment in affected 

individuals and to uncover the presence of any inheritance issues. The majority of 

countries in the developed world recognise this need and have their own 

hemoglobinopathy screening programmes. In the UK, this is the NHS Sickle Cell 

and Thalassaemia Screening Programme. This consists of two linked screening 

programmes, one for antenatal screening and one for newborn screening 

(NHS Sickle Cell and Thalassaemia Screening Programme 2009).

The aim of the antenatal screening is to offer sickle cell and thalassemia screening to 

all pregnant women. In England, screening for sickle cell, thalassaemia and the other 

common clinically significant hemoglobin variants, C, D-Punjab, E, O-Arab, H and 

Lepore is offered to all women early in pregnancy in high prevalence areas. High 

prevalence areas are those which have sickle cell incidence in newborns of 1.5 per 

10,000 pregnancies or greater. In low prevalence areas, pregnant women are first 

given a ‘full blood count’ blood test and the results of this, together with information 

regarding their families’ origins, are used to decide whether a full screen needs to be 

performed (NHS Sickle Cell and Thalassaemia Screening Programme 2009). 

Newborn babies are offered screening for sickle cell disease and β-thalassemia major 

as part of the routine 'heel prick' or 'blood spot' test. Men and women can ask for a 

test before they become parents, so they can know if they are carriers of a clinically 

significant hemoglobinopathy or thalassemia and can evaluate the risk to any 

children they may have.

There are a number of techniques that can be used for screening of 

hemoglobinopathies but the most commonly used and recommended techniques are

high-performance liquid chromatography (HPLC) and isoelectric focussing (IEF) 

(Ryan et al. 2010). The requirements of the antenatal screening programme within 
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England is that a screening method detects the presence of Hb A, S, C, D-Punjab, E, 

O-Arab, H and Lepore and can provide quantitation of Hb F and Hb A2 for 

determination of β-thalassemia trait (Ryan et al. 2010). The neonatal screen must 

indicate the presence of sickle cell and/or β-thalassemia major.

HPLC separates variants based on their different retention times on a 

chromatography column. Several commercial automated HPLC systems have been 

developed which provide separation of the clinically important hemoglobin variants 

as well as Hb A2 and Hb F quantitation. These systems require relatively low capital

investment but have high running costs. An example of a HPLC trace produced from 

the analysis of a normal blood sample is shown below in Figure 5.1. Peaks observed 

within the chromatogram represent the elution of hemoglobin heterodimers (αβ 

dimers). Peaks showing the elution of Hb A and Hb A2 are indicated. The retention 

windows within which Hb F, D, S and C elute on the HLC-723 HbG7 analyser 

(Tosoh Bioscience Ltd., Redditch, UK) (Chevenne et al. 1999) are shown. A single 

hemoglobinopathy screen by this approach takes less than eight minutes.

Hb A
αβdimer

Hb A2

Hb D Hb S Hb CHb F

Glycated Hb

Figure 5.1: HPLC trace from TOSOH HLC-723 HbG7 analyser for blood sample from 

normal adult patient. Peaks shown represent the elution of heterodimers (αβ dimers).
Retention time windows for Hb F, A, A2, D, S and C are shown.
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HPLC provides sufficiently accurate quantification of Hb A2 to be used for the 

diagnosis of β-thalassemia trait (Ryan et al. 2010). Some variants co-elute with Hb 

A, S or other clinically significant variants which means that the presence of a 

variant could be missed or misinterpreted. HPLC also provides separation of 

glycosylated and other derivative forms of hemoglobin, which can make 

interpretation more difficult. Careful examination of every chromatogram is 

therefore essential and any identification of variants made is provisional. 

Glycated Hb (Hb A1c) levels have been used over the last 30 years to assess whether 

a sufferer of diabetes has their diabetes under good control. Hb A1c testing has also 

been shown to help predict the likelihood that patients will develop diabetes in the 

future (Edelman et al. 2004). 

IEF separates variants based on their isoelectric point, the position along a pH 

gradient where they have no net charge (Hartwell et al. 2005). IEF can provide 

resolution of Hb F from Hb A and Hb S, C, D, O and G (Clarke and Higgins 2000). 

IEF is not a validated technique for Hb A2 quantitation.

If the presence of a clinically important variant is suggested by HPLC or IEF 

analysis then another technique is applied to confirm this such as IEF or HPLC as 

appropriate or cellulose acetate electrophoresis (CAE) and/or agarose gel 

electrophoresis (AGE). CAE provides separation of Hb A and F but cannot separate 

Hb C from Hb E, A2 and O or Hb S from D-Punjab. AGE provides separation of Hb 

F, S and C but cannot separate Hb A from Hb E, A2 and D-Punjab (Bain 2006).

Results of these analyses are used in conjunction with those from a full blood count 

to provide presumptive diagnosis. To obtain definitive diagnosis, DNA or protein 

sequence analysis is required but is not currently a requirement under the screening 

programme as positive presumptive identification by two approaches is considered 

sufficient to provide diagnosis. Samples may be referred to DNA reference 

laboratories or to mass spectrometry laboratories in some cases, however, when a 

thalassemia syndrome or variant is clearly present but when its identification cannot 

be presumptively confirmed. 
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A DNA approach to screening would provide excellent sensitivity but is not widely 

available, has considerable reagent costs and is unable to detect the presence of post-

translational modifications (Wild et al. 2001). The use of mass spectrometry to 

identify variants is becoming more widespread and may have the potential to be used 

as a screening method (Ryan et al. 2010).

5.1.5 Identification of Hb variants using mass spectrometry

The use of mass spectrometry to identify hemoglobin variants was first reported by 

Wada et al. in 1981. Wada used field desorption mass spectrometry to analyse 

tryptic peptides of abnormal and normal hemoglobins (Wada et al. 1981). Since 

then a number of mass spectrometry-based approaches have been developed and 

used to identify hemoglobin variants.

A recent review by Zanella-Cleon et al. summarises the phenotypic determination of 

hemoglobinopathies by mass spectrometry to date (Zanella-Cleon et al. 2009) and 

references over 50 publications which report the use of mass spectrometry to identify 

hemoglobinopathies. Over 20 of the publications referenced report the detection of 

novel variants by mass spectrometry-based approaches. Mass spectrometry has been 

used to characterise variants with one or two amino acid substitutions, insertions, 

deletions and post-translational modifications (Zanella-Cleon et al. 2009). 

The mass spectrometry-based approaches used for hemoglobinopathy detection can 

largely be divided into two camps, those undertaken to identify unknown variants 

when an abnormal Hb is detected by phenotypic methods and those developed to 

screen for specific variants. 

The general method adopted for unknown variant identification by mass 

spectrometry is a multi-step approach, first illustrated by Wild et al. (2001). ESI-MS 

on the intact globin chains is performed under denaturing conditions so that the 

globin chains and heme group are analysed as separate entities. Two globin chains 

that differ in mass by 6 Da or more may be resolved by ESI-MS and their average 

masses can be determined to within ± 0.1 Da (Wild et al. 2001). Globin chains that 

differ by less than 6 Da are detected by a change in the mass of the composite peak 
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(Rai et al. 2003). A -1 Da β-chain variant present at 20 % intensity (with normal β-

chain at 80 %) would be expected to reduce the mass measurement of the composite 

peak by 0.2 Da. This analysis allows the variant present to be associated with the α-

or β-chain and a list of possible amino acid substitutions that could be responsible 

for the variant to be formed, based on the mass change seen. ESI-MS analysis of the 

tryptic digest of the globin chains then allows identification of the tryptic peptide 

containing the mutation and further ESI-MS/MS analysis of the variant tryptic 

peptide can allow positional determination of the amino acid change present.

The majority of structural variants identified are produced by single amino acid 

substitutions. This approach was originally developed for the detection of these, in 

adults, but can easily be adapted for the identification of mutants with insertions, 

deletions or post-translation modifications. This approach has also been adapted and 

applied successfully to newborn screening for sickle cell disease and homozygous 

β0-thalassemia (Wild et al. 2004). 

An alternative to this multi-step approach is to use a more directed approach 

whereby only known variants of interest are screened for. The tryptic digest of a 

blood sample is analysed by mass spectrometry using a multiple reaction monitoring 

(MRM) scan mode, on a triple quadrupole, or in data directed analysis (DDA) mode. 

The occurrence of particular fragment ions upon CID of precursors is looked for. In 

MRM mode, unique transitions from precursor mass to fragment mass are pre-

defined for particular variants. In DDA mode, when ions are detected at a particular 

m/z CID is performed upon them and the MS/MS spectrum produced is interpreted 

to identify any variant present.

Daniel et al. (2005) have described a rapid and specific MRM approach for the 

simultaneous detection of the clinically significant variants Hb S, C, D-Punjab, E 

and O-Arab. They analysed 200 blood samples by this approach, in parallel with 

existing screening methods, and provided correct identification of all samples. They 

have also developed this approach further for the measurement of δ:β-globin peptide 

ratios and have shown that this is a suitable surrogate marker for Hb A2 quantitation 

(Daniel et al. 2007). Their work has shown the potential for mass spectrometry to be 
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used as the primary screening method for hemoglobinopathies in the clinical setting 

as it fulfils all the current method requirements for antenatal/neonatal screening.

Basilico et al. (2007) have developed another directed approach to hemoglobin

variant detection based on the HPLC-ESI-MS/MS analysis of the peptide mixture of 

a hemoglobin tryptic digest. They developed an in-house database containing 

theoretical mass spectra for various known variants. Experimental data obtained 

could then be correlated with that held in the peptide database to provide 

successfully identification of known variants (Basilico et al. 2007). 

A limitation of both of these approaches it that they can only be used to identify 

known variants, which the experiment is designed to detect. The approach described 

by Basilico et al. (2007) has the further limitation that it does not provide a method 

for Hb A2 quantitation.

The use of a mass spectrometry-based approach for glycated hemoglobin

quantitation has also been evaluated by several groups (Roberts et al. 2001; 

Nakanishi et al. 2002). These have shown that ESI-MS analysis provides a precise 

measurement of glycated Hb, Hb A1c, comparable with measurements obtained by 

other methods. Nakanishi et al. (2002) have also reported that the presence of 

abnormal Hb S can cause erroneous Hb A1c measurements by commercial methods 

(such as HPLC). Quantitation of Hb A1c by MS is not affected by the presence of 

variants and in these cases provides more reliable quantitation results. 

A fundamental limitation of the application of mass spectrometry to 

hemoglobinopathy screening is that it can only detect variants which result in a 

change in globin chain mass. The common clinically significant variants, however, 

all result in a mass change (Table 5.1). No variants produced by a Ile→Leu (or vice-

versa) mutation have been reported in HbVar (Hardison et al. 2002). Gln→Lys 

mutations produce only a small change in mass and three variants resulting from this 

mutation have been reported. These variants can be detected easily upon tryptic 

digest analysis, however, as a new trypsin cleavage site is formed by the mutation.
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5.1.6 Clinical screening by MS?

Whilst it is clear that identification of hemoglobin variants by MS provides 

complementary results and can provide more information than HPLC or IEF, it has 

not been adopted within the clinical setting for population screening. This is despite 

an approach for screening by MS having been developed by Daniel et al. (2005 and 

2007) and being of a similar time requirement and cost per test to the current HPLC 

systems. HPLC and IEF systems require relatively small capital investment but have 

high running costs, whereas the consumable costs for MS analysis are small but the 

initial capital investment required is significantly higher. Daniel et al. (2005) suggest 

that the economics are dependent on the size of the population being screened and 

that a tandem MS approach would be more cost-effective with larger populations. 

The limitation of a tandem MS, MRM based approach, is that it only provides 

diagnosis of known variants, for which MRM transitions are defined. The appeal of a 

mass spectrometry-based method to screening would be greater if it provided 

substantially more information than is obtained by HPLC or IEF, for a similar cost 

and time requirement.

A MS-based screening approach could be developed which would provide definitive 

diagnosis of unknown variants, as well as the common clinically significant ones and 

quantification of Hb F, Hb A2 and Hb A1c. A multi-step approach to variant 

identification as described by Wild et al. (2001) would be favoured for this approach 

as an MRM-based approach could not identify unknowns. This MS identification

process, however, currently requires a highly-skilled operator and extensive manual 

data interpretation. Any MS-based screening approach would therefore need to 

overcome this limitation. 

A potential solution would be to provide a high-throughput screen of the intact 

globin chains. This would then be used to determine if a variant was present and 

would quantify δ:β globin ratios and hemoglobin glycation. When the presence of a 

variant was indicated by this approach it could then be definitively identified by 

analysis of the peptide mixture produced by tryptic digestion. This solution would 

require that the analysis could be performed in a high-throughput manner and that 
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the requirement for manual data processing and interpretation be simplified or 

removed.

Within this chapter, the use of mass spectrometry to provide definitive identification 

of several variants unidentifiable by HPLC is described. This is achieved through use 

of a multi-step approach similar to that of Wild et al. (2001) utilising a mass 

spectrometer of Q-TOF geometry. The use of a potential high-throughput approach 

to hemoglobinopathy screening is then investigated. 

The application of a triple quadrupole instrument for rapid hemoglobinopathy 

screening has been shown to produce reproducible results in previous studies. The 

methods, previously described by Wild et al. (2001) and Daniel et al. (2005 and 

2007), both have their disadvantages. The multi-step approach described requires 

extensive manual data processing and interpretation whilst the directed tandem MS 

approach only looks for and identifies known variants (screened for by unique MRM 

transitions).

The use of an intact-globin screen in a high-throughput manner on a triple 

quadrupole is described. A Xevo-TQ (Waters Corporation, Milford, MA, USA) 

equipped with a TriVersa NanoMate (Advion Biosciences Ltd., Ithaca, NY, USA) 

automated sample introduction system was used to analyse blood samples for 

hemoglobin abnormalities (chain variants, high δ-chain, high glycation). This 

approach was applied to the analysis of samples provided by Dr. Patel (University of 

Birmingham Centre for Cardiovascular Sciences). Dr. Patel was interested in 

screening samples from South Asians with and without cardiovascular disease 

(CVD) for the presence of hemoglobin anomalies. 

In the UK, deaths from cardiovascular disease (CVD) are 40 % more common 

amongst people from the Indian Subcontinent (South Asian). It is unclear why South 

Asians are so susceptible to CVD. Hemoglobin disorders are also common in South 

Asians, but a connection to CVD has not been explored. It was therefore of interest 

to investigate whether hemoglobin disorders were more common to South Asians 

with CVD than those without. Hemoglobin abnormalities were detected by use of the 

high-throughput mass spectrometry-based approach and correlated with patient 

150



information by Dr Patel. It was hypothesised that more hemoglobin abnormalities 

would be observed in CVD patients than in health controls.

This work does not attempt to provide a complete clinical study but rather focuses on 

the value of an automated mass spectrometry-based approach to hemoglobinopathy 

screening for selected demographic groups. It is hoped that with further development 

a mass spectrometry-based approach to screening could be used within the clinical 

setting.
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5.2 Materials and Methods

5.2.1 Sample preparation for Q-TOF MS analysis

Anonymised patient blood samples were obtained from UHCW NHS Trust. Blood 

samples were prepared for analysis as follows. 10 µL of blood from an EDTA-tube 

was diluted in 490 µL of HPLC-grade water to create a stock solution. 100 µL of 

stock solution was diluted 10-fold in 50 % acetonitrile 0.2 % formic acid for intact 

analysis and 100 µL of stock was used for tryptic digestion. The tryptic digestion 

was performed as detailed in Wild et al. (2001). Prior to intact analysis, the sample 

was desalted by agitation for 30 seconds with approximately 5 mg of AG 50W-X8 

cation-exchange beads (Bio-Rad Laboratories). 

5.2.2 Q-TOF mass spectrometric analysis

A Q-Tof Ultima (Waters Corporation, Manchester, UK), equipped with a standard 

flow ESI source and controlled by MassLynx™ (v4.1) software (Waters 

Corporation, Milford, MA, USA) was used to analyse various blood samples. 

Samples were introduced into the ESI source at a flow rate of 5 µL/min from a 250 

µL syringe using a syringe pump. The instrument was operated in ESI positive mode 

with a capillary voltage of 3 kV, 60 V cone voltage and source temperature of 110 

°C for all experiments. The TOF mass analyser was tuned in V-mode to give an 

operating resolution of 1,500 (FWHM) for intact analysis and an operating 

resolution of 6,000 (FWHM) for digest analysis. The TOF mass analyser was 

calibrated using the α-chain from a control blood sample. Data were acquired in 

continuum mode at a speed of 1 spectra/second and total ion counts were kept below 

400 per scan to minimise dead time error.

The reduced instrument operating resolution of 1,500 (FWHM) for intact Hb 

analysis was achieved by reducing the gas pressure within the collision cell. This 

operating resolution allowed the data produced to reflect that which would be 

obtained on a triple quadrupole instrument. This operating resolution produced 

spectra that were more compatible with conventional MaxEnt processing. The 
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MaxEnt software, within MassLynx, which is used to deconvolute the data, was 

originally written for the deconvolution of triple quadrupole data. It assumes that 

peaks within the spectrum to be processed have a similar peak width and are 

Gaussian in shape. Spectra produced upon a Q-Tof instrument have peaks with 

asymmetric distributions and varying peak width with m/z.  This does not create a 

significant problem when variant peaks are separable within the MaxEnt spectra. 

When a variant is present at -1 Da, however, its presence needs to be identified by a 

shift in mass in deconvoluted spectra. Globin chain mass, therefore, needs to be 

measured reproducibly to within ±0.1 Da to detect a ±1 Da variant at 10 % intensity. 

The increased resolution available on a Q-Tof instrument is not an advantage as it is 

not sufficient to separate the two species. Even on a FT-ICR operating at 200,000 

resolution at 400 m/z the two isotopic distributions would not be separated (Kleinert

et al. 2008).

5.2.3 Testing the Q-TOF MS approach to hemoglobinopathy diagnosis

The ability to reproducibly measure the β-chain to within ±0.1 Da was evaluated by 

analysing a control sample 30 times. Spectra acquired over one minute were 

combined and processed as described in Rai et al. (2003). Data were background 

subtracted with a 25-order polynomial such that 5 % of the data fell below the new 

baseline. Subtracted, combined, spectra were then deconvoluted onto a true mass 

scale by use of MaxEnt, a maximum entropy-based program, available within the 

MassLynx software. The MaxEnt mass output parameters used were a mass range of 

14800-16800 Da and resolution of 0.2 Da/data point. The simulated isotope pattern 

damage model was used at a spectrometer blur width of 0.2-0.3 Da. This was chosen 

such that the α-chain measurement fell within 0.2 Da of its sequence mass at the 

beginning of the MaxEnt iteration process. 40 % minimum intensity ratios were used 

and the process was allowed to iterate until convergence. The deconvoluted spectrum 

obtained was then smoothed and centred and the mass scale shifted linearly so that 

the α-chain mass was equal to its sequence mass. The β-chain mass obtained was 

then recorded. 

A -1 Da β-chain variant present at 10 % of the intensity of the normal β-chain would 

be expected to produce a shift in measured β-chain mass of 0.1 Da. To assess 
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whether this could actually be observed by our approach samples containing 

different concentrations of a -1 Da variant were produced and analysed.  A normal 

blood sample was mixed in different ratios with a sample containing a homozygous -

1 Da β-chain in order to create variant concentrations of 0 %, 25 %, 50 %, 75 % and 

100 %.

The potential of the Q-TOF to identify variants was tested by analysing 10 blood 

samples for the presence of hemoglobin variants using the multi-step approach

described by Wild et al. (2001). These blood samples had previously been 

characterised by Brian Green (Waters Corporation, Manchester, UK) by use of the 

Wild et al. approach on a triple quadrupole instrument. The samples were analysed 

without prior knowledge of the variants which they contained. Once they had been 

analysed the results acquired were compared with those previously obtained. 

This MS-based approach to hemoglobin variant identification was then applied to a 

series of samples from UHCW NHS Trust for which HPLC results had indicated the 

presence of a variant. These samples had been submitted for analysis as part of the 

NHS Sickle Cell and Thalassaemia Antenatal Screening Programme. 

HPLC experiments were performed by UHCW NHS Trust on a TOSOH HLC-723 

HbG7 analyser. This system provides quantification of Hb F and Hb A2 and 

presumptive identification of hemoglobinopathies within a sample in less than 8 

minutes.

5.2.4 Ion mobility mass spectrometry

Ion mobility mass spectrometry was used to aid in the identification of a particular 

variant. TWIM-MS was used to separate a precursor ion from an interfering ion at 

the same m/z value prior to MS/MS analysis. This allowed MS/MS data for the 

precursor of interest alone to be obtained. A Synapt HDMS system was used to 

perform TWIM-MS experiments and operated as described in Chapter 2 Section 

2.2.3 unless otherwise stated. Optimised ion mobility conditions used were a 

travelling wave height of 11 V and a travelling wave velocity of 300 m/s. A mass 

acquisition range of 50-2000 m/z was used.
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5.2.5 High-throughput screening

A Xevo-TQ (Waters Corporation, Milford, MA, USA) equipped with a TriVersa 

NanoMate (Advion Biosciences Ltd., Ithaca, NY, USA) automated sample 

introduction system was used to acquire data on 174 samples provided by Dr. Patel 

(University of Birmingham Centre for Cardiovascular Sciences). 

A prelimary case-control study was used to compare vascular damage, hemoglobin 

abnormalities and iron levels in South Asian CVD patients with those in controls. 

Vascular damage and iron levels were determined by Dr. Patel. Vascular damage 

was determined by ultrasound imaging: carotid-artery intima media thickness 

(CIMT). High-density lipoprotein (HDL) subfractions were separated using 

ultracentrifugation and analysed for iron. CIMT and HDL cholesterol levels provide 

a measure of the severity of heart disease present. Measurement of CIMT with 

ultrasound is a non-invasive, sensitive, and reproducible technique for identifying 

and quantifying subclinical vascular disease and for evaluating CVD risk (Stein et al.

2008). Higher CIMT and lower HDL cholesterol levels indicate higher disease risk.

Blood samples were assessed for the presence of single-point mutation hemoglobin 

variants, high δ-chain and high glycation levels without knowledge of their disease 

status. The results of this analysis were then correlated with patient information by 

Dr. Patel. 10 hemoglobinopathy controls (as used above), with known 

hemoglobinopathy status, were also analysed by this approach.

Blood samples were prepared for analysis by diluting 0.5 µL of blood in 250 µL of 

50 % acetonitrile 0.2 % formic acid within a 96-well plate, compatible with the 

TriVersa NanoMate. The samples were not desalted prior to analysis due to time 

constraints. Data were acquired through use of a sample list, overnight, in duplicate. 

For each sample, a three minute acquisition was performed in multi-channel 

acquisition (MCA) mode at a scan speed of two spectra/sec.

To allow the high-throughput analysis of results obtained the BioPharmaLynx 

software (Waters Corporation) was used for data processing. BioPharmaLynx allows 
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one to deconvolute multiple spectral outputs and compares the results of these 

analyses. The deconvolution parameters used reflected those used by Wild et al.

(2001). A Gaussian damage model had to be used as an isotope damage model is not 

available within this software package.

The analysis identified the masses and intensities of all peaks present within the 

deconvoluted spectrum. The masses for the α, β, δ and glycated globin chains were 

pre-defined within the software and automatically detected within each sample. All 

data files obtained were analysed by the BioPharmaLynx method. The mass and 

intensity information for all chains of interest and any peaks observed in the 

spectrum at greater than 20 % intensity were imported into Excel. Excel was then 

used to compare the results for α-chain measurement, δ-chain intensity and glycated 

α- and β-chain intensity between samples. The error in α- and β-chain measurement 

was used to indicate whether an α- or β-chain variant (with a mass shift 6 Da or less) 

was present. The presence of any additional peaks within the spectra at greater than 

20 % intensity suggested the presence of a structural variant resulting from a mass 

shift of more than 6 Da.

The percentage of glycated hemoglobin present was calculated as described by 

Roberts et al. (2001) from intensity information obtained for the α- and β-chain and 

singly glycosylated α- and β-chain species from the deconvoluted spectrum for each 

sample. 

% GHb = 50 *[αg/(α+αg) + βg/(β + βg)] where GHb is glycosylated Hb, α and β 

represent the intensities of the α- and β-chains, and αg and βg represent the intensities 

of the glycated α- and β-chains respectively (Roberts et al. 2001).

This approximation of glycosylated hemoglobin level is based on several 

assumptions including that there is no significant contribution to glycosylated 

hemoglobin from other globin chains, that all α-chain species have the same 

sensitivity and that all β-chain species have the same sensitivity. These assumptions 

are considered reasonable given that results reported by this approach have been 

shown to be highly correlated with those obtained by other techniques (Roberts et al.

2001).
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In a similar way, estimation of δ-chain levels was achieved by performing a ratio 

calculation of δ-chain intensity to β-chain intensity. Here it is assumed that the β-

and δ-chains have similar ionisation efficiencies. This approach uses a δ:β ratio of 

the intact chains, in contrast to the work of Daniel et al. (2007) who used a peptide-

based method, to provide a surrogate marker of Hb A2 levels. 
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5.3 Results and Discussion 

Normal β-chain mass measurements obtained by Q-TOF MS analysis for 30 

replicates were all within 0.1 Da of the β-chain average mass (15867.2405 Da), 

following internal mass correction with the known α-chain value (see Figure 5.2 

below).
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Figure 5.2: Box plot illustrating the distribution of 30 normal β-chain mass measurements. 

The mean measured mass of the β-chain was 15867.1744 Da with a standard 

deviation of 0.0227 Da. The β-chain measurements obtained were all lower than the 

true β-chain mass. It is not clear why this is the case but may relate to systematic 

errors within the method of data acquisition or the method of data processing. The 

reproducibility obtained suggests, however, that this approach can be successfully 

used to obtain mass measurements to within ±0.1 Da. 

Figure 5.3 below illustrates the shift in β-chain mass measurement obtained upon 

analysis of MS data for samples containing 0 %, 20 %, 40 %, 60 %, 80 % and 100 %

of a -1Da variant.
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Figure 5.3: The shift in mass measurement for the β-chain obtained upon MS analysis of 

samples containing 0 %, 20 %, 40 %, 60 %, 80 % and 100 % of a -1Da variant. The dotted

blue line indicates experimentally obtained data. The dotted grey line indicates the

theoretical values which should be obtained, with error bars indicating values which are

within a ± 0.1 Da tolerance. The dotted purple line is shown to indicate the limit of

detection.

This analysis confirms that this approach can be used to successfully detect the 

presence of ±1 Da variants at greater than 10 % intensity by observing a variation in 

β-chain mass measurement of greater than 0.1 Da. 

All 10 control samples analysed for hemoglobin variants by the Q-TOF MS-based 

approach were correctly identified. The results of this analysis are summarised in 

Table 5.2 below. 

This approach has been used to provide definitive identification of variants present in 

more than 25 samples which were submitted to UHCW NHS Trust for antenatal 

screening and for which HPLC analysis did not provide variant identification. Here 

three case studies are presented which highlight the applicability of the MS-based 

approach to hemoglobinopathy diagnosis.
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Table 5.2: Summary of information acquired by MS intact analysis and MS and MS/MS 

digest analysis of 10 control samples. The disease states of each hemoglobin sample were 

correctly identified.

Hemoglobin
Sample

MS intact analysis MS and MS/MS digest analysis

Sickle-trait 
(A/S)

-30 Da β-chain detected Additional peptide at 922.5 m/z observed, 
(βT1 -30 Da)1+. MS/MS analysis of  922.5 
m/z confirmed sickle trait, β6(E→V).

D-Punjab/C 
heterozygote

β-chain mass 
measurement (-0.89 Da) 
indicated  -1 Da 
homozygote/heterozygote

Additional peptide at 694.5 m/z observed, 
characteristic of Hb C, β6(E→K). Peptide at 
689.4 m/z, (βT13 -1Da)2+. MS/MS analysis of 
689.4 m/z confirmed β121(E→Q), D-Punjab.

E-trait (A/E) β-chain mass  
measurement  (-0.34 Da) 
indicated -1 Da variant 
present

New peptides  identified at 916.5 m/z and 
416.3 m/z. Confirms β26(E→K), Hb E. 
Mutation provides a new trypsin cleavage 
site and two new peptides are formed with 
characteristic m/z values.

O-Arab trait β-chain mass  
measurement  (-0.43 Da) 
indicated -1 Da variant 
present

New doubly-charged peptide identified at 
625.3 m/z, presence of new peptide confirms 
β121(E→K), O-Arab trait.

D-Punjab 
homozygote

β-chain mass 
measurement (-0.98 Da) 
indicated  -1 Da 
homozygote/heterozygote

Peptide at 689.4 m/z, (T13 -1Da)2+. MS/MS 
analysis of 689.4 m/z confirmed β121(E→Q), 
D-Punjab.

Sickle/D-
Punjab 
heterozygote

Two peaks observed for 
β-chain. Mass 
measurements indicated 
the presence of a -30 Da 
variant and -1Da variant

Additional peptide at 922.5 m/z observed, 
(βT1 -30 Da)1+. MS/MS analysis of  922.5 
m/z confirmed sickle trait, β6(E→V). Peptide 
at 689.4 m/z, (βT13 -1Da)2+. MS/MS analysis 
of 689.4 m/z confirmed β121(E→Q), D-
Punjab.

Sickle 
homozygote

β-chain mass 
measurement -30 Da from 
normal

Peptide at 922.5 m/z observed, (βT1 -30 
Da)1+. MS/MS analysis of  922.5 m/z
confirmed sickle, β6(E→V). No peak at 
952.5 m/z observed for normal βT11+.

Lepore-
Hollandia/ E 
heterozygote

Two peaks observed for 
β-chain. Mass 
measurements indicated 
the presence of a -31 Da 
variant and -1Da variant

New peptides  identified at 916.5 m/z and 
416.3 m/z. Confirms β26(E→K), Hb E. 
Lepore-Hollandia suspected as no evidence 
for single E→P mutation. MS/MS analysis of  
480.3 m/z, (βT2 + 27 Da)2+, confirmed 
β9(S→T) and β12(T→N). MS/MS analysis 
of 628.8 m/z confirmed β22(E→A).

Normal β-chain mass 
measurements in normal 
range (- 0.05 Da)

N/A

Normal β-chain mass 
measurements in normal 
range (- 0.03 Da)

N/A

160



5.3.1 Case Study One: Patient A

The HPLC trace from the analysis of a blood sample from patient A is shown below 

in Figure 5.4.

Figure 5.4: HPLC trace from TOSOH HLC-723 HbG7 analyser for blood sample from 

patient A. Retention time window for Hb S is shown in blue.

The HPLC trace shows the presence of an additional peak with a retention time (rt) 

of approximately 5.8 minutes. The variant responsible for this peak represents 

approximately 15.8 % of the total hemoglobin. This peak elutes just inside the Hb S 

retention time window but is not Hb S. The presence of a variant at such a low 

percentage indicates that it is probably an α-chain variant. Αs there are four α-globin 

genes, a mutation within one of these genes usually leads to the expression of an α-

chain variant 10-25 % of the time. A β-chain variant is usually expressed at 40-50 %.

The identification of this variant cannot be determined by HPLC or IEF analysis.

ESI-MS analysis of this blood sample followed by spectral deconvolution was used 

to investigate whether the variant was in the α- or β-chain. The α-chain was first used 

as an internal data calibrant. The deconvoluted spectrum obtained after linear 

correction with the α-chain is shown below in Figure 5.5. This shows an error in β-

chain mass measurement of +0.28 Da. This alone would suggest the presence of a +1 

Da β-chain variant. 
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intact MS analysis would indicate the presence of a -1 Da α-chain variant or a +1 Da 

β-chain variant. In this case the sample would be subjected to further analysis as the 

presence of a variant was indicated and this further analysis would be used to 

determine the identification of the variant.
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Figure 5.7: ESI-spectra of tryptic digest of blood sample from patient A (red) and control 

(green). Inset spectra show the 999-1002 m/z region in greater detail. A peak is observed at 

999.17 m/z in the sample which is not observed in the control.

VADALTNAVAHVDDMPNALSALSDLHAHK

N NNNI/L I/L

αT9(62-90)

Hb G-NorfolkHb G-Waimanalo

Hb G-Pest Hb Matsue-Oki 

Figure 5.8: Schematic of αT9, amino acids 60-92 in the α-chain (shown in single-letter 

code). The potential single amino acid mutations which would result in a -1 Da mass change 

are illustrated.

The mutation site was confirmed by MS/MS analysis. Spectra obtained for MS/MS 

analysis on 999.5 (±0.5) m/z ([αT9 + 3H]3H+) from a control and the sample are 

shown in Figure 5.9. Presence of fragment ions at -1 Da for y”6 and larger y” ions 
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but not for y”5 confirms that the mutated site is α85(Asp→Asn). A search of HbVar 

showed that the variant present was Hb G-Norfolk. This variant is found in a few 

families in England and Canada and is associated with increased oxygen affinity.

a.)

b.)

Figure 5.9: a.) MS/MS spectra of 999.5 m/z from variant sample (red) and control (green).

Additional fragment ions are observed in the sample spectrum at -1 Da from the y”6 ion and 

larger y” ions. These additional fragment ions confirm the identity of the variant present as

α85(Asp→Asn). b.) Expected fragment ions for 999.5 m/z are shown. 
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1 Da-

1 Da-

m/zControl MS/MS 999.5 
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5.3.2 Case Study Two: Patient B

The HPLC trace from the analysis of a blood sample from patient B is shown below 

in Figure 5.10.

Figure 5.10: HPLC trace from TOSOH HLC-723 HbG7 analyser for blood sample from 

patient B. Retention time windows for Hb D, Hb S and Hb C are shown in green, blue and 

red respectively.

The HPLC trace showed the presence of three additional peaks with retention times 

in the Hb D, Hb S and Hb C retention windows respectively. The presence of four 

main peaks in the HPLC trace suggested that two variants were present within this 

sample.

The deconvoluted spectrum obtained following ESI-MS analysis of the blood sample 

from patient B is shown below in Figure 5.11. Four main peaks are seen in the 

spectrum at masses 15126.38, 15140.13, 15837.34 and 15867.12 Da. The peaks are 

identified as α-chain, α-chain variant (+14 Da, α+14), β-chain variant (-30 Da, β-30) 

and β-chain respectively. The mass measurement of the β-chain in this case is not as 

accurate as would be expected. The mass error of -0.12 Da would ordinarily be 

expected to represent the presence of a β-chain variant at a low percentage. There are 

only two β-chain gene loci, however, and a peak is shown representing the presence 
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of a -30 Da β-chain variant. The other β-chain present must be normal. If an 

additional variant was present the HPLC trace for this sample would be different. 

There would be further additional peaks, representing variant dimers, and no peak 

corresponding to the elution of normal αβ-dimer.
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The spectra obtained showed the presence of some additional peaks in comparison to 

a control (Figures 5.12 and 5.15). Additional singly-charged ions were observed at 

717.4 and 922.5 m/z and an additional triply-charged ion was observed at 771.4 m/z. 

The ion at 922.5 m/z corresponded to that which would be produced by a peptide 30 

Da smaller than the 1st tryptic peptide of the β-chain (βT1). There are five single 

amino acid substitutions which can result in a -30 Da mass change (T→A, W→R, 

S→G, M→T and E→V) and three positions in βT1 where one of these substitutions 

could have occurred (Figure 5.13). 

βT11+

βT11+

(βT1 – 30 Da)1+

Sample

Control

Figure 5.12: ESI-MS spectra of tryptic digest of blood sample from patient B (red) and a 

control (green). An additional ion is observed within the spectrum for the patient’s sample at 

922.5 m/z. This corresponds to (βT1 -30 Da)1+. 

MS/MS analysis of 922.5 m/z in comparison to 952.5 m/z (βT11+) was used to 

confirm the identification of the β-chain variant present (Figure 5.14). MS/MS 

analysis showed that the mutation was β6(E→V) (βS), corresponding to Hb S.
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A V V

Hb S

Figure 5.13: Schematic of βT1, amino acids 1-8 in the β-chain (shown in single-letter code). 

The potential single amino acid mutations which would result in a -30 Da mass change are 

illustrated.

Figure 5.14: MS/MS spectra for 922.5 m/z from variant sample (red) and 952.5 m/z from 

control (green) with expected fragment ions for 952.5 m/z shown. 
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The α-chain variant with a +14 Da mass change could have been produced by one of 

five possible single amino acid substitutions (N→K, D→E, G→A, S→T or V→I/L). 

As two other additional peptides need to be accounted for within the ESI-MS spectra 

for the tryptic digest (Figure 5.15 below) a N→K mutation is most likely. This 

mutation produces an additional trypsin cleavage site and so would produce two new 

peptides. The α-chain sequence was then analysed to determine the new peptides 

which would be produced by a single N→K mutation. It was found that the 

additional peptides produced could be explained by an α68(N→K) (Figure 5.16). 

The α-chain variant was thus identified as corresponding to Hb G-Philadelphia (αG). 

Sample

Control

Additional 
peptides

717.41+

771.43+

Figure 5.15: ESI-MS spectra of tryptic digest of blood sample from patient B (red) and a 

control (green). An additional singly-charged ion is observed at 717.4 m/z and an additional 

triply-charged ion at 771.4 m/z within the spectrum for the patient’s sample. 
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αT9(62-90)
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Figure 5.16: Schematic of αT9, amino acids 60-92 in the α-chain. The tryptic peptides 

produced for the mutant α68(N→K) are shown.

This patient has Hb S and Hb G-Philadelphia. Hb G-Philadelphia in Black 

populations is present with the 3.7 kilobase deletion alpha-thal-2 (-αG/αα); the 

quantity of Hb G in such individuals varies between 30 and 35 %. When this 

deletion occurs in trans (-αG/-α) the quantity of Hb G is increased to approximately 

45 %. These patients have a distinct microcytosis and hypochromia. The high 

percentage of Hb G-Philadelphia, estimated by the MS analysis, suggested that this 

individual may have this form of α-thalassemia. With the variants present identified, 

the four main peaks present in the HPLC trace could also be assigned. They 

represented the elution of, from left to right, αβ dimer, αGβ dimer, α βS dimer and αG

βS dimer respectively. The relative intensities that these peaks were observed at 

within the HPLC trace could now be used to calculate the relative intensities of the 

variant chains within the sample. Calculations based upon the HPLC analysis 

showed that approximately 31 % of the β-chain variant was present and 47 % of the 

α-chain variant was present. The percentages estimated by the mass spectrometric 

analysis of 30 % and 51 % respectively are in good agreement with these 

measurements. The high percentage of Hb G-Philadelphia observed strongly 

suggests that this patient has trans alpha-thal-2. In this case, mass spectrometric 

analysis has been used successfully to provide identification of a clinically important 

variant.
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5.3.3 Case Study Three: Patient C

The HPLC trace from the analysis of a blood sample from patient C showed no 

additional peaks but gave an abnormal presentation of the Hb A1c fraction. The 

deconvoluted spectrum obtained following ESI-MS analysis of the blood sample 

from patient C is shown below in Figure 5.17.
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Sample

Control

Indication of presence of 
underlying doubly-charged ion

Figure 5.18: ESI-MS spectra of tryptic digest of blood sample from patient C (red) and a 

control (green). The spectrum for the patient’s sample indicates that a doubly-charged ion 

may be present at 932.4 m/z which is masked by βT21+ at 932.5 m/z.

αT6(41-56)

TYFPHFDLSHGSAQVK

TSM E

Hb 
Riccarton

Figure 5.19: Schematic of αT6, amino acids 41-56 in the α-chain. The potential single 

amino acid mutations which would result in a +30 Da mass change are illustrated.
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MS/MS analysis of 933 m/z (± 2 m/z units) produced a complicated spectrum which 

was difficult to interpret (Figure 5.20). 

Figure 5.20: MS/MS spectrum of 933 m/z (± 2 m/z units) from blood sample of patient C. 

Inset spectrum shows the precursor ions selected.

To aid in variant identification ion mobility separation was used to separate the 

doubly-charged precursor ion at 932.4 m/z from the singly-charged precursor ion at 

932.5 m/z prior to MS/MS analysis (Figure 5.21). The quadrupole of the Synapt 

HDMS instrument was operated in resolving mode to allow the transmission of 933 

m/z (± 2 m/z units). The arrival time distribution of the mobility separated species 

showed two peaks, one corresponding to the ATD of the doubly-charged species 

present and one to the singly-charged species present. Collision-induced dissociation 

of these species was then performed within the transfer region of the instrument. 

This allowed product ion spectra for both the doubly-charged and singly-charged 

species to be obtained. The MS/MS spectrum obtained for the doubly-charged ion 

was interpreted to confirm the identification of the variant as Hb Riccarton, 

α51(G→S) (Figure 5.22). Ion mobility was therefore successfully used to reduce 

spectral complexity and to facilitate the identification of this hemoglobin variant. Ion 
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mobility has also been used previously to facilitate the identification of the variants 

Hb Fort Worth and Hb J-Paris-I (Williams et al. 2008).

Ion mobility 
separation

Arrival time 
distribution

A.)

B.)

C.) D.)

Figure 5.21: Illustration of the separation of overlapping doubly- and singly-charged ions by 

travelling wave ion mobility mass spectrometry. A.) The 933 m/z region was selected for ion 

mobility analysis. B.) The arrival time distribution showed the presence of two separate 

peaks corresponding to the arrival times for the C.) doubly-charged and D.) singly-charged 

species.
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Figure 5.22: MS/MS spectrum for mobility-separated 932.4 m/z (doubly-charged) with the 

corresponding peptide sequence and fragment ions. Interpretation of the spectrum confirms 

the mutation site as α51(G→S).
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5.3.4 High-throughput screening

The error in α-chain mass measurements acquired by the high-throughput, automated 

sample introduction, Xevo-TQ approach to screening intact hemoglobin chains 

coupled with BioPharmaLynx software processing are shown below in Figure 5.23.
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Figure 5.23: Mass error in α-chain measurement obtained for 174 blood samples (two 

replicates).

The mean α-chain measurement has an error of -0.04476 Da and a standard deviation 

of 0.073091 Da. This would suggest that this approach to measuring globin chains 

would indicate the presence of a variant at ±1 Da occurring at greater than 20 %

intensity (with 95 % confidence). 10 control samples, as analysed by the Q-TOF 

approach previously described, were also analysed by this approach. Measurements 

correctly indicated the presence of variants in these samples, where present, through 

the occurrence of new peaks within the deconvoluted spectrum or a shift in mass 

measurement of the globin chains.

The accuracy in mass measurement obtained here is lower than that reported by Wild 

et al. (2001) when this approach was used in a non-automated fashion for globin 

chain detection. This could have several causes. The samples analysed by this 

approach were up to one year old. Over this time period the globin chains can bind 
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adducts, such as alkali metals. Peaks corresponding to these adducted species are 

observed within the spectra and can interfere with spectral deconvolution. Samples 

are usually desalted using cation-exchange beads prior to analysis to reduce this 

effect. This desalting was not performed here due to time constraints. The accuracy 

in mass measurement could have also been influenced by the parameters used within 

the BioPharmaLynx processing method. These may not have been optimal for the 

analysis of all the samples. The manual processing method described by Wild et al.

(2001) is difficult to implement using the automated approach since it involves 

optimisation of the deconvolution parameters used for the processing on an 

individual sample basis. It is probable that both the sample preparation and data 

processing could be improved to provide an automated solution which measures the 

normal globin chains to with ± 0.1 Da (with 95 % confidence) as determined by the 

manual approach.

The average error in β-chain mass measurement obtained for each of the samples, 

from two replicates, (after linear correction with the α-chain) is shown below in 

Figure 5.24. The majority of these were within ±0.2 Da of the normal β-chain mass. 

When a β-chain measurement of more than 0.2 Da from normal was indicated 

manual data interpretation was conducted. In five samples an average change in β-

chain mass measurement of greater than 0.2 Da was indicated. In one sample the 

presence of two β-chain variants was indicated, one at -30 Da and one at -1 Da from 

the normal β-chain mass. Manual data interpretation showed that four out of these 

five samples did contain variants. BioPharmaLynx automated processing, therefore, 

gave an erroneous result in one case.
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Figure 5.24: Mass error in β-chain measurements obtained for 174 blood samples (average 

of two replicates).

The estimated percentage of glycated hemoglobin calculated for each of the 174 

samples is shown below in Figure 5.25.
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Figure 5.25: Estimated glycated hemoglobin levels within each of 174 blood samples 

obtained by MS analysis (average of two replicates).

Normal adult hemoglobin glycation levels are between 4-6 % of total hemoglobin. 

As the actual glycation levels within these samples are unknown it is not possible to 

directly assess the reliability or accuracy of the approach used here to estimate 

glycation levels. This being said, approximately 50 % of the measurements estimated 

by the MS analysis fell within the expected normal range. The mean glycation level 

estimated by the MS analysis was 5.17 %. Glycation was recorded as high if greater 

than 6.5 %. This meant 21 blood samples were recorded as having a high 

hemoglobin glycation level. 

The estimated percentage of δ-chain present within each of the 174 samples relative 

to the β-chain is shown below in Figure 5.26. The percentage of δ-chain within a 

blood sample, relative to the β-chain, would normally be expected to be between 2 

and 3.5 %. In adults, Hb A2 comprises about 2-3.5 % of total hemoglobin. The 

average percentage δ-chain calculated here was much higher than this. This could be 

attributed to interference from sodium potassium-bound β-chain molecules. The 

isotopic pattern of the β chain with one potassium and one sodium atom bound 

overlaps with that of the δ-chain. The δ-chain measurements could therefore be 

higher than expected because a contribution to them is being made by interfering 

peaks. 
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Figure 5.26: Estimated percentage of δ-chain present within each of the 174 blood samples 

relative to the β-chain (average of two replicates).

Examination of the deconvoluted spectra for each of the 174 blood samples show 

peaks corresponding to sodium-bound and potassium-bound β-chains. The intensity 

of these adduct peaks is greater than would normally be expected for fresh blood 

samples. The blood samples analysed here were up to one year old and desalting of 

the samples prior to analysis was not performed. Whilst the accurate quantitation of 

the δ-chain relative to the β-chain was not possible by this approach the calculated 

percentage of δ-chain could be used to provide an indication of a higher than normal 

measurement. The δ-chain intensity measurement was recorded as high if greater 

than 8 %. Therefore 19 samples were recorded as having high δ-chain levels. 

The results of this analysis were presented to Dr. Patel. Dr. Patel correlated these 

results with the known disease status of these patients. All blood samples which 

were reported to have high hemoglobin glycation levels came from patients whom 

were diabetic. Hemoglobin anomalies detected by ESI-MS were more frequent for 

CVD patients than controls (35 % vs. 14 %, P=0.002). Hemoglobin with elevated δ-

chain content was a common trait among CVD patients (19 %), who had more 

advanced arthrosclerosis ((i) greater CIMT (0.75 vs. 0.65 mm, P=0.08) and (ii) lower 

HDL cholesterol (0.78 vs. 1.03 mmol/L, P=0.03) than normal patients independent 
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of age, gender and other confounding factors). These results are promising and, 

whilst preliminary, suggest that hemoglobin disorders may contribute to vascular 

damage in this population. Further research is needed to validate the approach used 

here and to investigate whether such proteomic techniques can be used in clinical 

practice to indicate CVD risk.

The high-throughput approach described above requires further optimisation and 

validation but shows promise. The presence of structural variants at 10 % intensity 

need to be identified so intact mass measurements of the globin chains need to be 

within ± 0.1 Da (with 95 % confidence). Future work will involve development of 

this approach and a small clinical trial, in collaboration with Coventry and 

Warwickshire NHS Trust, to assess its performance in comparison to the HPLC 

methodology. The continuation of this project will involve the development of 

objective-based software for automatically interpreting the processed data.
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5.4 Conclusions

Mass spectrometry already provides a vital resource for the characterisation of 

hemoglobin variants not identifiable by phenotypic methods currently used within 

the clinical setting. A number of NHS trusts refer abnormal samples for mass 

spectrometric analysis. In this work, the definitive identification of a number of 

hemoglobinopathies, caused by single point mutations, by means of mass 

spectrometry-based approaches were shown.

β-chain mass measurements obtained, for a number of standards, confirmed that a Q-

TOF MS-based approach can be used to detect the presence of ± 1 Da hemoglobin 

variants at greater than 10 % intensity.

A high-throughput method, which used a TriVersa NanoMate, automated sample 

introduction system coupled with a QQQ instrument, was successfully used to 

identify the presence of hemoglobinopathies within 10 control samples. South 

Asians with and without CVD were subsequently screened by means of this 

approach. A positive correlation between patients with CVD and those with 

hemoglobinopathies was shown. These results were preliminary and further work to 

investigate whether hemoglobinopathies contribute to vascular damage is required. 

The potential for the use of a mass spectrometry-based approach for antenatal and/or 

neonatal hemoglobinopathy screening within the clinical setting, in place of HPLC 

analysis, has been addressed by several groups (Wild et al. 2004; Daniel et al. 2005). 

Any mass spectrometry-based approach to screening has the limitation that it can not 

detect variants which do not result in a mass change but only a small number of these 

exist. DNA analysis will always be required to confirm the presence of α-

thalassemias by detection of the mutations in non-coding regions of the globin gene 

responsible for them.

Mass spectrometry can be used to provide all the information which is currently 

supplied by the HPLC screen. In addition to this, an MS-based screen could provide 
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simultaneous detection of other variants. This could be important in the future as the 

increase in incidence of hemoglobinopathies could lead to the combination of 

hemoglobin variants, which, in the compound heterozygote state, produce severe 

disease. Reliable quantitation of Hb A2 and Hb A1c can be provided by MS-based 

approaches (Roberts et al. 2001; Daniel et al. 2007). Erroneous results for 

quantification of Hb A2 and Hb A1c can be provided by HPLC methods in the 

presence of interfering variants. In these cases, quantification by MS has been shown 

to be a superior approach.

The high-throughput approach to screening introduced here shows promise and with 

further development could lead to a population screening method suitable for 

implementation within the clinical setting.
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Chapter Six: Conclusions and Future 

Work
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The work presented in this thesis illustrates the use of TWIM-MS and MS to 

investigate properties relating to three-dimensional protein structure and to diagnose 

hemoglobinopathies.

6.1 Investigating three-dimensional protein structure by means of 

mass spectrometry

6.1.1 Biological significance

In recent years, mass spectrometry has established itself as a valuable structural 

biology tool for the investigation of tertiary and quaternary protein structure. It is 

now generally accepted that under controlled experimental conditions and over short 

timescales gas-phase protein structure reflects that in the solution phase. MS has thus 

been applied to the study of a number of protein systems, protein complexes and 

protein interactions. 

In this work, the applicability of TWIM-MS to three-dimensional protein structure 

investigation was shown. Cross-sections estimated experimentally for protein 

standards and hemoglobin tetramers studied, for charge states most indicative of 

native structure, were in good agreement with those calculated from published X-ray 

and/or NMR structures. The results presented here show that TWIM-MS 

experiments can be used to obtain biologically-relevant data on protein structure. 

6.1.2 Protein unfolding dynamics

The cross-section of a protein calculated from IM-MS measurements varies with 

charge state. This allows the unfolding of proteins in the gas phase, with increase in 

charge, to be studied. Results obtained within this work support previous 

observations made within DCIM-MS studies (Shelimov et al. 1997; Shelimov and 

Jarrold 1997; Valentine et al. 1997; Jarrold 1999; Badman et al. 2001). The increase

in estimated cross-section observed with increase in charge state for a particular 

protein depends on structural properties of the protein. The unfolding transition of a 

protein may be restrained by the presence of ligands or disulphide-bonds. 
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6.1.3 Hemoglobin analysis

The global conformations of normal hemoglobin tetramers and sickle hemoglobin 

tetramers were distinguished by TWIM-MS measurements. Apo- and holo- forms of 

α- and β-monomers were shown to have similar cross-sections. This suggests that α-

and β-monomers can retain a folded structure in the absence and presence of the 

heme group. Extensively disordered monomer structures were not observed. A 

heme-deficient dimer was not observed in the analysis of fresh blood samples and is 

unlikely to be an essential intermediate for hemoglobin tetramer assembly. 

6.1.4 VanS studies

TWIM-MS was used to provide information relating to the conformational states of 

the VanSA protein core under non-phosphorylated, ATP-associated and 

phosphorylated conditions. When in complex with magnesium and ATP, VanSA

appeared to favour a more compact conformation. This conformational state is 

proposed to facilitate autokinase activity by bringing the ATP molecule and the site 

of phosphorylation into sufficient proximity for phospho-transfer to occur. The rate 

at which phosphorylation proceeded and the amount of phosphorylation observed 

was studied and results obtained were comparable with those from an established 

method. The use of mass spectrometry to study phosphorylation rates is a valuable 

technique, which offers a simple, reproducible alternative to conventional 

biophysical methods.

6.1.5 Future directions

The application of mass spectrometry to three-dimensional protein structure is 

greatly expanding and is likely to continue to do so. MS has some unique advantages 

over conventional methods applied for protein structure analysis. It can be used to 

study heterogeneous populations, in real time, at biologically-relevant concentrations 

and within relative short time periods. When used in combination with other 

structural biology techniques, MS results can be used to provide detailed structural 

models for protein complexes (van Duijn 2010).
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The launch of the commercially-available Synapt HDMS instrument significantly 

expanded the user-base of IM-MS for protein structure analysis. The recent 

introduction of the Synapt HDMS G2 instrument (Waters, Manchester, UK), which 

offers significant improvements over the first instrument, will surely increase the 

application of TWIM-MS to other research areas and larger and more complex 

systems. The Synapt G2 has improved mobility resolution (approximately four times 

that of the Synapt), an improved TOF resolution (over 40,000 FWHM) and a hybrid 

TDC/ADC detector which provides higher dynamic range.  

6.2 Diagnosis of hemoglobinopathies by means of mass spectrometry

6.2.1 Identification of rare variants

MS is often used for identification of abnormal hemoglobin variants as illustrated by 

the vast number of publications (over 50 referenced within a recent review) within 

this area (Zanella-Cleon et al. 2009). The definitive identification of a number of 

hemoglobinopathies, caused by single point mutations, by means of a Q-TOF MS-

based approach, was shown within this work. The identification of variants can be 

facilitated in some cases by the use of TWIM-MS.

6.2.2 High-throughput screening

A high-throughput method, which used a TriVersa NanoMate, automated sample 

introduction system coupled with a QQQ instrument, was developed to provide a 

rapid screen for the presence of hemoglobin abnormalities. This method was used to 

screen blood samples from South Asians with and without CVD as part of a 

preliminary case-control study. A positive correlation between patients with CVD 

and those with hemoglobinopathies was shown. 
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6.2.3 Future directions

The link between hemoglobinopathies and vascular damage will be explored further 

by expanding the preliminary work already conducted to larger sample sizes and 

other demographics.

There is potential for a mass spectrometry-based approach for antenatal and/or 

neonatal hemoglobinopathy screening to replace HPLC analysis within the clinical 

setting and this has been addressed by several groups (Wild et al. 2004; Daniel et al.

2005). The high-throughput approach to screening introduced here shows promise 

and with further development could lead to a population screening method suitable 

for implementation within the clinical setting.

6.3 Concluding remarks

The application areas of mass spectrometry are constantly growing and many 

research areas, across the sciences, have benefited from the advancements in MS 

made over the last 10 to 20 years. Mass spectrometry is used extensively within a 

number of biological research fields including structural biology, proteomics, 

metabolomics and lipidomics.

MS is being used increasingly as a biomedical research tool for the diagnosis of 

disease and for biomarker discovery. Mass spectrometers are already used within 

hospitals for the diagnosis of metabolic disorders and their use for disease diagnosis 

is only likely to continue as new advancements are made and MS becomes more 

accepted as a viable diagnostic tool. Of particular interest is the development of mass 

spectrometric imaging, which can provide information about the spatial arrangement 

of biomolecules. This has the potential to be used routinely within the surgical 

setting, imaging tissues dissected during surgical operations (Chughtai and Heeren 

2010). Over the next 10 to 20 years it can be envisaged that mass spectrometry will 

be used increasingly to bring disease diagnosis from the bench to the bedside. 
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