Journal of Applied Physics / Volume 87 / Issue 9 / Novel Magnetic Materials Including Organic II

J. Appl. Phys. 87, 6046 (2000); doi:10.1063/1.372607 (3 pages)

Neutron diffraction and Mössbauer study of the magnetic structure of YFe₆Sn₆

J. M. Cadogan¹, Suharyana¹, D. H. Ryan², O. Moze³, and W. Kockelmann^{4,5}

¹School of Physics, The University of New South Wales, Sydney NSW 2052, Australia map

²Physics Department and Centre for the Physics of Materials, McGill University, 3600 University Street, Montreal, Quebec H3A 2T8, Canada 9 map

³Istituto Nazionale per la Fisica della Materia, Dipartimento di Fisica, Università di Modena e Reggio Emilia, Via G. Campi 213/a, I-41100, Modena, Italy ⁹map

⁴ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot,

Oxfordshire OX11 0QX, United Kingdom 9map

⁵Mineralogical-Petrological Institute, University of Bonn, D-53115 Bonn, Germany 🤗 map

We have used time-of-flight (TOF) neutron powder diffraction, and both ⁵⁷Fe and ¹¹⁹Sn Mössbauer spectroscopy over the temperature range 2–600 K to determine the magnetic ordering mode of the Fe sublattice in YFe₆Sn₆. The crystal structure is orthorhombic (space group *Immm*). The Fe sublattice orders antiferromagnetically with a Néel temperature of 558(5) K. The TOF neutron diffraction patterns obtained at 4 and 293 K show that the antiferromagnetic ordering of the Fe sublattice is along [100] with a propagation vector \mathbf{q} =[010]. The magnetic space group is *I_Pm'm'm'*. This magnetic structure is confirmed by our ¹¹⁹Sn Mössbauer spectra. © 2000 American Institute of *Physics*.

© 2000 American Institute of Physics