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a b s t r a c t

Thermally assisted magnetization reversal of sub-100 nm dots with perpendicular anisotropy has been

investigated using a micromagnetic Langevin model. The performance of the two different reversal

modes of (i) a reduced barrier writing scheme and (ii) a Curie point writing scheme are compared. For

the reduced barrier writing scheme, the switching field Hswt decreases with an increase in writing

temperature but is still larger than that of the Curie point writing scheme. For the Curie point writing

scheme, the required threshold field Hth, evaluated from 50 simulation results, saturates at a value,

which is not simply related to the energy barrier height. The value of Hth increases with a decrease in

cooling time owing to the dynamic aspects of the magnetic ordering process. Dependence of Hth on

material parameters and dot sizes has been systematically studied.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

To realize magnetic random access memories (MRAMs) with
high bit density of the order of several Gbits/cm2 and high transfer
rates of the order of several Gbits/s, the size of magnetic memory
dots should be in the sub-100 nm order and switching time of
several nanosecond [1–4]. As a magnetic memory dot is down-
sized to the sub-100 nm scale, the energy barrier DE for
magnetization switching tends to become smaller; therefore, a
material with high magnetic anisotropy is required. Materials
with high perpendicular anisotropy ensure thermal stability that
have no scaling limitation in their cell aspect ratio are promising
candidate for this purpose. Ultra-thin films having small lateral
dot size made of a magnetic material with perpendicular
anisotropy can reverse their direction of magnetization through
coherent rotation [5], however, the application of a large magnetic
field [6] is required for switching. One approach to obtain
magnetization reversal in low bias fields is by using the thermally
assisted magnetization process [7,8], which implies that the
reversal field is temporally reduced by heating of memory cells.
In this study, the performance of two different reversal modes of
(i) reduced barrier writing and (ii) Curie point writing are
compared. Switching fields in the reduced barrier writing scheme
are evaluated by considering the energy barrier fluctuation caused
by thermal effects. The threshold value of the external field

required for aligning the magnetization along the field direction is
also evaluated for the Curie point writing scheme.

2. Model

In these micromagnetic simulations, a finite-grid approxima-
tion was adopted, where a parallelepiped dot with perpendicular
anisotropy was discretized into a two-dimensional array of a
rectangular numerical grid. The grid size was chosen to be smaller
than the domain wall width. The demagnetization fields are
calculated by integrating those from apparent surface magnetic
charges on boundary of each grid element [9]. Temporal
evolutions of thermally assisted writing processes have been
numerically investigated for reduced barrier writing and Curie
point writing. For reduced barrier writing, the calculation
starts from a uniformly magnetized state at an ambient
temperature of 298 K. Simulations of Curie point writing start
from just below the Curie temperature Tc, wherein randomly
distributed magnetization configurations are used for the initial
states. To evaluate the stochastic probability of aligning the
magnetization along the field direction, simulations are per-
formed for 50 different random field sequences. An approximation
of the thermal fluctuation effect occurring during magnetization
is taken into account by involving randomly oriented effective
fields with zero mean value, /Hf

i(t)S ¼ 0, in the following
Landau–Lifshitz–Gilbert (LLG) equation:

dMi

dt
¼ �jgjMi

�Hi
eff þ

a
Ms

Mi
�

dMi

dt
(1)
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The strength of the random field due to the thermal fluctua-
tion effect is calculated by using the fluctuation dissipation
theorem [10].

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTa
gVMsDt

s
(2)

where a is the Gilbert damping constant ( ¼ 0.3), g ¼ 1.76�107

(Oe�1 s�1) is the Gyromagnetic ratio, V is the volume of the sub-
cell and the time step of the integration time methods, dt is
0.25 ps. In our model, an amorphous ferrimagnetic material is
considered as a composition of magnetic nanocells, so that the
second-power temperature dependence with the thermally
reduced magnetization was assumed for both the exchange
stiffness constant, A, and the perpendicular crystalline anisotropy,
K? [11]: A(T) ¼ A(0)(Ms(T)/Ms(0))2, K?(T) ¼ K?

(0)(Ms(T)/Ms(0))2. A
simple empirical temperature dependence of the magnetization,
Ms(T) ¼ Ms

(0)(1�T/Tc)0.5, is adopted, which reasonably fits the
experimental result. Other material parameters used in the
simulation are as follows: A ¼ 1.0�10–7 erg/cm (at 298 K) [12],
Tc ¼ 373 K. Any spatial disorder is not assumed for the magnetic
parameters including Ms, A, K? and the easy axis direction. In
most of the following simulations, the grid size of 3.3 nm was
used, Ms and K? values are set such that the energy barrier height
DEX60kBTa (Ta is an ambient temperature of 298 K) to ensure that
practical thermal stability is achieved.

3. Results and discussions

Fig. 1(a) illustrates the simulation model of the reduced barrier
writing scheme. In this model, the uniformly magnetized state is
set as the initial condition. The uniform reversal field is then
linearly increased with the increasing time periods Dt at a fixed
temperature Tw. The value of Dt and the final external field are
chosen to be 2.5 ns and 1400 Oe, respectively. The resultant field
ramp rate is 560 Oe/ns. Fig. 1(b) shows the typical stochastic
switching properties due to variation in the thermal fluctuation
effects of 20 random field sequences at Tw ¼ 350 K.

Simulations were performed for a nanodot of 50�50�20 nm3

volume having the following magnetic properties: K? ¼ 8.8�104

erg/cm3 and 4pMs ¼ 1.9 kG. The switching field Hswt is defined as
a field value at which the average magnetization becomes zero
during the magnetization reversal process. The energy barrier DE

between the bi-stable magnetization states is also evaluated from
the magnetization reversal simulation, which is defined as a
deference between the maximum and the minimum value of the
total magnetic energy during the magnetization reversal, includ-
ing the exchange, demagnetizing and anisotropy energy terms. A
particular thermal fluctuation sequence corresponds to a parti-
cular type of the energy barrier DE, thus reflecting the random
aspects. Therefore, the field required for switching Hswt in the
reduced barrier writing scheme strongly depends on the variation
in the micromagnetic configuration caused by the thermal effects
modelled by the random field. In a simple coherent rotation
model, the switching field simply depends on the energy barrier
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Fig. 1. (a) Simulation model of the reduced barrier writing scheme. (b) Fluctuation

of energy barrier DE and switching field Hswt at Tw ¼ 350 K for 20 simulation runs

assuming different random field sequences.

 t = 1.4 ns  t = 1.6 ns  t = 1.9 ns

Fig. 2. Micromagnetic configurations in the reduced barrier writing scheme: (a) domain nucleation, (b) domain expansion and (c) domain annihilation. The grey scale

denotes the magnetization along the field direction; with black being full scale in one direction, whereas white in the other.
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height. However, we observed that Hswt takes different values.
This may be because local pinning effects dominate Hswt, which is
not related to the averaged DE due to the stochastic aspect in
the thermally assisted magnetization switching. Fig. 2
shows typical micromagnetic configurations of non-uniform
magnetization reversal during the reduced barrier writing at
350 K for the dot shown in Fig. 1(b). The magnetization switching
started from domain nucleation (a) then domain expansion (b)
and domain annihilation.

Considering the stochastic aspect of the reduced barrier
writing scheme, simulations are performed using 20 different
random field sequences at each temperature, as shown in Fig. 3(a).
The significant scattering of Hswt can be attributed to the variation
in an individual random field series. In comparison, simulations
are also performed without random fields for Dt ¼ 2.5 and 25 ns,
by considering only the temperature dependence of material
parameters. As demonstrated in the figure, the thermal fluctua-
tion, modelled by random fields, effectively assists the switching
events and leads to a considerable reduction in Hswt, it also
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different simulation models. (b) Dependence of Hswt on increasing Dt of the

external field.
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material parameters: (b) 20�20�20 nm3, K? ¼ 2.93�105 erg/cm3 and

4pMs ¼ 1.88 kG, (c) 50�50�20 nm3, K? ¼ 8.73�104 erg/cm3 and 4pMs ¼ 1.88 kG.

Dt of 2.5 ns was used in this simulation.
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introduces a dispersion of Hswt values. The significant difference in
Hswt for reference simulations with Dt ¼ 2.5 and 25 ns can be
explained in terms of the dynamic coercivity. Fig. 3(b) shows Hswt

evaluated for various Dt at 298 K, where random fields are not
taken into account. The value of Hswt decreases with an increase in
Dt and reaches a minimum value of 600 Oe at Dt ¼ 15 ns, where
the switching behaviour becomes quasi-static. The quasi-static
switching field at 298 K is reasonably consistent with a simple
theoretical prediction based on the coherent rotation model. The
demagnetization coefficient of the simulated dot (50�50�20
nm3) along the perpendicular axis is estimated at 0.57. The
simulated values of Hswt (open square symbols in Fig. 3(a)) deviate
from the coherent rotation model with the increase in tempera-
ture. This can be reasoned that the domain nucleation mode
dominates the magnetization switching of the dot with the
thermally reduced exchange stiffness, as demonstrated in Fig. 2.
Pinning of the temporal domain state would cause higher Hswt in
the high temperature region.

Fig. 4(a) illustrates the simulation model of the Curie point
writing scheme. A uniform external field Hw is applied along the
perpendicular anisotropy axis, while the temperature is linearly
lowered from the Curie temperature Tc (373 K) to ambient
temperature (298 K). This means that a magnetic ordering process
is involved in this writing scheme. Although the actual tempera-
ture decay should be exponential, it was confirmed that the
fundamental properties are obtained with reasonable accuracy by
a linear decay approximation. This is because magnetic ordering
dominates at an early stage in the cooling process. Fig. 4(b) and (c)
shows the probability of final magnetization states occurring after
the writing process. The probability was evaluated at each value of
Hw from 50 simulation results by assuming different initial
magnetization states and random fields. In the simulation, the
aligning event is considered to occur when Measy/Ms exceeds 0.85
[13]. A definition of the threshold field Hth required for aligning
the magnetization along the field direction is presented in Fig.
4(b) and (c). That is, Hth presents a criterion at which the
successful writing was performed in all of the 50 simulation
results. Simulations were performed for two dots with different
sizes and material parameters as follows: (1) 20�20�20 nm3

and K? ¼ 2.93�105 erg/cm3, 4pMs ¼ 1.88 kG (referred to as
dot A hereafter); (2) 50�50�20 nm3, K? ¼ 8.73�104 erg/cm3,
4pMs ¼ 1.88 kG (dot B). Dt of 2.5 ns was used in this simulation.

Fig. 4(b) shows that when the field is equal to zero, dot A
relaxed into single domain up (Mm: along Hw, noted as region 1 in
the figure) or single domain down (Mk: opposite to Hw, region 2)
with the same probability of 0.5. In the case of dot A, the multi-
domain configuration was not observed for the 50 simulations. By
increasing the external field, the probability of Mm increases and
becomes equal to 1 at H ¼ Hth. Fig. 4(c) presents the results for dot
B. For zero fields cooling, three types of magnetization reversal

appear: single domain up (Mm), single domain down (Mk) and
the multi-domain configuration (Mmk). For the Curie point
writing scheme, it is predicted that the threshold field not only
depends on the physical properties associated with the material
parameters, but is also affected by the stochastic magnetic
ordering process.

A micromagnetic ordering process in the Curie point writing is
shown in Fig. 5. The initial state of randomly oriented magnetiza-
tion configuration rapidly relaxes to the single domain configura-
tion, taking the transient multi-domain configuration (Fig. 5(b)).
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Fig. 5. Micromagnetic ordering process in the Curie point writing scheme. (a) initial random state, (b) local ordering of domain configuration and (c) final single domain

configuration. The grey scale denotes the magnetization along the field direction; with black being full scale in one direction, and white the other.
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Fig. 6(a) shows Hth as a function of K? for dot B, where Ms is
chosen such that DE is constant at 60kBTa. Since the energy barrier
DE is related to the perpendicular anisotropy term and the
demagnetizing one, the values of an additional parameter of Qfactor

( ¼ K?/2pMs
2) are also presented in the figure. The results

demonstrate that the values of Hth slightly fluctuate for lower
K?, but are mostly constant at 200 Oe, although values of Qfactor

are significantly different. Another aspect of Hth on the material
parameters is also demonstrated in Fig. 6(b). Here, Qfactor is fixed
at a 1.65 and DE is varied by varying K? and 4pMs. In this case, Hth

increases with an increase in DE and saturates at 250 Oe, for DE

greater than 90kBTa.
Fig. 7(a) shows occurrence probability of aligning the magne-

tization along the applied field direction for various values of Hw

at various cooling times Dt. The simulations are performed for dot
B (20�20�20 nm3, K? ¼ 2.93�105 erg/cm3, 4pMs ¼ 1.88 kG and
Dt ¼ 2.5 ns). The probability increases with the increase in Dt for
each value of Hw, reflecting the dynamic aspect in the magnetiza-
tion ordering process. Under zero field writing Hw ¼ 0, the
significant degradation in probability for smaller Dt is mainly
because the magnetization state freezes at a local minimum state
of the multi-domain configuration. It should be noted that the
multi-domain state does not occur for Dt larger than 2.5 ns. As a
result, with zero fields cooling, the probability is about 0.5,

for either the single domain up or the single domain down
magnetization.

The threshold field Hth, at which the probability becomes 1,
decreases with the increase in Dt and reaches a saturation value of
100 Oe at 2.5 ns. The transient time is markedly shorter than that
for the reduced barrier writing scheme (about 15 ns), as shown
in Fig. 3(a).

Fig. 8 shows the dependence of the Curie point writing
property on the dot size. In this simulation, the saturation
induction 4pMS is fixed at 1.88 kG, while the value of the
perpendicular anisotropy K? is chosen such that the energy
barrier DE becomes constant at 60kBTa for individual dot sizes
ranging from 20�20�20 to 80�80�20 nm3. Fig. 8(a) plots the
probability of aligning along the field direction as a function of the
writing field Hw, with the dot size as a parameter.

As also discussed in the previous paragraph, the size
dependence of the Curie point writing property can be related
to the domain wall width. The wall width dw( ¼ p(A/K?)1/2) of the
20 nm dot is 18 nm, which is almost the same as its lateral
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dimension. On the other hand, dw of the 80 nm dot is 36 nm,
which is much smaller than the dot size. Consequently, the
temporal local magnetic ordering formed in the cooling process is
likely to be relaxed to a multi-domain configuration in the larger
dot, whereas it disappears in the smaller dot.

Fig. 8(b) shows the threshold field Hth as a function of the dot
size. Hth reaches a minimum of 130 Oe for a dot size of 50 nm. The
increase in Hth for the smaller dots can be related to the larger K?
assumed to satisfy the energy barrier limit of 60kBTa. Conse-
quently, it can be deduced that Hth is dominated by the anisotropy
energy for the single domain dots. In addition, the increase of Hth

for the larger dots can be associated with complicated local
ordering and its elimination process.

4. Summary

In summary, we have numerically investigated the thermally
assisted writing of different modes of (i) a reduced barrier writing
scheme and (ii) a Curie point writing scheme. In this study, we
focus on sub-100 nm dots with perpendicular anisotropy K?.
Though the switching field in the reduced barrier writing scheme
decreases with an increase in temperature, it is still higher than
that in the Curie point writing scheme. The threshold field Hth

required to define the magnetization direction in Curie point
writing was evaluated for dots of various sizes and material
parameters. The value of Hth increases with the increase in K? for

the single domain dot. Multi-domain configuration in the larger
dots is another reason for the increase of Hth. When the cooling
time in Curie point writing is shorter than a critical value, Hth

significantly increases.
Thermally assisted MRAM is one promising technology in the

next memory generation as it can solve both the problems of write
selectivity and thermal stability while scaling down to below
100 nm dots order. An additional mechanism such as lowering Eb

by interlayer exchange field in a magnetic bi-layer system may
improve memory performance.
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