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ABSTRACT 

Two regions of mitochondrial DNA, D-loop and ND-5 were characterized 

using polymerase chain reaction – restriction fragment length polymorphism 

(PCR-RFLP) involving 422 beef cattle of Hereford and composite breeds from 

Wokalup’s research station. ANOVA models (model I, II) were used to estimate 

associations between molecular haplotypes and quantitative traits. The 

phenotypic data used were records on calving rate, defined as the mean number 

of live calves born over four years, while the genotypic data used were the result 

of PCR-RFLP analysis in both regions of mitochondrial DNA using 7 restriction 

enzymes. The results of the present study have provided evidence that 

mitochondrial polymorphisms in the D-loop and ND-5 regions are associated 

significantly with fertility. This is the first report of a correlation between 

mitochondrial polymorphism in D-loop and ND-5 on fertility in beef cattle.  
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Introduction 

There have been many recent attempts to evaluate cytoplasmic genetic 

effects as a source of variation in quantitative traits related to animal production. 

In dairy cattle, extensive mtDNA diversity has been found (Freeman, 1990; 

Hauswirth & Laipis, 1982; Koehler et al., 1991; Ron et al., 1990), and significant 

cytoplasmic effects have been reported for milk yield traits (Faust, Robison & 

McDaniel, 1990; Ron et al., 1992; Schutz et al., 1992; 1993; 1994). In beef cattle, 

however, mitochondrial DNA diversity has been less commonly reported and no 

significant effects on growth traits have been found (Tess & Macneil, 1994; Tess 

& Robison, 1990). Hiendleder et al. (1995a), however, suggested that the lack of 

evidence for cytoplasmic genetic effects on growth traits in beef cattle could be 

due to lack of mtDNA variation among the animal studied. 

 Mitochondrial DNA appears to evolve more rapidly than nuclear DNA in 

most species (Brown, 1980; Hutchison et al., 1974). Even though thousands of 

copies of the mitochondrial genome are present in each cell (Michaels, Hauswirth 

& Laipis, 1982), nucleotide substitutions accumulate approximately five to ten 

times faster than similar mutations in nuclear DNA (Brown, George & Wilson, 

1979; Brown et al., 1982). Modification in mitochondrial DNA can have 

profound effects on the phenotype.  Studies of a variety of chronic degenerative 

diseases of humans, involving the brain, heart, muscle and endocrine glands, 

indicated that the cause of the diseases is mutations in mtDNA (Holt, Harding & 
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Morgan-Hughes, 1988; Wallace et al., 1988). The first pathogenic mtDNA 

mutations identified were associated with Leber’s hereditary optic neuropathy 

(LHON) disease (Wallace et al., 1988), myoclonic epilepsy and ragged-red fiber 

(MERRF) disease (Shoffner & Wallace, 1990) and the Kearns-Sayre syndrome 

(Holt et al., 1988). 

Many studies have suggested that cytoplasmic genetic effects influence 

growth, reproduction and production traits of livestock (Bell, McDaniel & 

Robison, 1985; Huizinga et al., 1986; Schutz et al., 1992; 1994; Tess, Reodecha 

& Robison, 1987). Maternal inheritance studies have indicated that 2-10% of the 

variation in milk and fat production in dairy cattle can be explained by maternal 

effects (Bell et al., 1985; Freeman, 1990; Huizinga et al., 1986; Ron et al., 1990). 

More direct associations between milk production traits and sequence variation in 

mitochondrial DNA have also been reported in dairy cattle (Ron et al., 1992; 

Schutz et al., 1993; 1994).  Schutz et al. (1993) found a significant effect on fat 

percentage of milk of a substitution at base pair (bp) 169 of the D-loop sequence 

region. More recently, Schutz et al. (1994) found that nucleotide substitutions, 

especially at bp 169 and 16074 of the D-loop, have significant effects on milk, fat 

and solids-non-fat (SNF) yield, while substitution at bp 16085 of the D-loop has 

the largest impact on reproduction traits.   

Brown (1985) indicated that the D-loop is the most variable region of 

mtDNA. The sequence variability is observed within species (Aquadro & 

Greenberg, 1983) and between species (Saccone, Attimonelli & Sbisa, 1987). 

Furthermore, D-loop variability is also observed within maternal lineages of 

cattle (Laipis, Van de Walle & Hauswirth, 1988; Olivo et al., 1983). Lindberg 

(1989) found 51 sequence differences, generally due to a single bp substitution, 

in 36 distinct registered maternal lineages.  

The ND-5 region of mtDNA is one of the 7 subunits of the NADH-

dehydrogenase complex (Anderson et al., 1982; Cantatore & Saccone, 1987; 

Smith & Alcivar, 1993) involved in oxidative phosphorylation.  PCR-RFLP 

analyses in the ND-5 region have shown variability (Suzuki, Kemp & Teale, 

1993). Recent studies indicate that mitochondrial genes which contribute subunits 

to the enzymes involved in respiratory-chain activities could influence growth in 

lambs via mitochondrial respiratory metabolism (Hiendleder et al., 1995a; 

Hiendleder, Herrmann & Wassmuth, 1995b). 

The aim of this study was to evaluate the effects of mitochondrial D-loop 

and ND-5 polymorphisms on fertility trait in beef cattle. 

 

Experimental animals 

A total of 422 of purebred Hereford and composite breed (comprising 

approximately 1/4 Brahman, Charolais and Friesian, and 1/8 Angus and 

Hereford) cattle were used for the study. They were part of a selection 

experiment described in detail by Meyer et al. (1993) and maintained at 

Agriculture Western Australia’s Wokalup Research Station.  
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Phenotypic Data 

The trait used in association analyses was a calving rate (defined as the 

mean number of live calves born over four years). 

 

Extraction of mitochondrial DNA 

Mitochondrial DNA was extracted from white blood cells using the 

Wizard Minipreps DNA Purification System (Promega, Madison, USA). 

Mitochondrial pellets were prepared according to published methods (Welter et 

al., l989).  250µl white blood cells were homogenized in a clean microcentrifuge 

tube containing 1ml cold homogenization buffer (100mM Tris-HCl, pH 7.4; 

250mM sucrose; 10mM EDTA). Nuclei and cellular debris were removed by 

centrifugation at 1500g for 10 minutes at 4
o
C. The supernatant was transferred to 

a clean microcentrifuge tube and a crude mitochondrial pellet was prepared by 

centrifugation in a microcentrifuge at 11,000g for 20 minutes at 4
o
C. The 

mitochondrial pellet was resuspended in 1ml TE buffer (10mM Tris HCl pH 7.5, 

1mM EDTA), placed on ice for 10 minutes and repelleted at 11,000g for 20 

minutes at 4
o
C. MtDNA was then purified from the pellet using the Wizard 

Miniprep protocol. 

 

PCR-RFLP 

All PCR amplification reactions were performed in an Omnigene 

thermocycler machine. The reactions were performed in a 50 ml reaction mix 

consisting of  200 ng of template DNA, 0.15 µM each of the oligonucleotide 

primers, 200 µM each dNTPs, 2 mM MgCl2, 10x buffer and 1.5 units Taq DNA 

polymerase (Biotech, Australia) in 0.6µl PCR reaction tube. 

PCR products were used directly in the restriction endonuclease digestion. 

A master mix of each restriction enzyme, its buffer and water was made, and then 

aliquoted into each tube containing 7 µl of PCR products of the GH gene or 5 µl 

of amplified mtDNA fragments, and incubated as directed by the manufacturer. 

BSA at a final concentration of 100µg/ml was used for many enzymes as directed 

by the manufacturer. 

Agarose gel electrophoresis was carried out using 1-2% of agarose 

(Promega) in TAE buffer (40mM Tris-HCl; 20mM Acetate; 2mM EDTA, pH 

adjusted to 7.9).  Electrophoresis was performed using horizontal gels, in 

electrophoretic cells (Bio-Rad, Richmond, U.S.A). Ethidium bromide was 

included in the gel at a final concentration of 0.5µg/ml (Sambrook et al., 1989). 

After electrophoresis, DNA was visualized under UV-illumination and 

photographed using Polaroid type 57 film with a red filter. 

 

Comparisons Between Selected and Control Lines 

Genetic diversity, estimated by Nei’s gene diversity or expected 

heterozygosity (Nei, 1978), was compared between selected and control 
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lines of each breed, using the method of Archie (Archie, 1985). Allelic 

frequencies for each locus were compared using X
2
. 

 

Association Analyses 

Associations between molecular haplotypes and quantitative traits were 

estimated from 2 ANOVA models: 

 

Model I: Yijklmn =  µ + Bi + Sj + Lk + Dl + Ym + Gn + eijklmn 

Where µ is the least square mean value, Bi is the effect of breed, Sj is the 

effect of sex, Lk is the effect of line (selected or control), Dl is the effect of the 

age of the individuals dam, Ym is the effect of year of birth, Gn is the effect of 

haplotype and eijklmn is the residual error. 

 

Model II: Yijklmno = µ + Bi + Sj + Lk + Dl + Ym + Gn + Aijklmno + eijklmno 

Where µ is the least square mean value, Bi is the effect of breed, Sj is the 

effect of sex, Lk is the effect of line (selected or control), Dl is the effect of the 

age of the individuals dam, Ym is the effect of year of birth, Gn is the effect of 

haplotype, Aijklmno is a random animal effect, determined from the additive 

relationship matrix, and eijklmno is the residual error.   

 

Differences in least square means between haplotype classes were 

determined by the F-test, with a comparison error rate of 0.05. Model I was 

implemented using the program JMP (SAS, 1989) and model II using PEST 

(Groeneveld, 1990; Groeneveld & Kovac, 1990). The major differences between 

the models was the addition of the relationship matrix in model II, which 

eliminates confounding between the effects of marker and non-marker genes 

among relatives. Preliminary analyses using the models identified no significant 

interaction effects between haplotype and other factors, and interactions were 

therefore not included in final analyses. 

  

Results  

Products resulting from amplification of the mitochondrial D-loop 

(1142bp) by PCR using primers D-L and D-R, and the ND-5 (453bp) region, 

using primers ND-L and ND-R, are shown in Figure 1 and 2. Figure 3 shown an 

example of PCR-RFLP using HindIII. 
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Figure 1. Photograph of an ethidium bromide stained agarose gel showing the 

specificity of the PCR products (1142 bp) representing the whole 

mitochondrial D-loop  and flanking sequence at both ends amplified using 

primers D-L and D-R. 
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Figure 4.5. Photograph of an ethidium bromide stained agarose gel showing the 

specificity of the PCR products (453 bp) of mitochondrial ND-5 between 

positions 12058 and 12510, amplified using primers ND-L and ND-R. 
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Figure 3. Gel photographs of an ethidium bromide stained agarose gel showing 

mitochondrial ND-5 polymorphism detected by PCR-RFLP using 

HindIII. 

Comparison of Selected and Control lines 

Comparisons of the genetic diversity between selected and control groups 

of composite and Hereford cattle are shown in Table 1. Table 2 shows the 

comparison of the allelic frequencies of selected and control groups between 

composite and Hereford cattle. There were no significant differences between 

groups at any locus. 

 

Table 1. Comparisons of the genetic diversity of selected and control groups of 

composite and Hereford breeds. d is nucleotide diversity (average number 

of nucleotide substitutions per site within breeds). 

 

Breeds Groups N d (Nei and Li) 

Composite Selected 177 0.038908 + 0.015761 

 Control 58 0.049068 + 0.020182 

    

Hereford Selected 138 0.055031 + 0.028593 

 Control 56 0.054549 + 0.028048 

 

Table 2. Comparisons of the allelic frequency of selected and control groups 

between composite and Hereford breeds based on based on PCR-RFLP 

analysis in the mitochondrial D-loop and ND-5. 
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Breeds Groups D-loop ND-5 
  TaqI PstI SspI ApaI AvaII HindIII SpeI 

  A B A B A B A B A B A B A B 

Composite selected 0.69 0.31 0.69 0.31 0.69 0.31 0.99 0.01 1.00 0.00 0.69 0.31 0.69 0.31 

 control 0.58 0.42 0.58 0.42 0.58 0.42 1.00 0.00 1.00 0.00 0.58 0.42 0.58 0.42 

                

Hereford selected 0.59 0.41 0.59 0.41 0.59 0.41 1.00 0.00 0.89 0.11 0.59 0.41 0.59 0.41 

 control 0.63 0.37 0.63 0.37 0.63 0.37 1.00 0.00 0.92 0.08 0.63 0.37 0.63 0.37 

 

Effect of D-loop Polymorphisms 

Table 3 shows the least square mean values of each haplotype in the two 

D-loop polymorphisms for 4-year calving rate. Table 4 shows the probability of 

observing the differences in means between haplotypes under each ANOVA 

model. Differences in calving rate are significant under model I for the TaqI / 

PstI/ SspI polymorphism and almost significant under model II for both 

polymorphisms. 

 

Table 3. Least square mean + S.E. of each haplotype in the two D-loop 

polymorphisms for calving rate (CR) in Hereford and composite cattle 

with different haplotypes. 

 

Traits TaqI / PstI / SspI AvaII 

 A B A B 

Calving rate (CR) 0.70 + 0.04 0.61 + 0.05 0.66 + 0.04 0.89 + 0.16 

 

 

 

 

Table 4. Probability of observing the differences in means between haplotypes 

under each ANOVA model for calving rate (CR).  

 

Trait TaqI/PstI/SspI AvaII 

 Model I Model II Model I Model II 

Calving Rate (CR) 0.04 0.06 0.16 0.08 

 
 

Effect of ND-5 Polymorphisms 

Table 5 shows the least square mean values of each haplotype in the ND-5 
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polymorphisms for 4-year calving rate. Table 6 shows the probability of 

observing the differences in means between haplotypes under each ANOVA 

model. Differences in calving rate are significant under model I and almost 

significant under model II. 

 

Table 5. Least square mean + S.E. of each haplotype in ND-5 polymorphism for 

calving rate (CR) in Hereford and composite cattle with different 

haplotypes. 

 

Traits HindIII/ SpeI 

 A B 
Calving Rate (CR) 0.70 + 0.04 0.61 + 0.05 

 

 

Table 6 Probability of observing the differences in means between genotypes 

under each ANOVA model. CR = calving rate. 

 

Trait HindIII/ SpeI 

 Model I Model II 

Calving Rate (CR) 0.04 0.06 

 

Discussion and conclusion 

The analyses of the total data from both breeds of beef cattle in this study 

indicate that the female fertility is only trait (other traits nor shown) affected by 

variation in mitochondrial DNA, as measured by the mean number of calves born 

over a four year period. This trait is significantly affected by the TaqI/ PstI/ SspI 

polymorphisms in the D-loop region and the HindIII/ SpeI polymorphism in ND-

5. The effect was present in both breeds and in both selected and control lines, 

although the strongest effect was found in Hereford selected animals (Table 7 & 

8). This study failed to show any effect of mitochondrial polymorphism on any 

growth or milk production traits. Selection for increased daily gain in each breed 

had no influence on mtDNA diversity or on allelic frequencies at any of the 

polymorphic restriction sites. 

 

Table 7. Least square mean + S.E. of calving rate in each haplotype of selected 

and control lines of Hereford and composite cattle. 

 

Breed Group Least Square Mean 

  TaqI/ PstI/ SspI HindIII/SpeI 

  A B A B 

Composite Selected 0.58 + 0.07 0.42 + 0.08 0.58 + 0.07 0.42 + 0.08 
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 Control 0.83 + 0.08 0.81 + 0.09 0.83 + 0.08 0.81 + 0.09 

      

Hereford Selected 0.73 + 0.07 0.48 + 0.07 0.73 + 0.07 0.48 + 0.07 

 Control 0.76 + 0.05 0.68 + 0.07 0.76 + 0.05 0.68 + 0.07 

 

Table 8. Probability of observing the differences in mean calving rate between 

genotypes under each ANOVA model.  

 

Probability Breed Group 

TaqI/ PstI/ SspI HindIII/ SpeI 

Composite Selected 0.09 0.09 

 Control 0.85 0.85 

Hereford Selected 0.01 0.01 

 Control 0.24 0.24 

 

 

In dairy cattle, the effect of cytoplasmic inheritance on measures of 

production and reproduction have been demonstrated (Bell et al., 1985; Huizinga 

et al., 1986; Schutz et al., 1992). Recent studies conducted by Schutz et al. 

(1994) found that nucleotide substitutions in D-loop region have significant 

effects on milk, fat and solids-non-fat (SNF) yield and reproduction traits in dairy 

cattle. However, studies using simulated data (Kennedy, 1986; Southwood et al., 

1989), and other studies using the same database but different approaches, have 

given contradictory results (Kirkpatrick & Dentine, 1989; Reed & Van Vleck, 

1987).  

In beef cattle, very view studies have evaluated the effects of cytoplasmic 

inheritance on production traits. Tess et al. (1987) reported cytoplasmic genetic 

effects on preweaning growth in two herds of Hereford cattle, and suggested that 

cytoplasmic effects were mediated through milk production. The results were 

further evaluated by Tess and Robison (1990) and Tess and MacNeil (1994) 

using a more statistically valid mixed model analysis, and the results failed to 

show that cytoplasmic genetic effects were important sources of variation for 

growth traits in beef cattle. Northcutt et al. (1991) also reported that preweaning 

performance was not affected by cytoplasmic variance. 

The effects of D-loop and ND-5 polymorphisms on female fertility may 

be direct or due to linkage with other mitochondrial genes. Bell et al. (1985) 

demonstrated small effects of maternal lineages on days open and pointed out the 

role of mitochondria in the biosynthesis of steroids. The significant correlation 

may be due to mitochondrial effects in relation to energy needs on oocyte 

maturation, since elevated concentrations of adenosine triphosphate (ATP) for 

localized activities in the ooplasm has been suggested (Van Blerkom & Runner, 

1984). In cattle, mitochondria are increased proportionally to the increase in 

cytoplasmic volume, at which stage oocytes require a fixed amount of 

mitochondria per unit volume of cytoplasm to remain viable (Smith & Alcivar, 

1993). Mitochondrial DNA copy number appears to correlate with oocyte volume 
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since the amount of mtDNA per cell increases from about 0.1 pg in primordial 

cells to 4.5 pg in the preovulatory oocyte (Hauswirth & Laipis, 1985), and this 

distribution of mitochondria in the bovine oocyte has been suggested to be 

correlated with the hormonal patterns of both gonadotrophins and steroids 

(Hyttel, Callensen & Greve, 1986; Kruip et al., 1983). The D-loop is the site of 

transcriptional and replicational control (Anderson et al., 1982). Schutz et al. 

(1994) suggested that differences in production associated with sequence 

polymorphism in the D-loop region of mtDNA may relate to the control of 

mtDNA function. Recent studies have also suggested that D-loop polymorphisms 

may serve as indirect markers for differences elsewhere on the mtDNA genome 

in coding regions of genes directly affecting phenotypic expression of traits 

(Schutz et al., 1993; 1994). 

In conclusion, the results of the present study have provided evidence that 

mitochondrial polymorphisms in the D-loop and ND-5 regions are associated 

significantly with fertility. This is the first report of a correlation between 

mitochondrial polymorphism in D-loop and ND-5 on fertility in beef cattle. 

Fertility is a lowly heritable trait and therefore difficult to improve through 

traditional phenotypic selection. The presence of a DNA marker may enable the 

rate of genetic improvement in fertility to be greatly increased. 
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