Implementasi Metode Virtual Force Field Untuk Kontrol Pergerakan Autonomous Mobile Robot Pada Aplikasi Soccer Robot

Bayu Prasetyo^{#1}, Endah Suryawati Ningrum, ST, MT^{#2}, Ali Husen Alasiry, ST. M. Eng^{#3}

[#]Jurusan Teknik Elektronika, Politeknik Elektronika Negeri Surabaya Kampus PENS-ITS Sukolilo, Surabaya

¹bayup@student.eepis-its.edu

2endah@eepis-its.edu
ali@eepis-its.edu

Abstrak— Metode Virtual Force Field merupakan salah satu metode yang memiliki konsep sederhana namun memiliki kehandalan dalam mengatasi permasalahan pada obstacle avoidance. Dari percobaan yang pernah dilakukan sebelumnya oleh Borenstein, Virtual Force Field sendiri merupakan pengembangan dari metode yang pernah dilakukan sebelumnya yaitu Potential Field Method yang prinsip kerjanya didasari dari Histogram Grid namun menggunakan nilai-nilai pembobotan yang berbeda di setiap daerah yang terdapat halangan. Kemudian dari metode tersebut muncul kelemahan-kelemahan. Yang akhirnya dapat diatasi oleh Metode Virtual Force Field.

Pada metode Virtual Force Field, adanya halangan pada soccer robot akan dianggap memberikan Gaya Tolak yang arahnya sebesar 180° terhadap arah halangan dan adanya objek akan dianggap memberikan Gaya Tarik terhadap robot. Kemudian dari dua buah gaya virtual tersebut akan dicari resultannya dengan cara menjumlahkan gaya-gaya tersebut. Hasil resultan gaya tersebut yang akan menjadi perintah dalam pergerakan robot.

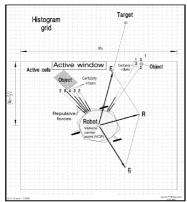
Untuk mengetahui adanya halangan pada sekeliling robot kita menggunakan sensor ultrasonik SRF 04 yang mampu bekerja optimal hingga jarak 100 cm dari robot. Sedangkan untuk mengetahui adanya objek yang ada di depan robot kita menggunakan metode Object Tracking yang komponen utamanya adalah kamera CMU Cam2.

Kata kunci—: Virtual Force Field, Obstacle Avoidance, Sensor Ultrasonik SRF 08,Object Tracking, Kamera CMU Cam2

I. PENDAHULUAN

Banyak metode yang telah kita ketahui sebagai konsep penghindaran halangan diantaranya adalah *Potential Field Method* sangat populer untuk aplikasi penghindar rintangan karena kesederhanaan dalam implementasi namun setelah dilakukan pengujian dalam beberapa kondisi seperti

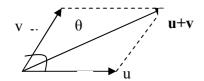
yang telah dilakukan oleh Y.Koren dan J.Borenstein. Kelemahan - kelemahan tersebut mendasari lahirnya metode Vector Field Histogram (VFH) dan Virtual Force Field (VFF).


Untuk memperbaiki kelemahan tersebut maka kami mencoba mengimplementasikan Metode Virtual Force Field (VFF), dengan mengkombinasikan dua konsep yang telah diketahui yaitu *target pursuing* obyek dan *obstacle avoidance* (menghindari halangan) [2]. Dengan mengkombinasikan dua konsep tersebut didapatkan pergerakan *soccer robot* secara terus menerus tanpa harus berhenti dulu di depan obyek halangan[2].

II. TEORI PENUNJANG

Teori penunjang yang digunakan untuk menyelesaikan pembuatan sistem ini terbagi atas beberapa hal yaitu teori atas hardware yang meliputi Kamera CMU Cam2, mikrokontroller ATMEGA 128 dan motor servo sedangkan untuk software yaitu proses pembacaan data sensor ultrasonic dan pembacaan data kameraCMU Cam2. Selain itu metode virtual Force Field juga akan diuraikan bersama dengan metode penjumlahan vektor

A. Metode Virtual Force Field


Metode VFF [7]menggunakan Cartesian Grid 2 dimensi, yang disebut *Histogram Grid* C, yang dianggap merepresentasikan sebuah halangan. Setiap sel (i,j) dalam suatu histogram Grid mengandung suatu nilai (certainty value, CV) yang menunjukkan keberadaan dari adanya suatu halangan pada titik tersebut. Besarnya certainty value ini akan meningkat ketika jarak dari pembacaan sensor ultrasonic ini mengindikasikan adanya objek pada sel tersebut. Dari nilai-nilai Certainty Grid yang telah kita tentukan tersebut, maka kita anggap halangan akan memberikan sebuah gaya tolak yang menuju ke arah robot (Repulsive Force), sedangkan target akan memberikan sebuah gaya tarik (Attractive Force) pada robot. Kemudian resultan dari gayagaya tersebut yang akan direpresentasikan sebagai arah gerak robot.

Gambar 2.1 Ilustrasi konsep Virtual Force Field (VFF)

Dari konsep awal yang telah diketahui tersebut, maka kita akan melakukan modifikasi pada proses mendapatkan Certainty Grid tersebut. Yaitu dengan menggunakan system local navigation dimana untuk mengetahui adanya halangan digunakan sensor *ultrasonic* dan untuk mengetahui target kita menggunakan kamera CMU Cam2.

Selain itu ide dasar dari metode Virtual Force Field adalah penjumlahan vektor. Adanya *obstacle* diasumsikan akan memberikan gaya tolak pada robot yang arahnya 180° terhadap ultrasonic yang menerima halangan, sedangkan target diasumsikan akan memberikan gaya tarik pada robot[7]. Dari kedua gaya ini akan dicari resultannya sebagai solusi dari arah gerak robot untuk menghindari halangan dan mengejar target.

Gambar 2.2. Ilustrasi Penjumlahan vektor

B. Kamera CMU

CMUcam2 terdiri dari mikrokontroler SX52 dengan kamera omnivision CMOS OV6620 atau OV7620 dengan resolusi 160 x 240 pixel. Komunikasinya menggunakan RS-232 atau serial port TTL .Kegunaan yang paling utama dari CMUcam2 adalah untuk memonitor warna. Semua itu dapat dicapai pada warna yang mempunyai nilai kekontrasan dan intensitas yang tinggi. Sebagai contoh, CMUcam2 dapat dengan mudah memonitor bola yang berwarna merah pada background putih tetapi akan sulit untuk memonitor benda berwarna coklat pada pada pencahayaan yang tidak tetap.

Format pengiriman data untuk melakukan penjejakan menggunakan perintah TC (*Track Color*) dengan format sebagai berikut:

TC [Rmin Rmax Gmin Gmax Bmin Bmax] \r

Paket pengiriman data yang akan diterima adalah sebagai berikut :

Paket Data Type T:

T mx my x1 y1 x2 y2 pixels confidence\r

Merupakan tipe paket data yang diterima untuk memonitor warna atau instruksi pembedaan.

mx – Titik absis dari obyek / nilai koordinat X untuk obyek

my – Titik ordinat dari obyek / nilai koordinat Y untuk obyek

x1 – Titik absis paling kiri dari tampak obyek di kamera

yl – Titik ordinat paling kiri dari tampak obyek di kamera

x2 – Titik absis paling kanan dari tampak obyek di kamera

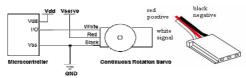
y2 - Titik ordinat paling kanan dari tampak obyek di kamera pixels – Jumlah pixel di area yang di tracking 255: (pixels+4)/8

confidence - (Jumlah pixel / daerah) * 256 dari batas persegi di 255

C. Sensor Ultrasonik SRF 04

Pada robot soccer ini sensor ultrasonik digunakan untuk menghindari halangan (Obstacle Avoidance). Data – data yang didapat dari sensor ini dapat diolah untuk menggambarkan dimensi ruang di sekitar robot. Umumnya sensor ultrasonik bekerja dengan sudut elevasi 30° sehingga diperlukan sedikit pengaturan letak sensor agar sensor dapat bekerja dengan baik. Pengaturan letak sensor ini dimaksudkan untuk meminimalisir daerah mati (dead zone). Daerah mati biasanya terletak di antara sensor dan tidak terjangkau daerah kerja sensor. Pada proyek akhir ini desain robot dengan berdasarkan fungsi sebagai obstacle avoidance maka sensor yang digunakan tidak penuh seluruh lingkaran bodi robot. Jika sudut elevasi sensor ultrasonik adalah 30° maka jumlah sensor sebanyak 5 buah cukup memadai untuk menghindari halangan.

Gambar.2.3 Penampang SRF 08


D. Mikrokontroller ATMEGA 128

AVR merupakan seri mikrokontroler CMOS 8-bit buatan Atmel, berbasis arsitektur RISC (Reduced Instruction Set Computer). Pada ATMEGA 128 mempunyai spesifikasi yang dibutuhkan untuk membuat minimum sistem sistem penjejak sebagai berikut:

- Frekuensi *clock* hingga 16 MHz
- ➤ Mempunyai 128 Kbyte Flash Programmer
- ➤ 2 buah USART
- Mempunyai Timer dengan mode Fast PWM

E. Motor Servo

Motor servo mampu bekerja dua arah (CW dan CCW) dimana arah dan sudut pergerakkan rotornya dapat dikendalikan hanya dengan memberikan pengaturan duty cycle sinyal PWM pada bagian pin kontrolnya. Berikut ini pinout dari motor servo :

Gambar.2.4 Pin out dari motor servo

Kecepatan motor servo termasuk dalam kategori lambat, kelebihan yang dimiliki adalah torsi dan presisi yang handal. Dapat kita ketahui bahwa sebuah motor servo memiliki spesifikasi sebagai berikut:

- > 3 jalur kabel : vcc, ground, control data
- > Sinyal kontrol mengendalikan putaran dan posisi
- ➤ Opersaional dari servo motor dikendalikan oleh sebuah pulsa brefrekuensi 50 Hz, dimana lebar pulsa antara 1,3 1,7 ms.
- Konstruksi di dalamnya meliputi internal gear, potensiometer dan feedback control.

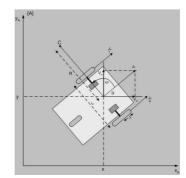
F. Komunikasi Serial

RS merupakan kependekan dari Rcommended Standard yangditetapkan oleh Electronics Industries Association (EIA). Standar sinyal komunikasi yang banyak digunakan adalah standar RS232 yang dikembangkan oleh Electronic Industry Association and The Telecommunications Industry Association (EIA/TIA) yang pertama kali dipublikasikan pada tahun 1962. Standar Komunikasi Kabel RS (Standard) yang dikeluarkan EIA:

- RS-232 -> single ended
- RS-422 -> differential, multi-drop, broad-band
- RS-485 -> differential, multi-drop, MIMO

G. LCD

LCD yang digunakan merupakan LCD tipe karakter karena LCD ini dapat menampilkan data [10]. Keuntungan yang dapat diperoleh dengan menggunakan LCD adalah :


- 1. dapat menampilkan karakter ASCII
- 2. Mudah dihubungkan dengan port I/O karena hanya menggunakan 4 bit data dan 3 bit control.
- 3. Ukuran dari modul yang proporsional.
- 4. Penggunaan daya yang kecil.

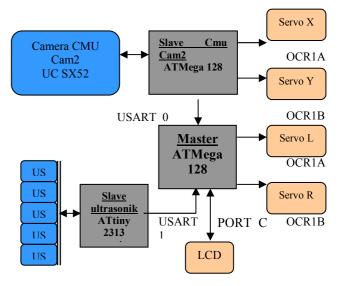
H. Kinematik gerak differential drive

Salah satu jenis *mobile robot* yang umum digunakan, terutama untuk dioperasikan dalam ruangan adalah *mobile robot* dengan pengemudian atau sistem penggerak diferensial (*differential drive*) [6].

Secara teknis, robot jenis ini pada dasarnya memiliki dua roda utama yang masing-masing digerakan oleh penggerak tersendiri (umumnya berupa motor DC magnet permanent dengan gear-pereduksi yang berfungsi untuk memperkuat torsi motor), selain itu robot ini dilengkapi juga dengan satu atau dua buah roda castor yang ditempatkan dibagian belakang robot yang berfungsi sebagai penyeimbang. Gambar 2.5 memperlihatkan arsitektur robot dilihat dari

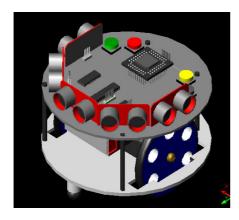
bagian atas: Jika kedua roda penggerak tersebut berputar dengan kecepatan yang sama maka robot tersebut akan bergerak dengan arah yang lurus, sedangkan jika kecepatan salah satu roda lebih lambat maka robot akan bergerak membentuk kurva dengan arah lintasan menuju salah satu roda yang bergerak lebih lambat.

Gambar 2.5 Posisi dan Orientasi Mobile Robot Dalam Sistem Koordinat *Cartesian*

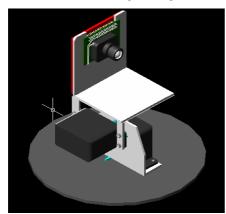

III. PERENCANAAN SISTEM

Proses pengerjaan tugas akhir ini secara umum dibagi menjadi beberapa bagian, yaitu pengerjaan mekanik, pengerjaan hardware, dan pengerjaan software. Dan masing-masing pekerjaan tersebut saling berkaitan antara satu dengan yang lain.

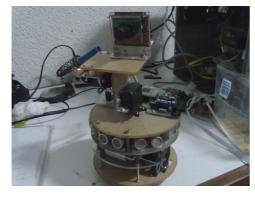
Pengerjaan mekanik meliputi pembuatan body robot,peletakan motor servo, serta pembuatan visual servo. Sehingga robot yang akan dibuat dapat bergerak dengan stabil sesuai dengan gerakan yang kita inginkan.


Pengerjaan hardware meliputi rangkaian dari mikrokontroller untuk mendapatkan data dari sensor ultrasonic SRF 04 dan kamera CMU Cam2. Kemudian data dari kedua sensor tersebut diolah untuk selanjutnya diinterpretasikan sebagai pergerakan pada motor servo utama robot.

A. Perencanaan sistem



Gambar 3.1 Blok diagram sistem


B. Perencanaan Mekanik

Gambar 3. 2 Soccer robot tampak orthogonal

Gambar 3. 3 Desain penjejak robot

Gambar 3. 4 Bentuk robot sebenarnya

C. Perencanaan Hardware

> Sensor Ultrasonik SRF 08

Dari datasheet diketahui bahwa sensor ultrasonik SRF 04 menggunakan pin echo dan trigger untuk mengakses datanya. Jadi untuk 5 buah sensor ultrasonik SRF 04 tersebut Kita hanya menggunakan 2 buah pin pada mikrokontroller untuk mengakses data setiap ultrasoniknya. Jadi kita membutuhkan 10 buah pin mkrokontroller untuk 5 ultrasonik.

➤ Kamera CMU Cam2

Kamera CMU Cam2 merupakan komponen utama dalam object tracking [9]. Di dalam CMU Cam2 ini terdapat beberapa fitur yang akan kita manfaatkan dalam object tracking ini diantaranya adalah tracking warna objek. Sehingga kita tidak perlu melakukan proses image processing lebih lanjut untuk mengolah hasil citra yang telah didapat. Akan tetapi sebelumnya kita harus mengetahui nilai RGB dari objek yang akan kita amati. Untuk selanjutnya nilai RGB dari objek tersebut akan dijadikan referensi oleh CMU Cam2 dalam mengamati objek.

> Perencanaan Kontroler Robot

Kontroler yang digunakan dalam proyek akhir ini disesuaikan seberapa jauh fungsi dan kriteria tertentu misalnya kecepatan menjalankan suatu perintah yang membutuhkan perhitungan yang cukup rumit. Apabila kerja dari suatu sistem terlalu berat, maka dibutuhkan tambahan kontroler yang akan mengerjakan sebagian tugas secara paralel (terpisah). Sistem yang ada mengharuskan pembagian tugas tertentu yaitu pengambilan data sensor ulltrasonik secara simultan,.

D. Perencanaan Software

Pengambilan data sensor ultrasonik SRF04

Lima buah sensor ultrasonik SRF04 diakses oleh mikrokontroller AT Tiny 2313. dapat diakses dengan jalur komunikasi paralel pada *kontroler slave*, diambil datanya bergantian satu sama lain. Teknik ini biasanya disebut dengan *scanning* ultrasonik. Sensor ultrasonik diambil data jaraknya dengan mengukur waktu pantulan terhadap obstacle. Untuk mengukur waktu pantul tersebut dapat dilakukan dengan menggunakan timer 0 kontroler

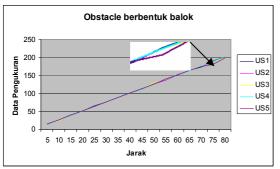
> Perancangan Software Penjejak (Tracking)

Dalam membuat software penjejakan pada sistem ini kita tidak perlu untuk melakukan *image processing* karena telah dilakukan oleh kamera CMU Cam2. Tahapan yang dilakukan oleh mikrokontroller dalam melakukan penjejakan sebuah obyek.

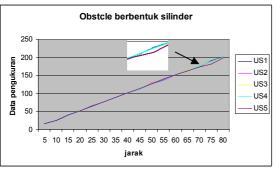
> Perintah putaran motor servo

Perintah untuk menjalankan motor servo cukup dengan pemberian Pulse Modulation Width (PWM). Dengan nilai PWM tertentu motor servo akan berputar. Arah putaran dan kecepatanya berdasarkan duty cycle dari PWM yang diberikan. Perlu dilakukan pengaturan terlebih dahulu sebelum motor servo digunakan lebih lanjut. Motor servo berhenti berputar pada saat diberikan pulsa PWM dengan Ton = 1.5 ms dalam total periode 20 ms.

IV. PENGUJIAN DAN ANALISA


A. Pengujian sensor ultrasonik SRF 04

Pengukuran Jarak


• Tujuan

Untuk mengetahui jarak optimal yang dapat dibaca oleh sensor ultrasonik SRF 04, dan menggunakan data tersebut sebagai input dari sistem.

• Hasil Pengamatan

Gambar 4.1 Grafik pengujian dengan obstacle berbentuk balok

Gambar 4.2 Grafik pengujian dengan obstacle berbentuk silinder

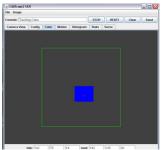
Pengukuran Sudut Elevasi

Tujuan

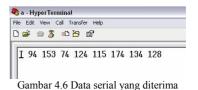
Untuk mengetahui sudut elevasi yang masih dapat dibaca oleh sensor ultrasonik SRF 04, dan menggunakan data tersebut sebagai input dari sistem.

Gambar 4.3 Grafik pengujian sudut elevasi ultrasonik SRF 04

B. Pengujian Kamera CMU Cam2


Pengujian penetuan titik tengah obyek

Pengujian ini untuk mengetahui, prosentase ketepatan kamera CMU Cam2 dalam menentukan titik tengah obyek atau titik berat obyek dibandingkan bila menghitung secara manual.


Hasil Pengamatan

Gambar 4.4 Tampak real obyek pada CMU Cam GUI

Gambar 4.5 Hasil image processing oleh kamera CMU

Dari hasil tersebut didapatkan titik tengah obyek: Output CMU CAM2:

$$\circ Mx' = 94$$

$$Mx' = 94$$
 $My' = 153$

Perhitungan berdasarkan batas-batas tepi obyek :

$$Mx = x1 + \left(\frac{(x2 - x1)}{2}\right) = 74 + \left(\frac{(124 - 74)}{2}\right) = 99$$

$$My = y1 + \left(\frac{(y2 - y1)}{2}\right) = 115 + \left(\frac{(174 - 115)}{2}\right) = 144,5$$

Sehingga diperoleh % errornya sebesar :

$$\%Error = \frac{Mx - Mx'}{Mx}x100\% = \frac{99 - 94}{99}x100\% = 5,05\%$$

%Error =
$$\frac{My - My'}{My}$$
 x100% = $\frac{144,5 - 153}{144,5}$ x100% = 5,8%

Tabel 4.1 Pengujian titik tengah obyek

Obyek	Mx'	My'	Mx	%Ex	My	%Ey
Bola	94	153	99	5,05	144,5	5,8
Silinder	91	63	125,5	27,4	122	48,3
Persegi	73	132	69,5	5,03	135,5	2,58

Pengujian data pixel terhadap jarak robot

• Tujuan

Pengujian ini untuk mengetahui besarnya pixel yang didapat oleh CMU Cam2 terhadap jarak bola sebenarnya pada robot

Tabel 4.2 Data pengujian pixel obyek

No	Jarak	Data Pixel yang didapat			
	(cm)	Hyperterminal	Mikrontroller		
1	10	79-91	66-75		
2	15	52-64	36-48		
3	20	45-51	29-39		
4	25	33-40	26-30		
5	30	26-30	19-24		
6	35	2-7	11-16		
7	40	-	-		

C. Pengujian sistem penggerak robot

Pengujian servo utama robot

• Tujuan

Pengujian motor servo utama ini ditujukan untuk mengetahui kelinieran pemberian nilai PWM terhadap kecepatan robot. Bagaimana perbedaannya saat robot berjalan tanpa beban maupun dengan beban

Hasil Pengamatan

Tabel 4.3 Data pengujian kecepatan motor servo

Nilai PWM	Kecepatan tanpa beban		Kecepatan dengan beban		
	Kiri (rpm)	Kanan (rpm)	Kiri (rpm)	Kanan (rpm)	
0	0	0	0	0	
50	19	11	19	12	
100	29	23	26	23	
150	31	30	30	26	
200	32	31	31	27	
250	32	31	31	28	

V. KESIMPULAN

Setelah melakukan tahap perancangan dan pembuatan sistem yang kemudian dilanjutkan dengan tahap pengujian dan analisa maka dapat diambil kesimpulan sebagai berikut:

- Sudut elevasi maksimum dari sensor ultrasonik adalah 40 derajat. Semakin besar sudut elevasi, pembacaan sensor kurang optimal,
- Kamera CMU Cam2 memiliki sensitifitas pada intensitas cahaya serta kekontrasan warna obyek pada saat *tracking*.
 Oleh karena itu kita perlu melakukan setting warna untuk tracking obyek di setiap tempat yang berbeda
- Metode VFF dapat digunakan pada robot soccer dan kondisi obstacle yang tidak bergerak.

DAFTAR PUSTAKA

- [1] <u>www.fira.net</u>. 22 Juli 2009 . 22.30
- [2] Borenstein, Johann. Koren, Yorem. Real Time Obstacle Avoidance for Fast Mobile Robots. IEEE Press: 1989.
- [3] Katevas, N. Mobile Robotics in Healthcare. 2000
- [4] http://www.ubicom.com/products/sx/sx.html. 22 Juli 2009
- [5] Tampomas, *Husein*. Seribu Pena Matematika SMU Kelas 3. *Penerbit Erlangga*: : 1999
- [6] Pitowarno, Endra. Robotika, Desain, Kontrol dan Kecerdasan Buatan. Yogyakarta: Andi; 2006.
- [7] J. Borenstein, Y. Koren .Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation, Paper; 1991
- [8] <u>www.datasheet4u.com</u> 22 Juli 2009 23.15
- [9] Kortiko, Ade. Rancang Bangun Sistem Penjejak Objek Menggunakan Kamera CMU Dilengkapi Dengan Kontrol PID dan Prediksi Gerakan. Surabaya: EEPIS,2009.
- [10]http://www.mytutorialcafe.com/mikrokontroller%20bab4% 20LCDKarakter.htm
- [11] http://one.indoskripsi.com/node/7903