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Abstract 

 

Support Vector Machines (SVM) and K-Nearest 

Neighborhood (k-NN) are two most popular classifiers in 

machine learning.  In this paper, we intend to study the 

generalization performance of the two classifiers by 

visualizing the decision boundary of each classifier when 

subjected to a two-dimensional (2-D) dataset. Four 

different sets of database comprising of 2-D datasets 

namely the eigenpostures of human (EPHuman), the 

breast cancer (BCancer), the Swiss roll (SRoll) and 

Twinpeaks (Tpeaks) were used in this study. Results 

obtained confirmed SVM classifier superb generalization 

performance since it contributed the lower classification 

error rate when compared to the k-NN classifier during 

the training for binary classification of all 2-D datasets.  

This is evident and can be clearly visualized through the 

plots depicting the decision boundaries of the binary 

classification task. 

 

 

1. Introduction
 

Support Vector Machine (SVM) is a universal 

machine learning method proposed by Vapnik and co-

workers and it is an eminent technique for solving 

classification problems [1]. The goal of SVM is to 

determine a classifier that minimizes the empirical risk 

namely the training set error and the confidence interval 

which corresponds to the generalization or test set error 

[2]. Additionally, another classifier known as K-Nearest 

Neighborhood (k-NN) is also evaluated for comparison 

purpose. K-NN classifier is a simple but appealing 

classifier. When a new sample arrives, k-NN finds the k 

neighbors nearest to the new sample from the training 

space based on some suitable similarity or distances 

metrics [3][4] . In term of computing time SVM gave the 

shortest time when its support vectors have been 

determined. In [3], the classification accuracy of K-NN is
 

superior when feature selection technique is used to 

remove redundant and irrelevant features. However, the 

effectiveness of the classifiers is rarely proven and 

analyzed through visualization of the decision boundaries 

especially in cases or problems involving 2-D datasets.  

Therefore, the purpose of this paper is to analyze and 

evaluate the generalization ability of the two 

aforementioned classifiers by means of visualization of 

the decision boundaries based on the measured values of 

classification error rate. By observing and analyzing the 

illustrations of the decision boundaries, conclusion will 

be drawn to determine the better classifier. 

The rest of the paper is organized as follows. First 

section provides an overview of SVM followed by a 

brief introduction of the k-NN classifier algorithm in 

next section. Third section provides brief description of 

the four datasets used in this study. The experimental 

results are discussed in forth section and finally, the 

conclusion is given in last section. 

2. Support Vector Machines (SVM) 

In general, Support Vector Machine (SVM) is a 

learning machine for two class classification problems. 

Given a labeled training dataset, (x1.,y1),…,(xl ,yl ) where 

xi   R
N
 is a feature vector and  yi   {-1,1} is a class 

label, the SVM algorithm seeks to define a decision 

surface that gives the largest margin or separating 

between the data classes whilst at the same time 

minimizing the number of errors. However, this decision 

surface is not created in the input space, but rather in a 
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very high-dimensional feature space. The resulting model 

is nonlinear, and is accomplished by the use of kernel 

functions. The kernel function, K indicates a measure of 

similarity between a pattern xi, and a pattern xj from the 

stored training set. Using the kernel, the dual Quadratic 

Programming (QP) problem in term of Lagrange 

Multipliers, αi in the feature space is given in equation 

(1), 
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where i=1,…,l.  

After finding the optimal values of αi, the decision 

boundary is constructed using the following,  
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where the x class is determined from the sign of f(x). The 

value b is the decision boundary threshold where the x 

class is determined from the sign of f(x). The xi 

corresponding to αi 
0 is called the support vector. The 

regularization parameter, C, is the margin parameter that 

determines the trade-off between maximizing the margin 

and minimizing the classification error. It is chosen by 

means of a validation set [5].  

 

Figure 1: Illustration of decision boundaries of SVM 

classifier found by using radial basis function (RBF) 

An example of the SVM decision boundary for 

2D classification generated by Chen et al is as depicted 

in Fig.1. Both classification boundary and the 

accompanying soft margins are represented by bold line 

and timid lines, respectively where as black dotted and 

white dotted fall on opposite sides of the decision 

boundary. The circled points are the support vectors that 

lie closest to the decision boundary.
 

 

 

3. K- Nearest Neighborhood 

The k-NN algorithm is amongst the simplest of all 

machine learning algorithms. The training phase of the 

algorithm consists only involves storing the feature 

vectors and class labels of the training samples. In the 

actual classification phase, the test sample (whose class is 

not known) is represented as a vector in the feature space. 

Distances from the new vector to all stored vectors are 

computed and k closest samples are selected. 

There are several ways to classify the new vector to 

a particular class; one of the most used techniques is to 

predict the new vector to the most common class 

amongst the k nearest neighbors. A major drawback to 

using this technique to classify a new vector to a class is 

that the classes with the more frequent examples tend to 

dominate the prediction of the new vector, as they tend to 

appear in the k nearest neighbors when the neighbors are 

computed due to their large number. 

A way to overcome this problem is to take into 

account the distance of each k nearest neighbors with the 

new vector that is to be classified and predict the class of 

the new vector based on these distances. The best choice 

of k depends upon the data; generally, larger values of k 

reduce the effect of noise on the classification, but make 

boundaries between classes less distinct. A good k can be 

selected by various heuristic techniques, for example, 

cross-validation. The special case where the class is 

predicted to be the class of the closest training sample 

(i.e. when k = 1) is called the nearest neighbor algorithm. 

If k = 1, then the object is simply assigned to the class of 

its nearest neighbor.  

An apparent extension of the nearest-neighbor rule is 

the k-nearest-neighbor rule which classify x by assigning 

it the label most frequently represented among the k 

nearest samples as shown in Fig. 2. In other word, a 

 



decision is made by examining the labels on the k nearest 

neighbor by taking a vote. [11]. 

 

Figure 2: The k-nearest neighbor query forms a 

spherical region around the test point x until it encloses k 

training samples, and it labels the test point by a majority 

vote of these samples. In the case for k = 5, the test point 

will be labeled as black.
 

 

In general, k-NN classifier tend to produce 

piecewise linear decision boundaries as depicted in 

Figure 3. The decision boundary in a 1-NN classifier is 

made of concatenated segments of Voronoi tesselation; 

in which a set of objects decomposes the space into 

Voronoi cell.  

 

 

 

 

 

 

 

 

 

Figure 3: Illustration of piecewise linear decision 

boundary of k-NN classifier for two different feature 

vectors 

 

Each object’s cell then consists of all points closer to 

the object than to other objects and as a result all points 

within that cell are assigned that particular class. Overall 

the decision boundary is equal to the union of cell 

boundaries where class decision is different on each side. 

Details of the k-NN classifier can be found in [11]. 

4. Brief description of the 2-dimensional dataset 

This section provides the description of all four 2-D 

datasets used in the study. The datasets consist of two 

types: the naturally generated datasets and artificially 

obtained datasets. The naturally generated datasets are the 

Eigenpostures and Breast cancer. The eigenpostures 

dataset comprises 300 images of human postures [6],[7] in 

which 200 (100 each for standing and non-standing) are 

used as training data and another 100 (50 each for 

standing and non-standing) as testing dataset. Both 

classifiers were trained to classify the human posture of 

standing and non-standing. Based on the results obtained 

from [6] and [7], the best combination involving the 

second and forth eigenpostures was selected. PCA 

technique was used to derive the EPHuman data. 

Meanwhile the BCancer dataset consisted of 200 training 

data and 167 testing data that was obtained from the UCI 

Machine Learning Repository. 

In this section, the performances for both classifiers 

are illustrated in terms of their decision boundaries, 

analyzed and evaluated. Various datasets were used in the 

analysis so that comparison in terms of the SVM and the 

k-NN classification accuracies and visualizations of the 

decision boundaries of the two classifiers can be made 

and conclusion can be drawn accurately.  

5. Experimental Setup 

To conduct the experiment, several parameters 

needed to be set up first. For instances, the k-NN 

classifier used in this experiment uses a small values of k 

since the smaller k values will provide a higher variance 

for this classifier and as such, will make the illustration of 

decision boundaries more accurate with the highest 

classification rate. Therefore, in this study, the optimal 

value of k is used to obtain the smallest error of 

classification rate. In this study, the range of k between 1 

to 10 was tested to identify the best value. As for the 

SVM, the Gaussian radial basis function (RBF) kernel and 

the Sequential Minimal Optimization (SMO) techniques 

are used as solver for the QP problem.  

Cross-validation technique was used to find the 

optimal value of the kernel parameter of SVM such as 

regularization parameter, C and kernel width parameter, 

σ. Having obtained the optimal values would yield the 

best generalization performance with the smallest values 

of classification error rate. Both classifiers were 

implemented using the Statistical Pattern Recognition 

Toolbox and Matlab 7.0. 

6. Results and Discussions 

The performance analysis of the SVM and k-NN 

started with the experiments using the natural datasets and 

 



then the artificial data. Typically results are displayed, 

discussed and analyzed in terms of classification 

accuracies and tabulated as shown in Table 1. The same 

will be done here but an additional effort has been made 

to display the results and discuss the classifier 

performance by means of their decision boundaries. As 

expected, our results revealed the superiority of the SVM 

classifier over the k-NN. For the EPHuman dataset, both 

classifiers perfectly separate the two classes of standing 

and non-standing eigenpostures, but with the larger 

dataset comprising the BCancer data, the SVM 

outperformed the k-NN by almost half. Next, the artificial 

datasets are used to analyze and evaluate the classifiers. 

As tabulated in Table 1, both SVM and k-NN did not 

perform well in separating the two classes of SRoll 

dataset. However, SVM performed slightly better (2% 

more) compared to k-NN. For the Tpeaks dataset, which 

is smaller than the SRoll, the SVM misclassification error 

was 1.48% whilst the k-NN obtained a 2.22% error. 

 

Table 1: Performance Comparison Of SVM and k-NN 

Classifier Based On Classification Rate With Optimal 

Values Of Each Classifier Parameters 

 

 

 

Data Sets 

 

SVM k-NN 

Optimal 

Values 

(C, σ) 

 Error Rate 

(%) 

Optimal 

Values 

k 

Error Rate 

(%) 

EigenPostures 

(EPHuman) 
(10,0.1) 0.0 

 

1 0.0 

Breast Cancer 

(BCancer) 
(1,1) 8.38 1 15.57 

Swiss roll 

(SRoll) 
(100,5) 32 1 34 

Twinpeaks 

(Tpeaks) 
(100,0.1) 1.48 1 2.22 

 

Selected samples of decision boundaries of the 

classification results are illustrated in Figure 3(a), 4(a), 

5(a) and 6(a) for the SVM classifier and Figure 3(b), 

4(b), 5(b) and 6(b) for the k-NN classifier using the 

EPHuman, BCancer, SRoll and Tpeaks datasets. Even 

though the classification results for the eigenposture 

dataset recorded perfect performance, the performance 

classification of boundaries differs slightly. Similar 

classification boundaries were noted for the Tpeaks 

dataset shown in Fig. 6 but for the SRoll datasets in 

Figure 5 the decision boundaries are much smoother for 

the SVM compared to the k-NN.  It is believed that the 

smoother decision boundaries contribute to the better 

performance of SVM. 

 

7. Conclusion 

It is evident that based on the classification 

accuracies and supported by the illustrations of the 

decision boundaries, SVM has been proven to be the 

better classifier than the k-NN. Visualization of the 

decision boundary serves as an aid to better support the 

attained results and for the researcher to better 

understand and appreciate the results. 
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Figure 3a: SVM classifier 

Decision Boundary for Eigen-

posture dataset 
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Figure 3b: k-NN Classifier 

Decision Boundary for Eigen-

postures dataset 
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Figure 4a: SVM Classifier 

Decision Boundary for Breast 

Cancer dataset 

Figure 4b: k-NN classifier Decision 

Boundary for Breast Cancer dataset 

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

 Cell Size

C
e
ll
 S

h
a
p
e

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Cell Size

C
e
ll
 S

h
a
p
e



 

Figure 5a: SVM Classifier 

Decision Boundary for Swiss  

dataset 

Figure 5b: k-NN Classifier 

Decision Boundary for Swiss  

dataset 
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Figure 6b: k-NN classifier Decision 

Boundary for Twinpeaks  dataset 

Figure 6a: SVM Classifier Decision 

Boundary for Twinpeaks  dataset 
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