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Abstract 
 

Variable ballast, a common mechanism in 

underwater vehichle, is utilized as vertical motion 

actuator of a spherical URV in order to control its  

depth positiong. Since the model of this system is 

nonlinear and controllable therefore state-space 

feedback linearization is utilized in this depth 

positioning. The idea of state-space feedback 

linearization is to algebraically transform all state 

variable  of nonlinear systems dynamics into (fully or 

partly) linear ones, so that linear control techniques 

can be applied. This method can stabilize the 

equilibrium point of this system which is unstable in 

open loop system. From the control analysis and 

simulation results, it can be observed that the 

asymptotical stabilization is achieved by tracking the 

error. Hence, state-space  feedback linearization can 

also be applied for tracking a trajectory of desired 

depth position. 

 

Keyword: variable ballast, spherical URV, feedback 

linearization 

 

1. Introduction 
 

Demands on exploring undersea environments are 

being increased. Many equipments of oil and gas 

companies or power system and communication 

companies which are located at undersea, need to be 

maintained and monitored regularly. Underwater 

robotic vehicles (URVs) have long been applied in this 

application. The URVs also have been used for 

gathering bathymetry data for oceanographic research. 

The URVs are used to perform task in depths where it 

would be too hazardous or impractical for humans to 

do. Kinds of task that performed by URV will decide 

the proper shape’s design of URV’s body/hull. 

If URV is applied for tracking or surveying that 

should travel in a long distance, torpedo-like or 

airplane-like is suitable, because in this shape the URV 

can be easier to move in high speed. If the URV 

doesn’t need many maneuvers, the hull in box frame is 

suitable, e.g. JHUROV [1]. If the URV need to move 

in omni-direction, a sphere shape is suitable, e.g. ODIN 

[2]. ODIN is an URV with sphere shape and closed 

frame. The sphere shape design has axially symmetric 

and it gives advantage in providing uniform drag in any 

direction of its movement, therefore it is easy to 

develop the algorithm to control the motion of the 

URV. By this advantage, a sphere URV is suitable for a 

test-bed. In this paper, the sphere shape of URV is 

used. 

In order to be able to move, URV must be equipped 

with thrusters as motion actuators. If the URV moves at 

horizontal plane, it should be in zero buoyancy 

condition therefore the thrusters can work optimum. 

Zero buoyancy of the URV is not easy to be hold if the 

URV has fixed mass, because sometime the density of 

the water is uncertain from one place to another. 

Hence, a mechanism that can maintain the zero 

buoyancy condition which is known as variable ballast 

is needed. This mechanism will maintain the difference 

between buoyancy and the weight of URV. Hence, this 

mechanism can also be used as motion actuator in 

vertical plane. 

Many designs of variable ballast mechanism have 

been proposed. A variable ballast mechanism by 

utilizing water pump in order to control water in the 

ballast tank was developed by [3, 4].  High pressure air 

compressor to control amount of water in the ballast 

tank was used in [5]. All of these mechanisms used 

fixed volume of the ballast tank. They just controlled 

the volume of the water in the tank. The other variable 

ballast mechanism was presented in [6] which is 

utilized variable ballast tank in order to control the 

URV’s buoyancy.  

In this paper, the variable ballast mechanism 

presented in [6] is used as motion actuator for depth 

positioning of a spherical URV. A control strategy is 

proposed to locate the spherical URV at certain depth. 

Since the model presented in [6] is a nonlinear model, 

then feedback linearization control strategy is designed.   

Feedback linearization is one of the methods in 

designing feedback controller for nonlinear control 

systems. The main idea of this method is to 

algebraically transform nonlinear systems dynamics 

into (fully or partly) linear ones, so that linear control 

techniques can be applied. This differs entirely from 

conventional linearization method because feedback 
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linearization is achieved by exact state transformation 

and feedback, rather than by linear approximations of 

the dynamics. The feedback linearization can be 

viewed as a method of transforming original system 

models into equivalent models of a simple form.  

 

2. Modeling 
 

The model of URV used in this paper was presented 

in [6]. This model describes depth positioning of a 

spherical URV by using variable ballast mechanism as 

the actuator. The design of this spherical URV is 

shown in Fig. 1. 

 

 

 

   

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 1. Shape of spherical URV and its parts 
 

Since we just consider to the vertical motion of the 

URV in order to control the depth position of this 

URV, the forces work in this system are illustrated in 

Fig. 2.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Forces act at URV’s body 
 

From Fig. 2, gmW t is the gravitation force, 

gVF fbwB   is buoyancy force, 

vvACF wfbDD 
2

1
  is drag force, tm  is total mass of 

URV, g  is gravitational acceleration, w  is density of 

water, fbV  is volume of the hull, fbA  is projected area 

of the hull, v  is velocity, DC  is drag coefficient and 

mmm st  , where m  is mass changes due to the 

change of volume of water in the ballast and sm is the 

initial total mass of URV’s hull. Then by solving all the 

forces and motion equation of the URV, the dynamic 

model for depth positioning a spherical URV is 

presented as [6] 
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where Wxvxzx  321 and,, are depth position, 

velocity of vertical motion, and weight change of the 

variable ballast system respectively, and are known as 

state variables, mPu   is the power needed to change 

the weight of variable ballast in W  and is known as 

input. am  is the added mass,  bsW  is initial weight of 

water in ballast tank, vbA  is the area of variable ballast 

tank, ihV  is initial volume of air inside the URV’s hull, 

aP  is air pressure at water surface, mk  is coefficient of 

worm gear and power screw couple, and gck  is the 

transmission ratio or velocity reduction of worm gear 

and the power screw, and all are constant. 

 

3. Stability of a Point 
 

Consider Eq. 1, if 032  xxu  then the URV 

will remain at the last depth position, zx 1 . This 

condition is known as equilibrium condition. 

Therefore, the equilibrium condition can occur at any 

depth position. To analyze the stability of this 

equilibrium condition, Lyapunov provides a method 

which is known as Lyapunov direct method [7].  By 

analyzing the possible Lyapunov function, 
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(a) Side view 



),(and)( xx VV   the stability of the equilibrium point 

can be determined. The possible Lyapunov function 

can be obtained by using gradient method [7, 8]. Since 

the possible Lyapunov function of Eq. 1 is obtained as 
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then by considering the design parameter of the 

spherical URV in [6], it is known that 32 and xx  are 

upper and lower bounded, 
g

x
mm as

3 . 

Therefore, from the above condition of the system, and 

if condition 3
2

22 2)( xxACxsign wfbD   and 

32 xx  or if 3
2

22 2)( xxACxsign wfbD   and 

32 xx   are satisfied then the gradient )(xV  at Eq. 3 is 

positive definite, but this condition cannot always be 

hold therefore )(xV is not positive definite nor 

negative definite or semidefinite. By considering the 

possible Lyapunov function at Eq. 2, if 0x , 

32

2
3

2
2

22
xx

xx
 , is valid then 0x  the Lyapunov 

function is positive definite, but this condition cannot 

always be hold thus )x(V  is not positive definite nor 

negative definite. Hence, from characteristic of )(xV  

and ),(xV  it can be concluded that the origin as one of 

the equilibrium point is unstable in Lyapunov sense [7]. 

Next, in order to stabilize this nonlinear system, state-

space feedback linearization will be used. 

 

4. Controllability 
 

An affine nonlinear system with single input and 

single output (SISO) can be expressed as 
 

 
(x)

g(x)f(x)x

hy

u
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To simplify checking controllability of nonlinear 

system at Eq. 4, local analysis is done, i.e. the results 

are valid only in neighborhood of operating point, but 

global results are available elsewhere [9]. Local 

controllability can be determined by examining the 

rank of the controllability matrix which is analogous to 

the linear controllability matrix. The controllability 

matrix of nonlinear system can be obtained by using 

Lie brackets which is expressed as [9] 
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where n  is order of the system, and 
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Revisit nonlinear model at Eq. 1, then vector f(x) and 

g(x)  can be express as 
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where  

as mmB 1 ; 
2

2
wfbD AC

B


 ; 
gcm

vbw

kk

Ag
B


3 ; 

vbw AgB 4 ;  avbPAB 5 ;  and  ihw VgB 6 .  

The controllability matrix C(x)  is obtained by using 

Lie brackets. This controllability matrix has full 

rank, 3, which is equal to the order of the system. Thus, 

the nonlinear model at Eq. 1 holds the condition to be 

controllable. 

 

5. State-Space Linearization 
 

A SISO nonlinear model given as Eq. 4 is to be 

state-space linearizable if and only if it satisfies the 

below conditions [8, 10]: 

 

 Controllable, the matrix 






 g(x)fg(x)fg(x)
1n-adad   has rank n  or it 

has full rank. 

 The vector fields  g(x),g(x),g(x),
ff

2n-adad   are 

involutive. 



 

A set of vector field  )(,),(1 xpXxX   is involutive if 

there is scalar function )(xijk  such that Eq. 8 is 

satisfied. 

jipjixXxxXad k

p

k
ijkjX i

 


,,1),()()(
1

  

 (8) 

Therefore when Lie bracket is taken with in this vector 

field, a new vector will not be generated. Hence the 

rank of    ,,),(,),(1 ji XXxpXxX ; 

jipji  ,,1  is equal to p . 

If both condition are satisfied, then new state 

variable (x)z   and new input v  are determined in 

such that satisfy a linear time-invariant relation  
 

 vbAzz   (9) 
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The feedback control law can be designed as 
 

 vu )()( xx    (10) 

where 
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where n  is order of the system. The new state z  is 

called the linearizing state, and the control law at Eq.10 

is called linearizing control law. The )(x  is 

diffeomorpishm in such that )(1
zx

   is satisfied. 

In order to determine the linearizing state z , the first 

state 1z  must be determined by considering the 

following conditions [8]: 
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Then the state transformation 

 Tn
zLzLz 1

1
11)(


 ffxz  . 

 Consider to designing the state-space feedback 

linearization for dynamic model given at Eq. 1, it must 

satisfy the conditions to be state-space linearizable 

before continuing the controller designing. As mention 

before, this dynamic model is controllable thus it holds 

first condition to be state-space linearizable. In view of 

the second condition of nonlinear system to be state-

space linearizable, since the dynamic model at Eq. 1 is 

3
rd

 order system then the set of the vector fields be 

examined for its involutivity are  g(x)g(x), fad .  By 

using m file in MATLAB (Appendix), the involutivity 

of these vector fields are analyzed. Since the rank of set 

of vector   g(x)g(x),g(x),g(x), ff adad  is equal to 2, 

then these vector fields are involutive. Therefore the 

dynamic model for depth positioning of the spherical 

URV given at Eq. 1 is state-space linearizable then 

state-space feedback linearization controller can be 

designed. 

By considering the conditions given in Eq. 12, the 

first component 1z  of the new state vector z should 

satisfy 
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Thus 1z  must be a function of 1x  only. The simplest 

solution to this equation is  
 

 11 xz   (14) 
 

The other states can be obtained by considering 

function f(x) given in Eq. 6. 
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Then the state space of state transformation is written 

as 
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where v  as new input of state transformation is the 

solution of )x(3z  that is 

 

 fg 333 zzuvz   (17) 

 
 

If we compare the transformed state variables to the 

original state variables, it is clearly seen that the 

transformed state variables have physical meaning that 

are depth position, velocity, and acceleration for ,1z  

2z  and 3z  respectively. 

By considering system in Eq. 16 as linear system, 

then linear feedback control strategy can be applied in 



order to stabilize the depth positioning system of the 

spherical URV. If feedback gain  321 kkkK  is 

applied to the closed loop system of model in Eq.16, 

and the desired depth position is given as dz1 , then the 

new input v  can be obtained as 
 

 Kz dzkv 11  (18) 
 

By locating the eigenvalues, ,  of this closed loop 

system in left of half-complex plane, this feedback gain 

will asymptotically stabilize the system. The 

eigenvalues of the closed loop system of Eq. 16 can 

obtained from the characteristic equation that is 
 

 012
2

3
3  kkk   (19) 

 

and if the desired characteristic equation of the closed 

loop system for depth positioning of the spherical URV 

is 

 0,,0)2)(2( 22  aaaa   (20) 
 

Thus the system is asymptotically stabilized, then by 

matching the coefficient of Eq. 19 and Eq. 20, the gain 

of the feedback can be expressed as 
 

 akaakak  4;4;2 3
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Since this controller asymptotically stabilizes the 

system then for t , the output dzxzy 111  . 

 

6. Simulation 
 

The control strategy obtained in section 5 is 

simulated in MATLAB/Simulink. The simulation is 

performed based on schematic diagram given in Fig. 3. 

Some parameters used in simulation are given in 

Table 1. 

 
 

Figure 3. Schematic diagram of control system 

 

By giving desired depth position dy  as step input, 

then the response of the control system is shown in Fig. 

4. To get optimal response, a proper value of   and a  

must be chosen. By choosing 77.0  and 036.0a  

the performances of the control system with are shown 

in Table 2. 

 

Table 1. Parameters of URV and water 

environment 

aP  : 1 atm vbD  : 0.18 m 

w  : 998 kg/m
3 

vbA  : 0.0254 m
2
 

  : 10
-3

 Ns/m
2
 h  : 0.08 m 

g  : 9.81 m/s
2
 bsW  : 9.96 N 

  gck  : 8.164x10
4
 rad/m 

sm  : 22.39 kg mLk  : 4.601x10
-5 

am  : 11.2 kg mUk  : 1.122x10
-4 

fbD  : 0.35 m max_mP  : 100 watt 

fbA  : 0.09616 m
2
 max_m  : 157 rad/s 

ihV  : 50 % of fbV    

 

where   is dynamic viscosity of water, max_mP  is 

maximum power of motor, and max_m  is maximum 

angular velocity of motor. 

 

 

 

 

 

 

 

 

 

 

Figure 4. Response of step input reference 
 
 

Table 2. Performances of the controller in 

multi step input reference of depth position. 

Step change 

(Depth 

position) 

(m) 

rT  

(s) 

sT  

(s) 

Over- 

shoot 

(%) 

sse / 

RMSE 

(m) 

0-30 25.6 224 0.234 0.069 

30-100 65.2 194.2 6.775 0.213 

100-30 87 267.3 0.322 0.085 

30-160 106.7 432.8 25.537 0.357 

160-30 127.1 342.2 0.307 0.051 

110-160 57.1 223.8 8.507 0.293 

160-110 87.1 224.8 0.077 0.219 
 

From Table 2, it can be seen that the downward 

motion is faster than the upward motion, because at the 

deeper position the hydrostatic pressure is bigger than 

the shallower one.  

single step input multi step input 



Fig. 4 shows that the controller can locate the URV 

at the desired depth position. The desired depth 

position behaves as the equilibrium point and the 

controller asymptotical stabilize this equilibrium point. 

Since the asymptotical stabilization is performed by 

tracking the error, then this strategy can be expected to 

be applied in tracking a trajectory. By applying the 

desired depth position as a trajectory, the response of 

the controller is shown in Fig. 5. 
 

 

 

 

 

 

 

 

Figure 5. Response for trajectory input 

 
From Fig. 5, it is seen that the actual depth of the 

URV keeps following the trajectory given as input 

reference. The output lagged to the desired trajectory 

thus the error occurs. The Root Mean Square Error 

(RMSE) for each trajectory is obtained as 9.213 m, and 

6.741 m respectively for triangle and sinus input. 

 

 

 

 

 

 

 

 

Figure 6. Error for trajectory input. 
 

If the change of the trajectory input is simply constant, 

such as triangle, the error converges to a constant 

value. This controller cannot make the error converge 

to zero when the input is given as trajectory. 

 

7. Conclusion 
 

The state-space feedback linearization that is 

utilized for depth positioning of a spherical URV, can 

stabilize the equilibrium point of this system which can 

occur at any depth position since velocity and input is 

zero. In open loop system, the stability of the 

equilibrium point is unstable which is analyzed by 

using Lyapunov direct method. 

Since the stabilization of the equilibrium point is 

performed by tracking the error then this strategy can 

also be used for tracking a trajectory, but the controller 

can not make the error converge to zero since the error 

converge to a constant value if the change of trajectory 

is constant. 
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