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In this paper we illustrate the role of dynamic geometry as an environment that 
propitiates the use of empirical explorations to favor learning to prove. This is possible 
thanks to abductive processes, related to the establishment of implications that 
university students of  a plane geometry course carry out when, supported by a 
dynamic geometry program, they solve a problem in which they must discover a 
geometric fact, formulate a conjecture and prove it. 

INTRODUCTION 
The potential of dynamic geometry programs to favor the connection between 
empirical exploration of geometric figures, the formulation of conjectures and the 
production of deductive chains is widely recognized (Laborde, 2000; Olivero, 2002; 
Cerulli & Mariotti, 2003; Mariotti, 2007; Arzarello, Olivero, Paola & Robutti 2007, 
Fujita, Jones & Kunimune, 2010). In such a connection, as our study reveals, both the 
establishment of implications and abductive argumentation play a primary role. From 
our point of view, the frequent use of the program permits students to recognize that 
any result obtained with it is possibly valid in the theory that the program models, and 
to take advantage of this circumstance to look for its justification in that theory.   
In the problem solving process analysis, the above mentioned authors have signaled 
out the role of abductive argumentation as the contact point between conjecture 
production and proof construction. Yet, from our point of view, there is a need for 
greater research evidence of the role dynamic geometry plays to orient the search of a 
specific thematic core within a theory and to identify those properties that can be used 
to justify a conjecture. This deficiency leads us to pay close attention to the student’s 
arguments in the different moments of a problem solving process, to analyze the effect 
of the use of dynamic geometry in those arguments and link between the establishment 
of implications and the abductive processes. 

THEORETICAL REMARKS 
We consider exploration, in general, as a heuristic type of activity that can be carried 
out in the world of phenomena and in the theoretical world. In the world of phenomena, 
exploration is realized on geometric figure representations and it has an empirical 
character. We therefore refer to it as empirical exploration. When it is carried out in a 
dynamic geometry environment, the objective is to detect invariants and formulate 
them as regularities as properties, through inductive arguments. We name this activity 
dynamic exploration. In the theoretical world, the exploration is realized on the 
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statements that make up individual knowledge. We refer to it as theoretical exploration. 
It is carried out with the purpose of recognizing or finding statements that permit 
justifying an affirmation or making decisions about where to direct empirical 
exploration.  
From a mathematical point of view, an implication is a narrative which expresses that a 
statement is a logical consequence of a theory (Arzarello, 2007) and therefore, if such 
theory, or the part of it that is of interest, is admitted to be valid, then the statement is 
also, once a proof of its validity is produced. In other words, a conditional statement, p 

 , is a logical consequence of a theory if q can be obtained, from  using the theory. 
In the educational realm, we are interested in identifying possible p, implication 
manifestations linked to the recognition of a work space in which efforts in finding a 
path to justify the conditional and being able to affirm that it is a logical consequence 
of the theory are concentrated, even if there is no clear way to construct the 
justification.  
Once placed in a work space, we consider as an abductive process the act of evoking 
specific conditional statements with the same consequent as the formulated conjecture 
that is going to be proven, to obtain a possible antecedent which leads to the 
consequent. This notion is compatible with Peirce’s abduction (Arzarello, Olivero, 
Paola & Robutti 2007); evidencing this lets us assure that the evocation of that 
theoretical work space actually gave place to the establishment of an implication. We 
differentiate the process of establishing an implication from that of formulating an 
abduction because in the first case a theory is referred to, or part of one, and in the 
second case, the reference is to one or more rules or specific statements that can be later 
connected with the consequent found. 

RESEARCH CONTEXT 
In our research study we adopted a qualitative methodology situated within the 
descriptive-interpretive tradition. We gather information in the natural classroom 
context that is interpreted through analysis categories that arise from the data study and 
from the conceptualization we develop. Guided by the framework, we search for 
evidence of the connections students make between their experimental activity and the 
recognition that a property is logical consequence of a theory, giving way to possible 
implications throughout the problem solving process.  
The students, who in the first semester of 2008 were enrolled in a Euclidian geometry 
course that is part of the mathematics requirements of the pre-service teacher program 
of the Universidad Pedagógica Nacional (Bogotá, Colombia), were invited to solve the 
following problem: Using dynamic geometry, construct C and a fixed point P in its 
interior. For which chord AB of the circle, containing point P, is the product AP  BP 
maximum? 
The problem requires that students recognize that to theoretically be able to establish 
that there is no maximum value it is necessary to use the relationships between the 
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lengths of the segments determined by point P in two chords that contain it, and to 
discover that angles subtending the same arc are congruent, a fact they did not know. 
We consider that the problem has optimal characteristics for our study: (i) it is similar 
to other problems proposed to the students in previous courses, in which they are asked 
to find the conditions so that a certain property is satisfied; (ii) the students had a 
theoretical knowledge in geometry that permits interpreting the representation 
phenomena, due to the construction of geometric figures and their exploration; (iii) the 
students had sufficient experience in the dynamic geometry software management, 
reason why we supposed they would use it ideally as an exploration environment to 
establish a regularity that would become a conjecture; (iv) a first approximation to the 
problem generally favors an anticipating a result that is later discarded or ratified with 
exploration, and therefore, the interest to justify their findings is impulse. 

CASE STUDY 
Due to space limitations, to illustrate the analysis we made we will present only some 
moments of the work carried out by the group conformed of Susana (S), Juan (J) and 
Felipe (F) who established a correct implication, developed work rich in abductions, 
and were able to progress in the proof of their conjecture. 
S initially represented their anticipation using dynamic geometry, constructing a chord 
that contained both P and C, the center of the circle, and calculating the product of the 
measurement of the two segments determined by P on the chord. As soon as she 
obtained the product, S expressed that they should have constructed “any” chord 
containing P so that they could compare results. She then constructed another chord 
without erasing the one she already had, mechanism that she used to carry out the 
dynamic exploration of the situation. Immediately, J realizes the invariant: “Constant!” 
and asks himself why. 

143. J: I don’t know. Maybe it is because each time one moves, 
this one diminishes and this one increases. [Shows  and 

.]  
148. J: But it diminishes proportionally. 
153. S: […] [Speaking to J] But why does it diminish 

proportionally? That is the doubt. Because then it always is, that is they 
diminish and increase the same amount. [She refers to the lengths of the 
two subsegments.] 

154. J: Let’s look at the ratio to see what happens. Ahh, which is which? 
  […] [Since they can’t find the adequate combination to obtain equal ratios, 

they decide to analyze algebraically the factors of the constant product.] 
270. J: No, because no, uhmmm, up to now, what do we have? Of what S has there, 

we found that AP times BP is a constant, right? 
271. S: Aha. 
272. J: And that RP and SP gave us the same constant, therefore they are the same. 
273. S:  PA over PS …PR? [Writes in the notebook:  PA•PB=PR•PS;  
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  PA/PS = PR/PB] 
317. J: We are assuming that this ratio is always the same. 
318. S: Well, in theory it must be so. 

J observes that as he drags one of the ends of chord  , the length of   increases 
when that of   diminishes. This observation is bizarre for S reason why J adventures 
a first explanation: “it diminishes proportionally” [143]. Initially, J is referring to the 
length reduction and increase of the two segments in one chord and it seems that 
mentioning proportion is not, at that moment, because he is thinking of the theory of 
proportions. However, the action that they carry out with dynamic geometry leads J to 
connect the idea of constant product with constant ratio. Without explicitly mentioning 
a definition, a theorem or a postulate from which the fact can be derived, J invites his 
partners to find reasons that lead to a proportion from which the constant product is 
derived [154]. 
His proposal to examine proportions is for us an implication especially because, in 
what follows, the students devote their time to form ratios between the segment 
measurements they have found. Recurrently, they mention that their conclusion must 
be a logical consequence of the theory, something we consider as another factor to 
assure that this is a manifestation of implication. Later, dynamic geometry becomes an 
instrument to determine which ratios permit establishing the evoked theory as the 
theoretic foundation of the result they have established. The manifestation of 
implication can be schematized as follows: 

Theory A:  Proportions 

Concluded fact: The product of the measures of the lengths of the 
segments in which the chord is divided is constant (q) 

When the students are able to correctly establish the ratios, a process of geometric 
implication begins, because they evoke triangle similarity. 

324. S. Do we have it? In theory, we should have similar triangles, right? 
325. J: Triangles? 
326. S: Similar triangles. 
327. J: Yes, yes, yes. 
328. S: That is, what we have drawn are similar triangles. 
329. J: In theory, yes. 
330. S: Well, we haven’t drawn the triangles as such, right? But implicitly, there 

are similar triangles. 
  […] [In what follows, they discuss about how to express in their conjecture 

that the product is the same regardless of which chord containing P is 
chosen.] 

529. S: Products and ratios… Well construct the triangles because … 
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Without having represented triangles in the constructed figure, S alludes to the 
possibility of having similar triangles. So again, there is a manifestation of an 
implication. It is not an abduction because she does not evoke a specific rule but a 
theory and they do not know yet what to use from it. Such theory becomes the space for 
their future work. Once they have finished the process of writing their conjecture so 
that it clearly expresses the generality found, S again evokes the theory of similar 
triangles, stressing that it is where they can find an explanation. In intervention [529], S 
explicitly says why she establishes the implication with similar triangles. The scheme 
represents the above: 

Theory B:  Similar triangles 

Fact that wants to 
be concluded: 

Ratios between the measures of the lengths of the 
segments in which the chord is divided are equal (q) 

The students look for arguments that in the Theory of similar triangles guarantee that 
this relation exists for a pair of triangles. They begin an eminently theoretic search (in 
an abductive way) to guarantee the similarity and to be able make a deduction. They 
allude to more specific elements to assure the similarity, as the Angle-angle Criteria, 
and they propose an auxiliary construction for that effect: the construction of a line 
parallel to one of the sides of a triangle, since they must establish the congruence of 
another pair of angles that are not vertical angles. 

514. J: For similarity, what must we do? 
515. S: For similarity we have the criterion… 
516. J: Yes. 
517. S: The theorem… 
518. J: But, what do we have here? That is … 
519. S: Here we have only two congruent angles, and that is all. [They have marked, 

in a paper representation, the congruence of the vertical angles.] 
543. S: We need another angle at least. 
  […] [In this interval, the students theoretically explore possible auxiliary 

constructions to obtain the congruency of another pair of angles, all of them 
unsuccessful.] 

Even though the students do not mention the Angle-angle criteria explicitly, they are 
referring to it, since S alludes to the pair of angles they can already assure as congruent 
[519] and she mentions the need to establish that another pair of angles are congruent 
[543]. This is an abduction process that can be represented as: 

Fact they want to 
justify:  

Similar triangles (q)  

Theoretic backing: Angle-angle similarity criteria 
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Abduction product: The necessity of two congruent pairs of corresponding 
angles (p) 

544. J: But I do not see anything. 
545. S: No, there isn’t … [A few seconds of silence go by.] 
546. J: The angle… 
547. F: Construct a parallel line… 
548. J: But, parallel to whom?  To this? [the short side of the triangle that does not 

contain  P.] 
549. S: We would need a parallel line to this one [the same side already mentioned] 

through this point [point P]. 
551. J: If we construct a parallel to this through here? [It can’t be 

seen what he is referring to.] There, what would we get? 
We would have only this angle with this one [angles ARP 
and BSP], right? [He is referring to the graph on the 
paper.] 

The students clearly know what the consequent of the conditional statement they want 
to establish is but they have not identified the specific angles. F suggests constructing a 
parallel line [547]; S and J accept the idea, and specify the point the line must contain 
and to which line it must be parallel.  It is an abductive process because they mention a 
possible antecedent, referring to alternate interior angles [651], to be able to conclude 
the consequent they have established. This process is schematized: 

Fact they want to 
justify:  

The existence of another pair of congruent angles 
(alternate interior) (q) 

Possible theoretic 
backing: 

Paralelism 

Abduction product: Existence of a line parallel to a side of the triangle (p) 

CONCLUSIONS 
Our research interest is centered mainly in the student’s search for the nexus between 
the theory they count on, the information dynamic geometry provides, the explicit 
establishment of implications and the abductive processes that ultimately lead to a 
proof. We presuppose that the evocation of a work space directs the exploration in 
search of an explanation of why a statement is true, and that the proof construction can 
include a mixture of deductions and abductions through which they advance towards 
finding the correct path. 
When one is learning to prove, generally the argumentation on which lies the 
construction of a justification is of an abductive character. In a dynamic geometry 
environment, the students carry our empirical explorations, not only to establish a 
conjecture, but also to work within the frame of a theory evoked through their 
implication processes and to determine the viability of the ideas that emerge from their 
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abductive processes. It is worth noting that this type of environment plays an important 
role in the evocation of theories; the first explorations carried out by the students 
induced them to frame themselves within the theory of ratios, fact that lead them to the 
theory of similar triangles.  
This study well portrays the usually hidden nature of genuine and creative 
mathematical activity in which a mathematician is involved when he wants to justify a 
statement he believes to be true. Even though the expected product is a deductive chain 
that shows the statement’s validity, the path to attain that involves other type of 
processes related to the search of generalizations and of ideas or rules that can be 
warrants in the justification of the induced property. 
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