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We want to show how we use the software Cabri, in a Geometry class for preservice 
mathematics teachers, in the process of building part of an axiomatic system of 
Euclidean Geometry. We will illustrate the type of tasks that engage students to 
discover the relationship between the steps of a geometric construction and the steps 
of a formal justification of the related geometric fact to understand the logical 
development of a proof; understand dependency relationships between properties; 
generate ideas that can be useful for a proof; produce conjectures that correspond to 
theorems of the system; and participate in the deductive organization of a set of 
statements obtained as solution to open-ended problems.  

INTRODUCTION 

Our research group Æ • G, constituted in 2003, has centred its activity on issues 
related to the learning and teaching of proof and proving in Geometry. One of its 
goals is to identify conditions and actions that foster learning to prove in a university 
level Geometry course. Particularly, we are interested in using Cabri as a mediating 
tool in the learning to prove process. Our framework is based on ideas exposed in 
several research agendas (Radford, 1994; Jones, 2000; Laborde, 2000; Mariotti, 
2000; Marrades and Gutiérrez, 2000; Healy, 2000), which promote that when 
geometric construction tasks are linked with the practice of justifying and organising 
axiomatic systems, the possibility of learning to prove is increased. 
Most research on teaching mathematical proof with Cabri focuses on secondary or 
high school students in a Geometry course. The principal studies focus on the analysis 
of the roles of proof in the Mathematics curricula, students’ difficulties in proving, and 
teaching experiments to encourage learning to prove (Mariotti, 2006). Many studies 
investigate how to introduce the students to a theoretical perspective of Geometry, 
linking geometrical constructing tasks with production of statements to justify, for 
example, why certain geometric properties of a construction remain invariant when we 
drag their free objects (Jones, 2000). Other studies advance towards the teaching of 
proof, analyzing the role of the drag function in helping students look for properties, 
special cases, counterexamples, etc., that could be related to form a proof (Marrades 
and Gutierrez, 2000). But studies based on these same aspects with university 
students, corresponding to the rigorous treatment required at such a level, are 
insufficient (Marrades and Gutiérrez, 2000).  
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In this paper, we show how the software Cabri is used when the activity in the class, 
with preservice mathematics teachers, consists in building a part of an axiomatic 
system of Euclidean Geometry following, at least partially, the development of a 
specific system proposed by a mathematician. The examples hereby presented have 
been chosen because they help us to show how the students participate in the 
construction of the axiomatic system, transferring knowledge and information 
obtained using Cabri, for the justification of geometric facts, to the usual context of a 
written proof. We will illustrate the type of tasks that impel students to recognize the 
relationship between the steps of the construction and the steps of a formal argument 
and thus help them understand the logical development of a proof; understand 
dependency relationships between properties; generate ideas that can be useful for a 
proof; produce conjectures that correspond to theorems of the system; and participate 
in the deductive organization of a set of statements obtained as solution to open-
ended problems. With our proposal, we hope to contribute new elements about the 
use of Cabri in the learning to prove, when the task is building an axiomatic system. 

RESEARCH FRAMEWORK  
We adopt the sociocultural perspective that views learning as “becoming a participant 
in certain distinct activities rather than as becoming a possessor of generalized, 
context – independent conceptual schemes” (Sfard, 2002, p. 23). What is learnt, in this 
case, is a distinctive task of the mathematics community, proving, which includes not 
only actions related to the act of justifying but also actions associated with formulating 
conjectures, all of which must be theoretically warranted by an axiomatic system.  
About the teaching of proof, unlike a direct axiomatic presentation of a system, we 
are proposing what de Villiers (2004) denominates “rebuilding approach”. The 
content isn’t displayed to the students as a finished structure; it is constructed by the 
apprentice, with teacher scaffolding, trying to create a typical organization. This 
approach is promoted by researchers like Polya and Freudenthal (cited in de Villiers, 
2004) when they declare that students must follow a similar way by which the 
mathematical content was discovered or invented. A “rebuilding approach” allows a 
meaningful approximation to the content and creates the conditions that enable 
students to actively participate in the construction and development of the axiomatic 
system.  
With the purpose of using the “rebuilding approach” of a part of an axiomatic 
Geometry system, Cabri assumes a central role, as environment that offers the 
mediation for the construction of meaning of statements that could be theorems of the 
theoretical system. Specifically, the main ideas that underlie the design of the 
empirical study and the analysis of data are: 

- The possibility of establishing a correspondence between the figure construction 
tools in Cabri and the properties and geometric relations of the figures constructed 
in a classic Euclidean Geometry. This allows the introduction of a method of 
validation, derived from the analysis of the construction process, and to link the 
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steps of a construction that illustrates a theorem with the steps of a deductive 
argumentation to prove it (Mariotti, 1997). 

- The formulation of open-ended problems that give rise to the production of 
conjectures of the form if... then... as a way to take advantage of the diverse 
exploration tools that the software has. Radford (1994) proposes modifying the 
theorems that are going to be incorporated in the axiomatic system into statements 
of the type: conditions that a certain figure must fulfil so that it has such property, 
thus creating open-ended problems. 

- The possibilities of exploring figures in Cabri with the intention of finding 
properties that help the students elaborate proofs. The use of Cabri helps students 
look for properties, create auxiliary lines, recognise parts of special triangles or 
quadrilaterals that could be linked to form a proof (Marrades and Gutierrez, 2000; 
Laborde, 2000). 

- The “soft” or “robust” constructions (Healy, 2000) that lead to the production of 
diverse conjectures associated to a family of figures which can be organised to 
form part of the axiomatic system constructed. 

THE TEACHING EXPERIMENT 
The sample 
The teaching experiment has been carried out, during successive semesters, with 
future secondary school Mathematics teachers in the course Plane Geometry, which 
corresponds to a second semester course of the curriculum. During 10 semesters, the 
curriculum blends the study of Mathematics with courses in Mathematics Pedagogy 
and Didactics.  The Mathematics courses cover topics of the principal branches of 
this discipline: Algebra, Geometry, Calculus and Statistics (more or less with the 
same requirements as expected when the degree is in Mathematics). The study of 
didactics and pedagogy is centred on the process of teaching and learning 
Mathematics and on analysing the Math studied in schools. Plane Geometry is the 
second Geometry course that the students take at the University. The first course, 
Elements of Geometry, has been designed to introduce students to the field of 
Geometry, using an intuitive and informal approach, where the main tools used are 
ruler and compass. The aim of this course is to help students gain a conceptual frame 
for future courses; students analyse several important, but isolated, geometrical 
properties and work on developing skills such as visualisation, conjecturing, 
communicating and arguing. It is in Plane Geometry where they first face the task of 
formal proving, within an axiomatic system. 
The experiment 
The teaching experiment has taken place during the 16 weeks of the Plane Geometry 
course, for several semesters. The topics officially included in the course are the 
usual ones: relations between points, straight lines, planes, angles, properties of 
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triangles, quadrilaterals, circles, and congruency and similarity relations. Some pre-
established conditions for the course are: the general task for both teacher and 
students is the construction of a portion of an axiomatic system of Plane Geometry, 
through their participation in problem solving tasks and their social interaction; 
opportunities for the students to engage in the activity of proving are given since the 
beginning of the course; the teacher’s role is to introduce the students into the activity 
of proving; Cabri is used as a mediation tool that contributes to form a suitable 
environment for proving. 
We have the conviction that when students explore problems with Cabri, they feel 
confident about the truth of their conjecture, and find important ideas to help them 
construct a proof.  Also, we are looking for a meaningful approach to the concepts 
and relations studied, in an environment in which students have the opportunity to 
work together: (i) exploring geometrical properties; (ii) finding regularities while 
they solve problems; (iii) making conjectures; (iv) formulating justifications about 
geometrical facts and, (v) organising those ideas and justifications in a particular 
axiomatic system. Instead of having the teacher expose the axiomatic system directly, 
we want the students to make connections between empirical and theoretical forms of 
working and, to participate as a community, whose task is learning to prove while 
building an axiomatic system for Plane Geometry, reason why not always the entire 
course topics are covered during the semester.  
 
The course has always been taught by one of the authors of this paper. One of the 
researchers was present in all the class sessions during the first semester of 2004, 
taking field notes and making an audio register of the general discussions and the 
group work, which were later transcribed. During the successive semesters, the events 
in the classroom continued being object of analysis and revaluation. The team kept on 
meeting periodically to decide what events of those classes should be registered and 
analysed, and to design the tasks to be used. Designing open-ended problems that are 
related to the axiomatic system so far constructed and are useful for the activities of 
conjecturing and proving, has been a complex task, in spite of the many beautiful 
problems that exist in dynamic geometry but whose proofs require geometric 
knowledge which is far beyond that which is included in our system. The study of all 
the fragments gave rise to the identification of the examples that are hereby reported 
to illustrate how we use the software to help build an axiomatic system. 
CABRI’S ROLE AND SOME STUDENT RESULTS 
Using Cabri to understand the logical development of a proof  
One of the main norms established in the class, with respect to the type of proof 
accepted, is the logically organized argument using definitions, axioms and theorems 
previously known and accepted by all. To help the students understand the logical 
development of a proof we use the idea, raised by Mariotti (1997), concerning the 
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relationship between the theoretical process of a proof and the organization required 
for the construction of a figure that illustrates the theorem. 
 

Statement Justification Construction in Cabri and 
related steps in the proof 

1. A, B, and C are non 
collinear points. 

Given 

2. AB exists. Line Postulate 

3. AB  exists. Definition of segment 

4. Let M be the midpoint 
of AB . 

Midpoint Theorem 

5. CM  exists. Line Postulate 

6. CM = r, r > 0. Distance Postulate 

7. Let 0 and r be 
coordinates of C and M, 
respectively. 

Ruler Placement Postulate

8. Let D be point on CM  
such that coordinate of D 
is 2r. 

Ruler Postulate 

9. 0 < r < 2r. Property of real numbers 

10. C-M-D. First Betweeness 
Theorem 

11. CM = ⎢r – 0 ⎢= r, DM 
= ⎢2r – r ⎢= r. 

Ruler Postulate 

12. CM = DM. Transitive Property 

13. M is midpoint of CD . Midpoint definition 

14. AB  and CD  bisect 
each other. 

Definition of bisector 

Draw three non-collinear points A, 
B, and C. (1) 

 
 Draw AB . (3) 

 
 Find midpoint M of AB . (4) 

 
DrawCM . (5) 

 
Using compass, circle or measure 
transfer (requires finding the length 
of CM  directly or indirectly (6) ), 
find D on CM .(8) 

 
Verify that M is midpoint of CD . 
(10, 12) 

 
 

Figure 1 

 
For example, after the first postulates, definitions and theorems of the axiomatic 
system are established, we proposed the following problem: Given three non collinear 
points A, B and C, show that there exists a point D such that AB  and CD  bisect each 
other.  All students did a similar construction in Cabri, as is described by a group of 
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students, which we have transcribed as the third column in the table (Figure 1). The 
teacher then asked them to compare the steps of the construction with the statements 
and justifications of a proof, which led them to include the proof step number (given 
in parenthesis) after each sentence and which helped them understand the connections 
between the proof and the construction.  
Using Cabri to help students develop ideas for a proof  
The following example, which was designed following suggestions given by Radford, 
and Marrades and Gutierrez, illustrates how interaction with Cabri, in the process of 
studying an open-ended problem, provides information that is useful for a proof. This 
experience took place when the students had finished studying the topics related to 
triangles and quadrilaterals. The problem we asked them to solve was: “In isosceles 
triangle ABC, determine the position of the point P, on the base of the triangle, so that 
the sum of the distances from P to the congruent sides of the triangle is a minimum. 
Justify your answer.”  
The students started the exploration after constructing the isosceles triangle, locating a 
point P on the base, constructing the perpendicular segments from P to the congruent 
sides and calculating their lengths. They dragged point P and very soon realised that 
the sum is invariant. They wrote conjectures such as: “It doesn’t matter where the 
point is; the sum of the distances is constant” (Figure 2). 

 

Figure 2                                         Figure 3 

Some students moved P until it coincided with point A and noticed that PE  became the 
altitude of the triangle relative to BC  (Figure 3). The exploration of a “limit case”, 
locating P on one of the endpoints of the segments, shows that they were looking for 
ideas, based on critical situations, to support their conjecture. The above discovery 
was very important because it gave them a geometric reference for the sum. It wasn’t 
only a constant value but a very special value: the height relative to the congruent 
sides. The students then began to draw auxiliary lines, searching for a way to obtain 
triangles or quadrilaterals, which could be used to prove why the sum is equal to the 
height, because the elements used in prior deductive proofs had been corresponding 
parts of congruent triangles or properties of special quadrilaterals.  
After some exploration, a group of students discovered how to make good use of the 
parallelism between the altitude to AC  and PD  (Figure 4a). They constructed PQ  
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perpendicular to BG  which led them to the congruency of DP  and GQ. This was 
definitely the key step to be able to prove that QB  was congruent to PF , which 
follows from the congruency of ΔPQB and ΔBFP (Figure 4b).  

                        

                                         Figure 4a                                      Figure 4b 

Another group of students used the symmetry tool of Cabri, which corresponds to a 
concept not included in the constructed axiomatic system, to reflect the triangle with 
respect to its base.  A careful exploration of the resulting figure, dragging points, 
taking measurements, helped them realize that the reflected image was congruent to 
the original triangle. Eventually, this led to the construction of a proof, which one of 
the students presented to the class, using the following sequence of figures which he 
drew on the blackboard. The idea underlying their proof is that quadrilateral ACBG is 
a parallelogram and therefore the distance between opposite sides is always the same, 
and that ΔDAP ≅ ΔNAP, so DP + PE = NP + PE. 

 
(b) (a) (c) (d) 

 
Figure 5 

Using Cabri to create situations where students obtain enough results to 
collectively organize them as a part of an axiomatic system 
For this task, the teacher posed a problem, chosen because of the amount of 
conjectures students can produce which are related to the situation involved. Using 
geometric open-ended problems, whose solution permits diverse conjectures about a 
specific theme, with the support given by Cabri to explore, conjecture and verify 
results, has shown itself to be a way to involve students in the activity de Villiers 
(1986) has denominated as descriptive axiomatization.  
After formulating a set of geometric properties and relations, as conjectures students 
feel sure about, with the teacher’s guidance, the community organizes the results into a 
part of the axiomatic system. The teacher’s role is essential because she has to design 
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the best path to examine each conjecture, avoid circular reasoning, obtain economical 
definitions, and establish the correct connections between the results, looking for 
mathematical coherence. We will report two instances of such situations. 
With respect to triangle properties, sometimes students don’t understand the need to 
prove “evident” propositions as, for example, the Isosceles Triangle Theorem: The 
base angles of an isosceles triangle are congruent. We use Cabri to explore interesting 
properties that require the “evident” theorems, as a means to incorporate them into our 
axiomatic system. For example, instead of asking the students to prove the above 
theorem, we ask them to solve the following problems:  

Draw ΔMOP. K is a point on MP . (a) When is m∠OKP > m∠OMK?  (b)  In ΔOKP, 
when is OK > OP? 
What is the relationship between the type of triangle and the property: two congruent 
altitudes? 

When students explore these problems with Cabri they find that: (i) the external angle 
of a triangle is larger than the internal nonadjacent angles; (ii) when two sides of a 
triangle aren’t congruent, then the longest side is opposite to the largest angle; (iii) 
when two sides of a triangle aren’t congruent, then the largest angle is opposite to the 
longest side; (iv) two of the altitudes of an isosceles triangle are congruent. 
Statements (i) and (iv) are properties that students feel they can prove, but when they 
try to prove the latter, they realise they need the Isosceles Triangle Theorem. Thus we 
create the necessity of formally including it in the axiomatic system. They also need 
two new triangle congruency criteria: SAA Congruency (side–angle–angle) and HL 
(hypotenuse– leg). These criteria can be proved using result (i). The path followed to 
construct this part of the theory is: Isosceles Triangle Theorem  (i)  SAA 
congruency criteria  HL congruency criteria  (iv). Another sequence followed is: 
Isosceles Triangle Theorem  (ii)  (iii). The students’ experimental results are 
organized in a deductive way. 
With respect to quadrilateral properties, the problem we use, is the following one: 

What is the relation between the type of quadrilateral and the property: a diagonal bisects 
the other one? 

This is an open-ended problem without a single answer. There are a lot of 
quadrilaterals which have that property, in a strict sense, and they aren’t special 
quadrilaterals. However, students, unconsciously or deliberately, add other properties 
to the given one, giving rise to a variety of answers. If students explore the situation 
using a soft construction (Healy, 2000) and centre their attention on having the 
diagonal satisfy the given condition and another one, they will formulate conjectures 
of the form: “if the diagonals of a quadrilateral are… then the quadrilateral is…”. 
They can, for example, imagine that both diagonals bisect each other, and therefore 
create a parallelogram. Conjectures, like the following ones, are established: “If a 
diagonal of a quadrilateral bisects the other diagonal, and both of them are 
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perpendicular, then the quadrilateral is a kite”; “If both diagonals bisect each other 
and they form right angles, the quadrilateral is a rhombus”. 
But this problem also gives rise to another set of different conjectures. If they begin 
their exploration, using a robust construction (Healy, 2000) and, following their 
intuition, construct a special type of quadrilateral to examine the relationship between 
the diagonals, they will state conjectures of the form: “If a quadrilateral is … then the 
diagonals…”. For example, “if a quadrilateral is a parallelogram, its diagonals bisect 
each other”, conjecture that becomes Theorem 1 of the chain that includes all the 
parallelogram properties which they have discovered or arise in their attempt to prove 
the conjecture. The axiomatic deductive approach usually employed to introduce the 
content of the class, changes. The teacher decides which conjecture should be 
examined first to begin the deductive chain, incorporating other conjectures.  
 
Using Cabri to help students understand dependency relationships between 
properties  
In accordance with Laborde (2000) and Jones (2000), when students explore open-
ended problems and write conjectures, they can have difficulty in recognising the 
properties used in their constructions that conform the “real” hypothesis of their 
conjecture and therefore guarantee the property discovered. They then write 
conjectures that don’t correspond with the construction that they have made. When 
students are asked to review the construction process, explain their procedure, we help 
them grasp all the conditions exposed in the problem, realise whether they have 
imposed additional or restrictive properties, and understand the dependency 
relationships involved and, therefore, the logic behind a statement of the form if… 
then… 
For example, when James, a student, was solving the problem related to quadrilateral 
properties, mentioned above, he wrote the following conjecture: “In a quadrilateral, if 
a diagonal bisects the other diagonal, then the quadrilateral is a parallelogram”. 
Only when teacher asked him to review the construction did he understand that he was 
using a more restrictive property, because he included the condition that both 
diagonals bisect each other. 

FINAL REFLECTIONS 
Constructing an axiomatic system means not only studying the different elements that 
conform it: definitions, axioms and theorems, but also understanding how, legally, the 
latter elements are incorporated into the system, through valid proofs. Being able to 
construct a proof requires the comprehension of the dependency relations between 
geometric properties, the ability to visualise auxiliary constructions that permit 
connections with known facts, the conviction that proving is the only legitimate way 
to include geometric facts in the system, and the genuine desire to carry on the task. 
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Students’ participation in the proving process increases when they are encouraged to 
propose new ideas, make conjectures, and listen to and participate in the mathematical 
arguments of their partners as members of an inquiry community of practice. The 
teacher has the responsibility to design interesting tasks to promote the mathematical 
activity of his or her students, establish several opportunities for proving and stimulate 
a rich interaction so students can move from a peripheral place in the community to 
the core of it. The use of Cabri to explore open-ended problems allows students to take 
active part in discovering geometric facts by themselves, and incorporating them, and 
those discovered in the process of proving the conjectures, into an axiomatic system. 
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