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We present types of mathematics tasks that we propose to our students —future 
high school mathematics teachers— in a geometry course whose objective is 
learning to prove and whose enterprise is collectively building an axiomatic 
system for a portion of plane geometry. We pursue the achievement of the course 
objective by involving students in different types of tasks instead of providing 
them with pre-fabricated mathematics. 

INTRODUCTION

As a result of a curriculum innovation process (Perry, Samper, Camargo, 
Echeverry, & Molina, 2006), that we have been implementing and adjusting since 
2004, a plane geometry course for pre-service mathematics teachers was 
transformed from centering on the direct teaching of geometric content to 
focusing on learning to prove. At present, the general course objective is that 
students  learn to prove, widen their vision about proof and its fundamental role in 
mathematics activity, and  recognize proof as an explicative and argumentative 
resource for mathematics discourse. The course’s enterprise is the collective 
construction of an axiomatic system for a portion of plane geometry theory that 
includes as themes: relations between points, lines, planes, angles, properties of 
triangles, congruency of triangles and quadrilaterals. There are drastic changes in 
the content management: content  is not presented as something pre-fabricated 
and, therefore, neither the teacher nor a textbook are the source for the content 
that is studied; neither is the usual definition-theorems-application exercises 
sequence privileged. A great amount of the propositions that are proven are 
formulated, by the class community, as conjectures that arise from student 
productions when they solve the tasks the teacher proposes. Practically all the 
proofs carried out are done by the students with teacher support, in a greater or 
lesser degree. Some propositions are enounced and proven the instant they are 
recognized as indispensable to complete another proof that is being constructed. 
Definitions are introduced to satisfy a manifested necessity to determine exactly 
which geometric object is being considered; to define it, the starting point is the 
student’s concept image, and then the careful analysis of the role each condition 
mentioned in the definition has. How have we been able to bring such a change in 
the class functioning? With respect to curriculum at the class level, there are 
various factors, that articulated, have made this change viable: the use of a 
dynamic geometry program always available in the class; the group or individual 
student work and the collective work as a community in different moments and 
with different purposes; the norms that regulate the use of the dynamic geometry 
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program, the interaction in class and what is accepted as a correct proof; the 
teacher’s role in managing the content; and the mathematics tasks in which we 
involve the students.

In this paper, we present the types of tasks through which the course is developed. 
This way, we give a partial answer to the question: “how do we involve students 
in the deductive systematization of some parts of mathematics, both in defining 
specific concepts and in axiomatizing a piece of mathematics?”. Since the 
experience on which our contribution is based occurs at university level, this 
article is well placed in the seventh theme of ICMI Study 19. 

BRIEF PRECISIONS 

For us, proving activity includes two processes, not necessarily independent or 
separate. The first process consists of actions that sustain the production of a 
conjecture; these actions generally begin with the exploration of a situation to 
seek regularities, followed by the formulation of conjectures and the respective 
verification that the geometric fact enounced is true. Hereafter, the actions of the 
second process are concentrated on the search and organization of ideas that will 
become a proof. This last term refers to an argument of deductive nature based on 
a reference axiomatic system of which the proven statement can be part of.

Learning to prove is a process through which students acquire more capability to 
participate in proving activity in a genuine (i.e., voluntarily assuming their role in 
achieving the enterprise set in the course), autonomous (i.e., activating their 
resources to justify their own interventions and to understand those given by other 
members of the class community), and relevant form (i.e., make related 
contributions that are useful even if erroneous). Learning to prove in our course 
implies a great quantity of aspects that we group into three classes: (i) those 
related to the proving procedure itself (e.g., the use of conditionals in valid 
reasoning schemes, construction of a deductive chain that leads from the 
hypothesis to the thesis); (ii) those related to the proof within the framework of a 
reference axiomatic system (e.g., distinguishing the different types of 
propositions that conform an axiomatic system); (iii) those proper to proofs in 
geometry (e.g., visualization of figures on which proofs rest, the use of figures to 
obtain information, auxiliary constructions). 

TYPES OF TASKS USED TO SUPPORT LEARNING TO PROVE 

Related to the procedure of proving 

Type 1. Determine whether a specific set of postulates, definitions or theorems 

permit validating a given proposition. With this type of task, precision is begun in 
the course about what is proving and how a proof is done. For example, students 
are asked whether the postulate that establishes the correspondence between 
points on the line and real numbers, conformed by two reciprocal conditionals, 
permits assuring the truth of the proposition: Every line has at least two points.
Carrying out this task is an opportunity for students to start realizing how the 
reasoning scheme modus ponendo ponens is used, and how a deductive sequence 
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of propositions is conformed that permits going necessarily from the hypothesis 
to the desired conclusion. 

Type 2. Starting from a plan or ordered sequence of key statements to prove a 
given proposition, write a complete proof of the proposition. This type of task, 
proposed principally at the beginning of the course, requires that students include 
the missing sufficient conditions of every conditional that is involved in the given 
sequence or plan, the theoretic justification for each statement, indicating which 
numbered statements intervene when obtaining the partial conclusions that make 
up the proof. For example, the following plan is presented: “If 0 is the coordinate 
of F and b the coordinate of G, b > 0, I look for the point H on the line for which 
the coordinate is 5b. This way, G is between F and H”, that must be used to write 
a complete proof of the proposition For each pair of points F and G on a line, 

there exists a point H on the line such that G is between F and H. With the plan, 
students are given a guide that should conduce them through a suitable path for 
the proof and the delegated work intends to concentrate their attention on details 
such as: which are the given premises in the proposition that must be proved, 
which postulate, theorem or definition guides the proof and which statements 
must be made to be able to use it.  

Type 3. Critically examine a proof written on the blackboard by one or two 
students. Although students know their interventions in class are always possible 
and desired, on occasions, the responsibility of accepting or not a proof is 
delegated explicitly to them. This type of task compels recognizing key issues, 
generally problematic, which have been highlighted throughout the course. For 
example, the use of an element of the reference axiomatic system as warrant for a 
conclusion when not all the sufficient conditions of the respective conditional are 
on hand; the existence of an object is justified through the corresponding 
definition; the inclusion of statements that are not used in a proof or a sequence of 
statements that could be replaced by a proposition that has already been 
incorporated in the axiomatic system, which makes a proof longer than it should 
be.

Type 4. Generate an ordered sequence of key statements that outline a route for 
the proof of a proposition. This occurs either when a conjecture is generated as a 
solution to a construction problem or when, especially towards the end of the 
course, a theorem is proved because its proof follows easily from another.  For 
example, the following problem is presented: Given three non collinear points A, 
B and C, determine, if possible, a point D such that AB  and CD  bisect each other.
As part of the solution, the student must describe in detail his construction process 
and validate each step within the reference axiomatic system, which becomes a 
resource to outline the proof. In this type of task, students are asked to enounce the 
proposition in the if-then format, and occasionally, to give a synthetic formulation 
as a mean to give sense to the geometric fact treated. In the example, the statement 
is Three non collinear points determine two segments which bisect each other.
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Related to the proof within the framework of a reference axiomatic system 

Type 1. Produce a diagram of dependency relations between the different 

propositions that make up a portion of the axiomatic system related to a specific 
topic. In certain moments of the development of the theory, students are involved 
in the revision of what has been done related to a specific topic with the purpose 
of reconstructing the network of the propositions incorporated into the system, 
signaling, for each proposition, those it depends on and those that depend on it. 
This type of task fosters, on one hand, discriminating between postulates, 
theorems and definitions, and on the other, recognizing not the relation between 
hypothesis and thesis of a conditional but relations between the proposition and 
the rest of the theory.

Type 2. Decide if a proposition, product of an exploration or search for 

statements that are required to complete a proof, is going to become a postulate, 
definition or theorem of the axiomatic system. This type of task contributes to the 
discrimination of postulates, definitions and theorems that make up the system, 
and to establish the possibility of their use in proofs. For example, searching for a 
way to prove that vertical angles are congruent, a student suggested the possibility 
of affirming that the sum of the measurements of two angles that form a linear pair 
is 180°. Since this was not yet an element of the system, it was discussed whether 
it should be assumed as a postulate, definition or theorem. Trying to decide if it 
could be a definition, the class community noticed that its reciprocal was not true, 
and therefore discarded that possibility. To decide if the statement could be a 
theorem, they looked for propositions in the axiomatic system so far developed 
that could lead to concluding that the sum of the measurements of the angles was 
180°, parting from having angles that form a linear pair; since none were found, 
they discarded this option. Finally, and given that the proposition was 
fundamental for the proof in question, and for future proofs, they decided to 
incorporate it as a postulate.  

Type 3. Produce a set of propositions and prove them, establishing dependency 
relations between them, thus forming a portion of the axiomatic system relative to 
a particular topic. This type of task is initiated by proposing one or more 
open-ended problems that demand students’ involvement in an exploratory 
activity, with a dynamic geometry program, that must lead to the formulation of a 
conjecture. Once all conjectures have been communicated, these are revised to 
determine conviction with respect to its truthfulness, examine whether its 
enunciation is clear and complete, and if necessary, carry out the pertinent 
modifications; moreover, during this revision process, the required definitions are 
elaborated. Then, with the indispensable teacher support to establish the sequence 
in which the conjectures are to be proven, students either produce a plan to 
construct the proof —that each one must finish as homework— or they 
collectively construct the proof. For example, in the first version of the course, 
problems like “Determine the quadrilaterals for which one diagonal bisects the 
other diagonal”, “What happens in a triangle, with the segment that joins the 
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midpoints of two sides?”, and “In a quadrilateral, we choose midpoints of 
opposite sides or of adjacent sides. What can be said about the segment that joins 
them?”, gave rise to the definition of parallelogram, kite, isosceles trapezoid, 
among others; and propositions like In a kite, the diagonals are perpendicular 
and only one bisects the other, If a quadrilateral has one pair of opposite sides 
that are both congruent and parallel, then it is a parallelogram, The length of the 
segment that joins midpoints of the non-parallel sides of a trapezoid is equal to 
the half sum of the lengths of the bases. Not all the theorems proved arose as 
conjectures from the initial exploration; some were generated during the proof of 
another theorem as a needed proposition to complete the proof that was being 
done, and others appeared when asked whether the reciprocal of the theorem was 
or not true.

Related to proper issues of proving in geometry 

Type 1. Obtain or use information that a graphic representation on paper or 
product of a dynamic geometry construction provides. With this type of task we 
expect students to use the graphic representations of the objects, involved in a 
statement, to find useful geometric relations, but discriminating between 
information that can be considered true about the figure and that which is not. In a 
paper representation, for example, complying with norms established (system of 
symbols, of conventions), the task of carefully examining the figure that 
represented vertical angles, to find geometric relations that would permit proving 
they were congruent, gave the clue needed for the proof. Since the only acceptable 
information that could be deduced from the figure was betweenness of points, the 
students had to justify the existence of two pairs of opposite rays and thereof of 
linear pair angles. On the other hand, in dynamic geometry, the identification of 
invariance or the variance of certain properties by dragging became a 
fundamental element for discovering new properties; discard others or establish 
which properties depend on others. For example, students investigated the 
position of BK  for which the bisectors of angles KBA and KBC, that compose a 
linear pair, form the angle with greatest measure, and realized that such bisectors 
always form a right angle,  because in any position of  BK two pairs of congruent 
angles are formed whose sum is 180°. So they concluded that the measure of the 
angle determined by the bisectors is 90°. 

Type 2. Find an appropriate auxiliary construction that directs a proof process. 

A type of task particularly frequent in the fifth version of the course consists in 
finding the auxiliary construction that can be useful to enlarge the set of 
propositions to be used in a proof. To carry out the task, the teacher organizes the 
proposed constructions and the class analyses the benefits of one or another, 
leading to the appropriate one. For example, to prove that two right triangles ABC

and DEF are congruent, given that their hypotenuse and a leg are congruent, a 
student’s first idea was to construct a triangle that shared a leg with ABC  that 
also had two congruent sides with it, to be able to use the known congruency 
criteria, but he never referred to DEF. The teacher pointed out, as an important 
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idea, the construction of a triangle “stuck to” another triangle. Then another 
student suggested constructing a GHI congruent to ABC with triangles GHI

and DEF sharing the congruent leg; this way, he expected to use the transitive 
property to prove that ABC DEF. The teacher explained that this proposal 
was better than the first, but could not be used because it was impossible to justify 
the betweenness property of some points.  Finally, another student proposed 
constructing GHI as suggested by his classmate, but using the non-congruent leg. 
This way the inconvenience presented previously was overcome and they found 
the how to carry out the proof. 

Type 3. Recognize and use certain figures of the axiomatic system as resource to 

find a way to prove a proposition. In a portion of the axiomatic system associated 
to angles, triangles and quadrilaterals, there are some geometric figures that 
become fundamental pieces of the proof process because their properties are a 
source for the use of elements of the system. Identifying or constructing, in a 
given figure, an isosceles triangle, two congruent triangles, the external angle of a 
triangle or a parallelogram is part of the required expertise to guarantee properties 
that lead to the desired conclusion. For example, in the proof of the congruency of 
two right triangles with hypotenuse and a leg congruent, students take advantage 
of their knowledge of isosceles triangles and congruency criteria to carry out the 
proof.

FINAL REMARKS 

The types of tasks described exemplify the effort carried out in planning the class 
to genuinely involve students in the collective construction of the axiomatic 
system. Due to lack of space, we can not amplify the information about how the 
teacher manages the tasks, essential element to obtain from them the greatest 
benefit in the generation of a participative climate. The sensitivity to find in 
student’s expressions and ideas the source to key propositions for the system and 
the path towards their proof, since these are not necessarily exposed in the 
appropriate language, joined to flexible thinking capable of sacrificing 
organization and rigor, proper of an advanced mathematical discourse, in pro of 
favoring student proving activity is a determining aspect of the success of this 
curriculum innovation. 
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