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Abstract 
Protein ligand docking has recently been investigated as a tool for protein function 

identification, with some success in identifying both known and unknown substrates of 

proteins. However it remains challenging to identify a protein’s substrate when cross-docking 

a large number of enzymes and their cognate ligands. To explore a more limited yet 

practically important and timely problem in more detail, we have used docking for identifying 

the substrates of a single protein family with a remarkable substrate diversity, the short-chain 

dehydrogenases/reductases (SDRs). 

We examine different protocols for identifying candidate substrates for 27 SDR proteins 

of known catalytic function. We present the results of docking more than 900 metabolites from 

the human metabolome to each of these proteins together with their known cognate 

substrates and products, and we investigate the ability of docking to a) reproduce a viable 

binding mode for the substrate and b) to rank the substrate highly among the dataset of other 

metabolites. In addition, we examine whether our docking results provide information about 

the nature of the substrate, based on the best-scoring metabolites in the dataset. We 

compare two different docking methods and two alternative scoring functions for one of the 

docking methods, and attempt to rationalise both the successes and failures. 

Finally, we introduce a new protocol, whereby we dock only a set of representative 

structures (medoids) to each of the proteins, in the hope of characterising each binding site in 

terms of its ligand preferences, with a reduced computational cost. We compare the results 

from this protocol with our original docking experiments and we find that although the rank of 

the representatives correlates well with the mean rank of the clusters they belong to, a simple 

structure-based clustering is too naïve for the purpose of substrate identification. Many 

clusters comprise ligands with widely varying affinities for the same protein and, hence 

important candidates can be missed, if a single representative is used. 

 



Introduction 

Every year structural genomics initiatives generate many new protein structures, with 

one aim being to provide representatives for as many families as possible[1-5]. The function 

of some of these proteins is known before their structure is solved, but for many proteins the 

3D structure represents a fundamental source of information to improve our understanding of 

the molecular mechanism of their biochemical role. As a first level of analysis, the sequence 

similarity to characterise proteins has been shown to be a very powerful but sometimes 

insufficient method to infer a protein's function. Indeed, different aminoacid sequences are 

capable of generating proteins sharing similar folds but this does not always imply a related 

function[6]. For this reason, taking into account only geometrical features seems to be a 

simplistic way of looking at the complex biochemistry beyond the structural data, although it is 

obviously useful for assigning a given protein to an already defined family. Structure-based 

prediction of enzymatic capabilities has become an important issue and many research 

groups are working, worldwide, with the ultimate goal of providing a suitable, in silico protocol 

that, given an experimental structure, can lead to a reliable prediction of its function.  

For years, docking has been a powerful tool for medicinal chemists, allowing the rapid 

and inexpensive identification of a pool of potential protein inhibitors[7-9]. Lately, docking 

simulations have been used, in the field of structural biology, with a different purpose: the 

identification of plausible substrates of proteins of unknown function[10-13]. The main idea is 

to dock a database of potential metabolites into a protein's binding site and then rank them on 

the basis of their calculated binding affinities. Ideally, the cognate ligand is expected to be 

found among the top ranked hits. Due to the approximation of the simulation, the calculated 

binding affinity by itself is unlikely to identify a protein's cognate partner among a crowd of 

candidates, but this approach can still be useful to experimentalists, narrowing down the 

number of molecules that need to be tested. The goal is that in vitro tests would only need to 

be conducted for a relatively small pool of compounds (i.e. the top in silico hits), and that 

these compounds would somehow capture the essential physicochemical features of the true 

unknown ligand. A number of docking algorithms are nowadays available. Several published 

papers have compared state-of-the-art software on the basis of their ability to reproduce 

experimentally determined complexes[14-19]. Unfortunately, the quality of the results 

depends on the biochemical nature of the molecules involved, so that different algorithms 

can, in turn, work better for different cases. 

In this study, we tested the ability of different docking protocols to find the real 



substrate of several members of a specific protein superfamily, the short-chain 

dehydrogenases/reductases (SDRs). SDRs form a large family of NAD(P)H-dependent 

enzymes, with about 70 genes found in the human genome. Despite low levels of sequence 

identity (usually 16-30%), members of this family show a highly conserved α/β folding pattern 

(Rossmann fold), with largely superimposable peptide backbones[20-23]. A catalytic tetrad 

comprising serine, tyrosine, lysine and asparagine residues constitutes the active site. The 

final step of the catalysis is mediated by the nicotinamide ring of NAD(P)H, which acts as an 

electron carrier[21]. SDRs represent a challenging test-case for computational simulations, 

since the broad substrate specificity calls for a docking protocol that is capable of 

distinguishing and assessing several different types of chemical interactions. Twenty-seven 

SDR proteins were studied using two different programs, Autodock[24] and Glide[25]. In 

addition, since molecular mechanics-based docking programs generally tend to 

underestimate the electrostatic and solvation contributions to the binding, and following 

previously published studies, a physics-based rescoring procedure of the docking poses was 

also applied[11,12].  

A generally accepted protocol in these types of studies is to test a large number of 

molecules in order to explore as much as possible the n-dimensional ligand physicochemical 

space, but here we also consider whether a comparable coverage could be achieved by 

docking a smaller number of molecules. In order to answer this question, results from docking 

a database of 922 human metabolites were compared to those obtained from docking a set of 

115 dissimilar molecules, selected as their representatives. This selection of human 

metabolites lowers the number of docking simulations to be performed in order to obtain the 

maximum amount of information about the nature of a protein's cognate ligand with minimum 

computation. Our approach shares some similarity with that suggested by Shoichet and co-

workers[26]. Their approach involved defining families of ligands sharing the same scaffold 

and docking all members of all families to a given protein, but only ranking the best-scoring 

member of each ligand family. This method aimed at improving diversity in the top ranks, by 

allowing only one member of each family in the ranked list. Our proposed method also 

clusters ligands into families prior to docking, but our aim is different. First of all, we test the 

hypothesis that similar ligands will bind with similar energies, even if we do not impose a 

strong positional constraint on the orientation of the ligand scaffold, as was the case in the 

previous study. In addition, we are not trying to enrich the diversity of the top-ranking 

compounds, as we are interested here in function identification, not the discovery of novel 



inhibitors. Our aim is to test the feasibility and usefulness of this approach, which we believe 

may work better in the case of the natural substrates. Our argument is the following: Small 

changes in a random ligand structure can have a significant effect on the energy of binding. 

However, proteins evolved from a common less specialised ancestor, may be capable of 

binding, and even acting on, several members of the same ligand family. This would require a 

certain lack of sensitivity to small structural differences, allowing our approach to work better 

for these cognate ligands than it would for unrelated ligands. We recognise that it is 

questionable whether reducing the number of docking simulations is useful at a time when 

software and hardware allow us to screen millions of compounds in a reasonable amount of 

time, but we think there are two reasons why screening initially only representatives may be 

useful. One is that, should this approach be successful, it could be copied by experimental 

laboratories, as an affordable way of systematically screening proteins against the same set 

of ligands. The second reason is a smaller dataset of ligands would allow more sophisticated 

and time demanding simulations to be carried out, thus making more reliable the calculation 

of the binding affinities. We note that screening families of ligands is not likely to be a 

substitute to screening large datasets, but a complementary approach that can potentially 

help us to understand better what features of related molecules are responsible for their 

different binding properties. 



Results 

 

1.The dataset 

1.1. The proteins 

Twenty-seven SDR structures from the Protein Data Bank (PDB)[27] were selected for 

docking following the criteria described in the Methods. The PDB codes, protein names, 

selected chain, EC classification, organism, substrate types and the presence of a substrate-

like ligand bound in the X-ray structures are listed in Table 1. Of the 27 proteins, 13 are from 

bacterial organisms and 14 from eukaryotes (including 3 human and 2 mouse proteins), with 

no examples from archaea. Approximately half of the enzymes in this study were available as 

ternary complexes (protein complexed with a cofactor and a substrate-like ligand). This 

dataset has representatives from three EC classes, with the majority of the proteins being 

oxidoreductases (EC class 1), two being lyases (class 4) and three being isomerases (class 

5). By far the most common type is oxidoreductases acting on the CH-OH group of donors 

(EC 1.1). 

The SDR proteins are known to be evolutionarily related (as confirmed by their 

structural similarity) but their pairwise percentage sequence identities vary widely. For 

example, a comparison of the chains 1geg:A[28] (acetoin (diacetyl) reductase from K. 

Pneumoniae) and 1orr:A[29] (CDP-tyvelose-2-epimerase from Salmonella) shows that a 

global alignment is not possible for this pair, and even a local alignment results in only 22 

identical residues over a relatively short alignment of 113, from a total of 255 and 338 

residues. Both these proteins are single-domain, so the sequence differences are genuine 

rather than due to the presence of an extra domain. At the other end of the spectrum we have 

a pair of very closely related sequences, 1b14:A[30] and 1mg5:A[31] (both alcohol 

dehydrogenases from fruit fly), whose global alignment yields an 82% sequence identity. A 

multiple sequence alignment of all 27 proteins using MUSCLE[32] yields the phylogram in 

Figure 1. The tree in this figure is annotated by the EC numbers of these proteins (branch 

colour and text colour) and by their substrate similarities (coloured box on the right), and it 

shows that in our dataset the lyases (in orange) and isomerases (in pink) are phylogenetically 

close, and these two classes are further away from the oxidoreductases (in green and blue). 

1kc3 is an exception, as an oxidoreductase whose substrate belongs to the same type of 

substrate recognised by the lyases and isomerases in our dataset. 

Most SDRs are single-domain proteins, exhibiting the ubiquitous Rossmann fold, 



where a beta-sheet is flanked by a number of helices. The N-terminal part of the domain is 

used to bind the NAD(P)H cofactor which sits at the top of the beta-sheet, whereas the C-

terminal part is involved in the binding of the substrate[20]. As expected from the wide 

substrate specificity of these proteins, the N-terminal parts of the structure superimpose very 

well, whereas most of the variation is seen in the C-terminal parts of the domain (see Figure 

2a-b). In our dataset there are 19 proteins that are single-domain and 6 proteins that are 

made up of two domains (1bsv[33], 1ek6[34], 1kc3[35], 1ker[36], 1keu[36], and 1udc[37] – all 

bind nucleotide sugars and the second domain in all is a UDP-galactose 4-epimerase, domain 

1 (CATH number 3.90.25.10)). The remaining proteins (1orr[29] and 1w4z[38]) are not yet 

classified in CATH[39]. 

 

1.2 The substrates and products 

Schematic representations of the substrates for each of the 27 proteins used in this 

study are shown in Figure 3 (diagrams of the products are available as Supplementary 

Information). A quick look through the structures reveals that they can be broadly grouped 

into the following types: a) a group of steroids (1ahh, 1equ, 1e6w_c) and a molecule sharing 

some resemblance with steroids (1ja9), b) a group of relatively small and polar molecules, 

mainly primary aliphatic alcohols (1b14, 1e6w_a, 1geg, 1h5q, 1mg5, 1pr9), c) a group of 

coenzyme A derivatives (1bvr, 1c14, 1d7o, 1e6w_b, 1edo, 1q7b, 1w4z), d) a group of 

nucleotide sugars (1bsv, 1ek6, 1kc3, 1ker, 1keu, 1orr, 1udc) and e) others that cannot easily 

fit into the above classification (1ae1, 1cyd_a, 1cyd_b, 1ipf, 1iy8, 1sep). This classification is 

based on the presence of well-known chemically important groups, or obvious 

physicochemical properties, such as size and polarity, and, as such, it allows a general 

understanding of the types of molecules involved in this study at a qualitative level. An 

alternative quantitative way of clustering the substrates uses the similarity matrix of their 

pairwise fingerprint-based scores (see Methods for details). A dendrogram representing this 

matrix is shown in Figure 4 and is annotated by the group the substrate belongs to (coloured 

box on the left) and the EC number of the protein (coloured box on the right). Although some 

mixing of the groups defined above is observed in this dendrogram (both due to the arbitrary 

way the groups were defined, and due to the limitations of the method for assessing 

similarity), overall a good clustering of these groups is shown. Neither the manual nor the 

automatic approaches are perfect and, indeed, a unique way of assessing small molecule 

similarity that will always be satisfactory does not exist, thus some overlap between classes is 



inevitable. 

 

1.3 The metabolite representatives 

Although nowadays it is common practice to dock large databases of ligands to 

receptors, we believe it is worth testing the hypothesis that only a number of selected 

representatives is enough to obtain reasonably accurate information regarding the preferred 

type of substrates for a given enzyme, or more generally the preferred binders for a protein 

receptor. The reasoning behind this plan was that experimental measurements of binding 

affinity are still limited by the availability and cost of buying the compounds that have to be 

screened. Without any previous knowledge, one would have to test every single available 

metabolite for binding affinity. This is clearly impractical, if not impossible, and hence, here we 

are testing computationally the alternative of using a selection of ligands whose structures 

represent a variety of chemical classes found in human metabolic pathways.  

One hundred and fifteen dissimilar molecules selected as representatives of human 

metabolites (see Methods for details) were used in this study to probe the nature of the 

binding site of the 27 SDR proteins. A list of all 115 KEGG identifiers corresponding to these 

molecules is provided as Supplementary Information. Figure 5 shows that this set of 

representatives provides good coverage of most areas of the human metabolome, and 

justifies their selection for use in this study.  

In addition to the metabolite representatives, we also docked all 922 human 

metabolites in our dataset for comparison. All ligands were processed using the program 

LigPrep [40].  

 

2. Results from the docking experiments 

This section examines the results of our docking experiments as a method for 

identifying likely substrate candidates. We performed docking runs using the following 

datasets: a) We docked the substrates and products of all proteins in our dataset to each 

protein, b) we docked 115 metabolite representatives to all the proteins in our dataset and c) 

we docked all small molecules from the set of human metabolites (922) to all proteins in our 

dataset. 

The results are presented as follows: 

a) We start by assessing the quality of the docking research method, using as a 

benchmark the information we have about the binding of the cognate substrate to its receptor 



protein. For this we use the set of docking results corresponding to available structures of the 

complexes of the substrates/products (or their analogues) with their corresponding enzymes, 

and ask whether our experiments have resulted in plausible positions for the substrates in the 

binding site; 

b) We ask whether the scoring function was successful in identifying the natural 

substrate among a pool of other SDR substrates and a larger pool of diverse ligands. We also 

present results from an alternative scoring function and compare the two sets; 

c) We examine the specificity of recognition from both the substrate and the protein 

side; 

d) We examine the top-scoring ligands and assess whether docking can offer clues 

about the properties of the substrate using common physicochemical descriptors; 

e) We present the results of docking a set of representative structures of human 

metabolites to our SDRs, and examine the usefulness of these docking experiments in 

limiting the number of compounds that need to be screened in silico or in vitro. 

Substrates and products which didn’t belong to the starting human metabolites dataset 

were eventually added to the distribution. Unless otherwise specified, the results in the 

following sections refer to Glide SP scores and docking poses constrained with a 4 Å distance 

filter (to reject docked poses too far from the NAD(P)H C4 atom) (see Figure 2c).  

 

2.1 Does docking work with substrates/products?  

2.1.1 Do natural substrates dock in the active site? 

All but two of the tested cognate substrates dock in the active site of their partner 

proteins, and pass our distance filter (see Methods), i.e. are close enough to the NAD(P)H 

cofactor to represent plausible docked positions. The exceptions are substrate “a” of carbonyl 

reductase (1cyd[41]), and the substrate of alcohol dehydrogenase (1b14[30]). Since it is a 

well known fact that proteins can undergo conformational change upon ligand binding[42-45], 

one of the criteria leading to the protein dataset selection was the presence, where possible, 

of a substrate-like molecule bound (see Methods). In fact, X-ray structures represent only an 

average snapshot of a protein’s multiple conformations and if the natural substrate or, at 

least, a molecule that mimics it, has not been co-crystallized with the macromolecule, the 

chances that the side chains at the binding site are in a ‘ready-to-host’ conformation are quite 

low. Unfortunately complexes of the protein with both the cofactor and the substrate or 

substrate analogue are not commonly available. The alcohol dehydrogenase in our set (1b14) 



was crystallised as a binary complex and the carbonyl reductase (1cyd) protein was 

crystallized as a complex with a molecule that does not resemble the enzyme’s natural 

substrate. In the case of 1b14 allowing just the side chains of the binding site to move, using 

the Induced Fit Docking (IFD) protocol (see Methods)[46], results in a good pose for the 

substrate (see Figure 6a). The spatial rearrangement of few side chains (namely I145, I183 

and L206) creates the right environment for the natural substrate to be docked properly. The 

same methodology does not work for 1cyd, although this may simply be because for this 

complex a much larger rearrangement of the binding site is needed than is normally allowed 

during the IFD method. However, since we found in the literature an alternative, much 

smaller, substrate (referred to here as substrate “b”) that docks close to the NADP+ molecule, 

this has been used in the rest of this work. Neither of the two crystal structures contains a 

ligand similar to the substrates we docked, although it is worth mentioning that there are other 

structures in our dataset (of different proteins) where a ligand similar to the substrate is 

lacking, but where the substrate can be well docked without any conformational changes 

needed in the binding site. Thus, we were able to obtain docked complexes involving the 

substrate for all 27 proteins. 

In the case of natural substrates, it also makes sense to ask whether the orientation of 

the substrate in the binding site is the correct one. Although for small substrates this is less 

important (taking into account the limitations of docking, small errors in orientation should be 

acceptable), for large substrates it is significant, as the part of the molecule that is involved in 

catalysis may in fact be completely outside the active site. To summarise the results for the 

top ranking poses of both substrates and products, we monitor the distances between the C4 

carbon atom of the nicotinamide ring (see Figure 2c) and the atom of the ligand where we 

expect the chemical reaction to take place (where two or three atoms are involved, the 

shortest distance is taken into account). We find that in well over half of the cases (22 out of 

27) this distance is less than 5 Å. This distance cannot be an accurate quantitative measure 

of the success of docking, but it indicates in a qualitative manner whether the top ranking 

solution is a reasonable approximation to a productive mode or not. In the majority of cases 

(19 of 27) we find an acceptable pose even for very large substrates, and in some cases (4 of 

27) even though the substrate docks in a reverse orientation, the product is docked well. 

Some of the cases, where neither the substrate nor the product are in a correct orientation 

are simply very flexible molecules, and their conformational space was probably not 

adequately explored during docking. There is no correlation between the docking scores and 



the distance of the substrate/product from the NAD(P)H structure, i.e. the estimated binding 

affinity is not indicative in this case of the quality of the docking pose. A detailed table 

showing the results of this analysis is available as Supplementary Information. 

 

2.1.2 Are the natural substrates/products recognised among other SDR substrates and 

among other ligands? 

As the pie chart in Figure 7 shows, in 18 out of 27 cases, the substrate or product is 

ranked in the top 5% of all 922 ligands docked (human metabolites + substrate and product of 

the studied protein). In 3 cases, the natural substrate or product is ranked between the 5% 

and 7% (5-10% interval is shown in Figure 7) of the distribution, while in 2 cases it can be 

found within the top 10% and 25% of the distribution. The few remaining cases, where neither 

the substrate nor the product score well, are examined below. 

a) 1b14[30] (Alcohol dehydrogenase from Drosophila lebanonensis). The flexible loop 

of residues 186 to 191 is disordered, and the right conformation is probably important for 

substrate binding. To test this hypothesis an Induced Fit Docking run was performed on a 

limited dataset of molecules. Final results show that the natural substrate docks only if some 

conformational rearrangements occur (see Figure 6a). As previously mentioned, the 1b14 X-

ray structure lacks a molecule bound capable of mimicking the natural substrate. In such 

cases, residues at the binding site tend to extend as much as possible their side chains while 

looking for favourable interactions, thus lowering the space available for a ligand to be 

docked. 

b) 1h5q[47] (Mannitol dehydrogenase from Agaricus bisporus). According to the 

crystallographers who solved this protein structure, all attempts to crystallise the enzyme with 

its substrate failed, most likely due to the high Km value. Instead, they used the program 

Autodock to model the substrate in the binding site. Our own best pose from Glide shows a 

good orientation (Figure 6b), forming the hydrogen bonds reported by the crystallographers, 

but the rank is low (223 out of 922+61). As the score seeks to estimate the affinity and is our 

main criterion here for identifying candidate substrates, it is expected that our approach will 

necessarily fail in cases like this, where the substrate has a low affinity for the enzyme. 

c) 1bvr[48] (Enoyl-acp reductase (InhA) from M. tuberculosis) and 1pr9[49] (Human L-

xylulose reductase). Inspection of the molecular features of the top 10 binders of each protein 

shows that these do not resemble at all the features of the natural substrates (see Figure 10). 

In such cases, obviously, the docking protocol used here, is not capable of properly 



accounting for the physicochemical interactions involved in the docking process. 

 

2.1.3 Comparison of alternative docking/scoring methodologies 

A docking calculation is composed of 2 main parts: a search method and a score 

assignment. These two steps are closely related and equally important. In order to verify how 

our results vary with the methodology used we tested a few alternative docking and scoring 

approaches, including: 

a) docking and scoring using the Autodock software[24]; 

b) docking and scoring using the Glide software[25]; 

c) rescoring our Glide SP poses with a physics-based scoring function (using the Prime 

software[50]) that calculates an approximation to the free energy of binding by combining the 

energy of the complex (EPL) with the energy of the ligand on its own (EL) and the energy of the 

protein (EP) on its own (minimising the ligand in the free state and in the complex, but keeping 

the protein rigid); 

 

PL L PbindE E E E= − −  

 

d) rescoring our Glide SP poses with the same physics-based scoring function but 

allowing the side chains in the active site to move during minimisation of the complex. 

For this comparison we used only the smaller dataset of 176 representatives (115 human 

metabolites representative + each protein substrate and product). Figure 8 compares the 

results of the four methods, and although the dataset is rather small, the Glide poses scored 

with the Glide SP (standard precision) scoring scheme give the best results in this case. 

However, Figure 9a shows that in some cases the rank of the substrate improves dramatically 

as a consequence of using a physics-based scoring function, although the reverse is true for 

other examples. Indeed, this function has shown superior performance in the past [11,12], but 

we think it is more likely to work where the binding sites are charged or highly polar, and 

where solvation energies need to be better taken into account in order to properly estimate 

the binding affinity. The natural substrates for 1h5q, 1iy8 1pr9 and 1mg5 (shown in yellow in 

Figure 9a) are indeed small hydrophilic molecules whose ranks improve drastically by means 

of the rescoring procedure. Interestingly the substrate of 1ahh, which is the only steroidal 

molecule to have an acidic function, is the only member of its group whose rank improves 



after the rescoring procedure. The variety of chemical interactions involved in the ligand-

protein docking process for this SDR dataset represents an extremely challenging test for 

scoring functions. With the generally hydrophobic binding sites of the SDRs, it is not 

surprising that an empirical scoring function like the Glide SP score performs usually better. 

 

2.1.4 Specificity in substrate/enzyme recognition 

Since our proteins are evolutionarily related, it is interesting to examine the level of 

specificity in the recognition of the enzyme by the substrate and vice versa. Although it is 

possible to use the ranks from each distribution of scores to assess specificity, these 

distributions contain relatively few observations, especially when considering the recognition 

of the protein by the substrate (where we only have 27 proteins). This makes estimates of the 

probabilities of these scores less reliable. To overcome this problem, we normalise each 

distribution of scores and pool all of them into one large distribution (see Methods for details), 

thus allowing us to estimate better the p values associated with the ranking of the cognate 

partners. We create two large distributions: one for all scores of 176 ligands docked against 

each protein, and the other for all 27 scores associated with each substrate being docked 

against each of the set of 27 proteins. Clearly since the protein pool is very small and the 

proteins are related, the estimates from that distribution will be less reliable than estimates 

from the distribution of all ligand scores docked against each protein. 

In Figure 9b we plot the p values for each protein and substrate of a cognate pair, as 

calculated from these two large distributions. The substrate p value tells us how well the 

substrate recognises its cognate protein from a pool of 27 SDR proteins (the lower the p value 

the better the specificity). The protein p value tells us how well the protein recognises its 

cognate substrate from a pool of a maximum of 176 ligands (61 substrates and products and 

115 metabolite representatives). In this plot 14 of the cognate pairs have both substrate and 

protein p values less than 0.25, 17 pairs have a substrate p value less than 0.25, and 19 pairs 

have a protein p value less than 0.25. For 5 pairs neither the substrate, nor the protein p 

value is less than 0.25, and these are cases where docking clearly cannot help us identify the 

true cognate pair. However, in four out of five cases (1h5q, 1q7b, 1geg, 1iy8, exception is 

1b14), and particularly, in the case of 1q7b, the cognate product is scored better than the 

substrate (only the results for substrates are shown in this plot). A closer look at the figure 

also reveals that our small substrates (1geg, 1iy8, 1mg5, 1pr9) all tend to have poor protein p 

values, i.e. it is difficult for the protein to identify a small cognate ligand amongst a set of large 



molecules that can also fit the binding site (obviously this is not true if large ligands are 

excluded due to volume restrictions within the active site). This fact reflects a common 

problem with scoring functions, namely the penalising of very small molecules that can only 

achieve a limited number of interactions in a complex. The polar groups in these ligands are 

also likely to be responsible for their worse ranking, since solvation is not properly accounted 

for with empirical scoring functions such as the one used in Glide. 

In summary, we have shown so far that a) we can dock the substrate in the active site, 

close to the NAD(P)H molecule and in most cases in an orientation close to what would be 

expected for catalysis, b) we can rank, in the majority of cases, the cognate substrate or 

product among the top 5% of all ligands docked, and c) in a more stringent test, where the 

substrate needs not only to be ranked well among other ligands, but also to be selective for its 

cognate protein, we have shown that reasonable dual (i.e. both for the protein and the 

substrate) selectivity is observed for more than half of our complexes, and for a further one-

third of the dataset, selectivity is observed for either the protein or the substrate. 

Encouragingly, if the current approach is followed, the success of docking in discriminating 

the substrate does not depend strongly on the size, polarity, number of rotational bonds in the 

ligand, or the identity of the co-crystallised ligand in the PDB structure.  

 

2.2 Do top-scoring ligands tell us anything about generic binding site 

preferences? 

A general answer to this question can be found by visual inspection of Figure 10. 

Ligands are here represented by means of 8 well-known 1D molecular descriptors, including 

the number of aromatic atoms (“a.aro.”), the fraction of rotatable bonds (“b.rotR”), the number 

of rings (“rings”), the molecular weight (“Weight”), the formal charge (“FCharge”), the Lipinski 

acceptor and donor counts (“lip. acc.” and “lip. don.”, respectively) and the log octanol/water 

partition coefficient (“logP o.w.”). The descriptors were calculated using the Molecular 

Operating Environment (MOE) package from the Chemical Computing Group Inc[51]. For 

each studied protein (rows), the descriptors for the natural substrate (first column) along with 

the top 10 Glide hits (remaining columns) are shown as “star” plots drawn with the software R. 

The examined cases can be divided into three groups: 

 

a) Top 10 hits and real substrate are similar; 

b) Top 10 hits are similar to each other but different from the real substrate; 



c) Top 10 hits and real substrate are diverse unrelated molecules. 

 

Ideally (case a), in each case, the top ranked ligands are expected to be similar and to 

share with the protein’s natural ligand some molecular features (e.g. 1ae1 and 1geg). On the 

other hand, the worst possible scenario one could face (case c) is that of having diverse 

unrelated molecules as top hits, that achieve similar estimated binding energies, despite the 

fact that they don’t have common functional groups (e.g. 1iy8 and 1orr). In the middle (case b) 

we have cases where the top 10 hits look alike, but their properties differ from those of the 

real substrate (e.g. 1bvr and 1pr9). In such cases, it would be difficult for the docking protocol 

used here to recognise the cognate substrate, or at least allow us to use the top-ranking 

ligands as clues to the nature of the substrate. We believe that this is made especially difficult 

by the multi-substrate specificities of at least some of the members of the SDR family, and we 

expect that the same approach using different, more selective proteins, would likely be more 

informative. 

We have also looked more generally at the structural similarity (in 2D) of the top-

ranking ligands to the cognate substrate. Previous studies on different proteins[11] have 

found a strong correlation between the ligand rank and its similarity to the natural substrate. 

We find some correlation for some of our proteins, but generally the correlation was low (The 

plots are available as Supplementary Information). We believe that our results are different 

from previous studies for a variety of reasons: a) Many of our proteins have large hydrophobic 

binding sites, where many ligands can bind relatively easily. In the case of smaller, highly 

charged binding sites one can expect that only few types of ligands can be docked 

successfully. b) The equivalent plots in other studies have been “smoothed”, whereas we are 

showing the raw scores. Smoothing can eliminate many of the ligands that have low substrate 

similarity but a good rank, or vice versa, as long as the majority of ligands that have low 

substrate similarity are also ranked poorly. We think it is more helpful to show the raw scores, 

as in reality, there will always be ligands that have a low rank but a high substrate similarity. 

c) Our dataset is a lot smaller, so one can imagine that there are not enough cases of ligands 

that are similar to the substrate. However, we have also docked the whole of the KEGG 

Ligand dataset (approx 20000 molecules) to our proteins and the corresponding plots look 

remarkably similar to what we obtained by docking only 922 human metabolites (data not 

shown). We conclude that it is indeed likely to obtain metabolites resembling the natural 

substrate at the top ranks, but there are also many cases where this will not be true. In 



addition, we point out that such a correlation of the similarity with docking rank is only really 

possible for top ranking compounds. After a certain rank, there is no reason why the similarity 

to the substrate should keep on falling with falling rank. 

 

2.3 Can we use representatives of structural classes to reduce the number of 

compounds screened? 

The basic premise to be tested in using ligand class representatives (hereafter also 

called medoids) for docking (rather than all the molecules in a dataset), is whether the 

representative’s docking profile is similar to that of all members of its class. Clearly due to the 

many subtleties in intermolecular interactions and their associated energies, this premise can 

never be wholly true, but the question is whether it is a reasonable and useful approximation. 

In the following paragraphs we test metabolite representatives in docking. 

 

2.3.1 Do members of a cluster rank similarly to the cluster representative? 

We have used in this study a standard molecular similarity measure to cluster our 

dataset of small molecule metabolites and select a representative from each cluster. There is 

no unique way of determining how similar two molecules are, but selected properties can be 

chosen to depict specific behaviours. Where molecular interactions are concerned, and more 

specifically recognition of a protein, the relevant properties are not known a priori, and reflect 

the nature of the binding site (which itself can change due to conformational rearrangements 

of the amino acids involved in binding).  

Whatever similarity measure we use, our expectation is that members of a cluster will 

rank similarly to the cluster representative. In practise, however, we see a diversity of 

behaviours. Figure 11 shows the distribution of binding scores from docking our dataset of 

922 molecules against each of 27 protein sites. The members of three distinct clusters 

(selected in order to depict the general behaviour of the 115 clusters) have been highlighted 

in blue colour, and the score of the medoid for the particular cluster is highlighted in red. 

Ideally (Figure 11a), in each case, the distribution of energies within a cluster is expected to 

be narrow and centred around the energy value of its medoid. Clearly, due to the intrinsic 

limits of the clustering process and to the differences in chemical properties of the binding 

sites, this is not always achievable (Figure 11c). Figure 11b shows what can be found in 

between these two extremes. These plots show that members of a cluster often have similar 

scores (to each other and to the representative), but there are clearly cases where this is not 



true. One of course should keep in mind that it does not make sense to compare the scores in 

detail. What we are looking for is whether the score of the cluster representative falls in the 

same quartile as that of the members of the cluster. Our results show that this is often but not 

always the case. 

A quantitative approach to assessing the usefulness of the cluster representatives in 

docking can be based on a comparison of the ranking of clusters based on the ranking of their 

representatives, and the ranking of clusters based on the mean rank achieved by all members 

of this cluster. We use the root-mean-square-error (RMSE) as a measure of the difference in 

the rankings from docking simulations against each protein in our dataset: 
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N is the number of clusters, rmed,i is the rank of the medoid of cluster i, and rmean,i is the mean 

rank of all members of cluster i. This number, calculated for each protein in the dataset, 

represents the error associated with the use of the medoid instead of all members of a 

cluster. If calculated on the overall distribution, the RMSE values could be biased by the 

presence of low affinity binders. This is because differences between mean and medoid ranks 

of the same magnitude affect equally the calculated RMSE value, regardless of the locations 

of the ranks in the distribution in which they occur, while, for our purposes, the difference 

between low-scoring compounds is expected to be less significant than the difference 

between a high-scoring compound and a low-scoring one. Hence, here we only consider 

cases where the mean rank is less than 231 (25% of 922). In this case, RMSE values for the 

ranks calculated for each protein vary from 28 (for 1mg5) to 112 (for 1ahh) depending on the 

protein. It is worth noting that, large RMSE values cannot be ascribed just to the structural 

diversity of certain clusters, since, clusters performed differently, depending on the protein. 

Thus, it is difficult to single out cluster representatives that perform well and those that do not 

(indeed there is no significant correlation between this error and how “tight” a cluster is, as 

measured by the average dissimilarity of the molecules within the cluster). The actual 

correlation between the mean ranks for a cluster and the representative ranks for the same 

cluster for each protein of the studied dataset is on average 0.84. The high correlation values 

show that, overall, medoids were able to depict the general trend of the larger distribution they 



were chosen to represent. On the other hand, the relatively high RMSE values indicate a 

large diversity of ranks within a cluster. 

 

2.3.2 Can we use representatives instead of the whole dataset? 

Since not all the proteins in our dataset are of human origin, the relevant cognate 

ligand was not always found in the human metabolome dataset. In these cases (12 out of 27), 

the medoid most similar to the ligand was considered to be its representative. The pie chart in 

Figure 12 shows the results obtained by docking only 115 structural representatives. In 66% 

of the cases the medoid, representing the real substrate for a given protein, was found in the 

top 25% of the distribution, while in 80% of the cases it was found in the top 60% (25-50% 

window is actually shown in the pie chart). These results are considerably worse than what 

we would obtain by docking every single ligand and retaining the top 25% of hits. Hence, it 

would be hard to justify the use of representatives in this case. Although we find that the 

medoids capture at least some of the binding properties of the members of a cluster, 

confirming the observation that on average, structurally similar ligands tend to bind in a similar 

fashion[52], it is also true that within each cluster the diversity is such, that important binders 

can be missed when representatives are used. 



Discussion/conclusions  

Lately, mostly due to structural genomics initiatives, functional annotation is not 

proceeding au pair with the number of newly released X-ray structures. Since the functional 

information that can be deduced from the amino acid sequence alone is limited, structure-

based prediction of the function of a protein is an important challenge. Here we have 

presented different docking protocols for identifying candidate substrates of 27 proteins with a 

known catalytic function from the large short-chain dehydrogenases/reductases family. In 

addition, pros and cons of using representative molecules for docking, instead of a whole set 

of plausible metabolites, in an attempt to save computational time, have been analysed. 

In this study, for 2/3 of the proteins the real substrate or product was ranked within the 

top 5% of the entire ligand dataset using Glide, which performed slightly better than the other 

methodologies employed. Most of the few cases, where neither the substrate nor the product 

are ranked in the top 25% of the distribution, were improved by using a physics-based 

rescoring procedure. This is not surprising, since this kind of protocol has already been 

proven to be extremely helpful in the past[11,12], especially when desolvation of both protein 

and ligand upon binding and polarisation effects play a major role. Among the factors that can 

affect the quality of a docking simulation, the presence of a ligand that resembles the natural 

substrate bound in the starting structure seemed to play an important role (as expected). In 

our dataset, nearly half of the proteins were crystallised as complexes with ligands similar to 

the natural ones, which is the best scenario one could hope for when dealing with docking 

algorithms. As a general result, the natural substrate was appropriately docked and well-

scored within the binding site, regardless of the nature of the starting structure, but we note 

that in two out of the four failed cases (substrate or product badly scored, or not docked at all) 

the crystal structure lacked a ligand bound similar to the natural one. The Induced Fit Docking 

protocol, which gives full flexibility to selected protein residues, helped, partly, to overcome 

this problem, but it can only work when major structural rearrangements are not needed. In 

addition, the Induced Fit Docking is not a practical solution for large-scale docking 

calculations, as allowing flexibility of the side-chains considerably increases the degrees of 

freedom, and subsequently the required computational time.  

Another question we attempted to answer with this study was whether a small set of 

representative compounds could give us similar information on the function of a protein as 

that obtained by a large dataset. To our knowledge, this is the first time that this question is 

being addressed, although the study of Shoichet and co-workers[26] shares some similarities 



with ours, in that they also used only ligand family representatives when ranking their docking 

scores, in an attempt to increase the diversity of the top-ranking ligands. We have found that 

the ranks (and energies) of our naïvely constructed structural representatives correlate well 

with the mean ranks of the clusters they represent. However, there is great variation in the 

quality of the clusters, which is reflected in an equally varied distribution of ranks and energies 

of the compounds within a cluster. Where this distribution is not tight, the representative of the 

cluster clearly cannot cover the range of binding affinities observed for members of the 

cluster. In a way, one should expect these results: small structural changes on a molecular 

scaffold often lead to ligands with widely varying affinities for a receptor. This, in fact, may be 

more pronounced in real binding experiments, because the approximations in the scoring 

functions of in silico calculations may often overlook many small differences in the structure. 

However, very similar ligand structures are still, on average, more likely to exhibit similar 

binding patterns, as compared with very different structures, and this is what we tried to test 

here, with some success. Although progress in the hardware and software technology has 

made it possible to dock large datasets against a single protein, we believe that docking 

representative ligands may still have a role to play. This is because a) this approach could be 

directly tested with in vitro experiments of the same scale, giving us a glimpse of the chemical 

space accessible to a binding site, and b) it would allow us to routinely screen against a large 

set of proteins (rather than a single target), and possibly using computational protocols that 

are a lot more time consuming but also more accurate. This study has shown that a 

representative set based on simplistic 2D structure-based clustering will not generally work 

well enough, and so we are currently investigating alternative approaches to this problem. 

However we note that a small dataset of structurally diverse ligands might be used to 

explore the nature of the binding sites of proteins, regardless of what their function may be. 

Although a single ligand may interact very differently with two binding sites and still achieve 

similar docked scores for both, it is increasingly unlikely that this will be the case if many 

ligands are used to probe these binding sites. It is then possible to assume that the profile of 

scores against each protein can be used to cluster the proteins. Such clusters may highlight 

similarities that are not obvious from comparisons of the sequences or structures of these 

proteins. We are currently investigating the usefulness of this approach for clustering sets of 

proteins that are likely to share similar sets of ligands 

In our study we chose to dock the substrates and products of reactions catalysed by 

our SDR proteins, as these were readily available in databases and the literature. Two 



research groups have recently independently achieved interesting results by docking high-

energy intermediates to protein structures[10,53]. This clever approach relies on the fact that 

proteins catalysing a reaction lower the activation energy of that reaction by stabilising the 

transition state. These reaction intermediates have very different electrostatic properties 

compared with the substrate or product, and this apparently increases the chance of 

successful identification of the target molecule/function. A careful study of this approach using 

a diverse set of proteins will be interesting to explore its general applicability. We think such a 

protocol cannot be readily adopted in a family of proteins like the SDRs, where the space of 

catalytic reactions that need to be covered is so broad, as to prohibit the automatic 

construction of all possible hypothetical transition states in preparation for docking.  

In conclusion, we have found that the SDR family of proteins is a particularly 

challenging case for cognate ligand identification. This family achieves a broad substrate 

target range through extensive sequence variation, but also because the binding site 

incorporates a flexible loop. Such large scale flexibility remains a challenge for ligand docking, 

and renders function prediction for this family especially difficult. Whilst the results we present 

here are encouraging, the procedure we followed can only achieve limited accuracy. Some 

progress can be made using new software that accounts for protein residue 

mobility[46,54,55], at the price of an increased computational time, but nontrivial structural 

rearrangements are still difficult to predict. Perhaps more promising are new protocols that 

attempt to simulate the dynamics of the process of protein-ligand recognition, starting from 

the moment the ligand enters the binding site[56,57]. In our future work we will use the 

protocols developed here to study the biological role of the many new structures of human 

SDRs that have become available through the work of the Structural Genomics Consortium 

(SGC Oxford: http://www.sgc.ox.ac.uk), including experimental validation. 



Materials and methods 

 

The dataset 

The proteins, substrates and products 

The 27 SDR proteins in our dataset were selected from all available SDR proteins in 

the PDB using the following criteria: 

a) The protein should be biochemically characterised, and its substrate(s) known; 

b) The cofactor corresponding to the EC reaction associated with that protein should 

be present in the structure; 

c) No residues should be missing from the active site; 

d) The sequence should have no mutations introduced; 

e) No protein should be included twice in the dataset. 

Twenty seven proteins satisfied these criteria at the time of selection (April 2005) and 

are listed in Table 1. 

Information on the substrates and products of these proteins was taken either from the 

literature corresponding to each PDB structure, or if that was not available, then the reaction 

information available in the KEGG database[58] or BRENDA database[59] was used. In the 

case of acyl-carrier-protein (ACP) -binding SDRs, we substituted the ACP moiety with a 

suitable coenzyme A derivative, for which we had evidence from either the literature or the 

BRENDA database that it is also a substrate (although it may only be so in vitro). Two-

dimensional diagrams for the substrates and products were manually constructed and 

protonated. Three-dimensional structures for these were obtained using the online version of 

CORINA[60] (this web-accessible version is now only available as a demo on the internet site: 

www.mol-net.com). 

 

The dataset of human metabolites and selection of representatives 

To create the dataset of human metabolites, all 1131 small molecules listed in KEGG's 

human pathway compound files (version available in February 2005) were extracted. As the 

pathway maps of KEGG show only substrates and products (e.g. cofactors are generally 

missing from these maps), this list may not cover the complete human metabolome from 

KEGG. From this list we have additionally removed any molecules that contain generic “R” 

groups, or are polymers with an unspecified number of repeats. This results in a final dataset 

of 931 small molecules (see Supplementary Information for a list of KEGG codes). The 



connectivity tables for these molecules were taken directly from KEGG with no further manual 

inspection. All molecules used as ligands in docking experiments were prepared using the 

LigPrep program (i.e. hydrogens and charges were added at physiological pH, and a 3D 

optimised structure was calculated for each molecule). Of the 931 molecules, some are too 

big or have too many rotational bonds and are rejected by the docking programs, leaving 922 

molecules that could be docked. 

 

Small molecule similarity calculations 

Small molecule comparisons for the clustering of the human metabolome were 

performed using the hashed-fingerprint algorithm available in the Chemistry Development Kit 

library of Java classes[61]. We have used fingerprints of 1088 bits and bond paths were 

calculated for up to 7 atoms. The Tanimoto similarity score was used to estimate the pairwise 

similarity of all pairs of molecules.  

For the comparison of the substrate of a protein to each molecule docked to that 

protein (for the similarity vs. docking rank plots available as Supplementary Information) we 

used the JKlustor part of the chemistry software available from ChemAxon[62]. More 

specifically, we used the “generatemd” command to generate 1024-bit hashed fingerprints for 

each molecule, and the “compr” command to obtain a Tanimoto score for each pair of 

fingerprints.  

 

Clustering of the human metabolites 

Clustering was performed using the Partitioning Around Medoids (PAM) method as 

implemented in the R suite of statistical software[63] on the CDK fingerprint-based pairwise 

dissimilarity matrix. This method looks for a set of representative objects (medoids) among 

the observations of the dataset, around which the clusters of the data are built. The best set 

of representatives minimises the dissimilarities of objects in a cluster to the medoid of that 

cluster. An advantage of this method is that it can offer a simple way of choosing the “best” 

number of clusters, based on what is known as silhouette information. Each observation is 

assigned a silhouette width, which expresses how well it is clustered. The average silhouette 

width for all clusters is then an indication of how well the observations are clustered for a 

given number of clusters. Ideally, the optimum number of clusters would be the one with the 

highest average silhouette width. 

We have used the silhouette width values to guide us in the selection of the number of 



clusters. In addition, we have inspected the clusters, removing a few of them (metals, water 

and oxygen, and some xenobiotic compounds included in the KEGG metabolic network), and 

adding some metabolites that were clearly outliers in their own clusters, and hence not well 

represented by the cluster medoids. The final number of metabolite representatives docked 

was 115 (see Supplementary Information for a list of KEGG codes). 

 

Docking calculations 

Autodock  

Autodock 3.05 was used to dock 115 medoids plus all protein substrates and products, 

giving a total of 176 small molecules, to each of the 27 SDR proteins. Water molecules 

present in the crystal structures were removed, as well as inhibitors, natural substrates, or 

products. Cofactors were retained. Pre-processing of the proteins was done using the scripts 

available within the Autodock suite and its graphical user interface, ADT[64]. Ligand 

preparation was done with the help of the PRODRG software[65]. 

For each docking calculation, a box was defined around the active site, and affinity 

maps for each of the atom types present in the ligand dataset were calculated. The box was 

centred on the centre of mass of all the ligands found co-crystallised with the studied proteins, 

after the proteins were structurally superimposed on their C alpha atoms. The box contained 

126 points along the 3 axes, spaced at 0.250 Å. Docking simulations were performed using a 

modified version of the genetic algorithm, with 2-point crossover and random mutations, for 

the global search, and an optimized version of the Solis and Wets algorithm[66] for the 

subsequent local minimization. All the docking parameters were set to their standard values 

except for the number of search runs to be done (i.e. docking poses obtained), that was set to 

100. The ligand internal electrostatic contribution was also considered in the calculation. For 

each ligand in the dataset, only poses containing at least one atom within 4 Å from the C4 

atom of the nicotinamide ring of the cofactor were retained (see Figure 2c). Different ligands 

were compared and ranked on the basis of their estimated best free energy of binding. 

 

Glide calculations 

We used the Glide program from the Schrödinger software suite[67] to perform docking 

of all our small molecule datasets to each of the 27 SDR proteins. The protein receptors were 

prepared in Maestro. All waters were removed, hydrogens were added, and the grid was 

centred manually in each case, using the nicotinamide C4 atom to guide the position of the 



centre in each case. The size of the grid was 39 Å in each direction. In all cases, we imposed  

a distance constraint, forcing at least one atom of each ligand to be within 4 Å of the C4 atom 

in the nicotinamide ring. We did not dock ligands with more than 200 atoms or 35 rotatable 

bonds. 

We allowed only the best pose for each ligand to be reported while docking the human 

metabolites dataset. When docking the representatives, we kept the ten best poses and 

subsequently ranked the ligands by their Glide SP scores after selecting one pose either 

using the best Emodel energy (which takes into account the internal energy of the ligand) or 

the best Glide SP score (which is more suitable for comparing the affinities of different 

ligands). Results from the two rankings were similar and we report the best Glide SP-selected 

energy, wherever we refer to results for the representatives alone. The van der Waals 

energies of the ligand atoms with partial charge less than 0.15 were scaled by 0.8 to soften 

the effect of large repulsions and allow for possible errors in the crystal structure coordinates 

(this is a standard and recommended procedure in Glide). 

 

Induced Fit calculations 

In the few cases where the substrate either did not dock in the binding site or it was not 

scored well, we performed induced fit calculations using Schrödinger’s Induced Fit Docking 

[46], in order to “relax” the side chains of protein residues in the binding site and achieve a 

better fit between the substrate and its partner protein.  

The Induced Fit Docking works by initially mutating to alanine the residues in the 

binding site that are suspected to block the binding of the substrate in the apo structure, and 

by docking ligands using a softened van der Waals potential. For each pose that is kept, a 

Prime[50] energy minimisation is performed which allows the side chains to be optimised for 

that pose. Once the receptor represents an induced fit structure, Glide is used to redock the 

ligands and finally ligand poses are scored using a combination of the Prime energy and 

Glide SP score.  

Due to the Prime calculations, the Induced Fit Docking is considerably more time 

consuming than a simple Glide docking run, and hence we have only used it where Glide had 

failed and it was obvious that there was a problem with the starting receptor structure (such 

as 1b14 and 1cyd proteins). In addition, we have not included the induced fit results in any 

table or figure that also includes results from standard rigid-protein docking. We have only 

performed these calculations in addition to the rigid-protein ones to demonstrate that some of 



the problems in our docking results stem from side chains blocking the binding site in the apo 

structure. 
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TABLES 

PDB code Protein Name Chain EC Organism Substrate 

1ae1* Tropinone reductase-I B 1.1.1.206 Thornapple OTH 

1ahh* 7 α-hydroxysteroid dehydrogenase A 1.1.1.159 E. Coli STER 

1b14* Alcohol dehydrogenase A 1.1.1.1 Fruit fly OTH 

1bsv* GDP-fucose synthetase A 1.1.1.271 E. Coli NUCS 

1bvr Enoyl reductase A 1.3.1.9 M. Tuberculosis COA 

1c14* Enoyl reductase A 1.3.1.9 E. Coli COA 

1cyd* Carbonyl reductase A 1.1.1.184 Mouse OTH 

1d7o* Enoyl reductase A 1.3.1.9 Oilseed rape CoA 

1e6w 3-Hydroxyacyl-CoA dehydrogenase II A 1.1.1.35 Norway rat SMP/COA/STER  

1edo* 3-Oxoacyl reductase 1 A 1.1.1.100 Oilseed rape COA 

1ek6 Udp-galactose 4-epimerase A 5.1.3.2 Human NUCS 

1equ Estradiol 17-beta-dehydrogenase 1 A 1.1.1.62 Human SMP 

1geg Acetoin(diacetyl) reductase A 1.1.1.5 K. Pneumoniae SMP 

1h5q* Mannitol dehydrogenase A 1.1.1.138 Mushroom SMP 

1ipf* Tropinone reductase-II A 1.1.1.236 Thornapple OTH 

1iy8 Levodione reductase A 1.1.1.- C. Aquaticum OTH 

1ja9 Tetrahydroxynaphthalene reductase A not assigned Rice fungus STER 

1kc3 dTDP-4-dehydrorhamnose reductase A 1.1.1.133 Salmonella NUCS 

1ker dTDP-glucose 4,6-dehydratase A 4.2.1.46 Streptococcus NUCS 

1keu dTDP-glucose 4,6-dehydratase A 4.2.1.46 Salmonella NUCS 

1mg5 Alcohol dehydrogenase A 1.1.1.1 Fruit fly SMP 

1orr CDP-tyvelose-2-epimerase A 5.1.3.- Salmonella NUCS 

1pr9* L-xylulose reductase A 1.1.1.10 Human SMP 

1q7b* 3-Oxoacyl reductase A 1.1.1.100 E. Coli COA 

1sep Sepiapterin reductase null 1.1.1.153 Mouse OTH 

1udc UDP-glucose 4-epimerase null 5.1.3.2 E. Coli NUCS 

1w4z* Ketoacyl reductase A 1.3.1.- E. Coli COA 
Table 1. The dataset of 27 SDR proteins used in this study presented in alphabetical order of their PDB codes. Asterisks indicate the lack of 
a substrate-like molecule bound in the X-ray structure. 
The abbreviations used are: 

• For the Substrate column: STER – Steroid (or steroid like) molecules, NUCS – Nucleotide Sugars, COA – Coenzyme A 
derivatives, SMP – Small, polar molecules, OTH – Others (which don’t fit in any of the previous groups). 
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Figure Captions 

1. Phylogram based on the multiple sequence alignment of the 27 protein sequences in 

our dataset. The dendrogram was obtained using ArboDraw[68]. Proteins are annotated by 

their EC classification (coloured text and branches) and substrate similarity (right box, colour 

code refers to Figure 4). Proteins sharing the first two EC levels are annotated in the same 

colour (green = EC 1.1, blue = EC 1.3, orange = EC 4.2 pink = EC 5.1, black = EC not 

assigned yet). 

2. The structure of the SDR family of proteins. a) Superposition of all 27 SDR protein 

structures based on their C alpha carbons, two different views (obtained by a 180° rotation on 

the main axis) are shown. The C terminal part of the proteins, where most of the variation 

occurs, is highlighted. Cofactors are depicted as sphere model, coloured in yellow. Multiple 

alignment was performed with the Sheba software[69]. b) On the left, two superimposed 

single-domain proteins from our dataset are shown: PDB codes 1ae1 (in slate blue) and 1ahh 

(in gold yellow). On the right: the single domain protein 1ae1 (in slate blue) is compared with 

a two-domain protein from our dataset (1bsv). The two domains are coloured in brown (CATH 

3.40.50.720) and red (CATH 3.90.25.10). N-terminals and C-terminals are highlighted. The C-

terminal parts of the two domains show a lot more variation than the N-terminal parts, which 

bind the coenzymes. Cofactors are shown as stick models, coloured according to their parent 

protein. c) Superposition of all 27 NAD(P)H coenzymes (C4 atom of the nicotinamide ring is 

highlighted) derived by superimposing the SDR protein structures on their protein C alpha 

carbons. 

3. Schematic representations of the natural substrates of the 27 studied SDRs. 

Chemical groups involved in the catalytic process are highlighted in red. (where two proteins 

share the same substrate, all the functional groups involved were highlighted). 

4. Clustering of the SDR substrates using a fingerprint-based similarity matrix. 

Molecules are annotated by the group they belong to (coloured box on the left) and by the EC 

of the proteins (box on the right, colour code refers to Figure 1). In the case of 1e6w and 

1cyd, substrates “c” and “b” were used respectively. The substrates are annotated using a 

broad classification (from visual inspection) into five classes: steroids/steroid-like (STER), 

nucleotide sugars (NUCS), coenzyme A derivatives (COA), small & polar (SMP), and “other” 

(OTH). The substrate of 1ahh is a steroid but contains no aromatic ring. The substrate of 1bsv 

contains a larger nucleic acid base (guanine) compared with the remaining nucleotide sugar 

substrates.  



5. The method of multidimensional scaling (as implemented in the R software suite[63]) 

was used to project the human metabolome in two dimensions (using the symmetric similarity 

matrix of all pairwise fingerprint-based scores). In this plot, each metabolite is represented by 

a black circle, and metabolites with similar 2D structures are expected to be close in space. 

The blue filled circles are the 115 metabolite representatives selected using clustering, and, 

as seen in the figure, they cover reasonably well the 2D projection of all metabolites.  

6. a) Movement of side chains in biding site of protein (1b14) as a result of induced fit 

docking. Alcohol dehydrogenase from drosophila lebanonensis binding site, before (cyan) and 

after induced fit docking (green). Top ranked pose for the 1b14 substrate is shown in yellow. 

Residues I183, L206, I145 Y151 and NAD+ cofactor are highlighted, depicted as stick models. 

The dashed line is drawn between the atoms likely to be involved in a hydrogen bond 

interaction. b) Top ranked pose for the 1h5q substrate, within the 1h5q protein binding site, is 

shown in yellow. Residues S151, N156, Q166, Y169 and NADP+ cofactor are depicted as 

stick models. The dashed lines are drawn between the atoms likely to be involved in 

hydrogen bond interactions. 

7. Quality of substrate recognition: Pie chart for substrate or product ranks (whichever 

was best) for 27 proteins. 922 ligands (human metabolome) were docked and rank of cognate 

substrate or product is shown, according to docking scores. The quarter of the distribution in 

which the substrate or product belongs to is reported. 

8. Comparison of cognate ligand recognition (substrate or product ranks) for 4 different 

docking/scoring protocols. In each case we have docked 176 ligands and we summarise the 

results by binning the substrate or product ranks (whichever was best). a) Glide SP, b) 

Autodock, c) Glide SP poses rescored with Prime (protein was kept rigid during minimisation 

of the complex), d) Glide SP poses rescored with Prime and allowing the protein some 

flexibility during minimisation of the energy of the complex. Glide SP clearly performs better 

for our dataset.  

 9. a) Comparison of the substrate ranks resulting from the Glide SP score (x-axis) and 

the rescoring of the Glide poses with Prime (y-axis, allowing minimisation of the protein 

binding site). In case of multiple substrates, only the best-scoring substrate is shown. The 

protein 1b14 is not in the plot as the substrate pose did not pass our Glide distance filter. b) 

Substrate p values vs. protein p values for the 27 cognate pairs of enzyme-substrate 

complexes. The substrate p value is an estimate of how well the substrate recognises its 

protein partner, based on the docking scores of this substrate against each of 27 proteins. 



The protein p value is an estimate of how well the protein recognises its substrate partner, 

based on the docking scores of 176 ligands docked to that protein. The Glide scores used to 

prepare this plot were the best Glide SP scores from a list of 10 candidate high-scoring 

poses. We have also tried to select the best pose using Glide’ s Emodel energy, but we found 

that the results were slightly worse in this case. Labels of both plots are coloured accordingly 

to the following scheme: black for steroid-like molecules, yellow for small and polar 

molecules, red for CoA-like compounds, green for nucleotide sugars and blue for the 

remaining molecules. Asterisks indicate the lack of a substrate-like molecule bound in the 

starting X-ray structure. 

10. The function "stars" in R[63] was used to depict as “star plots” the relative 

magnitude of 8 1D descriptors of the top 10 Glide hits for each of the 27 enzymes. The same 

descriptors are also shown for the substrate (first column) for comparison. The following 

descriptor values were calculated using the MOE descriptor calculation software[51]: Number 

of aromatic atoms (a.aro.), fraction of rotatable bonds (b.rotR), number of rings in the 

molecule (rings), molecular weight (Weight), sum of formal charges (FCharge), Lipinski 

acceptor count (lip.acc.), Lipinksi donor count (lip.don.), log octanol/water partition coefficient 

(logP o.w.). All descriptors have been scaled between 0 and 1, as required by the stars 

plotting function. Scaling was applied to values of each descriptor within the set of all human 

metabolites + all substrates, so the scale used is the same for all rows in this plot. 

11. Box-and-whisker plots for the distribution of Glide SP scores resulting from docking 

922 small molecule ligands to 27 SDR proteins. Each box-and-whisker plot is created using 

the distribution of all available scores for a given protein binding site (not necessarily 922, as 

some molecules fail to dock, depending on the protein). The scores of a given cluster of 

ligands are then annotated on top of this distribution as blue triangles, and the score of the 

medoid (where available), is shown as a red bullet. We only show three (randomly selected) 

clusters in this figure (from a total of 115). This plot was created using R[63]. 

12. Usefulness of medoids: The pie chart summarises the results obtained by docking 

only 115 structural representatives to each of the 27 SDR proteins, and then reporting the 

quarter of the distribution of scores to which the representative closest to the real substrate 

belongs to. For example, in 66% of cases, the structural representative closest to the cognate 

substrate is ranked in the top 25%, according to the Glide SP scores.  
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SUPPLEMENTARY INFORMATION 
 

 
SI-1 Schematic representations of the natural products of the 27 studied SDRs. 
 
 



C00006 C00962 C06099          
C00009 C01026 C07717          
C00020 C01134 C07725          
C00021 C01161 C07731          
C00025 C01176 C07733          
C00033 C01181 C11136          
C00035 C01197 C11356          
C00051 C01346 C11431          
C00052 C01384 C11432          
C00061 C01412           
C00067 C01697           
C00068 C02166           
C00082 C02222           
C00085 C02470           
C00094 C02505           
C00106 C02571           
C00112 C02723           
C00136 C02727           
C00153 C03267           
C00158 C03360           
C00164 C03557           
C00180 C03758           
C00183 C03824           
C00187 C04006           
C00197 C04244           
C00231 C04281           
C00233 C04376           
C00250 C04805           
C00256 C04895           
C00262 C05119           
C00319 C05202           
C00346 C05300           
C00386 C05404           
C00438 C05419           
C00440 C05462           
C00455 C05480           
C00469 C05485           
C00486 C05503           
C00515 C05552           
C00519 C05579           
C00523 C05583           
C00565 C05635           
C00581 C05639           
C00606 C05651           
C00628 C05655           
C00645 C05766           
C00655 C05804           
C00763 C05811           
C00780 C05827           
C00792 C05850           
C00822 C05890           
C00899 C05932           
C00906 C05959           
SI-2 List of the 115 KEGGS identifiers corresponding to the human representatives (medoids) 

used in this study. 



PDB – 
substrate 
(S)/product 
(P) 

Distance 
of C4 to 
reaction 
centre 

Glide 
Score 

Rank among 
representatives 
(176) 

rank % among 
representatives 

Rank 
among all 
human 
metabolites 
(922) 

rank% 
among all 
human 
metabolites 

1ae1 - S 3.28 -6.54 7 3.98 27 2.93 

1ae1 - P 3.71 -6.42 10 5.68 39 4.23 

1ahh - S 6.43 -6.08 57 32.39 223 24.19 

1ahh - P 7.11 -5.16 118 67.05 525 56.94 

1b14 - S Not 
docked 

          

1b14 - P Not 
docked 

          

1bsv - S 17.28 -8.7 15 8.52 521 56.51 

1bsv - P 5.73 -8.97 9 5.11 39 4.23 

1bvr - S 10.98 -5.48 69 39.20 278 30.15 

1bvr - P 10.15 -5.17 82 46.59 361 39.15 

1c14 - S 4.69 -9.4 5 2.84 28 3.04 

1c14 - P 3.95 -8.75 10 5.68 29 3.15 

1cyd - S_a Not 
docked 

          

1cyd - P_a Not 
docked 

          

1cyd - S_b 4.26 -5.33 14 7.95 49 5.31 

1cyd - P_b 4.45 -5.67 10 5.68 72 7.81 

1d7o - S 3.71 -6.32 24 13.64 102 11.06 

1d7o - P 3.17 -7.85 4 2.27 23 2.49 

1e6w - Sa 5.49 -4.35 144 81.82   0.11 

1e6w - Pa 5.46 -5.79 62 35.23   0.11 

1e6w - Sb 4.77 -8.18 3 1.70 18 1.95 

1e6w - Pb 6.64 -9.06 1 0.57 5 0.54 

1e6w - Sc 11.10 -6.68 18 10.23   0.11 

1e6w - Pc 11.13 -6.67 19 10.80   0.11 

1edo - S 3.27 -
10.71

1 0.57 5 0.54 

1edo – P  4.09 -9.48 3 1.70 122 13.23 

1ek6 - S 3.37 -
10.91

6 3.41 17 1.84 

1ek6 - P 3.36 -
10.46

11 6.25 30 3.25 

1equ - S 3.08 -7.77 4 2.27 10 1.08 

1equ - P 3.07 -7.36 8 4.55 26 2.82 

1geg - S 3.52 -4.32 25 14.20 126 13.67 

1geg - Pa 2.95 -6.4 4 2.27   0.11 

1geg – Pb 3.00 -7.11 1 0.57 1 0.11 

1h5q – S 3.09 -4.72 153 86.93 795 86.23 

1h5q - P 3.26 -6.01 109 61.93 852 92.41 



1ipf - S 7.49 -5.84 25 14.20 171 18.55 

1ipf - P 4.28 -6.69 2 1.14 16 1.74 

1iy8 – S 5.01 -5.49 78 44.32 351 38.07 

1iy8 – P  5.50 -6.77 18 10.23 57 6.18 

1ja9 - S 3.88 -7.75 5 2.84 37 4.01 

1ja9 - P 5.15 -7.74 6 3.41 49 5.31 

1kc3 - S 18.62 -7.32 33 18.75 215 23.32 

1kc3 - P 3.96 -7.36 31 17.61 310 33.62 

1ker - S 4.59 -
13.95

2 1.14 2 0.22 

1ker – P  3.53 -12.7 4 2.27 3 0.33 

1keu - S 3.41 -9.49 6 3.41 8 0.87 

1keu – P 3.29 -
11.16

3 1.70 4 0.43 

1mg5 - S 3.46 -0.73 24 13.64 150 16.27 

1mg5 - P 3.47 -4.74 13 7.39 33 3.58 

1orr – S 12.87 -
12.14

4 2.27 11 1.19 

1orr – P 3.75 -
10.86

14 7.95 231 25.05 

1pr9 – S 3.99 -6.03 72 40.91 371 40.24 

1pr9 – P 3.54 -5.54 88 50.00 427 46.31 

1q7b – S 16.26 -4.93 124 70.45 782 84.82 

1q7b – P 16.05 -8.48 1 0.57 4 0.43 

1sep - S 4.21 -8.48 13 7.39 53 5.75 

1sep – P 4.03 -7.86 23 13.07 127 13.77 

1udc – S 4.90 -
12.41

5 2.84 5 0.54 

1udc – P 3.82 -10.5 15 8.52 20 2.17 

1w4z – S 3.07 -8.74 7 3.98 36 3.90 

1w4z - P Not 
docked 

          

SI-3 A qualitative measure of the docking poses. For each protein, substrate and product 
binding poses (column 1, pdb code-S and -P, respectively) are analyzed in terms of 
distance between the C4 (see Figure 2c) and the reaction centre, of Glide score, actual 
rank and % rank among representatives and among all human metabolites (columns 
from 2 to 7). 

 
 
 
 
 
 
 
 
 
 
 



C00001 C00073 C00143 C00239 C00363 C00519 C00683 C01026 C01230 C02305 
C00002 C00074 C00144 C00242 C00364 C00523 C00687 C01031 C01235 C02325 
C00003 C00075 C00146 C00243 C00365 C00524 C00689 C01033 C01236 C02336 
C00004 C00077 C00147 C00245 C00366 C00526 C00696 C01035 C01243 C02373 
C00005 C00078 C00148 C00246 C00376 C00527 C00700 C01036 C01245 C02406 
C00006 C00079 C00149 C00248 C00378 C00530 C00705 C01042 C01259 C02411 
C00007 C00081 C00152 C00249 C00379 C00531 C00719 C01044 C01260 C02442 
C00008 C00082 C00153 C00250 C00385 C00532 C00735 C01051 C01261 C02465 
C00009 C00083 C00154 C00252 C00386 C00534 C00750 C01054 C01262 C02470 
C00010 C00084 C00155 C00253 C00387 C00535 C00751 C01060 C01272 C02501 
C00011 C00085 C00158 C00255 C00388 C00544 C00762 C01061 C01284 C02505 
C00013 C00086 C00159 C00256 C00398 C00546 C00763 C01063 C01312 C02512 
C00014 C00089 C00160 C00258 C00402 C00547 C00780 C01079 C01344 C02515 
C00015 C00091 C00163 C00259 C00407 C00555 C00785 C01081 C01345 C02538 
C00016 C00092 C00164 C00262 C00408 C00559 C00788 C01083 C01346 C02571 
C00018 C00093 C00166 C00267 C00410 C00565 C00792 C01089 C01353 C02576 
C00019 C00094 C00167 C00268 C00415 C00570 C00794 C01094 C01380 C02593 
C00020 C00095 C00168 C00270 C00417 C00575 C00804 C01096 C01384 C02637 
C00021 C00096 C00169 C00272 C00418 C00577 C00811 C01097 C01412 C02642 
C00022 C00097 C00170 C00275 C00427 C00579 C00818 C01103 C01419 C02646 
C00023 C00099 C00178 C00279 C00429 C00581 C00819 C01104 C01494 C02670 
C00024 C00100 C00179 C00280 C00430 C00582 C00822 C01107 C01528 C02714 
C00025 C00101 C00180 C00286 C00437 C00583 C00831 C01110 C01596 C02723 
C00026 C00103 C00181 C00294 C00438 C00584 C00836 C01120 C01598 C02727 
C00029 C00104 C00183 C00295 C00439 C00588 C00842 C01134 C01613 C02734 
C00031 C00105 C00184 C00299 C00440 C00590 C00847 C01136 C01674 C02759 
C00032 C00106 C00185 C00300 C00445 C00601 C00857 C01137 C01693 C02814 
C00033 C00108 C00186 C00301 C00446 C00603 C00864 C01143 C01697 C02835 
C00035 C00109 C00187 C00307 C00447 C00606 C00870 C01144 C01724 C02888 
C00036 C00111 C00188 C00311 C00448 C00617 C00877 C01149 C01762 C02918 
C00037 C00112 C00189 C00314 C00449 C00620 C00881 C01152 C01780 C02934 
C00041 C00114 C00191 C00315 C00450 C00624 C00882 C01157 C01794 C02939 
C00042 C00116 C00197 C00319 C00455 C00627 C00894 C01159 C01801 C02946 
C00043 C00117 C00198 C00322 C00458 C00628 C00899 C01161 C01829 C02985 
C00044 C00118 C00199 C00325 C00459 C00630 C00900 C01164 C01832 C02990 
C00047 C00119 C00206 C00327 C00460 C00631 C00906 C01165 C01888 C03028 
C00048 C00120 C00208 C00328 C00468 C00632 C00909 C01168 C01921 C03069 
C00049 C00121 C00212 C00329 C00469 C00636 C00921 C01169 C01944 C03087 
C00051 C00122 C00213 C00330 C00472 C00637 C00931 C01170 C01953 C03090 
C00052 C00123 C00214 C00332 C00473 C00639 C00937 C01172 C01962 C03150 
C00053 C00124 C00217 C00334 C00475 C00642 C00942 C01176 C01996 C03164 
C00054 C00127 C00219 C00337 C00483 C00643 C00944 C01177 C02043 C03167 
C00055 C00128 C00221 C00341 C00486 C00645 C00951 C01179 C02094 C03205 
C00058 C00129 C00222 C00345 C00487 C00647 C00954 C01181 C02097 C03221 
C00059 C00130 C00224 C00346 C00490 C00655 C00956 C01185 C02110 C03227 
C00061 C00131 C00227 C00352 C00491 C00664 C00957 C01189 C02140 C03231 
C00062 C00132 C00230 C00353 C00492 C00665 C00962 C01197 C02165 C03232 
C00063 C00134 C00231 C00355 C00499 C00668 C00978 C01204 C02166 C03263 
C00064 C00135 C00232 C00356 C00500 C00669 C00986 C01211 C02170 C03267 
C00065 C00136 C00233 C00357 C00504 C00670 C01005 C01213 C02191 C03287 
C00067 C00137 C00234 C00360 C00506 C00672 C01013 C01220 C02198 C03373 
C00068 C00140 C00235 C00361 C00512 C00673 C01019 C01222 C02218 C03406 
C00072 C00141 C00236 C00362 C00515 C00674 C01024 C01227 C02222 C03410 
C03344 C04352 C05268 C05457 C05596 C05830 C06142 C08060 C02232 C03415 
C03345 C04373 C05269 C05458 C05598 C05831 C06144 C08061 C02235 C03428 
C03360 C04376 C05270 C05460 C05619 C05832 C06145 C08062 C02291 C03440 



C03451 C04554 C05279 C05472 C05640 C05849 C06199 C09824   
C03453 C04555 C05280 C05473 C05641 C05850 C06206 C09825   
C03460 C04640 C05284 C05474 C05642 C05852 C06207 C09880   
C03465 C04644 C05285 C05475 C05643 C05889 C06212 C09884   
C03479 C04677 C05290 C05476 C05647 C05890 C06213 C11131   
C03492 C04734 C05293 C05477 C05648 C05893 C06241 C11132   
C03508 C04751 C05294 C05478 C05651 C05894 C06452 C11133   
C03546 C04760 C05298 C05479 C05653 C05898 C06459 C11134   
C03557 C04778 C05299 C05480 C05655 C05899 C06548 C11135   
C03561 C04805 C05300 C05485 C05656 C05901 C06604 C11136   
C03564 C04823 C05302 C05487 C05657 C05921 C06606 C11356   
C03569 C04853 C05332 C05488 C05659 C05922 C06607 C11405   
C03582 C04874 C05335 C05489 C05660 C05923 C06608 C11407   
C03594 C04895 C05338 C05490 C05665 C05925 C06644 C11419   
C03680 C05100 C05345 C05497 C05668 C05931 C06645 C11421   
C03684 C05110 C05356 C05498 C05673 C05932 C06649 C11422   
C03691 C05111 C05378 C05499 C05674 C05933 C06650 C11425   
C03722 C05116 C05379 C05500 C05686 C05935 C06651 C11429   
C03758 C05118 C05381 C05501 C05688 C05936 C06674 C11431   
C03765 C05119 C05382 C05502 C05689 C05938 C06675 C11432   
C03771 C05122 C05394 C05503 C05691 C05946 C06676 C11433   
C03772 C05125 C05396 C05504 C05692 C05947 C06711    
C03785 C05127 C05399 C05512 C05695 C05951 C06714    
C03793 C05130 C05400 C05520 C05696 C05956 C06715    
C03794 C05135 C05401 C05527 C05697 C05959 C06749    
C03824 C05138 C05402 C05528 C05698 C05966 C07083    
C03838 C05139 C05403 C05539 C05699 C05983 C07084    
C03912 C05140 C05404 C05548 C05711 C05984 C07086    
C03917 C05141 C05418 C05552 C05766 C05985 C07096    
C03972 C05145 C05419 C05565 C05768 C05993 C07097    
C04006 C05172 C05437 C05576 C05775 C05998 C07098    
C04041 C05176 C05439 C05577 C05787 C05999 C07112    
C04043 C05200 C05444 C05578 C05791 C06000 C07113    
C04051 C05202 C05445 C05579 C05800 C06001 C07114    
C04063 C05235 C05446 C05580 C05801 C06002 C07118    
C04076 C05258 C05447 C05581 C05802 C06006 C07271    
C04079 C05259 C05448 C05582 C05803 C06008 C07715    
C04185 C05260 C05449 C05583 C05804 C06010 C07717    
C04244 C05262 C05450 C05584 C05805 C06017 C07718    
C04256 C05263 C05451 C05585 C05811 C06054 C07724    
C04257 C05264 C05452 C05587 C05812 C06055 C07725    
C04281 C05265 C05453 C05588 C05823 C06099 C07731    
C04282 C05266 C05454 C05589 C05827 C06114 C07733    
C04295 C05267 C05455 C05594 C05828 C06124 C07734    
C04392 C05271 C05461 C05634 C05838 C06148 C09332    
C04405 C05272 C05462 C05635 C05839 C06157 C09812    
C04409 C05273 C05467 C05636 C05841 C06178 C09813    
C04424 C05274 C05469 C05637 C05842 C06196 C09819    
C04468 C05275 C05470 C05638 C05843 C06197 C09820    
C04546 C05276 C05471 C05639 C05844 C06198 C09821    
SI-5 List of the 931 KEGGS identifiers corresponding to the human metabolites used in this 

study. 
 


