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The goal of these studies was to determine key immune responses involved in either the 

development of oviduct pathology or protection from infection.  Using the mouse model of 

Chlamydia genital tract infection, we determined that increased neutrophil recruitment and 

delayed apoptosis were associated with enhanced oviduct damage.  Despite the important role of 

neutrophils in Chlamydia-induced tissue damage, we were unable to detect a central role for IL-

17, IL-22, or IL-23 in neutrophil recruitment or the development of pathology.  We found that 

IL-17 did promote Th1 immunity to infection but was not required for normal resolution of 

infection.  Finally, we determined that expression of the adaptor molecule MyD88 by CD4+ T 

cells was required for efficient resolution of Chlamydia from the genital tract due to its role in 

enhancing the survival of these cells.  These studies revealed that increased influx, survival, or 

activation of innate immune cells in the genital tract was associated with enhanced disease while 

prolonged survival of CD4+ T cells was associated with more efficient clearance of bacteria 

from the genital tract.  
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1.0  INTRODUCTION 

1.1 CHLAMYDIA TRACHOMATIS  

1.1.1 Lifecycle 

Chlamydia trachomatis is a gram-negative obligate intracellular bacterium that infects columnar 

epithelial cells lining mucosal surfaces.   Replication occurs within a membrane bound vacuole 

known as an inclusion, and the lifecycle of Chlamydia consists of two forms: the infectious 

elementary body (EB) and the replicative reticulate body (RB).  EBs infect host cells and 

differentiate into RBs, which after multiplying on a scale of several hundred fold, convert back 

into EBs.  Infectious EBs are released after approximately 72 hours via either membrane lysis or 

controlled release of the inclusion from the cell via a process known as extrusion (1).  Both EBs 

and RBs are transcriptionally active, and in a cell free culture system EBs were found to 

transcribe 655 genes and RBs to transcribe 893 genes (2).  In order to sustain metabolic activity, 

EBs required an external source of glucose-6-phosphate, and RBs required adenosine 

triphosphate (ATP) (2).  Thus, the intracellular niche of Chlamydia permits the acquisition of 

required resources from the host cell and also acts as a protective barrier against host defense 

mechanisms.  This point was reinforced by the discovery that Chlamydia trachomatis lacks 

enzymes required for synthesis of the essential amino acid tryptophan (3-5).  Serovars of 
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Chlamydia that infect the urogenital tract express a functional version of the last enzyme in this 

pathway, tryptophan synthase .  This enzyme synthesizes tryptophan from indole and serine, 

which are provided by commensal bacteria found in the genital tract.  This reaction permits 

evasion of a key mechanism of host defense, IFN-induced tryptophan limitation, and serovars 

that lack tryptophan synthase  do not infect the urogenital tract (5, 6).  

1.1.2 Serovar Classifications 

Chlamydia trachomatis is classified into serovars based on the sequence of the ompA gene, 

which encodes the major outer membrane protein (MOMP).  Chlamydia trachomatis serovars A-

C infect the ocular epithelium, serovars D-K infect the urogenital epithelium, and serovars L1-L3 

exhibit more invasive characteristics by spreading into the lymph nodes draining infected sites.  

MOMP represents 61% of the outer membrane protein content of EBs (7), but this classification 

strategy has been widely criticized due to its failure to represent the genetic relatedness of the 

genome beyond ompA (8, 9).  Indeed, recombination of ompA genes is not an infrequent 

occurrence, which results in the phylogenetic clustering of strains that are otherwise genetically 

dissimilar (8).   

1.1.3 Epidemiology  

1.1.3.1 Sexually transmitted infections 

Chlamydia trachomatis was the most common reportable infection in the United States in 2011, 

with over 1.4 million cases reported to The Centers for Disease Control (CDC) (10).   

Surveillance data indicate that the rates of infection are highest in women between the ages of 15 
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and 24, with approximately 3500 cases per 100,000 individuals (10).  The prevalence of 

infection in the United States between 1998 and 2008 was 6.8% of sexually active females 

between the ages of 14-19 years of age (10).   Chlamydia trachomatis urogenital infections are 

also highly prevalent globally.  Estimates from the World Health Organization (WHO) indicate 

that in 2005, 98 million individuals were infected at any one time, which represented 3.53% of 

females and 2.22% males in the world (11).   

1.1.3.2 Trachoma 

Ocular infections with Chlamydia trachomatis are a devastating problem in the developing 

world.  Infections are common in areas where individuals do not have access to clean water or 

proper sanitation, since infection is spread by contact with infected ocular or nasal secretions. 

Estimates from the WHO indicate that 71.2% of individuals that live in areas of endemic 

infection reside on the African continent (12).  Disease resulting from C. trachomatis ocular 

infection progresses through several stages (13).  Active trachoma is initiated by infection of the 

ocular epithelium with C. trachomatis and is characterized by the presence of conjunctival 

inflammation.  Repeated infections can eventually result in scarring of the conjunctiva, inversion 

of the eyelids, and scratching of the cornea by direct contact with the inverted eyelashes (i.e. 

trachomatous trichiasis).  Progression to blindness occurs when the cornea becomes opacified 

due to the combination of trachomatous trichiasis, opportunistic ocular infections, and exposure 

to environmental insults.  According to the WHO, there are currently 21 million individuals with 

active trachoma and 7.3 million cases of trachomatis trichiasis worldwide (12).  Studies indicate 

that 2.2 million people are visually impaired due to trachoma, and this number includes 1.3 

million people that are irreversibly blind (14).  
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1.1.4 Pelvic inflammatory disease and reproductive tract sequelae 

The CDC defines pelvic inflammatory disease (PID) as the presence of lower abdominal pain 

that cannot be attributed to another cause in association with cervical motion and adnexal 

tenderness in the presence of one of the following additional criteria: detection of C. trachomatis 

(Ct) or Neisseria gonorrhoeae (GC), sexual contact with someone with Ct or GC, temperature > 

38C, >10,000 WBC/mm
3
, or evidence of inflammation or infection in the pelvis or peritoneum 

(15).   

PID occurs when infection ascends from the lower to the upper genital tract (UGT) and in 

some cases into the peritoneal cavity.  Ascension of bacteria to the Fallopian tubes results in 

irreversible tissue damage.  We determined that mice experiencing several abbreviated infections 

with C. muridarum developed lower levels of genital tract pathology than those sustaining one 

infection that was not treated with antibiotics (16).  We have also determined that primary 

infection with a plasmid-deficient strain of Chlamydia that does not cause disease can prevent 

upper tract damage upon challenge infection with a fully virulent strain of Chlamydia by 

inducing a memory response that reduces infection dramatically (16, 17).   These data indicate 

that if the duration or the magnitude of infection in the upper genital tract is reduced, tissue 

damage can be avoided.      

A prospective trial named the prevention of pelvic inflammation (POPI) trial was recently 

conducted in the England with the goal of determining if testing and treatment for Chlamydia 

could prevent the development of PID over a period of 12 months (18).  Women were 

randomized to receive immediate testing and treatment for C. trachomatis or storage of their 

sample for testing after one year.  The incidence of PID over the course of a year was 9.5% 

(7/74) in women that were positive at enrollment but not treated and 1.6% (1/63) in women that 
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were tested and treated immediately.  Interestingly, 79% (30/38) of cases of PID occurred over in 

women that were negative at baseline, and 62% (16/26) of the these women with available test 

results were determined to have C. trachomatis when they presented with PID (18). These data 

indicate that delayed treatment is associated with an increased risk of PID and that annual 

screening for C. trachomatis may not be frequent enough to prevent the majority of individuals 

from developing PID.  These conclusions were supported by comparison of infertility rates in a 

cohort of women with clinically suspected PID, which determined that 17% (18/101) of women 

who delayed seeking treatment for Chlamydia PID for 3 or more days were infertile or 

experienced an ectopic pregnancy compared to none (0/13) of the women who were treated 

immediately (19).   

Repeated infections also represent a risk factor for the development of sequelae from 

Chlamydia genital tract infection.  In a study examining a cohort of commercial sex workers 

from Nairobi, Kenya, it was determined that repeated C. trachomatis infections was an 

independent risk factor for the development PID (20).  In a retrospective study of 11,000 women 

from Wisconsin with Chlamydia, it was determined that the risk of ectopic pregnancy and PID 

increased with the number of Chlamydia infections (21).   

The presence of the clinical signs of PID is not necessarily predictive of whether an 

individual will go on to be infertile, since the diagnostic criteria are relatively non-specific.  UGT 

damage was directly examined by laparoscopy in a study of 2500 women with clinical symptoms 

of PID (22).  Cases were defined as women with clinically diagnosed PID and abnormal findings 

on laparoscopy and controls were women with clinically diagnosed PID with normal findings on 

laparoscopy.  The authors determined that the presence of salpingitis on laparoscopy was 

associated with an increased risk of ectopic pregnancy in the first pregnancy after laparoscopy, 
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and ectopic pregnancy was diagnosed in 9.1% (100/1309) of cases and 1.4% (6/451) of controls.  

In addition, 16% (209/1309) of cases and 2.7% (12/451) of controls were infertile, and 141 of 

209 (67%) infertile patients from the case group were diagnosed with tubal factor infertility 

(TFI) compared to none of the infertile individuals in the control group. This study also found 

that the severity of PID upon initial laparoscopy and the number of times an individual was 

diagnosed with PID were associated with an increased risk of TFI. The control group in this 

study consisted of women with symptoms of PID but normal findings on laparoscopy, and 87% 

of these women were determined to have a lower genital tract infection (22).  

A separate study determined that the presence of UGT infection in women with clinically 

suspected PID was directly correlated with the development of salpingitis (23).   In this study, all 

of the 16 patients with C. trachomatis infection of the Fallopian tubes and/or the endometrium 

exhibited signs of salpingitis by laparoscopy (23). None of the 24 patients that were negative for 

infection at the cervix exhibited salpingitis (23). However, 5 of 11 patients that had CT or GC in 

the cervix but not the UGT also exhibited signs of endometritis and had detectable salpingitis on 

laparoscopy.   

Not all women with upper genital tract infection with Chlamydia exhibit symptoms of 

acute PID.  Subclinical PID is defined as the presence of endometritis in women that do not meet 

the CDC’s diagnostic criteria for acute PID, and subclinical PID is associated with the presence 

of UGT infection with C. trachomatis (24).  C. trachomatis infection was detected in the 

endometrium of 20% of women with acute PID, 10% of women with subclinical PID, and 2% of 

women without endometritis (25).  Of women with C. trachomatis infection at the cervix, C. 

trachomatis was detected in the endometrium of 27% of women with subclinical PID and 41% 

of women with acute PID (25).  Subclinical PID is a significant risk factor for infertility.  In a 
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separate study, it was determined that women who were diagnosed with subclinical PID on 

enrollment had a 40% reduced rate of pregnancy compared to controls (26).  In addition, women 

with sexually transmitted infections without subclinical PID did not have a decreased rate of 

fertility (26).    

These studies indicate that women may be at risk for upper reproductive tract damage 

even in the absence of symptoms of acute PID.  Ascension of bacteria to the UGT can occur in 

the presence of non-specific abdominal symptoms that both the patient and the physician are 

unable to recognize.  Studies demonstrating that annual testing is not frequent enough to prevent 

the development of PID from Chlamydia (18) and that a delay in treatment for longer than 3 days 

can increase the risk of infertility (19) indicate that only a vaccine will be able to prevent the 

tissue damage caused by this pathogen.  Unfortunately, the immune response is both the primary 

mediator of protection and the cause of genital tract damage.  Years of research have focused on 

differentiating the damaging from the beneficial immune response.   

1.2 IMMUNE MEDIATORS OF DISEASE AND PROTECTION 

1.2.1 Neutrophils  

1.2.1.1 Role of neutrophils in pathology 

Examination of leukocytes in the endometrial biopsies of women with clinically suspected PID 

revealed that UGT infection and salpingitis could be diagnosed with a 92% sensitivity and 87% 

specificity by the presence of 1 plasma cell in the endometrial stroma per x 120 field and  5 

neutrophils in the endometrial epithelium per x 400 field (23). This study led to our current 
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diagnostic criteria for endometritis (23).  A separate study of women at risk for PID found that 

increased vaginal levels of neutrophil alpha defensins, a marker of neutrophil activation, could 

be detected in women with endometritis from Chlamydia (27).  In addition, significantly higher 

numbers of neutrophils were detected in the endocervical brush samples from women with C. 

trachomatis infection before treatment relative to after treatment (28).   

These reports indicate a potential role for neutrophils in the development of Chlamydia-

induced immunopathology.  Studies in the mouse model have supported this correlation by 

revealing that enhanced and/or prolonged neutrophil influx into the oviducts is associated with 

the development of hydrosalpinx (29, 30).  In addition, mice deficient in CXCR2, the receptor 

for neutrophil chemokines including CXCL2, develop reduced levels of acute inflammation in 

the genital tract and lower rates of hydrosalpinx (31).  More severe disease is observed in strains 

of mice with elevated levels of CXCL2 (32).  Intravaginal infection of mice with a plasmid 

deficient strain of C. muridarum, CM3.1, results in significantly reduced production of CXCL2 

and decreased neutrophil influx into the oviducts, which is associated with decreased oviduct 

pathology compared to infection with wild-type C. muridarum (17, 33).  In addition, TLR2 

deficient mice exhibit significantly lower levels of CXCL2 in their lower genital tract secretions 

and significantly decreased oviduct pathology following C. muridarum infection (34).  Finally, a 

direct correlation between neutrophils and the development of pathology was made in the guinea 

pig model, where administration of a polyclonal anti-neutrophil antibody successfully depleted 

neutrophils during ocular infection with Chlamydia caviae and resulted in significantly 

decreased pathology (35).   

Neutrophils likely contribute to pathology by releasing cytokines, reactive oxygen 

species, and proteases, which can directly damage vulnerable tissues.  For example, neutrophil 
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release of the proteolytic enzyme matrix metalloproteinase-9 (MMP9; gelatinase B) has been 

implicated in the development of scarring and fibrosis of the murine oviduct after chlamydial 

infection (36-38).  A strain of mice with an increased susceptibility to oviduct pathology 

exhibited enhanced MMP9 activity in the upper genital tract early during acute infection (36).  In 

addition, mice treated with MMP inhibitors or mice deficient in MMP9 developed less severe 

oviduct pathology (37, 38).  Finally, mice with an impaired ability to generate reactive oxygen 

species due to a deficiency in NADPH oxidase (p47phox
-/-

) sustain lower rates of Chlamydia-

induced hydrosalpinx (39).    

The correlation between neutrophils and disease has been examined extensively in 

populations where trachoma is endemic.  Analysis of gene expression in conjunctival swabs from 

individuals in Tanzania revealed an association between trachomatous scarring and significantly 

increased expression of MMP 7, 9, and 12 (40).  Increased expression of the neutrophil 

chemokine CXCL5 as well as the proinflammatory cytokines TNF and IL-1 was also detected 

in these patients relative to individuals without trachomatous scarring (40).  Similar results were 

observed in a study using microarray to compare conjunctival gene expression in individuals 

from Ethiopia with and without trachomatous trichiasis (41).  In a study of individuals from The 

Gambia, a SNP in the promoter region of the gene for the neutrophil chemokine IL-8 (IL-8 

251TT) was associated with a significantly decreased risk of developing scarring trachoma (42).  

The protection provided by this SNP was further enhanced by the presence of a protective 

MMP9 allele (MMP9 Q279R), which resulted in a 70% increase in protection from developing 

scarring trachoma (42).  This SNP resulted in a non-synonymous substitution of an arginine for a 

glutamine in the MMP9 active site.  Levels of MMP9 expression have been directly correlated 

with the level of conjunctival inflammation and the presence of ocular Chlamydia infection in 
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individuals from The Gambia (43).  In addition, increased MMP9 activity has been observed in 

the conjunctival biopsies of children with active trachoma (44).  Immunohistochemistry 

conducted on these specimens revealed expression of MMP9 by neutrophils and CD68+ 

macrophages infiltrating the conjunctival epithelium and stroma (44).    

1.2.1.2 Role of neutrophils in host defense  

Studies in animal models have argued against a significant contribution of neutrophils in control 

of chlamydial infection.   Antibody-mediated depletion of neutrophils during ocular infection of 

guinea pigs did impact resolution of infection (35).  Mice deficient in MHC class II exhibit a 

robust innate inflammatory response, but infection remains at peak levels indefinitely (45).  In 

addition, CXCR2 knockout mice resolve infection normally despite a reduced neutrophil influx 

(31).  These in vivo findings are likely due to the intracellular lifecycle of Chlamydia.  In 

contrast, neutrophils are highly effective at killing Chlamydia in vitro. Ingested EBs are rapidly 

internalized and degraded in the phagolysosomes of neutrophils (46).  Incubation of Chlamydia 

with neutrophils at a 1:1 ratio results in the uptake of about 60% of bacteria within 15 minutes 

(47).  After 10 hours of incubation, infectivity is reduced by more than 95% (47).  Enzymes 

present in the phagolysosomes of neutrophils eliminate the bacteria. Lysozyme purified from 

human neutrophils has been shown to induce a 76% reduction in inclusion formation after 

incubation with EBs for one hour (48).  Generation of reactive oxygen species is not crucial for 

neutrophil-mediated killing of Chlamydia, since neutrophils from patients with myeloperoxidase 

deficiency or phagocyte NADPH oxidase deficiency effectively kill internalized microorganism 

in vitro (49), and resolution of infection is normal in NADPH oxidase deficient mice (39).  
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1.2.2 CD8+ T cells  

1.2.2.1 Role of CD8+ T cells in host defense in mice 

Similar to neutrophils, CD8+ T cells have been shown to possess anti-chlamydial activity, but 

the importance of these cells in host defense remains controversial.  In the mouse model, a 

deficiency in CD8+ T cells does not impair infection control.  Mice deficient in expression of 

MHC class I molecules (2microglobulin
-/-

 mice; TAP1
-/-

 mice) exhibit normal resolution of both 

primary and challenge infection with C. muridarum (45, 50).  Mice deficient in CD8 or treated 

with anti-CD8 antibody also resolve infection normally (50), as do C57BL/6 and antibody 

deficient mice (MT
-/- 

mice) depleted of CD8+ T cells upon challenge infection (51).  In 

addition, mice deficient in pathways used by CD8+ T cells to lyse target cells including perforin 

(50, 52), Fas (52), Fas ligand (FasL), (52), and both perforin and FasL (52) resolve infection 

normally without exhibiting a compensatory cytokine response.  Lastly, adoptive transfer of 

CD8+ T cells isolated from the spleens of mice that had resolved both primary and secondary 

genital tract infection with C. muridarum conferred no protection when transferred into 

immunologically normal mice prior to infection (53).  

CD8+ T cells can provide a limited degree of protection in specific adoptive transfer 

models.  CD8+ T cell clones isolated from the spleens of mice after intravenous (i.v.) injection of 

C. muridarum have been demonstrated to promote resolution of infection when transferred into 

intravaginally infected nude mice and to produce both IFN and TNF in a Chlamydia-specific 

manner (54).  In two separate studies, CD8+ T cells isolated from the spleen of mice infected 

either intraperitoneally (i.p.) or intravenously (i.v.) with C. trachomatis serovar L2 were 

protective upon subsequent i.v. infection with the same strain of Chlamydia, and this protection 
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was IFN dependent (55, 56).  Detailed characterization of a CD8+ T cell line isolated after i.p. 

injection of L2 revealed that upon adoptive transfer, it only resulted in a 3-fold reduction in L2 in 

the spleen after i.v. infection (57).  However, immunization of mice with a vaccinia virus 

expressing CrpA, the antigen recognized by these cells, resulted in a 18-fold reduction in splenic 

bacterial burden upon i.v. challenge with L2, which correlated with a robust antigen-specific 

IFN response (57).   An additional study demonstrated that the degree of protection provided by 

CD8+ T cells was antigen specific.  Although CD8+ T cells specific for a protein named class 1 

accessible protein-1 (Cap1) could lyse Chlamydia-infected cells in vitro, immunization with a 

Cap1 expressing vaccinia virus conferred minimal protection upon subsequent i.v. challenge 

with L2 (58).  These murine studies must be interpreted with caution because L2 is a human 

strain, which exhibits an increased susceptibility to IFN in a murine host (59).  In addition, 

CD8+ T cells examined in these studies were elicited after i.v. or i.p. infection, which may not 

reflect the immune response that results from an intravaginal infection.  

1.2.2.2 Role of CD8+ T cells in pathology in mice 

Studies in the mouse model also indicate that CD8+ T cells contribute to the development of 

Chlamydia-induced immunopathology.  Mice deficient in CD8+ T cells or perforin develop 

reduced levels of oviduct pathology upon intravaginal infection with C. muridarum (50, 52, 60).  

Adoptive transfer studies revealed that CD8+ T cell production of TNF was a significant 

mediator of oviduct pathology and did not significantly contribute to host defense (50).   
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1.2.2.3 CD8+ T cell responses detected in humans  

CD8+ T cells expand in response to Chlamydia genital tract infection in humans.  Chlamydia-

specific CD8+ T cells have been isolated from the peripheral blood of individuals with positive 

serology for Chlamydia or a reported history of Chlamydia infection (61-63).  Further analysis of 

the MHC restriction of these CD8+ T cells revealed a combination of MHC class Ia restricted 

and non-restricted responses.  The authors of one study determined that MHC class Ia non-

restricted CD8+ T cells were able to lyse Chlamydia-infected cells, but the MHC class Ia 

restricted CD8+ T cells were only able to do so if infected cells were also pulsed with their target 

antigen, OmcB (63).  However, lysis of the target cell was not necessary for this clone to inhibit 

chlamydial growth in fibroblasts (62).  A second study determined that both HLA-A2 restricted 

and non-restricted CD8+ T cell clones were able to produce IFN and lyse Chlamydia-infected 

cells (63). The authors also noted that the level of IFN production and the rapidity of target cell 

lysis were increased in the MHC non-restricted clones relative to the restricted clones (63).   

CD8+ T cells specific for MOMP peptides have been isolated from the peripheral blood 

of both males and females with genital tract infection with C. trachomatis who expressed the 

MHC alleles HLA-A2 and HLA-B51 (64).  These cells were found to lyse cervical epithelial 

cells expressing the appropriate MHC that were either pulsed with peptide or infected with C. 

trachomatis (64).  Interestingly, all of the infected individuals expressing HLA-A2 (N=12) 

recognized at least one of the MOMP peptides examined.  It is likely that the high response rate 

in this study was related to the 17 day pre-stimulation protocol utilized before analysis of CD8+ 

T cell responses (64).  A follow-up study showed that these patients did indeed have MOMP 

peptide specific CD8+ T cells in the peripheral blood using direct ex-vivo staining with 

tetramers, and sorting of tetramer stained cells revealed Chlamydia-specific lytic activity (65).   
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Examination of CD8+ T cells in the genital tract of women infected with Chlamydia 

revealed an increased number of CD8+ T cells relative to uninfected women (66).   Comparison 

of the phenotype of CD8+ T cells in the blood and endocervix of these women showed an 

increased frequency of effector memory CD8+ T cells (CD45RA-CCR7-) in the endocervix but 

decreased perforin expression by these CD8+ T cells relative to those in the blood (66).  The 

antigen specificity of these cells was not determined, and the ability of CD8+ T cells to 

recognize Chlamydia-infected cells in the genital tract may be hampered by immune evasion 

mechanisms.  In vitro, infection of a human endocervical cell line with C. trachomatis serovar D 

was shown to downregulate MHC class I expression in both infected cells and non-infected cells 

in the same well (67).  Although incubation with IFN did result in increased expression of MHC 

class I in the presence of infection, this upregulation was less so than that observed for cells that 

were mock-infected, and application of supernatants from Chlamydia-infected cells to uninfected 

cells resulted in class I downregulation (67).  However, MHC class I expression by conjunctival 

epithelial cells was previously detected by immunohistochemical staining of biopsies isolated 

from children with active trachoma (68).    

1.2.2.4 Association of CD8+ T cell responses in humans with chlamydial disease  

The association between CD8+ T cell responses and disease resulting from Chlamydia genital 

tract infection has not been extensively examined in humans.  In a study of commercial sex 

workers in Nairobi, Kenya, the MHC class I allele HLA-A31 was associated with the 

development of Chlamydia PID in women with documented Chlamydia infection (20).  The 

correlation of this allele with CD8+ T cell function was not determined.   

Examination of the correlation between immune responses and disease is more feasible in 

regions where ocular infection with Chlamydia is endemic.  Almost all of the individuals in the 
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population are exposed to Chlamydia, but only some individuals develop disease.  For example, 

in a study of individuals from The Gambia with and without trachomatous scarring, 

approximately 90% of individuals in both the case and control groups had detectable antibody to 

C. trachomatis (69).  In this study, it was determined that individuals with the MHC Class I 

allele HLA-A*6802 were 3 times more likely to develop scarring than individuals without this 

allele.  Interestingly, in a follow-up study, Chlamydia-specific CD8+ T cell responses were not 

detected in the peripheral blood of individuals with and without trichiasis or trachomatous 

scarring that possessed the HLA-A*6802 allele.  This is likely because only responses to 

predicted epitopes in the proteins MOMP, macrophage infectivity potentiator (MIP), and heat 

shock protein 70 (hsp70) were examined, but responses to infected cells were not examined (70).  

In another study of peripheral blood responses of individuals from The Gambia with HLA-B8 

and HLA-B35 alleles, cytolytic responses were detected in response to predicted MOMP and 

heat shock protein 60 (hsp60) peptides in 6 of 26 people examined, and responses were only 

detected for CD8+ T cells isolated from children that were in the process of resolving infection 

or adults without scarring. No responses were detected for the PBMCs of adults with 

trachomatous scarring (71).  A later study using tetramers to examine HLA-A2 specific 

responses to MOMP peptides in the peripheral blood of children from The Gambia, revealed an 

association between positive tetramer staining and the presence of active infection or repeated 

episodes of infection (72).  No association was found between tetramer binding and the presence 

of clinical symptoms (72).   
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1.2.3 CD4+ T cells  

1.2.3.1 Role of CD4+ T cells in host defense in mice 

CD4+ T cells have been repeatedly demonstrated as essential for control of Chlamydia in the 

mouse model of genital tract infection. It was shown in some of the first studies characterizing 

the mouse model of Chlamydia muridarum infection that athymic nude mice could not resolve 

infection at all (73).  Another early study showed that SCID mice exhibited minimal clearance of 

infection from the genital tract, and disseminated infection was common (74).  These findings 

were recapitulated by a study showing that TCR chain deficient mice could not resolve 

infection in contrast to TCR chain deficient mice, which controlled infection normally (75).  

The specific role of CD4+ T cells was demonstrated in a study where MHC Class II
-/-

 and CD4
-/-

 

mice exhibited significantly delayed resolution of infection (45).  During secondary genital tract 

infection, depletion of CD4+ T cells from C57BL/6 or B cell (MT
-/-

) deficient mice was shown 

to significantly delay resolution of infection (51).    

 Adoptive transfer studies have supported the central role for CD4+ T cells in resolution 

of infection in the mouse model.  Adoptive transfer of Chlamydia-specific T cell lines that were 

enriched for CD4+ T cells promoted faster resolution of infection than a line of mixed 

CD4+/CD8+ T cells (76), and transfer of CD4+ T cells from mice that had resolved either 

primary or secondary intravaginal infection with C. muridarum conferred significant protection 

when transferred into naïve syngenic recipients (53).  An additional study showed that adoptive 

transfer of a C. muridarum specific CD4+ T cell line that produced IL-2, IFN, and TNF 

elicited clearance of infection in nude recipient mice (77).  
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1.2.3.2 Role of CD4+ T cells in pathology in mice 

Studies in mice indicate that the magnitude of the CD4+ T cell IFN response is inversely 

correlated with the development of oviduct pathology.  MHC Class II
-/- 

mice (45) and IFN
-/- 

mice (78) develop severe oviduct pathology, which is likely the result of the significantly 

increased bacterial burden in the genital tract of these mice.  C57BL/6 mice exhibit a more 

robust CD4+ T cell IFN response and decreased IL-10 production relative to C3H/HeN or 

Balb/c mice, and this is associated with faster resolution of Chlamydia genital tract infection and 

lower levels of oviduct pathology (30, 79).  IL-10
-/- 

mice rapidly prime a Chlamydia specific 

CD4+ T cell IFN response and show faster resolution of primary infection, resistance to 

challenge infection, and dramatically reduced oviduct pathology (80).  Transfer of CD4+ T cells 

specific for chlamydial protease-like activating factor (CPAF) that were capable of producing 

IFN resulted in faster resolution of infection and prevention of oviduct pathology (81).  Upon 

challenge infection, a decreased frequency of neutrophils and an increased frequency of IFN 

producing T cells in the genital tract have been associated with reduced levels of ascending 

infection and decreased pathology (16).  A renewed susceptibility to genital tract infection after 

resolution of primary infection coincides with the departure of Chlamydia specific T cells from 

the genital tract (82).   

1.2.3.3 CD4+ T cell responses detected in humans  

The role of CD4+ T cell responses to Chlamydia is not as clear in humans.  IFN production by 

PBMCs in response to the Chlamydia hsp60 is correlated with protection.  A study examining 

the PBMC responses of commercial sex workers in Nairobi, Kenya determined that production 

of IFN in response to hsp60 was associated with reduced risk of incident Chlamydia genital 
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tract infection (AHR: 0.2, 95% CI, 0.02-1.0) (83).  Indeed, none of the 29 women in the study 

with a detectable IFN response to hsp60 developed an incident infection over the 20-month 

follow-up period, although there was an annual rate of infection of 24% in the study population 

as a whole (83).   A subsequent study revealed that CD4+ T cells (PBMCs depleted of CD8+ T 

cells) produced IFN at a significantly higher frequency than CD8+ T cells (PBMCS depleted of 

CD4+ T cells) in response to EBs and hsp60-1 antigen (84a).   The authors also detected a direct 

correlation between the number of IFN spot forming cells (SFCs) in the peripheral blood and 

endometrium (84).  The protective role of T cell responses to Chlamydia hsp60 was supported by 

a study in Australia.  Women presenting with their first C. trachomatis infection and uninfected 

women exhibited similar levels of IFN production by PBMCs in response to hsp60, but levels 

were significantly reduced in women with repeated infections or with Chlamydia PID (85).  

Genital tract infection with C. trachomatis promotes trafficking of lymphocytes to the 

endocervix.   Significantly increased numbers of CD3+ T cells were detected in the cervix of 

women with C. trachomatis before treatment compared to after treatment, but there was no 

alteration in the frequency of CD4+ and CD8+ T cells relative to those detected in the peripheral 

blood (28). The frequency of CD3+ T cells expressing CD45RO, CCR5, and CD103 (E7) was 

significantly higher than in the peripheral blood.  Interestingly, there was a highly significant 

correlation between the number of neutrophils and the number of CD3+ T cells in the endocervix 

(r = 0.82, P < 0.0001) (28). This study did not examine the antigen specificity of this response.  

Peripheral blood responses to chlamydial antigens have also been detected in individuals 

from trachoma endemic areas.  A study of individuals from The Gambia with and without 

trachomatous scarring determined that stimulation of PBMCs with MOMP or EBs resulted in 

increased levels of IFN production relative to unstimulated samples in both groups, but only 
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individuals without scarring had detectable levels of IFN in response to hsp60 (86).  In addition, 

only the individuals with scarring trachoma had a detectable IL-4 response to hsp60 (86).  In this 

study, significant associations were detected between specific MHC class II alleles and immune 

responses. They were as follows: HLA-DRB1*11: increased IFN production in response to 

EBs, HLA-DRBI*1304: increased proliferation in response to hsp60, HLA-DQB1*06: reduced 

proliferation in response to EBs, HLA-DRB1*06: increased frequency of IL-4 producing PBMC 

in response to hsp60 (86).  An additional study examining the peripheral blood responses of 

children in The Gambia detected increased proliferation of PBMCs in response to EBs, MOMP, 

and hsp60 in children that had recently resolved their trachomatous inflammation relative to 

those with continued inflammation; however, no differences were found in antigen-specific IFN 

production between the groups (87).   

1.2.3.4 CD4+ T cell responses and disease in humans  

A protective role for CD4+ T cells was demonstrated in a study of commercial sex workers from 

Nairobi, Kenya (20).  For women with HIV and Chlamydia genital tract infection, the risk of 

developing PID was inversely correlated with the number of CD4+ T cells in the peripheral 

blood (20).  A CD4+ T cell count of less than 400 was associated with a 21.7 fold increased risk 

of developing Chlamydia PID, but there was no association between the CD8+ T cell count and 

risk of PID (20).  In an additional study from Nairobi, Kenya of women that were seeking 

treatment for infertility, the presence of specific MHC class II alleles was associated with 

infertility and C. trachomatis seropositivity (88).  HLA-DQA*0101 (OR: 4.9) and HLA-

DQB*0501 (OR: 6.8) were associated with an increased risk of C. trachomatis associated 

infertility and HLA-DQA*0102  (OR: 0.2) was associated with a decreased risk (88).  The 
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interaction between these alleles and CD4+ T cell responses to Chlamydia was not examined in 

this study.  

1.2.3.5 Mechanism of CD4+ T cell mediated control of infection 

The phenotype of mononuclear cells infiltrating the genital tract of mice infected with C. 

muridarum has been examined in detail (89).  The peak in Chlamydia-specific IFN production 

in the iliac lymph nodes (ILN) and genital tract was detected at 7 days post infection, while the 

number of Chlamydia-specific mononuclear cells in the genital tract peaked at 3 weeks post 

infection.  Th1 cells dominated the antigen specific response to infection in this model, and very 

little IL-4 was detected at any point during infection (89).   

One protective mechanism that CD4+ T cells use to control Chlamydia genital tract 

infection is the induction of nitric oxide production by IFN.  Direct contact between CD4+ T 

cells and epithelial cells via LFA-1/ICAM-1 interactions enhances epithelial cell nitric oxide 

production and clearance of infection (90, 91). In addition, the protective capacity of a clonal 

population of CD4+ T cells transferred into nude mice was reversed by systemic administration a 

nitric oxide synthase (nos) inhibitor (92).  Mice treated with an anti-IL-12p40 antibody but not 

those treated with an IL-4 neutralizing antibody exhibit prolonged infection, and neutralization 

of IL-12 was associated with significantly reduced production of IFN upon restimulation of 

splenocytes (75).  Although, Ifn-/-
 mice clear 99.9% of C. muridarum infection from the genital 

tract with near normal kinetics (74, 75), and inos
-/-

 mice appear to clear infection normally (93), 

significant deficits in host defense were observed in this mice.  Mice deficient in IFN developed 

signs of systemic illness and increased rates bacterial dissemination (74, 75).  They also 

exhibited a chronic low level of infection and prolonged neutrophil infiltration (74).  Mice 
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deficient in inos developed a persistent infection that was reactivated when they were treated 

with cyclophosphamide at 120 days post-infection (39).   In vitro experiments demonstrated that 

IFN was not able to completely eradicate bacteria in the absence of inos activity (39).   

In vitro studies indicated that Chlamydia-specific CD4+ T cell clones could promote 

resolution of infection in vitro by inos-dependent mechanisms as well as inos-independent 

degranulation-dependent mechanisms (94).  This degranulation-dependent mechanism related to 

expression of a protein known as placenta-specifc 8 (Plac8) (95).  Although Plac8 knockout mice 

resolved infection normally during the first three weeks, complete elimination of bacteria from 

the genital tract was delayed, and treatment with an inos inhibitor lead to reactivation of 

infection. In addition, inhibition of inos in Plac8 knockout at the time of infection resulted in 

almost a complete impairment in elimination of the last three logs of bacteria from the genital 

tract, which was associated with the development of severe genital tract pathology and 

disseminated infection (95).   

MHC class II expression by the infected mucosal epithelium is likely required for CD4+ 

T cell mediated resolution of infection.  MHC Class II expression by epithelial cells was detected 

in the conjunctival biopsy specimens from children with active trachoma (68).  Mechanistic 

experiments using a panel of C. muridarum specific T cell clones revealed that pre-treatment of 

murine oviduct epithelial cells with IFN induced the upregulation of MHC class II expression 

and improved clearance of Chlamydia from infected monolayers in vitro (96).  If IFN was 

added at the time of infection or if IFN was also added to the epithelium, upregulation of MHC 

class II was reduced, and recognition of the infected epithelium by the clones was impaired (96).   
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1.2.4 Cytokines 

1.2.4.1 IL-10 

The role of IL-10 in Chlamydia pathogenesis is complex.   Studies in a human Fallopian tube 

organ culture (FTOC) model showed that IL-10 was protective against tissue damage induced by 

infection with Chlamydia trachomatis (97).   A protective role for IL-10 was supported by 

epidemiologic studies, which demonstrated an increased risk for moderate to severe tubal 

damage in women with TFI that possessed IL-10 polymorphisms associated with decreased IL-

10 expression (98).  In contrast, a study of commercial sex workers from Kenya determined that 

IL-10 production in response to Chlamydia hsp60 was associated with an increased risk of 

incident infection. However, upon multivariate analysis, the 5.3-fold increased risk of incident 

infection associated with an IL-10 response was no longer statistically significant (83).  The 

contradictory conclusions made by the authors of these studies show that the role of IL-10 needs 

to be further examined.   

In the mouse model, it is clear that IL-10 plays a pathologic role.   Strains of mice with 

increased IL-10 production in response to intravaginal Chlamydia infection exhibit delayed 

resolution and increased disease (79).  IL-10
-/- 

clear infection rapidly, and ascension of bacteria 

to the oviduct is reduced (80). This improved infection control is associated with a 5 to 50 fold 

increase in the number of Chlamydia-specific IFN producing T cells in the genital tract between 

days 15 and 85 post infection (80).  IL-10
-/-

 antigen presenting cells (APCs) are more efficient at 

priming and activating a Th1 response to Chlamydia (99).  These APCs rapidly express 

cytokines and activation markers in response to EBs (99).  Transfer of IL-10
-/-

 dendritic cells 

pulsed with EBs results in significant protection against subsequent vaginal challenge (80).  
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1.2.4.2 IL-1 

In vitro experiments and studies in the mouse model point to a pathologic role of IL-1 receptor 

(IL-1R) signaling during Chlamydia infection.  A direct role for IL-1 signaling and oviduct 

damage was observed in a human Fallopian tube organ culture (FTOC) model in vitro (97). 

Inhibition of the IL-1 response to Chlamydia trachomatis infection by addition of IL-1 receptor 

antagonist (IL-1RA) led to decreased tissue damage.  This study also demonstrated that addition 

of IL-1 to the FTOC could induce tissue damage even in the absence of Chlamydia, which was 

in line with the observation that the level of tissue damage observed during Chlamydia infection 

was out of proportion with the number of cells that were actually infected.  In addition, IL-1 was 

shown to induce production of the neutrophil chemokine IL-8, which could further promote 

tissue damage in vivo by promoting the influx of neutrophils (97)   

The pathogenic role for IL-1 signaling was demonstrated in the mouse model where IL-

1
-/-

 mice (100) as well as IL-1R
-/-

 mice (101) exhibited decreased levels of oviduct pathology 

despite moderate increases in the bacterial burden.  In addition, mice deficient in IL-1RA 

developed more severe oviduct pathology although the bacterial burden in the genital tract was 

reduced (101).  The primary cell types responsible for IL-1 production in the genital tract were 

determined to be neutrophils and macrophages (100), and IL-1 production by these cells is 

likely an important contributor to tissue damage.    

The role of IL-1R signaling has not been extensively studied in humans.  One study 

examining SNPs in IL-1 and IL-1RA detected no association with the development of tubal 

pathology in women with positive Chlamydia serology (102).  This study was not exhaustive as 

the authors only analyzed two SNPs in IL-1 as well as the number of tandem repeats in the 

second intron of IL-1RA (102).  There is not enough data to draw conclusions about the role of 
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IL-1 in human disease.  Based on in vitro data and findings in the mouse model, IL-1R signaling 

is likely to contribute to disease.  

1.2.4.3  TNF 

Studies in the mouse model indicate that TNF is not crucial for host defense against Chlamydia 

muridarum and promotes tissue damage in the genital tract.  TNF
-/-

 mice resolve infection 

normally, and oviduct pathology is significantly reduced (50). TLR2
-/-

 mice or mice infected 

with a plasmid-cured strain of C. muridarum, CM3.1, develop less severe oviduct pathology 

despite normal resolution of infection, and this reduced pathology was associated with 

significantly decreased TNF in the genital tract (17, 34).  Mechanistic studies determined that 

TNF production by CD8+ T cells contributes to pathology in this model (50).   

Polymorphisms in the TNF promoter have been correlated with disease in humans. In a 

case-control study of individuals from The Gambia with and without scarring trachoma or 

trachomatous trichiasis, possession of the TNF-308A allele resulted in increased TNF 

production in response to EBs and a significantly increased risk of trichiasis (103).  This allele 

was also associated with an increased risk of severe Fallopian tube damage in women with TFI 

associated with C. trachomatis infection (98), although no correlation was found between this 

allele and the level of TNF produced by PBMCs in response to EBs (104).  

1.2.4.4 IL-17 

IL-17 is critical for host defense against C. muridarum pulmonary infection.  Resolution of 

infection, prevention of bacterial dissemination, and the development of Th1 immunity were 

compromised in the absence of IL-17-mediated signaling in this model (105, 106).  This 
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protective role was due to the ability of IL-17 to induce IL-12 production by dendritic cells 

(105).  In addition, IL-17 and IFN have been demonstrated to synergistically induce nitric oxide 

production during infection of murine lung fibroblasts and macrophages, thus leading to 

increased killing of Chlamydia in vitro.  However, these studies were conducted in the absence 

of T cells, so the physiologic relevance is questionable (107).  In contrast, elevated levels of IL-

17 have been associated with increased disease and enhanced neutrophil recruitment in the same 

model (108, 109).   

Studies examining the role of IL-17 in protective vaccination strategies in the mouse 

model have had conflicting results. One study found that intranasal infection with live EBs was 

significantly more protective against subsequent intravaginal infection with C. muridarum than 

intranasal inoculation with UV-inactivated EBs + CpG or any of the intramuscular vaccination 

strategies tested.  The authors determined that increased protection was associated with 

decreased Chlamydia-specific IL-17 production but increased IFN by splenocytes restimulated 

before challenge (110). These findings were in contrast to another study that demonstrated that 

after subcutaneous immunization with chlamydial peptides and a variety of adjuvants, the 

vaccination strategy that induced the highest frequency of IFN/IL-17 and IFN/TNF double 

positive cells was the most protective.  In this study, this protective vaccination strategy also 

induced the highest level of IL-17, TNF, and IFN production upon restimulation of 

splenocytes in vitro, which makes drawing conclusions about the protective role of any one 

cytokine difficult (111).  

The role of IL-17 in humans has not been extensively studied.   Expression of IL-17A 

and the related genes S100A7 and CXCL5 was associated with the presence of trachomatous 

conjunctival inflammation in children in Tanzania (112). However, there was no association 
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between these genes and the presence of a current Chlamydia infection (112).  A study of women 

infected with C. trachomatis detected IL-22 and IL-17 production by CD4+ T cells isolated from 

the cervical washes (113), but no correlation was made between the presence of these cells and 

disease.  

1.3 SUMMARY 

In the following chapters, we will describe our studies of immune responses implicated in both 

disease and protection in the mouse model of Chlamydia genital tract infection.  We begin by 

comparing neutrophil influx and apoptosis during infection with strains of Chlamydia that are 

either pathogenic or non-pathogenic.  We go on to examine the role of IL-17 in promoting both 

neutrophil influx and the Th1 response.  We then extend these studies to the describe role of IL-

17, IL-22, and IL-23 in this model.  Finally, we turn our attention to the protective immune 

response by examining the role of the adaptor molecule MyD88 in promoting CD4+ T cell 

mediated resolution of infection from the genital tract.   
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2.0  ENHANCED NEUTROPHIL LONGEVITY AND RECRUITMENT 

CONTRIBUTE TO THE SEVERITY OF OVIDUCT PATHOLOGY DURING C. 

MURIDARUM INFECTION 

2.1 ABSTRACT 

Our previous studies showed that intravaginal infection of mice with a plasmid-deficient strain of 

C. muridarum, CM3.1, did not induce the development of oviduct pathology.  In the studies 

described in this chapter, we determined that infection with CM3.1 resulted in a significantly 

reduced frequency and absolute number of neutrophils in the oviducts during acute infection.  

This reduction in neutrophils was associated with significantly lower levels of neutrophil 

chemokines in the oviducts and decreased production of neutrophil chemokines by oviduct 

epithelial cells infected with CM3.1 in vitro.  Infection with CM3.1 also resulted in an increased 

frequency of late apoptotic/dead neutrophils in the oviduct.  Examination of the ability of C. 

trachomatis to prevent neutrophil apoptosis in vitro revealed that C. trachomatis D/UW-3/Cx 

exhibited an enhanced ability to prevent neutrophil apoptosis when compared to plasmid-

deficient CTD153, and this effect was dependent on the presence of CD14
high

 monocytes. The 

presence of monocytes also resulted in enhanced neutrophil cytokine production and increased 

production of tissue damaging molecules in response to D/UW-3/Cx relative to CTD153.  

Attempts to use antibody-mediated depletion to discern the specific role of neutrophils in 

infection control and pathology in vivo revealed that although Ly6G
high

 neutrophils were 
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eliminated from the blood and oviducts with this treatment, immature neutrophils and high levels 

of tissue damaging molecules were still detectable in the upper genital tract.  These data support 

the role of neutrophils in Chlamydia-induced pathology and reveal that novel methods of 

depletion must be developed before their role can be specifically determined in vivo.  

2.2 INTRODUCTION 

Studies in the mouse model have repeatedly found an association between enhanced and/or 

prolonged neutrophil influx into the oviducts with the development of hydrosalpinx (29, 30).  In 

addition, mice deficient in the chemokine receptor CXCR2 display reduced acute inflammation 

and lower rates of hydrosalpinx, and strains of mice with elevated CXCL2 production exhibit 

worse disease (31, 32). Neutrophils likely contribute to pathology by releasing mediators that 

directly damage reproductive tract tissues, and neutrophil release of the proteolytic enzyme 

matrix metalloproteinase-9 (MMP9) has been implicated in the development of scarring and 

fibrosis of the murine oviduct after chlamydial infection (36, 37).  In addition, mice deficient in 

NADPH oxidase (p47phox
-/-

) sustain lower rates of Chlamydia-induced hydrosalpinx (39).  

These studies indicate that factors resulting in increased numbers of neutrophils and 

increased neutrophil activation in reproductive tract tissues may promote the development of 

Chlamydia-induced pathology.  Our data in the mouse model indicate that immunologically 

normal mice infected with a plasmid-deficient strain of C. muridarum, CM3.1, develop minimal 

chronic oviduct pathology despite sustaining an infection of normal intensity and duration (17). 

This reduced pathology is associated with reduced numbers of neutrophils in the oviducts on late 

days of infection (17).  In the studies outlined in this chapter, we determined that the neutrophil 
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response was significantly increased in the oviducts during acute infection with wild-type C. 

muridarum Nigg compared to CM3.1 and established potential mechanisms whereby this 

enhanced neutrophil response leads to increased pathology.  

2.3 MATERIALS AND METHODS 

2.3.1 Strains, cell lines, and culture conditions 

The C. muridarum strains Nigg (provided by Roger Rank) and CM3.1 as well as the C. 

trachomatis strains D/UW-3/Cx and CTD153 used in this study were previously described (17, 

114).  All chlamydial strains were propagated in L929 cells (115).  Bacteria were titrated by 

plaque assay (114) or as inclusion forming units (IFU) using fluorescently tagged anti-

chlamydial lipopolysaccharde monoclonal antibody (Bio-Rad, Hercules, CA).  Bacterial titers 

were confirmed using real-time PCR for chlamydial 16S rRNA (115).  Live chlamydiae were 

used for all experiments.  In vitro experiments comparing responses with D/UW-3/Cx and 

CTD153 were repeated with bacteria from at least two different preparations in order to account 

for variability in chlamydial stimulation resulting from isolation or titration techniques. 

2.3.2 Animals 

Six to eight week old female C3H/HeOuJ and C57BL/6 mice were obtained from The Jackson 

Laboratory (Bar Harbor, ME).  The mice were between 8-12 weeks of age at the time of 

infection.  Mice were given food and water ad libitum in an environmentally controlled room 
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with a cycle of 12 hours of light and 12 hours of darkness.  All animal experiments were 

preapproved by the University of Pittsburgh Institutional Animal Care and Use Committee.  

2.3.3 Murine infection and monitoring 

Seven days prior to infection mice were subcutaneously injected with 2.5 mg of depot-

medroxyprogesterone acetate (Depo-Provera
®
; Upjohn, Kalamazoo, MI) to synchronize mice in 

a state of anestrous and to facilitate successful intravaginal infection (116).  Mice were infected 

with 1x10
5 

inclusion forming units (IFU) of C. muridarum Nigg or CM3.1 intravaginally.  Mice 

were monitored for cervicovaginal shedding (117), and IFUs were calculated as previously 

described (30). Bacterial burden was measured in the oviducts by serially diluting a 100 l 

aliquot of the homogenized oviducts in 1xPBS for titration using a plaque assay (114).  

2.3.4 Processing of oviducts for flow cytometry 

Oviducts were harvested into 1 ml of media (RPMI+1%FBS) and minced with scissors.  For 

measurement of cytokines and bacterial burden, 100 l was removed and stored at -80
o
C until 

analysis.  The tissue was repeatedly passed through a 70 m filter to yield a single cell 

suspension.  For surface staining, single cell suspensions were resuspended in cold FACS buffer 

(PBS pH 7.2, 0.5% BSA, and 2mM EDTA) at 4x10
7
 cells per/ml.  To block non-specific 

antibody binding, 25 l (1x10
6
 cells) of cell suspension and 25 l of diluted Fc Block(1l Fc in 

24 l FACS buffer; BD Pharmingen; Clone: 2.4G2) were combined in a 96 well V-bottom plate 

and incubated on ice for 20 minutes.  Staining antibodies were then added in 50 l of FACS 

buffer for a final dilution of 1.25 l antibody per 100 l total volume.  After incubating for 20 
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minutes on ice, stained cells were washed, resuspended in Live/Dead
®
 Fixable Stain (Invitrogen, 

Carlsbad, CA), and incubated for 20 minutes on ice in the dark.  After washing, cells were 

incubated in 2% paraformaldehyde at 4ºC until analysis. Flow cytometric data were acquired 

using an LSR II Analyzer (BD Biosciences) and analyzed via FlowJo software (Tree Star, 

Ashland, OR). 

 The antibodies used for examination of the oviducts during infection with Nigg and 

CM3.1 were as follows: PerCP-Cy5.5 anti-mouse CD45 (BD Biosciences, Clone: 30-F11), PE-

Cy7 anti-mouse CD11c (BD Biosciences, Clone: HL3), APC anti-mouse F4/80 (eBioscience, 

Clone: BM8), and PE anti-mouse Ly6G/C (eBioscience, Clone: RB6-8C5).  Viability was 

determined using Live/Dead
®
 violet (Invitrogen, Carlsbad, CA).  Flow cytometric analysis was 

conducted for groups of C3H/HeOuJ (N=5) mice infected with Nigg or CM3.1 on days 7, 9, 11, 

13, 15, and 21 in a single experiment.  Similar analysis was conducted for groups of C57BL/6 

(N=3) in two independent experiments. The absolute numbers of cells were calculated by 

multiplying the cell count obtained by the flow cytometer by the following dilution factor: # of 

cells counted by hemocytometer/ total # of cells analyzed by the flow cytometer.  

 The antibodies used to examine the leukocyte populations in the oviducts of mice on day 

11 of the neutrophil depletion experiment were as follows: PerCP-Cy5.5 anti-mouse CD45 (BD 

Biosciences, Clone: 30-F11), APC anti-mouse F4/80 (eBioscience, Clone: BM8), FITC anti-

mouse CD11b (BD Biosciences, Clone: M1/70), PE anti-mouse Ly6G (eBioscience, Clone: 

1A8), and V450 anti-mouse Ly6G/C (BD Biosciences, Clone: RB6-8C5).   
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2.3.5 In vivo analysis of neutrophil apoptosis 

Groups of 3 C57BL/6 mice were infected with Nigg or CM3.1 and euthanized on days 9, 13, and 

15 of infection in a single experiment.  Oviducts were harvested and treated as described for flow 

cytometry except that volumes were scaled down for staining of 2x10
5
 cells, Annexin V binding 

buffer (BD Biosciences) was used instead of FACS buffer and 7-amino-actinomycin D (7-AAD, 

BD-Biosciences) was used instead of Live/Dead
®
 Stain.  The antibody cocktail included: V450 

anti-Annexin V (BD Biosciences), PE anti-mouse Ly6G (eBioscience, Clone: 1A8), and FITC 

anti-mouse Ly6G/C (eBioscience, Clone: RB6-8C5). 

2.3.6 In vivo administration of anti-Ly6G antibody 

Groups of C3H/HeOuJ mice were treated intraperitoneally with rat anti-mouse Ly6G mAb 

(Clone 1A8, BioXCell, West Lebanon, NH) (300 μg in 100 μl PBS) every other day or every 

third day from D-1 to D20 post infection.  A control group of C3H/HeOuJ mice was treated 

similarly with rat IgG2a (Clone 2A3; BioXCell, West Lebanon, NH).  Both groups were infected 

with 1x10
5 

IFU of C. muridarum Nigg as indicated above.  Mice were euthanized either on day 

11 of infection for analysis of the acute response or on day 42 for examination of pathology.  For 

mice euthanized on day 11, one oviduct was harvested and analyzed for cytokines, cellular influx 

and bacterial burden.  The remainder of the genital tract was either fixed in 10% formalin for 

H&E staining or embedded in O.C.T.
® 

Compound (Tissue-Tek
®
, Sakura Finetek, Torrance, CA) 

and frozen for immunohistochemical analysis.  For mice euthanized on day 42, doxycyline (3 

mg/ml) was administered (100 μl i.p.) every day from day 21 to day 26.  On day 42, genital tracts 

were fixed in formalin for histologic analysis.  None of the mice exhibited signs of serum 
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sickness over the course of antibody administration.  A total of 5 mice per group were 

administered 300 μg of anti-Ly6G or IgG every other day and were euthanized on day 11 or day 

42 post-infection in a single experiment.  In two independent experiments, groups of mice were 

treated with 300 μg of anti-Ly6G or IgG every third day, with a total of 6 mice per group 

euthanized on day 11 post-infection, and a total of 9 mice per group euthanized on day 42.  Flow 

cytometry revealed similar depletion of Ly6G
high

 cells in the oviducts and peripheral blood with 

both treatment regimens.  

2.3.7 Analysis of peripheral blood neutrophils 

Mice treated with anti-Ly6G or IgG were bled at the time of euthanize on day 11 for 

determination of peripheral blood neutrophil counts.  For flow cytometric analysis, non-specific 

antibody binding was blocked by incubation of 100 l of peripheral blood with 50 l of diluted 

Fc Block™ (2l Fc in 48 l FACS buffer; BD Pharmingen, Clone: 2.4G2) for 20 min on ice.  

Antibody staining was then conducted for 20 min on ice using 1.25 l of each antibody and 

enough FACS buffer to bring the volume of antibody cocktail to 50l.  The following antibodies 

were used: PerCP-Cy5.5 anti-mouse CD45 (BD Biosciences, Clone: 30-F11), APC anti-mouse 

F4/80 (eBioscience, Clone: BM8), FITC anti-mouse CD11b (BD Biosciences, Clone: M1/70), 

PE anti-mouse Ly6G (eBioscience, Clone: 1A8), and V450 anti-mouse Ly6G/C (BD 

Biosciences, Clone: RB6-8C5).  Red blood cell lysis was then conducted using VitaLyse
®
 (BioE, 

St. Paul, MN) according to the manufacturer’s instructions.  
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2.3.8 Microscopic histopathological assessment 

Mice were euthanized on specified days following intravaginal infection; the genital tracts were 

removed en bloc, fixed in 10% buffered formalin and embedded in paraffin.  Longitudinal 4 μm 

sections were cut and stained with hematoxylin and eosin.  Each anatomic site (ectocervix, 

endocervix, uterine horn, oviduct) was assessed independently for the presence of neutrophilic 

inflammation, lymphocytic/monocytic inflammation, plasma cells, dilatation, and fibrosis and 

assessed using a four-tiered semi-quantitative scoring system to evaluate the extent of 

inflammation and pathology as previously described (30, 32).  

 For immunohistochemical analysis of neutrophils in genital tract tissues, tissues frozen in 

O.C.T.
® 

Compound (Tissue-Tek
®
, Sakura Finetek, Torrance, CA) were cut into 5 μm sections, 

fixed in acetone, and endogenous peroxidase activity was blocked with 0.3% H2O2.  Sections 

were incubated for one hour with rat anti-mouse Ly6G (BD Biosciences, Clone: 1A8) at a 

dilution of 1:2000, and the immunohistochemical procedure was performed according to the 

manufacturer’s instructions using the anti-rat Ig HRP detection kit (BD Biosciences). The 

reaction was visualized with diaminobenzidine chromogen, and sections were mounted and 

coverslipped with the Tissue-Tek® SCA™ coverslipper (Sakura Finetek USA, Torrance, CA). 

2.3.9 Analysis of oviduct epithelial cell chemokine and cytokine expression.  

The oviduct epithelial cell line BM1.11 has been previously described (118).  Total RNA was 

isolated from Chlamydia-infected BM1.11 cells 6 hours post infection with Nigg or CM3.1 

(MOI: 1) using an RNeasy RNA isolation kit (Qiagen, Valencia, CA), and RNA was examined 

by quantitative real-time PCR using our previously published protocol (115).  Primer pairs for 
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amplification of the genes analyzed in this study were purchased from SABiosciences 

(Frederick, MD). Transcription of the mouse gene cacybp served as an endogenous reference, 

and data were analyzed by the 2
−ΔΔCT

 method (119) using BioRad proprietary software.   Each 

sample was assayed in triplicate, and three independent transcriptional experiments were 

performed.  mRNA data were correlated with protein expression for two of the three experiments 

using multiparametric bead array (Millipore, Billerica, MA). 

2.3.10 Isolation of human neutrophils.  

Peripheral venous blood was collected from healthy adult volunteers after obtaining informed 

consent.  Blood was collected into 10 ml BD Vacutainer
®
 tubes containing sodium heparin and 

was used within 1 hour.  All procedures were conducted at room temperature.  Blood was diluted 

with an equal volume of PBS (w/o calcium and magnesium, pH=7.4; Invitrogen, Carlsbad, CA), 

and 20 ml of diluted blood was layered over 25 ml of Mono-Poly Resolving Media (density 

1.114; MP Biomedicals, Solon, OH).  The gradient was spun (300 x g) at 25C for 40 minutes in 

a swinging bucket rotor with no brake.  The granulocyte band was removed and cells were 

washed twice with media (RPMI 1640/10% FBS).  Cells were plated at a density of 5x10
6
 

cells/ml with 200 µl per well in round bottom, polypropylene 96 well plates (Costar, Corning, 

NY).  Purity was confirmed at >90% neutrophils using morphological analysis of Wright-

Giemsa stained (Ricca Chemical Co., Batesville, IN) cytospin preparations and flow cytometry 

for CD11b
+
CD14

low/neg 
cells.  Neutrophils were maintained at 37C in a humidified atmosphere 

containing 5% CO2.  For add-back experiments, the upper band of monocytes was isolated from 

the density gradient.  Cells from this band were added to neutrophils from the same gradient.  In 

experiments using highly purified neutrophil preparations, CD14
high

 cells were removed from 
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gradient purified neutrophils by negative selection with magnetic beads (Miltenyi Biotec, 

Auburn, CA). 

2.3.11 Detection of cytokines in vitro and in vivo.   

Highly purified or gradient purified neutrophils (5 × 10
6
/ml) were incubated with media, 

Pam3Cys-Ser-(Lys)4 (100ng/ml; Axxora LLC, San Diego, CA), or an MOI of 5 of D/UW-3/Cx 

or CTD153.  Cell free supernatants were collected and stored at -80°C until cytokine analysis.  

Cytokines were quantified using a multiparametric bead array (Millipore; Billerica, MA) for IL-

8, IL-6, TNF, IL-1, and G-CSF.  Total MMP9 was assayed using a multianalyte profiling 

assay (Fluorokine
®
 MAP; R&D systems, Minneapolis, MN).  These analyses were conducted on 

duplicate samples in three independent experiments for highly purified neutrophils and for at 

least two independent experiments for gradient purified neutrophils.  Levels of proinflammatory 

molecules were also measured in the homogenized oviducts of C3H/HeOuJ or C57BL/6 mice 

infected with Nigg and CM3.1.  Levels of CXCL1, CXCL2, GM-CSF, IL-1, IL-6, and TNF 

were measured via multiparametric bead array (Millipore, Billerica, MA).  Total MMP9 was 

assayed using a multianalyte profiling assay (Fluorokine
®
 MAP; R&D systems, Minneapolis, 

MN).  Levels of cytokines and chemokines were determined in the oviducts in 2 independent 

experiments using C3H/HeOuJ mice with 3 or 5 mice euthanized per group per day as well as in 

a single experiment using C57BL/6 mice with 3 mice euthanized per group per day.  
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2.3.12 Analysis of human neutrophil apoptosis.   

Human neutrophils (5 × 10
6
/ml) were purified by density gradient centrifugation and were either 

depleted of CD14
high

 cells or not further purified.  Neutrophils that were depleted of CD14
high

 

cells are referred to as highly purified while populations that were isolated solely by gradient 

centrifugation are referred to as partially purified. Cells were stimulated with Pam3Cys (100 

ng/ml) or infected at an MOI of 5 with D/UW-3/Cx or CTD153 for 20 hrs.  Apoptosis of 

partially purified neutrophils was determined via both methods below, and apoptosis of highly 

purified neutrophils was determined via TUNEL staining alone. TUNEL: TUNEL staining was 

conducted according to the manufacturer’s instructions (In situ cell death detection kit; Roche, 

Indianapolis, IN) to detect DNA strand breaks characteristic of apoptotic cells.  Staining was 

analyzed via flow cytometry.  Relative levels of apoptosis were quantified by calculating the 

ratio of the percentage of TUNEL-positive cells in a stimulated group to the percentage of 

TUNEL-positive cells in the media control. Annexin V binding and propidium iodide staining: 

Annexin V binds to exposed phosphotidylserine in a calcium-dependent manner, and is an 

indicator of early apoptosis.  Propidium iodide (PI) stains cells with disrupted plasma 

membranes, and is indicative of late apoptosis or necrosis.  Neutrophils were stained with 

Annexin V and PI according to the manufacturer’s instructions (Annexin V-FITC Kit; Miltenyi 

Biotec, Auburn, CA).  Labeled cells were analyzed by flow cytometry. Staining indicated the 

stage of cell death as follows: Alive: Annexin V
- 

PI
-
; Early apoptotic: Annexin V

+
PI

-
; Late 

apoptotic/ necrotic: Annexin V
+
PI

+
.  Apoptosis of gradient purified neutrophils was analyzed via 

TUNEL in duplicate wells in 6 independent experiments and via Annexin V/PI staining in 3 

independent experiments.  Apoptosis of highly purified neutrophils was analyzed via TUNEL in 

duplicate wells in 3 independent experiments.  
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2.3.13 Intracellular flow cytometry.   

For analysis of cell specific cytokine production, GolgiPlug (1:1000 final dilution; BD 

Biosciences) was added to preparations of partially purified neutrophils or neutrophils with 

additional monocytes added after 3 hrs of incubation with media, D/UW-3/Cx (MOI: 5) or 

Pam3Cys (100ng/ml).  After a total of 6 hrs in culture, cells were stained with Pacific Blue anti-

human CD14 (BD Biosciences, Clone: M5E2) and APC-Cy7 anti-human CD11b (BD 

Biosciences, Clone: ICRF44).  After surface staining, cells were fixed and permeabilized 

according to manufacturers instructions (Cytofix/CytopermKit, BD Biosciences).  Intracellular 

staining was conducted using PE anti-human IL-6 (eBioscience, Clone: MQ2-13A5) and APC 

anti-human TNF (eBioscience; Clone: MAb11).  Intracellular cytokine staining was conducted 

on duplicate wells in two independent experiments.  

2.3.14 Statistics.   

Statistical comparison of oviduct leukocyte influx, oviduct cytokine/chemokine levels, and the 

course of lower genital tract infection over time were analyzed via two-way ANOVA with 

Bonferroni post-test.  Mann-Whitney U test was used to determine significant differences in the 

pathological data between groups.  Differences in levels of gene transcription, apoptosis, 

neutrophil cytokine production, and cellular infiltrate into the oviduct on a single day were 

determined via Student’s t-test, or by ANOVA as appropriate.  Prism software was utilized for 

all statistical analysis.  Values of P < 0.05 were considered significant.   
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2.4 RESULTS 

2.4.1 Lower numbers of neutrophils were detected in the oviducts in response to infection 

with plasmid-deficient CM3.1 compared to wild-type Nigg.   

Our previous studies in the mouse model indicated that intravaginal infection with CM3.1, a 

plasmid-deficient strain of C. muridarum, resulted in an infection of equivalent magnitude and 

duration to wild-type Nigg, but in contrast to Nigg, CM3.1 did not induce the development of 

oviduct pathology (17).  Histological scoring on day 42 revealed that the reduced pathology 

observed upon infection with CM3.1 was associated with significantly lower numbers of 

neutrophils in the oviducts relative to infection with Nigg (17).  However, in those studies the 

kinetics of leukocyte influx into the oviducts was not examined during active oviduct infection.  

 In order to describe the kinetics of the immune response in detail, groups of C3H/HeOuJ 

mice were intravaginally infected with wild-type C. muridarum Nigg or plasmid-deficient 

CM3.1, and the oviducts were harvested. Flow cytometric analysis revealed that CM3.1 resulted 

in significantly lower numbers of CD45
+
 inflammatory cells in the oviducts relative to Nigg 

(Figure 1A).  Further characterization of CD45
+
 cells revealed a significantly decreased number 

(Figure 1B) and percentage of neutrophils (Figure 1C) in the oviducts in response to infection 

with CM3.1.  We also determined that the number of macrophages and dendritic cells were 

reduced in the oviducts during infection with CM3.1 compared to Nigg (data not shown).  The 

number of neutrophils in the oviducts on day 13 correlated directly with the oviduct dilatation 

scores determined on day 42 for mice similarly infected (r=0.65, P < 0.05 by Spearman 

nonparametric correlation).  Histological analysis supported our flow cytometric findings 

revealing that on days 14, 21, and 28 post infection, CM3.1 resulted in significantly reduced 
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neutrophilic infiltrates in the oviducts (Figure 1E-I).  The presence of reduced acute 

inflammation in the oviducts of mice infected with CM3.1 was not due to reduced bacterial 

burden since titration of live bacteria from the oviducts confirmed our previous findings that 

bacterial burden did not differ between the strains (data not shown)(17).  In addition, a repeat 

experiment performed in C57BL/6 mice revealed lower numbers of neutrophils acutely and 

reduced chronic oviduct pathology in response to infection with CM3.1 (data not shown) 

indicating that the differences observed were not mouse strain dependent.  
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Figure 1: Mice infected with CM3.1 exhibited a reduced neutrophil response in the oviducts during acute infection.  

Groups of C3H/HeOuJ mice were infected with C. muridarum Nigg (black bars) or CM3.1 (grey bars) and 

euthanized on the indicated days.  (A-C) Flow cytometric analysis was used to determine (A) the number of live 

CD45
+
 cells, (B) the number of neutrophils (CD45

+
Gr-1

high
Cd11c

-
F4/80

-
), and (C) the frequency of neutrophils in 

the oviducts of individual mice.  Bars represent the mean ± SD of values from 5 mice per group at each time point in 

one representative experiment of three.  P < 0.0001 by two-way ANOVA for CM3.1 vs. Nigg for A-C. *P < 0.05, 

** P <0.01, *** P <0.001 for individual days by two-way ANOVA with Bonferroni post test analysis.  (D) In a 

separate experiment, histological analysis of oviducts revealed significantly reduced neutrophillic inflammation on 

days 14, 21, and 28 post infection with CM3.1 compared to Nigg.  Bars are representative of the median and 

interquartile range of scores of 5 C3H/HeOUJ mice per day. * P <0.05, ** P <0.01 by Mann-Whitney U test.  

Photomicrographs are representative of the oviducts of (E, 40x; F, 100x) Nigg and (G, 40x; H, 100x) CM3.1-

infected animals on day 21 post-infection.   
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2.4.2 Decreased neutrophil chemokine production was detected in vivo and in vitro in 

response to infection with CM3.1.  

 Our previous studies revealed that lower numbers of neutrophils in the oviducts of CM3.1 

infected mice were associated with decreased levels of the neutrophil chemokine CXCL2 (MIP-

2) in lower genital tract secretions (17).  However, lower genital tract secretions do not reflect 

the inflammatory milieu in the oviduct, which is the site most vulnerable to Chlamydia-induced 

pathology.  Measurement of neutrophil chemokines in homogenized oviduct tissues from Nigg 

or CM3.1 infected C3H/HeOuJ mice revealed that levels of CXCL1 (Figure A), CXCL2 (Figure 

2B), and GM-CSF (Figure 2C) proteins were significantly decreased during infection with 

plasmid-deficient CM3.1 relative to infection with Nigg.  

Chlamydia primarily infects and replicate within the columnar epithelial cells of the 

oviduct, and infection of the oviduct epithelial cell line Bm1.11 induces a robust cytokine and 

chemokine response within hours of infection (120).  In order to determine if oviduct epithelial 

cell chemokine production contributed to the differences we observed in the oviducts of Nigg or 

CM3.1 infected mice, Bm1.11 cells were incubated with media or infected with an MOI of 1 of 

Nigg or CM3.1.  Analysis of gene transcription after 6 hours revealed significantly augmented 

transcription of CXCL1, CXCL2, and GM-CSF upon infection with Nigg compared to CM3.1 

(Figure 2D).  These transcriptional differences led to differences in chemokine production as 

revealed by measurement of protein levels in supernatants collected after 24 hours of infection 

(data not shown).  These findings indicate that an impaired ability to induce oviduct epithelial 

cell chemokine production likely contributes to the reduced neutrophil response observed in the 

oviducts of CM3.1 infected mice.  
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Figure 2:  Infection with CM3.1 elicited lower levels of neutrophil chemokine production in vivo and in vitro.    

Significantly reduced levels of (A) CXCL1, (B) CXCL2, and (C) GM-CSF were detected in the oviduct 

homogenates of CM3.1 infected mice (grey bars) compared to mice infected with Nigg (black bars).  Bars represent 

the mean ± SD of values from 5 mice per group of a single representative experiment of three.  P < 0.0001 by two-

way ANOVA for CM3.1 vs. Nigg for CXCL1, CXCL2, and GM-CSF over the interval measured. *P < 0.05, ***P < 

0.001 for individual days by two-way ANOVA with Bonferroni post test analysis.  (C) Analysis of RNA from 

Bm1.11 cells infected with Nigg or CM3.1 (MOI: 1) for 6 hrs revealed significantly reduced induction of CXCL1, 

CXCL2, and GM-CSF when expression was normalized to the housekeeping gene cacybp and compared to media.  

Bars represent the mean ± SD of triplicate wells of a single experiment that was performed three times. **P < 0.01, 

*** P < 0.001 for Nigg vs. CM3.1 by Student’s t-test. 
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2.4.3 Infection with wild-type Chlamydia delayed neutrophil apoptosis significantly more 

than infection with plasmid-deficient strains both in vivo and in vitro.  

 Neutrophils are a terminally differentiated population of cells that undergo spontaneous 

apoptosis in vitro and in vivo.  Although analysis of apoptosis in vivo is difficult due to the rapid 

clearance of apoptotic cells by phagocytes, we sought to determine if neutrophil longevity was 

enhanced in the oviducts during infection with Nigg relative to CM3.1, which could potentially 

be influenced by the ability of Nigg, but not CM3.1, to activate TLR2 (17).  Groups of C57BL/6 

mice were intravaginally infected with Nigg or CM3.1, and oviducts were harvested on days 9, 

13, and 15 post infection.  Single cell suspensions generated from the oviducts were stained with 

the neutrophil specific marker Ly6G (Clone: 1A8) as well as with Annexin V and 7-amino-

actinomycin D (7-AAD) to differentiate viable (AnnexinV
-
7-AAD

-
), early apoptotic 

(AnnexinV
+
7-AAD

-
), and late apoptotic/dead (7-AAD

+
) neutrophils.  Infection with Nigg 

resulted in a significantly increased frequency of viable neutrophils on days 9 and 13 post-

infection (Figure 3A, E).  Although the frequency of early apoptotic neutrophils did not differ 

between the strains (Figure 3B, E), the degree of phosphatidylserine exposure by early apoptotic 

neutrophils, as evidenced by the mean fluorescence intensity (MFI) of Annexin V staining, was 

significantly lower on days 9 and 13 of infection in mice infected with Nigg (Figure 3D, E).  

Phosphotidylserine is externalized as cells undergo apoptosis (121), and this increased 

expression may indicate that cells in the early apoptotic gate of mice infected with CM3.1 may 

be more advanced in their progression towards late apoptosis.  Correspondingly, Nigg infected 

oviducts contained a significantly reduced frequency of late apoptotic/dead neutrophils (Figure 

3C, E).  This reduced frequency of late apoptotic/dead neutrophils may be due to a combination 

of factors including ongoing influx of viable neutrophils from the blood, which would be 
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influenced by the magnitude of the chemokine gradient induced in the oviducts by infection 

(Figure 2A-C).  It is also possible that direct stimulation of neutrophils by wild-type Nigg delays 

neutrophil apoptosis to a greater extent than plasmid-deficient CM3.1. 

To compare the ability of wild-type and plasmid-deficient Chlamydia to delay apoptosis 

in vitro, it would be necessary to isolate large numbers of unstimulated neutrophils from a single 

mouse.  Isolating adequate numbers of neutrophils from murine peripheral blood is not possible 

due to the low blood volume of mice, and cells isolated from murine bone marrow are generally 

immature and overly manipulated, rendering them non-responsive to chlamydial stimulation.  

Thus, human peripheral blood neutrophils were used for these studies because large numbers of 

cells can be isolated from the blood of a single donor, and the isolation techniques do not induce 

premature neutrophil activation.  To analyze the response of human neutrophils to Chlamydia, 

we used a human plasmid-deficient strain named CTD153, which was derived from serovar D 

(D/UW-3/Cx) using novobiocin treatment (115).  Similar to CM3.1, this strain does not stimulate 

TLR2 or accumulate glycogen and exhibits a similar set of plasmid-responsive chromosomal loci 

(115).  

Analysis of neutrophil apoptosis in vitro was first conducted on populations of human 

neutrophils that were isolated by density gradient centrifugation and then further depleted of 

CD14
high

 monocytes using magnetic beads. These highly purified human neutrophils were 

incubated with D/UW-3/Cx, CTD153, or media, and apoptosis was quantified using TUNEL 

staining.  TUNEL detects DNA fragmentation, which is characteristic of cells that are 

undergoing or have completed apoptosis.  This technique revealed that incubation of highly 

purified neutrophils with D/UW-3/Cx or CTD153 (MOI: 5) delayed neutrophil apoptosis at 20 

hrs when compared to incubation with media alone (data not shown, P < 0.05, Student’s t-test).  
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However, no difference was detected when the ability of DUW-3/Cx or CTD153 to delay 

apoptosis was compared (data not shown, P = 0.134, Student’s t-test).  In addition, stimulation 

with the TLR2 agonist Pam3Cys (100 ng/ml) did not delay the apoptosis of these highly purified 

neutrophils (data not shown, P = 0.67, Student’s t-test).  

 Previous studies with TLR agonists supported our findings that TLR2 stimulation does 

not delay the apoptosis of highly purified neutrophils, but these studies also demonstrated that 

the presence of a small percentage of monocytes could facilitate a TLR-mediated delay in 

apoptosis (122, 123).  Thus, we explored the ability of D/UW-3/Cx and CTD153 to differentially 

influence the apoptosis of neutrophils that were isolated by density gradient centrifugation but 

were not completely depleted of CD14
high

 monocytes. In these partially purified preparations, 

neutrophils consistently represented greater than 90% of cells and CD14
high 

monocytes 

represented approximately 1% of cells.  In contrast to our findings with highly purified 

neutrophils, these partially purified neutrophils exhibited significantly reduced apoptosis upon 

incubation with D/UW-3/Cx when compared to neutrophils incubated with CTD153 or the TLR2 

agonist, Pam3Cys (Figure 3F).   Titration of inclusion forming units at 1 hr of incubation 

revealed no difference in bacterial load between neutrophils incubated with D/UW-3/Cx or 

CTD153, and at 20 hrs, when apoptosis was measured, no viable Chlamydia were recovered 

(data not shown).  

Annexin V staining in conjunction with propidium iodide (PI) allows for discrimination 

of cells that are viable, apoptotic, and necrotic.  Annexin V/ PI staining revealed that incubation 

of partially purified neutrophils with D/UW-3/Cx resulted in a significantly lower percentage of 

apoptotic neutrophils (20  3.4% apoptotic)(data not shown) when compared to incubation with 

CTD153 (36.5  1.4% apoptotic; P < 0.05, One way ANOVA)(data not shown) or media alone 
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(44.7  5.7% apoptotic; P < 0.05, One way ANOVA) (data not shown). There was no significant 

difference in the percentage of cells that were late apoptotic/ necrotic between any of the groups.  

 

 

Figure 3:  Plasmid-deficient Chlamydia exhibited an impaired ability to delay neutrophil apoptosis in vivo and in 

vitro.   

Flow cytometry was used to determine the frequency (A) viable neutrophils (Annexin V
- 

7AAD
-
), (B) early 

apoptotic neutrophils (AnnexinV
+
7AAD

-
), and (C) late apoptotic/dead neutrophils (7AAD

+
) in the oviducts of mice 

infected with CM3.1 (grey bars) or Nigg (black bars).  Bars represent the mean ± SD of 3 mice per day from a single 

experiment. * P < 0.05, ** P <0.01 by two-way ANOVA with Bonferroni post test analysis. (D) Significantly higher 

levels of Annexin V expression were detected on early apoptotic neutrophils (Annexin
+
7AAD

-
) on days 9 and 11 

during infection with CM3.1.  Bars represent the mean fluorescence intensity (MFI) ± SD of 3 mice per day from a 

single experiment. * P < 0.05 by Student’s t-test.  (E) A representative flow diagram of oviduct cells gated on 

Ly6G
high 

(Clone: 1A8) neutrophils.  (F) TUNEL of partially purified human neutrophils after 20 hrs of incubation 

with media (white bar), Pam3Cys (100ng/ml) (checkered bar), or an MOI of 5 of D/UW-3/Cx (black bar) or 

CTD153 (grey bar).  Bars represent the mean ± SD of the percentage of apoptotic neutrophils in duplicate wells 

from one experiment of 6. *** P < 0.001 for comparison between treatments; @ P < 0.05 vs. uninfected, one-way 

ANOVA with Tukey’s multiple comparison test.  
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2.4.4 Infection with CM3.1 resulted in a significantly lower level of proinflammatory and 

tissue damaging molecules in the oviducts than infection with Nigg.   

The reduced inflammatory cell influx observed in the oviducts of CM3.1 infected mice (Figure 

1) is likely explained by a combination of decreased chemokine production (Figure 2) and 

increased apoptosis (Figure 3). However, the true correlate of tissue damage in Nigg vs. CM3.1 

infected mice is likely to be the release of proinflammatory cytokines and pathogenic mediators. 

Our previous studies revealed that IL-1 is associated with the development of oviduct 

pathology in response to C. muridarum infection (100), and IL-6 and TNF are well-

characterized mediators of inflammation and fibrosis.  In addition, mice deficient in MMP9 

exhibit reduced levels of hydrosalpinx compared to wild-type mice (37).  To determine if 

reductions in levels of these inflammatory mediators and tissue damaging molecules could be 

associated with the absence of pathology observed during infection with CM3.1, we 

intravaginally infected groups of C3H/HeOuJ mice with Nigg or CM3.1.  Oviducts were 

harvested over the course of acute infection and quantification of protein levels revealed that 

infection with CM3.1 resulted in significantly reduced levels of IL-1 (Figure 4A), IL-6 (Figure 

4B), TNF (Figure 4C), and MMP9 (Figure 4D).  Parallel findings were determined for oviducts 

of C57BL/6 mice infected with Nigg vs. CM3.1 (data not shown).  
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Figure 4:  Infection with CM3.1 resulted in significantly reduced levels of proinflammatory and tissue damaging 

molecules in the oviducts.   

Analysis of the homogenized oviducts of mice infected with Nigg (black bars) or CM3.1 (grey bars) revealed 

significantly lower levels of (A) IL-1, (B) IL-6, (C) TNF, and (D) MMP9. Bars represent the mean ± SD of 

values from 5 C3H/HeOuJ mice per group of a single independent experiment of two. P < 0.0001 for IL-1 and 

MMP9, P < 0.01 for TNF, and P < 0.05 for IL-6 by two-way ANOVA for CM3.1 vs. Nigg over the interval 

measured. * P < 0.05, ** P < 0.01, *** P < 0.001 for individual days by two-way ANOVA with Bonferroni post test 

analysis.   
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2.4.5 Highly purified neutrophils exhibited low levels of cytokine production, but 

incubation with D/UW-3/Cx led to enhanced production of cytokines compared to CTD153 

when monocytes were present.  

 Our finding that monocytes were involved in the differential apoptosis observed for D/UW-3/Cx 

and CTD153 (Figure 3E) prompted investigation into the effect of monocytes on neutrophil 

cytokine production.  Highly purified neutrophils were generated by depleting CD14
high

 cells 

from gradient purified neutrophils using magnetic beads.  These highly purified neutrophils were 

incubated with D/UW-3/Cx, CTD153, or Pam3Cys for 20 hours.  Measurement of cytokines in 

the supernatants revealed extremely low levels of TNF (Figure 5A), IL-6 (data not shown), and 

IL-1 (data not shown) with all cytokines detected at levels less than 65 pg/ml.  Although IL-8 

production was more robust, with amounts up to 6000 pg/ml detected upon incubation with 

Chlamydia, no difference in cytokine production after incubation with D/UW-3/Cx and CTD153 

was observed (data not shown).   

Cytokine production was then analyzed in preparations of partially purified neutrophils, 

which were isolated by density gradient centrifugation but not depleted of CD14
high

 monocytes.  

Flow cytometric analysis revealed that even when the population of CD14
high

 monocytes 

represented less than 1% of cells, the frequency of CD14
high

 cells producing TNF in response to 

D/UW-3/Cx was ~7 fold higher, and the frequency producing IL-6 was ~ 700 fold higher than 

neutrophils in the same preparation (Fig. 5Figure 5B).  In addition, the relative amount of 

cytokines produced by the neutrophil or the CD14
high

 monocyte population was documented by 

analysis of the mean fluorescence intensity (MFI) of cytokine producing cells.  In response to 

incubation with D/UW-3/Cx, the MFI of TNF
+
 CD14

high
 cells (468  117) was 13 fold higher 



 51 

than that of neutrophils (37  1) (Figure 5B).  Similarly, the MFI of IL-6 producing CD14
high

 

cells (335  6) was 8 fold higher than neutrophils (42  5) (Figure 5B).  These results prompted 

our investigation of the ability of monocytes to respond to Chlamydia and influence neutrophil 

cytokine production.   

When monocytes were added to populations of partially purified neutrophils, an increase 

in the percentage of neutrophils producing TNF (Figure 5C) and/or IL-6 (data not shown) 

during incubation with D/UW-3/Cx or Pam3Cys was observed.  Although we did not see a 

difference in cytokine production upon stimulation with D/UW-3/Cx and CTD153 in 

preparations of highly purified neutrophils, we did see significantly enhanced levels of TNF 

(Figure 5D), IL-6 (Figure 5D), IL-1 (Figure 5D), and G-CSF (data not shown) in the 

supernatants of partially purified populations of neutrophils after 3 hours of incubation with 

D/UW-3/Cx relative to CTD153 (Figure 5D).  However, these differences were likely 

attributable to a small percentage of monocytes, since flow cytometry revealed both low MFIs 

and frequencies of neutrophils producing cytokines in these preparations relative to monocytes 

(Figure 5B).  In addition, measurement of cytokines in the supernatants of highly purified 

neutrophils after 3 hrs revealed that neutrophil cytokine production was undetectable at this time 

point (data not shown).  In contrast to the other proinflammatory parameters measured, we 

determined that MMP9 was robustly produced by highly purified neutrophils but not monocytes 

after 3 hours of incubation in vitro (data not shown).  Thus, the augmented MMP9 production 

observed in response to D/UW-3/Cx in gradient purified populations of neutrophils (Figure 5D), 

although likely influenced by the cytokine milieu induced by chlamydial stimulation of 

monocytes, can be attributed to the neutrophils. 
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Figure 5:  Highly purified human neutrophils produced low levels of cytokines in response to Chlamydia, but in the 

presence of monocytes, D/UW-3/Cx induced significantly higher levels of proinflammatory molecules than 

CTD153.   

(A) Low levels of TNF were detected in the supernatants of highly purified neutrophils after 20 hrs of incubation 

with Pam3Cys (100ng/ml)(checkered bar), or an MOI of 5 of D/UW-3/Cx (black bar), or CTD153 (grey bar).  Bars 

represent the mean ± SD of data pooled from 2 of 3 independent experiments. (B) Plot is gated on neutrophils 

(PMN, CD14
low/neg

FSC/SSC
high

) or CD14
high

 monocytes (1% of cells) in the same well after stimulation with 

D/UW-3/Cx (MOI: 5) for 6 hours. (C) Increasing the frequency of CD14
high

 monocytes from 1% to 15% 

significantly increased the percentage of neutrophils producing TNF after 6 hrs of stimulation with D/UW-3/Cx or 

Pam3Cys. Bars represent the mean ± SD of duplicate wells from one representative experiment of two. (D) 

Incubation of preparations of partially purified neutrophils containing 1% monocytes with D/UW-3/Cx (MOI: 5) 

for 3 hrs resulted in increased release of TNF, IL-6, IL-1, and MMP9 relative to incubation with CTD153.  Bars 

represent the mean ± SD of duplicate wells from a representative experiment, which was conducted at least twice. * 

P < 0.05, ** P < 0.01, *** P < 0.001 between treatments, @ P < 0.05 vs. uninfected by one way ANOVA with 

Tukey’s multiple comparison test.  
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2.4.6 Depletion of neutrophils from the oviduct using anti-Ly6G antibody cannot be 

accomplished during C. muridarum infection.   

We determined that decreased numbers of neutrophils and reduced levels of proinflammatory 

molecules were present in the oviducts of mice infected with CM3.1.  In order to prove that 

neutrophils contribute to the development of chronic oviduct pathology after chlamydial 

infection, we attempted to deplete these cells from the genital tract using anti-Ly6G (clone 1A8), 

an antibody specific for murine neutrophils.  We treated mice with 300 g (i.p.) of anti-Ly6G 

(Clone: 1A8) or control IgG every other day or every third day from day -1 to day 21 post 

infection with C. muridarum Nigg.  Antibody treatment was discontinued on day 21 to avoid the 

development of serum sickness induced by a host response to foreign antibody. This time point 

was chosen based on our data indicating that the neutrophil response in the oviducts normally 

resolves by day 21 (Figure 1B).  Since neutrophil depletion might lead to prolonged infection, 

which would lead to a continued influx of neutrophils after antibody administration was stopped, 

mice were administered doxycycline on days 22-26 to insure the infection resolved promptly 

after antibody treatment was stopped.  

Flow cytometric analysis of the peripheral blood on day 11 revealed that Ly6G
high

 cells 

were largely absent upon administration of anti-Ly6G antibody (Figure 6A).  However, the 

reduced numbers of Ly6G
high

 neutrophils in the peripheral blood did not lead to compromise in 

control of infection in the lower genital tract (Figure 6B) or a reduction in chronic pathology in 

either the oviducts (Figure 6C) or uterine horns (Figure 6D).  
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Figure 6:  Anti-Ly6G antibody treatment effectively depletes Ly6G
high

 neutrophils from the peripheral blood during 

C. muridarum infection but does not alter the course of infection or the development of pathology.  

(A) Flow cytometric analysis of peripheral blood on day 11 post-infection revealed that Ly6G
high

 cells were no 

longer detectable in the blood of mice treated with anti-Ly6G antibody.  Plots are gated on CD45
+
 cells. (B) 

Titration of bacteria from lower genital tract swabs revealed no difference in the course of infection between mice 

administered IgG (black squares) or anti-Ly6G (clear circles) and infection quickly resolved with doxycycline 

treatment. Data points represent the mean  SD of 5 mice per group from one representative experiment of three.     

P > 0.05 via two-way RM ANOVA.  Histologic examination of (C) oviduct dilatation and (D) uterine horn 

distention on day 42 post infection revealed no difference between IgG (black bars) and anti-Ly6G (grey bars) 

treated mice.  Bars represent the median and interquartile range of 9 mice per group from two independent 

experiments. P > 0.05 by Mann-Whitney U test.  

 

Results presented in this chapter as well in previous studies point to neutrophils as key 

players in the development Chlamydia-induced pathology (30, 32, 36, 37). Thus, we were 
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surprised to find no reduction in chronic pathology upon depletion of Ly6G
high

 high neutrophils 

from the peripheral blood (Figure 6A).  In order to explain these results, depletion experiments 

were repeated with groups of mice euthanized on day 11 of infection for analysis of leukocyte 

infiltrates into the tissue.  Flow cytometry revealed that the number of CD45
+
 cells was not 

significantly reduced upon administration of anti-Ly6G antibody (data not shown), but these 

animals did exhibit a significantly increased frequency of CD11b
+
F4/80

+
 macrophages (Figure 

7A) and a decreased frequency of CD11b
+
F4/80

- 
myeloid cells (Figure 7B) compared to mice 

treated with IgG.  Further analysis of the phenotype of CD11b
+
F4/80

-
 cells revealed that in the 

oviducts of mice treated with IgG, these cells were 89.6%  6.9% Ly6G
high 

neutrophils, whereas 

upon administration of anti-Ly6G, these cells were only 1.9  2.0% Ly6G
high

 neutrophils (Figure 

7B).  However, in the oviducts of mice treated with anti-Ly6G antibody, the frequency of 

CD11b
+
F4/80

-
 cells exhibiting intermediate staining with Ly6G/C (Clone: RB6-8C5) was robust 

(66.4  9.5%) (Figure 7B).  These findings indicated that a less differentiated population of 

granulocytes, characterized by low levels of Ly6G/C expression (124), had migrated into the 

tissue in the absence of Ly6G
high

 neutrophils.  In order to confirm the identity of these cells as 

immature neutrophils, we conducted histologic analysis on day 11 post-infection.  Scoring of 

H&E stained oviducts revealed large numbers of cells exhibiting neutrophil or band morphology 

in the tissues of both anti-Ly6G and IgG treated animals (Figure 7C, E), with both groups having 

a median score of 4, which is the highest score in our semi-quantitative scoring system (30, 32).  

In addition, immunohistochemical staining revealed that this acute inflammation did indeed 

express Ly6G (Figure 7D, F).  Thus, despite repeated efforts to deplete neutrophils with high 

levels of antibody and frequent administration, we were unable to prevent the influx of immature 

neutrophils that expressed low levels of Ly6G on their surface.  These immature neutrophils are 
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likely capable of mediating the pathology we observed despite anti-Ly6G treatment, as levels of 

MMP9 in homogenized oviduct tissues, despite being reduced by 3 fold (IgG: 2715.3 ng/ml; 

anti-Ly6G: 96  3 ng/ml)(data not shown), were not absent, as would be expected if neutrophils 

had been completely depleted from the tissues.  In addition, levels of the proinflammatory 

molecules TNF, IL-6, and IL-1 measured in the homogenized oviducts on day 11 were not 

reduced upon administration of anti-Ly6G antibody (data not shown).  

 

Figure 7: Treatment with anti-Ly6G antibody results in the elimination of Ly6G
high 

neutrophils in the oviducts and a 

compensatory increase in macrophages and Ly6G/C
low 

immature neutrophils.  

(A) Flow cytometric analysis of the oviducts on day 11 post infection revealed an increased frequency of CD45
+
 

cells that were macrophages (CD11b
+
F4/80

+
) and a substantial remaining population of cells with surface marker 

expression characteristic of neutrophils (CD11b
+
F4/80

-
) upon treatment with anti-Ly6G compared to IgG. (B) 

Further analysis of CD11b
+
F4/80

-
 cells in the oviducts revealed the absence of Ly6G

high
 neutrophils but a high 

frequency of Ly6G/C
low

 myeloid cells in mice treated with anti-Ly6G.  Plot is gated on CD45
+
CD11b

+
F4/80

-
 cells. 

(C-F) Histologic examination of H&E stained sections (400x magnification) on day 11 post infection revealed cells 

exhibiting neutrophilic morphology in the oviduct upon treatment with (C) anti-Ly6G or (E) IgG.  

Immunohistochemical staining of upper genital tract tissues with anti-Ly6G antibody confirmed that cells expressing 

this antigen were present in the tissues of mice treated with (D) anti-Ly6G or (F) IgG.  
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2.5 DISCUSSION 

Our previous study revealed that intravaginal infection of mice with a plasmid deficient strain of 

C. muridarum, CM3.1, results in the development of significantly lower levels of oviduct 

pathology compared to infection with wild-type C. muridarum Nigg (17).  In addition, primary 

infection with CM3.1 prevents the development of oviduct pathology upon challenge with Nigg 

(17).  Although CM3.1 leads to an infection of normal magnitude and duration, this strain 

stimulates an immune response that is able to induce resistance to reinfection with Nigg.  

Furthermore, the immune response effectively resolves infection without inducing collateral 

tissue damage. The reduced pathology is associated with decreased levels of the neutrophil 

chemokine CXCL2 in lower genital tract secretions and decreased neutrophil infiltrates in the 

oviducts on day 42 post-infection (17).  Given previous data associating neutrophils with the 

development of oviduct pathology resulting from chlamydial infection (29, 30), it is not 

surprising that in the current study we detected a dramatically decreased neutrophil response in 

the oviducts of mice infected with CM3.1 during acute infection.  In this chapter, we explored 

the mechanisms leading to this reduced neutrophil response as well as downstream effects that 

might contribute to protection from oviduct tissue damage during infection with plasmid-

deficient chlamydiae.  

We determined that both decreased recruitment and increased apoptosis contributed to 

the blunted neutrophil response observed in the oviducts of mice infected with CM3.1.  Kinetic 

experiments revealed that levels of the neutrophil chemokines CXCL1, CXCL2, and GM-CSF 

were reduced in the oviducts upon infection with CM3.1.  We determined that oviduct epithelial 

cell production of these chemokines was reduced in vitro upon infection with CM3.1 relative to 

Nigg, which is an important finding given the fact that the primary location of chlamydial 
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infection in the oviducts is the epithelium.  These data correspond with our findings that CM3.1 

exhibits a reduced ability to induce cytokine production by cervical epithelial cells (17).  In 

addition, a previous study revealed that mice deficient in CXCR2, the receptor for CXCL1 and 

CXCL2, exhibit significant reductions in acute inflammation in the oviducts during C. 

muridarum infection, indicating that these chemokines play a role in migration of neutrophils to 

the genital tract (31).   

In this study we also explored the ability of plasmid-deficient Chlamydia to prevent 

neutrophil apoptosis in vivo and in vitro.  Neutrophils are terminally differentiated and rapidly 

undergo spontaneous apoptosis after release from the bone marrow (125).  Bacterial products as 

well as cytokines have been demonstrated to delay neutrophil apoptosis (126-129), and a 

differential ability to prevent neutrophil apoptosis could contribute to the differences in numbers 

of neutrophils we detected in the oviducts upon infection with Nigg or CM3.1.  Flow cytometric 

analysis of apoptosis revealed a decreased frequency of viable neutrophils and an increased 

frequency of late apoptotic/dead neutrophils in the oviducts during acute infection with CM3.1.  

Although no difference was detectable in the frequency of early apoptotic neutrophils, we 

detected increased phosphotidlyserine exposure by early apoptotic neutrophils isolated from 

mice infected with CM3.1.  Phosphotidlyserine is externalized as cells undergo apoptosis (121), 

and this increased expression may indicate that cells in the early apoptotic gate of mice infected 

with CM3.1 may be more advanced in their progression towards late apoptosis.  However, it is 

also possible that there are differences in the rate of phagocytsis of apoptotic neutrophils by 

macrophages, which could be due to an increased number of macrophages in the oviducts of 

mice infected with Nigg as well as potential differences in macrophage activation between the 

strains.   
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In order to more directly elucidate the ability of wild-type and plasmid-deficient 

Chlamydia to delay neutrophil apoptosis, we undertook analyses in vitro.  Neutrophils are 

notoriously difficult to experimentally manipulate, and isolation of adequate quantities of non-

activated highly purified neutrophils from mice is exceedingly difficult.  Thus, we utilized a 

plasmid-deficient strain of C. trachomatis, named CTD153, which was derived from the human 

strain D/UW-3/Cx (115).  This strain exhibits a similar phenotype to CM3.1, in that it does not 

accumulate glycogen or stimulate TLR2 (115).  Although we determined that D/UW-3/Cx and 

CTD153 were equally efficient at delaying the apoptosis of highly purified neutrophils after 20 

hrs of incubation, we determined that partially purified preparations of neutrophils containing a 

population of ~1% monocytes exhibited delayed apoptosis upon incubation with D/UW-3/Cx 

relative to CTD153.  Thus, it is possible that differences in monocyte production of cytokines 

such as IL-1, TNF, and G-CSF were responsible for the differential ability of D/UW-3/Cx and 

CTD153 to delay neutrophil apoptosis (130-133).  Differences in apoptosis were not due to 

discrepancies in bacterial burden since we verified equivalent bacterial loading by titration of 

Chlamydia after 1 and 3 hrs of incubation.  To our knowledge, this is the first study to 

demonstrate that direct stimulation with C. trachomatis can delay neutrophil apoptosis. 

Analysis of cells contributing to this cytokine milieu revealed that highly purified 

neutrophils produced miniscule levels of cytokines relative to monocytes. These findings agree 

with those from a study examining cytokine production by neutrophils and monocytes during 

stimulation with TLR agonists or Mycobacterium bovis BCG, which showed that neutrophils are 

ineffective producers of proinflammatory cytokines relative to monocytes (134).  The reduced 

ability of neutrophils to produce cytokines relative to monocytes can likely be attributed to the 

enhanced expression of TLR2, TLR4, and CD14 by monocytes relative to neutrophils (122, 
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135).  Monocyte cytokine production is likely responsible for our observation that increasing the 

percentage of CD14
high

 cells from 1% to 15% enhanced neutrophil IL-6 and TNF production.  

In contrast to proinflammatory cytokines, highly purified neutrophils and not monocytes 

produced large amounts of MMP9.  However, neutrophil release of MMP9 was influenced by 

monocyte cytokine production since preparations of neutrophils that contained monocytes 

produced more MMP9 in response to D/UW-3/Cx than CTD153, but preparations of neutrophils 

depleted of CD14
high

 cells did not exhibit differences between the strains.  Our data indicating 

that neutrophils are the primary producers of MMP9 in response to Chlamydia are supported by 

in vivo studies revealing neutrophils as the main producers of MMP9 during C. muridarum 

genital tract infection (36).  Thus, although neutrophils weakly contribute to proinflammatory 

cytokine production relative to monocytes in vitro, the presence of an inflammatory milieu 

during acute infection likely augments the contribution of neutrophils to this response.  For 

example, when neutrophils were flow sorted from the cervices of mice infected with C. 

muridarum, they were determined to produce IL-1 at levels equivalent to macrophages (100).  

In addition, proinflammatory cytokines have been demonstrated to augment neutrophil 

expression of TLRs and to promote neutrophil activation (122, 133, 135, 136).  

Previous studies reveal that proinflammatory cytokines contribute to the development of 

Chlamydia-induced genital tract pathology.  Mice deficient in TNF or IL-1 exhibit 

significantly reduced levels of hydrosalpinx (50, 100).  In addition, oviduct pathology is 

significantly reduced upon infection of mice deficient in MMP9 (37).  The combined reduction 

of all of these inflammatory mediators may explain the absence of oviduct pathology in mice 

infected with CM3.1.  
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A previous study in mice using anti-Ly6G/C (Clone: RB6-8C5), which binds not only 

neutrophils but also subsets of monocytes, dendritic cells, and CD8+ T cells, detected no 

alteration in the course of infection but did reveal reduced rates of hydrosalpinx resulting from C. 

muridarum genital tract infection (137-140).  Although the authors detected a significant 

decrease in MMP9 levels, no reduction in acute inflammation was observed in the oviducts 

suggesting a lack of specificity for the outcome (137).  Recently, anti-Ly6G (Clone: 1A8) 

antibody has been determined to specifically deplete neutrophils from mice (141, 142).  Thus, in 

order to directly determine the role of neutrophils during C. muridarum genital tract infection, 

we treated mice with anti-Ly6G antibody (Clone: 1A8) from day -1 to day 21 of infection.  Flow 

cytometric analysis revealed successful depletion of Ly6G
high

 neutrophils from the peripheral 

blood and oviducts.  Neutrophils are eliminated from the circulation within minutes of injection 

of anti-Ly6G/C (Clone: RB6-8C5) antibody (143) indicating that the inability to detect Ly6G
high 

neutrophils in the circulation upon administration of anti-Ly6G (Clone: 1A8) is unlikely due to 

interference of depletion antibody bound to the surface of peripheral blood neutrophils with the 

binding of flow cytometric antibodies specific for the same epitope.  However, it does appear 

that the decrease in neutrophils was compensated for by an increase in macrophages and 

immature Ly6G
low/int 

neutrophils in the oviducts.  The presence of these immature Ly6G
+
 

neutrophils in the upper genital tract was verified by morphologic assessment of H&E stained 

tissue sections and immunohistochemistry for Ly6G.  With the influx of these inflammatory 

cells, it is not surprising that no difference in the course of infection or the development of 

pathology were detected upon administration of anti-Ly6G antibody.  In our experimental setup, 

mice were treated with doxycycline on days 22 thru 26 post infection.  Although tetracycline 

antibiotics can inhibit matrix metalloproteinases (MMPs), the MMP response that occurs after 
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day 21 is negligible (36, 38).  Thus, administration of doxycycline likely did not contribute to 

our inability to detect a difference in pathology between mice treated with anti-Ly6G or control 

antibody.  

Dissemination of bacteria from the genital tract to other organs such as the lungs, liver, 

and kidney occurs during acute infection of immunologically normal mice with C. muridarum 

(74).  Localized and systemic infection with this organism drives the production of colony 

stimulating factors, which enhance release of neutrophils and immature band forms from the 

bone marrow.  These neutrophils are then rapidly recruited to the site of infection.   Although 

antibody treatment can rapidly eliminate the mature neutrophils with high levels of Ly6G 

expression, the immature bands, with lower levels of Ly6G expression, are not neutralized and 

survive to infiltrate the tissue.  Indeed, a previous study revealed an increased frequency of bands 

in the peripheral blood upon treatment with anti-Ly6G/C antibody during C. muridarum 

infection (137).  We hypothesize that this is the reason for failure of anti-Ly6G antibody to 

successfully deplete neutrophils from the genital tract tissues.  These findings bring into question 

the ability of anti-Ly6G antibody to successfully eliminate neutrophils in any model that induces 

robust production of colony stimulating factors and requires that histological examination of 

tissues be performed to confirm the absence of cells with neutrophil morphology.  In a local 

conjunctival infection with Chlamydia caviae, administration of anti-neutrophil antibody resulted 

in successful depletion of neutrophils in the tissue and significantlyejkri9 reduced levels of 

pathology (35).   These findings support the role of neutrophils in the development of 

Chlamydia-induced pathology and the use of antibodies to deplete neutrophils during localized 

infection.  A potential key factor in the success of neutrophil depletion in the C. caviae study was 

the use of a polyclonal antibody that was specific for an array of proteins expressed by 
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neutrophils, which prevented reduced expression of a single protein from hindering successful 

depletion, as occurred in our studies (35).     

 Consideration of our data together with multiple prior reports correlating 

increased neutrophils with enhanced oviduct disease after chlamydial infection supports an 

important role for these cells and their products in oviduct tissue damage (29, 30, 36, 37).  Our 

findings of decreased neutrophil chemokines, shortened neutrophil lifespan, and decreased levels 

of proinflammatory molecules produced by neutrophils in the oviducts of mice infected with 

CM3.1, where chronic oviduct pathology is notably absent, is further suggestive of a key role for 

these acute inflammatory cells in causing reproductive tract sequelae.  Unfortunately, the 

inability to deplete neutrophils from the local site of infection in this model prevents us from 

directly proving the deleterious role of these cells. However, these data indicate a need to limit 

acute inflammation in women with chlamydial infection, potentially through frequent screening, 

early treatment, or the use of drugs that specifically inhibit acute inflammatory mediators (144, 

145).  
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3.0  IL-17 CONTRIBUTES TO GENERATION OF TH1 IMMUNITY AND 

NEUTROPHIL RECRUITMENT DURING CHLAMYDIA MURIDARUM GENITAL 

TRACT INFECTION BUT IS NOT REQUIRED FOR MACROPHAGE INFLUX OR 

NORMAL RESOLUTION OF INFECTION 

3.1 ABSTRACT 

IL-17 contributes to development of Th1 immunity and neutrophil influx during Chlamydia 

muridarum pulmonary infection, but its role during C. muridarum genital tract infection has not 

been described. We detected similar numbers of Chlamydia-specific Th17 and Th1 cells in iliac 

nodes of wild-type mice early during genital C. muridarum infection, while Th1 cells 

predominated later.  Il17ra
-/-

 mice exhibited a reduced Chlamydia-specific Th1 response in 

draining iliac nodes and decreased local IFN production.  Neutrophil influx into the genital tract 

was also decreased.  However, il17ra
-/- 

mice resolved infection normally, and no difference in 

pathology was observed when compared to wild-type.  Macrophage influx and TNF production 

were increased in il17ra
-/- 

mice providing a compensatory mechanism to effectively control 

chlamydial genital tract infection despite a reduced Th1 response.  In ifn-/-
 mice, a marked 

increase in cellular infiltrates and chronic pathology was associated with an increased Th17 

response. Although neutralization of IL-17 in ifn-/-
 mice decreased neutrophil influx, 

macrophage infiltration remained intact and bacterial burden was not increased.  Collectively, 



 66 

these results indicate that IL-17 contributes to generation of Th1 immunity and neutrophil 

recruitment but is not required for macrophage influx or normal resolution of C. muridarum 

genital infection. These data highlight the redundant immune mechanisms operative at this 

mucosal site and the importance of examining site-specific responses to mucosal pathogens.  

3.2 INTRODUCTION 

Expansion of the Th1/Th2 paradigm to include the Th17 subset has provided important insight 

into the complexities of the mucosal immune response.  Initially, IL-17 was identified as a key 

factor in the development of autoimmune inflammation and pathology (146-148); however, 

subsequent data have demonstrated both protective and pathologic roles for IL-17 depending 

upon the pathogen and target tissue (105, 106, 109, 149-155).  In addition, Th17 cells link innate 

and adaptive immunity (156) and play a role in augmenting memory responses (147, 157), 

providing an attractive target for promoting vaccine-induced immunity. 

Resolution of chlamydial infection and protection from pathology is associated with a 

strong Th1 response and IFN production (45, 51, 74, 75, 89).  Recent work has demonstrated 

that IL-17 is critical for host defense against C. muridarum pulmonary infection, as bacterial 

clearance and development of Th1 immunity were compromised in the absence of IL-17 (105).  

In this mouse model, IL-17 was necessary for dendritic cell production of IL-12p70 and 

downstream development of a protective Th1 response (105).  However, elevated levels of IL-17 

have been associated with increased disease susceptibility during C. muridarum respiratory tract 

infection via recruitment of neutrophils (108, 109).  Enhanced neutrophil influx and neutrophil 

release of matrix metalloproteases has been directly linked to tissue pathology in mouse models 
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of C. muridarum genital tract infection (29, 36).  In addition, human studies have suggested that 

increased neutrophil activation is associated with the presence of C. trachomatis genital tract 

infection as well as with endometritis (27).  Due to the pleiotropic effects of IL-17 on Th1 

immunity and neutrophil induction and the significance of these responses in host defense to 

chlamydiae, it is important to directly examine the role of IL-17 in protection versus 

pathogenesis in the genital tract model of chlamydial infection. 

We determined the numbers of chlamydial antigen-specific Th17 and Th1 cells in the 

draining iliac nodes of wild-type C57BL/6 mice after genital infection with C. muridarum.  

Although similar numbers of Th17 and Th1 cells were observed on day 7 of infection, by day 20, 

Th1 cells predominated.  We then infected IL-17 receptor deficient (il17ra
-/-

) mice on the 

C57BL/6 background.  Decreased IFNγ production was observed in both NK cells in the cervical 

tissues and Chlamydia-specific CD4
+
 T cells in the iliac nodes of il17ra

-/-
 mice.  In addition, 

neutrophil influx was decreased in the il17ra
-/-

 mice.  Despite diminished Th1 and neutrophil 

responses, infection resolved normally and pathology was similar to wild-type mice. Enhanced 

macrophage influx and macrophage production of TNF provided a potentially compensatory 

host defense mechanism in the il17ra
-/-

 mice. 

To further determine whether IL-17 plays a protective role during C. muridarum genital 

infection, we evaluated the role of IL-17 in the absence of a protective IFN response, removing 

any inhibition of IL-17 that might be imposed by IFN.  Ifn -/- 
mice clear the majority of 

chlamydiae from their genital tract, indicating a role for alternative mechanisms of bacterial 

control. We observed a significantly increased Th17 response and markedly elevated neutrophil 

infiltrates in ifn-/-
 mice.  Although neutralization of IL-17 in ifn-/-

 mice resulted in a significant 

decrease in neutrophil numbers in the oviducts, control of infection was not further compromised 
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and pathology was not improved.  Alternate immune mechanisms continue to control infection, 

demonstrating the marked redundancy of host defense mechanisms operative at this mucosal site.  

Macrophage influx was sustained during IL-17 depletion, indicating a potential role for these 

cells as important mediators of host defense in the genital tract. 

3.3 MATERIALS AND METHODS 

3.3.1 Animals 

Mice homozygous for the Ifntm1Ts
 targeted mutation (ifn-/-

) and wild-type C57BL/6 mice were 

purchased from The Jackson Laboratory (Bar Harbor, ME).  IL-17 receptor deficient (il17ra
-/-

) 

mice on the C57BL/6 background have been previously described (150).  All mice were infected 

between 8-12 weeks of age.  Mice were infected in groups of five except where otherwise 

indicated.  Mice were given food and water ad libitum in an environmentally controlled room 

with a cycle of 12 hours of light and 12 hours of darkness.  All animal experiments were 

approved by the University Institutional Animal Care and Use Committee.    

3.3.2 Reagents and bacteria  

Chlamydia muridarum (Nigg 1942), was cultured in mycoplasma-free McCoy or HeLa229 cells 

and chlamydial elementary bodies (EBs) were harvested from infected cells as previously 

described (158).  Where specified, gradient purified C. muridarum Nigg EBs inactivated under 

ultraviolet light were used as antigen at a concentration of 5 µg/ml (159).  Immunostimulatory 
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peptides (RplF51-59) GNEVFVSPAAHIIDRPG, (PmpG1303-311) SPIYVDPAAAGGQPPA, and 

(PmpE/F2351-359) AFHLFASPAANYIHTG were synthesized and purified by Synthetic 

Biomolecules (San Diego, CA). These chlamydial peptides correspond to MHC class II epitopes 

that were discovered by Karunakaran et al. using immunoproteomics (160).  Pooled peptides 

were solubilized in DMSO (4 mg/ml) and used at a concentration of 2 µg/ml each in media as 

stimulatory antigen for ELISPOT assays.        

3.3.3 Murine infection and monitoring   

Seven days prior to infection mice were subcutaneously injected with 2.5 mg of progesterone 

(Depo-Provera
®
 Upjohn, Kalamazoo, MI) to synchronize all mice in a state of anestrous and to 

facilitate successful intravaginal infection (116).  Mice were infected with 3x10
5
 inclusion 

forming units (IFU) of C. muridarum Nigg intravaginally.  Mice were monitored for 

cervicovaginal shedding as described (117) and IFUs were calculated as previously described 

(30).    

3.3.4 Cytokine and chemokine analysis of genital tract secretions and iliac node 

supernatants  

Genital tract secretions were collected from mice on multiple days throughout the course of 

infection as previously described (32, 79). At specified intervals prior to and during infection, an 

aseptic surgical sponge (2 X 5 mm) (DeRoyal, Powell, TN.) was inserted into the vagina of an 

anesthetized animal and retrieved 30 minutes later.  The sponges were stored at -70°C until 

cytokine assay.  Each sponge was placed in a Spin-X microcentrifuge tube (Fisher Scientific, 
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Pittsburgh, PA) containing a 0.2 mM cellulose acetate filter and incubated in 300 ml of sterile 

phosphate-buffered saline (PBS) plus 0.5% bovine serum albumin (BSA) and 0.05 Tween 20 for 

1 h on ice and then centrifuged for 5 minutes.  Spin-X filters were first pre-blocked with 0.5 ml 

of sterile PBS plus 2% BSA and 0.05% Tween 20 for 30 min at 25°C, centrifuged, and washed 

twice with 0.05 ml of sterile PBS. Samples were kept on ice and promptly loaded into an ELISA 

plate prepared for a specific cytokine assay.    Genital tract sponge eluates were assayed for 

cytokines and chemokines using Quantikine ELISA kits (R&D Systems, Minneapolis, MN) for 

IL-17, IL-6, TNFα, KC (CXCL1), and MIP-2 (CXCL2).  IL-17, IFNγ, and IL-12p70 levels in 

iliac node mononuclear cell supernatants were similarly analyzed.  TGF-β was quantified using a 

luciferase bioassay as previously described (161).  Cytokines and chemokines in oviduct 

homogenates were quantified using the Multiplex Cytometric Bead Array (Millipore, Billerica, 

MA).  

3.3.5 Quantification of antigen-specific IL-17 and IFNγ producing CD4
+
 T cells by 

ELISPOT  

C. muridarum antigen-specific IFNγ- -17-producing CD4
+
 T cells from infected iliac nodes 

were quantified using a previously described ELISPOT assay (153).  Iliac nodes were harvested 

from nine C57BL/6 mice on days 7 and 20 post-infection.  Cells from the nodes of 3 mice were 

pooled and processed to single cell suspensions.  CD4
+
 T cells were enriched by Magnetic 

Activated Cell Sorting (MACS; Miltenyi Biotec, Auburn, CA), and were routinely >90% pure.  

Cell culture plates (Multiscreen-HA; Millipore, Billerica, MA) were coated overnight at 4°C 

with monoclonal purified anti-mouse IFNγ (clone R4-6A2; eBioscience, San Diego, CA) or 

monoclonal purified anti-mouse IL-17 (clone 50101.111; R&D Systems, Minneapolis, MN) in 
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PBS.  The plates were then incubated with blocking solution (DMEM containing 100 U/ml 

penicillin, 100 U/ml streptomycin, and 10% FBS; all additives from Sigma-Aldrich, St. Louis, 

MO).  Iliac node cells were plated at an initial concentration of 1x10
5
 cells/well in antibody-

coated plates before being serially diluted to a concentration of ~3125 cells/well.  Irradiated 

splenocytes from uninfected mice were used as antigen presenting cells at a concentration of 

1x10
6
 cells/well.  Cells were cultured in the presence of IL-2 alone (10 U/ml final concentration), 

C. muridarum UV-EBs (5 µg/well) + IL-2, or pooled C. muridarum peptides (1 µg/ml/peptide-

see above) + IL-2.  Spots were visualized using streptavidin-alkaline phosphatase 

(DakoCytomation, Ft. Collins, CO) and 5-bromo-4-chloro-3-indoylphosphate/nitroblue 

tetrazolium (Sigma-Aldrich, St. Louis, MO) as substrate.  Spots were quantified using CTL-

ImmunoSpot® S5 UV Analyzer and CTL ImmunoSpot® Professional Software Version 5.0 

reader.  Data are expressed as mean number of spot-forming-cells per million iliac node cells ± 

SD calculated from triplicate determinations. 

3.3.6 In vivo neutralization of IL-17 in ifn-/-
mice   

Five ifn-/-
 mice were treated intraperitoneally with rat anti-mouse IL-17 MAb (Clone 50104; 

R&D Systems, Minneapolis, MN) (100 µg in 100 µl PBS) every other day from D-1 to D19 

post-infection.  A control group of five ifn-/-
 mice were treated similarly with Rat IgG2a (Clone 

2A3; BioXCell, West Lebanon, NH).  Both groups were infected with 3x10
5
 IFU of C. 

muridarum Nigg as indicated above.  Mice were sacrificed on day 21 of infection.  One oviduct 

was harvested and analyzed for bacterial burden, cytokines, and cellular influx (see section 

Processing of cervical and oviduct homogenates for flow cytometry). The second oviduct was 
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fixed in formalin and used for histopathological assessment.  None of the mice exhibited signs of 

serum sickness over the course of antibody administration. 

3.3.7 Assessment of lymphocyte proliferation and in vitro chlamydial antigen-specific 

cytokine responses  

Iliac nodes of il17ra
-/-

 mice and C57BL/6 mice infected intravaginally with C. muridarum were 

harvested on days 7, 21, and 35.  Nodes of infected ifn-/-
 and C57BL/6 mice were harvested on 

days 7, 21 and 28.  Nodes were processed to a single cell suspension and placed in culture with 

media alone, ConcanavalinA (ConA; 5µg/well), or UV-EBs (5µg/well) with or without anti-CD4 

(1 g/well, Clone RM4-5; BD Biosciences, San Diego, CA), which sterically blocks antigen-

specific T cell proliferation due to CD4-TCR co-clustering.  T cell proliferation was measured by 

incorporation of tritiated thymidine (1µCi/ well) after 96 hours of culture, and expressed as 

counts per minute (cpm) as measured by scintillation counter.  Supernatants were collected for 

quantification of cytokines and chemokines as described above.   

3.3.8 Processing of cervical and oviduct homogenates for flow cytometry  

For analysis of the cervical immune response, three C57BL/6 and three il17ra
-/-

 mice were 

sacrificed on day 4, 8, 9, or 14 post-infection.  Cervical tissues were harvested in 90ul of media 

(RPMI+1%FBS). Tissues were minced, and the volume was expanded to 500ul with media.  For 

analysis of cervical cytokines, 100ul was removed and stored at -80ºC.  Collagenase I (1mg/ml; 

Sigma-Aldrich, St. Louis, MO) was added to bring the volume to 1 ml, and the suspension was 

incubated at 37°C for 20 minutes with shaking to disperse the cells.  After incubation, 4 µl of 
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0.1M EDTA and 500 µl of media were added, and the homogenate was repeatedly passed 

through a 70µm filter to yield a single cell suspension.  

Single cell suspensions of at least 5x10
5
 cells were stimulated with PMA (50ng/ml final 

concentration; Sigma-Aldrich, St. Louis, MO) and ionomycin (500ng/ml final concentration; 

Sigma-Aldrich) for 4 hrs at 37C in the presence of GolgiPlug (1:1000 final dilution; BD 

Biosciences, San Diego, CA) prior to analysis for cytokine production via flow cytometry.  After 

incubation, cells were washed and prepared as described below.  

For surface staining, single cell suspensions of stimulated or unstimulated cells were 

resuspended in cold FACS buffer (PBS pH 7.2, 0.5% BSA, and 2mM EDTA) at 4x10
7
 cells 

per/ml.  To block non-specific antibody binding, 25 µl (1x10
6
 cells) of cell suspension and 25 µl 

of Fc Block(CD16/CD32, BD Pharmingen, San Diego, CA) were combined in a 96 well V-

bottom plate and incubated on ice for 20 minutes.  The following antibodies were utilized for cell 

surface staining in our experiments:  CD45 PerCP-Cy5.5(Clone 30-F11), Ly6G/C FITC, PE, and 

eFluor 450 (Clone RB6-8C5), F4/80 APC and PerCP (Clone BM8), Ly6G PE-Cy7 (Clone 1A8), 

NK1.1 PE-Cy7(Clone PK136), CD3 Alexa Fluor 700 (Clone 17A2), CD4 eFlour 450 (Clone 

RM4-5), CD8 FITC (Clone 53-6.7), all from eBioscience, San Diego, CA.  Antibodies for 

CD11b FITC (Clone M1/70) and CD11c PE and PE-Cy7 (Clone HL3) were obtained from BD 

Pharmingen, San Diego, CA. Staining antibodies were added in 50ul of FACS buffer for a final 

dilution of 1.25ul antibody per 100ul total volume.  After incubating for 20 minutes on ice, 

stained cells were washed, resuspended in Live/Dead Fixable Stain (Invitrogen, Carlsbad, CA), 

and incubated for 20 minutes on ice in the dark.  After washing, cells were fixed in 2% 

paraformaldehyde.    
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If cells were stimulated for intracellular cytokine staining, suspensions were treated as 

described above for surface and Live/Dead staining. They were then fixed and permeabilized 

according to manufacturer’s instructions (BD Biosciences Cytofix/Cytoperm Kit, San Diego, 

CA).  Intracellular cytokine staining was conducted as described above for surface staining.  

Stained cells were washed and incubated in 2% paraformaldehyde until analysis. The following 

antibodies were utilized for intracellular cytokine staining:  IFN APC (Clone XMG1.2), IL-17A 

PE (Clone TC11-18H10), TNFFITC (Clone MP6-XT22), all from BD Pharmingen, San 

Diego, CA.   

For analysis of the oviducts, five C57BL/6 and five ifn-/-
 mice were sacrificed on days 7, 

14, or 21 following intravaginal infection.  Oviducts were homogenized as for cervical tissues 

but did not require collagenase treatment to yield single cell suspensions.  Aliquots were 

removed as described above for cervical samples except that the total volume of oviduct sample 

plus media was brought to 1 ml prior to removal of 100ul for titration of bacterial burden or 

cytokine levels.  Staining was conducted as described above.  Flow Cytometric data were 

analyzed via FACSDiva or FlowJo Software.   

3.3.9 Quantitative PCR analysis to determine C. muridarum burden in the oviducts  

Aliquots (5µl) were removed from 100µl of frozen oviduct homogenates or genital tract swab 

eluate, and diluted into 195 µl of Epicentre DNA Extraction Solution, before being processed 

according to the manufacturer’s instructions.  Real time PCR reactions were carried out using iQ 

Sybergreen supermix (BioRad, Hercules, CA) in a BioRad iCycler using primers directed against 

chlamydial 16S rRNA (Sense: 5’ CGTTAATACCCGCTGGATTTGAG 3’; Antisense: 5’ 
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GCCCCGATCTTTGACAACTAAC 3’) in a two step reaction, 95°C, 10 sec.; 55°C 30 sec for a 

total of 40 cycles.  Melt curve analysis showed that the accumulation of SYBR green-bound 

DNA was gene specific and not due to primer dimers.  The samples were assayed in duplicate.  

The chlamydial load in the oviducts of each mouse, expressed as genome equivalents, was 

extrapolated from a standard curve generated using 16s rRNA amplified PCR product of known 

concentration and adjusted for the presence of two copies of this gene in C. muridarum.   

3.3.10 Quantification of infectious C. muridarum in oviduct homogenates  

In the experiment using ifn-/-
 mice and C57BL/6 mice that were not treated with antibody, a 100 

µl aliquot of the homogenized oviducts was serially diluted in 1xPBS for titration of bacteria 

using a plaque assay (114).  On day 7 and day 14, the limit of detection of the plaque assay was 

≤ 99 organisms and on day 21, the limit of detection was ≤ 19 organisms.  Samples with a 

negative titer were assigned a value of zero for statistical analysis.   

3.3.11 Microscopic histopathological assessment   

Mice were sacrificed on specified days following intravaginal infection; the genital tracts were 

removed en bloc, fixed in 10% buffered formalin and embedded in paraffin.  Longitudinal 4-µm 

sections were cut and stained with hematoxylin and eosin.  Each anatomic site (ectocervix, 

endocervix, uterine horn, oviduct) was assessed independently for the presence of neutrophilic 

inflammation, lymphocytic/monocytic inflammation, plasma cells and fibrosis and assessed 

using a four-tiered semi-quantitative scoring system to evaluate the extent of inflammation and 

fibrosis as previously described (30, 32).  
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3.3.12 Statistics   

Statistical comparisons between the murine strains for level of infection and cytokine production 

over the course of infection were made by a two-factor (days and murine strain) analysis of 

variance with post hoc Tukey test as a multiple comparison procedure.  The Wilcoxon rank sum 

test was used to compare the duration of infection in the respective strains over time.  Mann-

Whitney U test was used to determine significant differences in the pathological data between 

groups.  Differences in lymphocyte proliferation, in vitro cytokine production, ELISPOT 

cytokine data, and oviduct homogenate cytokine and flow cytometric data were analyzed by the 

Student’s t-test, or by ANOVA as appropriate.  SigmaStat software was utilized for all statistical 

analysis (SPSS).  Values of P < 0.05 were considered significant.   

3.4 RESULTS 

3.4.1 C. muridarum antigen-specific CD4
+
 Th1 and Th17 cells were present in similar 

numbers in the iliac nodes of C57BL/6 mice on day 7 post-infection, but Th1 cells 

predominated by day 20.   

To compare the Th1 and Th17 responses during genital tract infection in wild-type mice, 

ELISPOTs were performed using purified CD4
+
 T cells harvested from iliac nodes on day 7 and 

day 20 post-infection (Figure 8).  The primary objective of this experiment was to define that 

Th17 cells are detectable in the draining lymph nodes following C. muridarum genital tract 

infection in wild-type mice, and examine the kinetics of this response in relation to development 
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of the Th1 response.  Similar numbers of Chlamydia-specific Th1 and Th17 cells were detected 

on day 7 (Figure 8A). In contrast, by day 20, Th1 cells were significantly increased with respect 

to Th17 cells (Figure 8B) indicating that as infection resolves in wild-type mice, the Th1 

response predominates.  The reduction in T cell numbers detected at day 20 when compared to 

day 7 is likely due to reduced bacterial burden and reduced antigen stimulation related to in vivo 

clearance of infection.   It is possible that a percentage of cells produced both IFN and IL-17 

(111).  Experiments were then conducted to examine the role of the IL-17/Th17 response during 

genital tract chlamydial infection.     
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Figure 8:  C. muridarum antigen-specific Th1 and Th17 cells were detected in similar numbers in the iliac nodes of 

C57BL/6 mice on day 7 post-infection, but Th1 cells predominated on day 20.   

Numbers of antigen-specific IFNγ (black bars) and IL-17 (gray bars) producing CD4+ T cells in iliac nodes of 

C57BL/6 mice were quantified by ELISPOT on (A) day 7 and (B) day 20 post-infection.  Significantly increased 

numbers of IFNγ-producing CD4+ T cells and IL-17-producing CD4+ T cells were noted on both (A) day 7 and (B) 

day 20 post-infection after stimulation with UV-EBs or C. muridarum pooled peptide when compared to stimulation 

with IL-2 alone (P < 0.05 by one-way ANOVA).  On day 7 post-infection, numbers of UV-EB- and pooled peptide-

specific Th1 (IFNγ-producing) (black bars) and Th17 (IL-17-producing) (gray bars) cells were not significantly 

different.  By day 20, numbers of UV-EB- and pooled peptide-specific Th1 (IFNγ-producing) cells were 

significantly greater than Th17 (IL-17-producing cells) (* P <0.05 by one-way ANOVA).  The data are 

representative of two individual experiments in which the cells from three groups of three mice each were pooled 

and analyzed.  
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3.4.2 The Th1 response was reduced in the iliac nodes of il17ra
-/-

 mice.   

Significantly lower production of IFN by Chlamydia-specific CD4+ T cells from the iliac nodes 

of il17ra
-/-

 mice was detected on days 7, 21, and 35 post-infection when compared to C57BL/6 

mice (Figure 9A).   Although we noted a contraction of the T cell response in the wild-type mice 

at day 20 in the previous experiment (Figure 8B), it is not possible to directly compare the 

ELISPOT data, which measures the antigen-specific cytokine producing cells, with the protein 

levels detected by ELISA in this experiment due to differences in methodology and experimental 

read-out.   Since IL-12p70 is essential for induction of Th1 immunity, we assayed IL-12p70 in 

supernatants of Chlamydia-stimulated iliac node cells harvested from infected mice.  Levels 

were significantly reduced in il17ra
-/-

 mice on days 7 and 21 post-infection when compared to 

wild-type mice (Figure 9).   Despite reduced IFNγ and IL-12p70, IL-4 was not increased 

indicating that a shift towards a Th2-like response did not occur (Figure 9C).  
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Figure 9:  Il17ra
-/-

 mice displayed reduced IFNand IL-12p70 production in the iliac nodes.    

Iliac node mononuclear cells from individual il17ra
-/-

 mice or C57BL/6 mice intravaginally infected with C. 

muridarum were stimulated in vitro with UV-inactivated EBs for 96 hours.  Supernatants were analyzed for (A) 

IFNγ, (B) IL-12p70, and (C) IL-4.  Levels of IFNγ and IL-12p70 were significantly reduced in il17ra
-/-

 mice.  

Addition of a blocking anti-CD4 antibody resulted in >95% inhibition of the IFNγ response, and levels were 

undetectable in cells incubated with media alone (data not shown).  Data points represent the mean ± SD of values 

from 5 mice in a single independent experiment.  * P < 0.050; ** P < 0.001, Student’s t-test.  

3.4.3 IL-17RA deficiency results in decreased cervical NK cell IFN production.  

Significantly lower levels of IFN were detected in genital secretions of the infected il17ra
-/-

 

mice on days 2 and 4 post-infection (Figure 10A) and in cervical homogenates on day 4 and day 

8 (data not shown).  Flow cytometric analysis of cervical tissues revealed decreased numbers of 

IFN-producing NK1.1
+ 

cells (Figure 10B, C) on day 4 and day 8 in il17ra
-/-

 mice compared to 

wild-type.  Cytometric analysis of NK1.1 and CD3 markers revealed that both NK and NKT cell 

populations were significantly decreased in the il17ra
-/-

 mice, but NK cells (NK1.1
+
CD3

-
) were 

the predominant producers of IFN (>80% of NK1.1
+
 cells) in the cervix (data not shown).  

The decreased Th1-IFNγ response observed in the absence of IL-17 signaling parallels 

findings in the pulmonary model of C. muridarum infection during anti-IL-17 administration 
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(105).  The marked reduction in NK cell IFNγ is similar to results obtained during infection of 

il17ra
-/- 

with the intracellular pathogen Francisella tularensis (154).  In both of these pulmonary 

infection models, increased IL-4 production was noted.  We did not detect increased levels of IL-

4 during chlamydial genital tract infection indicating that alternative cell types might be 

activated in the genital tract to prevent this shift.   

 

Figure 10:  Il17ra
-/-

 mice displayed reduced IFN production and fewer IFNγ producing NK cells in the lower 

genital tract.  

(A) IFNγ levels were significantly lower in genital secretions of il17ra
-/-

 mice (open circles) on day 2 and 4, but 

levels were similar to wild-type (black circles) from days 6-14.  Data points represent the mean ± SD of 5 mice per 

group of a single individual experiment.  * P < 0.050 by two-way RM ANOVA with multiple comparisons 

procedure.  (B, C) Cell specific IFNγ production in infected il17ra
-/-

 and C57BL/6 mice was measured via flow 

cytometric analysis of intracellular cytokine staining and revealed significantly decreased numbers of IFNγ-

producing NK cells on day 4 and day 8 in the cervix of il17ra
-/-

 mice.  (B) Bars represent the mean number ± SD of 

live NK1.1
+
IFNγ

+
 cells in the cervical tissues from 3 mice of a single individual experiment.  (C) Flow cytometric 

plot is gated on live cells. * P < 0.050, ** P < 0.010 Student’s t-test.  

3.4.4 Neutrophil recruitment was decreased in the lower genital tract of il17ra
-/-

 mice 

during C. muridarum infection.   

In addition to promoting Th1 immunity, IL-17 has been shown to contribute to neutrophil 

recruitment in chlamydial pulmonary infection models (108, 109).  Therefore, we measured 
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neutrophil chemokines in vaginal secretions of infected C57BL/6 and il17ra
-/-

 mice.  Lower 

levels of the neutrophil chemoattractants CXCL1 (KC) (Figure 11A) and G-CSF (data not 

shown) were observed in the secretions of il17ra
-/-

 mice.  However, levels of CXCL2 (MIP-2) 

were not compromised in the il17ra
-/-

 mice (Figure 11B).  The percentage and absolute number 

(data not shown) of neutrophils in the cervix were similar on day 4 but were decreased in il17ra
-/-

 

mice on days 8 and 14 of infection (Figure 11C, D).  We suspect that the decrease in CXCL1 

expression detected early on in the genital secretions of the il17ra
-/-

 mice is maintained in the 

tissue throughout infection, driving lower influx of neutrophils over time.  
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Figure 11:  Il17ra
-/-

 mice exhibited reduced chemokine levels and fewer neutrophils in the lower genital tract during 

early C. muridarum infection.   

Il17ra
-/-

 mice (open circles) and C57BL/6 mice (black circles) were intravaginally infected with C. muridarum.  

Measurement of neutrophil promoting chemokines in vaginal secretions revealed significantly decreased (A) 

CXCL1 (KC) (P < 0.001, two-way RM ANOVA), but secretion of (B) CXCL2 (MIP-2) remained intact (P < 0.050, 

two-way RM ANOVA; * P < 0.01, ** P < 0.001 for individual days).  Data points represent the mean ± SD of five 

mice analyzed in a single individual experiment.  (C, D) The influx of neutrophils into the cervix of i17ra
-/-

 mice 

was decreased on day 8 and day 14 (* P < 0.02, Student’s t-test).  (C) Bars represent the percentage of CD45+ cells 

that were neutrophils (CD45
+
Ly6G/C

high
F4/80

-
)

 
 SD for 3 mice of a single individual experiment.  (D) Flow plot is 

gated on live CD45+ cells. Neutrophils are Ly6/C (Gr-1) 
high

 F4/80
-
.  Macrophages are Ly6G/C (Gr-1)

+
 F4/80

+
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3.4.5 Il17ra
-/-

 mice exhibited a normal course of infection and no difference in chronic 

pathology compared to wild-type mice.  

Despite dampened Th1 and neutrophil responses in the absence of IL-17 signaling, no delay in 

bacterial clearance from the lower genital tract was observed in il17ra
-/- 

mice (Figure 12).   The 

degree of chronic oviduct dilatation and uterine horn distension observed after resolution of 

infection was similar between wild-type and il17ra
-/-

 mice. (Figure 13A, B) on days 35 and 56 

post-infection.  In addition, no differences in histopathology between wild-type and il17ra
-/-

 mice 

were detected in the oviducts (Figure 13C, D), uterine horns (Figure 13E, F) or cervix (data not 

shown) on days 35 and 56 post-infection.   

 

Figure 12: C57BL/6 and il17ra
-/-

 mice exhibit no difference in the course of C. muridarum infection.   

Groups of five C57BL/6 (black circles) and five il17ra
-/- 

mice (open circles) were intravaginally infected with C. 

muridarum, and the course of infection was monitored via endocervical swabs.  Titration of live bacteria revealed 

that the bacterial burden in the lower genital tract was similar between strains.  Data points represent the mean ± SD 

of IFU values from both culture positive and negative mice at each time point of a single experiment that is 

representative of 2 independent experiments.  
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Figure 13:  Il17ra
-/- 

mice did not exhibit enhanced genital tract pathology during C. muridarum genital infection.  

Genital tract tissues were removed en bloc from C. muridarum-infected mice at 35 and 56 days post infection (n=5 

mice per strain, per time point).  Tissues were scored for (A) oviduct dilatation and (B) uterine horn distension.  

Scores for individual mice on day 35 are indicated by closed circles and scores for day 56 are indicated by open 

squares.  The median score is indicated by a dark line.  No differences in median pathology scores were noted 

between groups on either day examined (Mann-Whitney U test). Tissues were also examined grossly and 

histologically.  (C) Oviducts from C57BL/6 and (D) il17ra
-/-

 mice displayed similar inflammatory scores and 

oviduct dilatation. Uterine horns from (E) C57BL/6, and (F) il17ra
-/-

 mice exhibited no significant differences in 

inflammation or fibrosis.  Tissues are representative samples of the (C, D 40x) oviducts and (E, F 40x) uterine horns 

from C57BL/6 mice and il17ra-/- mice on day 56 post-infection.   
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3.4.6 Macrophage influx and cytokine production were increased in il17ra
-/- 

mice.   

The effective control of chlamydial genital tract infection in il17ra
-/- 

mice contrasted sharply 

with the outcome of respiratory tract infection in IL-17 depleted mice, where the lack of a 

measureable Th1 response resulted in uncontrolled infection (105).  In the lung model, IL-17 

depletion also resulted in enhanced neutrophil and macrophage inflammation, which was 

attributed to the increased bacterial burden observed in the absence of IL-17 (105).  Flow 

cytometric analysis of cervical tissues revealed that the percentages of macrophages were 

increased in il17ra
-/- 

mice on days 9 and 14 (Figure 14A; Figure 11D).  In addition, the absolute 

number of macrophages in the cervix was significantly elevated on day 9 (Figure 14B). 

Remarkably, a significantly higher frequency of TNF+ macrophages was found in cervical 

tissues of il17ra
-/- 

mice using intracellular cytokine staining (Figure 14C).  In addition, increased 

levels of TNF were observed in the secretions of il17ra
-/- 

mice during the early days of 

infection (Figure 14D).  Significantly increased levels of IL-6 were detected in the secretions of 

the il17ra
-/- 

mice (P = 0.048, Two-way RM ANOVA; data not shown), providing corroborative 

evidence of enhanced macrophage activation in these mice.  These findings suggest a previously 

undescribed role for IL-17 in diminishing monocyte/macrophage influx and activation in an 

infected tissue. 
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Figure 14:  Macrophage influx and activation were increased in the cervix of il17ra-/- mice. 

(A) Flow cytometric analysis of cervical tissues on day 9 and day 14 post infection revealed that the percentage of 

CD45
+
 cells that were macrophages (CD45

+
Gr-1

+
F480

+
) was significantly higher in the cervical tissue of il17ra-/- 

mice (** P < 0.005; * P < 0.01; two-way ANOVA with multiple comparisons). (B) The absolute number of 

macrophages was also increased in the cervical tissue of in il17ra-/- mice (* P< 0.050 for day 9). Bars represent 

mean ± SD of 3 mice analyzed in a single independent experiment. (C) The percentage of macrophages that were 

TNF+ was significantly higher in the cervical tissues of il17ra-/- mice on day 9 (P = 0.007; Student’s t-test).  Plot 

is gated on live CD45
+
CD3

-
F480

+
 cells.  (D) TNF levels were significantly higher in the secretions of il17ra-/- 

mice (P <0.001 via two-way RM ANOVA with multiple comparisons procedure. * P < 0.02 ** P < 0.005 on days 4 

and 7 respectively).  Bars represent mean ± SD of 5 mice from a single independent experiment.  
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3.4.7 Ifnγ
-/- 

mice exhibited chronic low-level shedding of C. muridarum and increased 

neutrophil infiltrates throughout the genital tract in response to chlamydial infection.   

Because IFN has been shown to negatively regulate the Th17 response (162), we hypothesized 

that the severe pathology previously described in the absence of IFN during chlamydial genital 

tract infection of ifn-/-
 mice (74, 75)(6,32) may be due to enhanced induction of Th17 cells and 

IL-17-mediated increases in neutrophil recruitment.  After intravaginal infection, similar levels 

of bacterial shedding were observed in wild-type and ifnγ
-/- 

mice over the first three weeks, with 

both groups eliminating 99% of the chlamydial organisms from their genital mucosa (74, 75).  

Thereafter, the wild-type mice became culture negative, while ifn-/-
 mice alternated between 

culture negative and culture positive states (Figure 15), suggesting that they remained infected at 

extremely low levels.   

 

Figure 15:  Ifn-/- 
mice exhibited chronic low-level shedding of C. muridarum from the genital tract.   

Consistent with previously published reports (6,32) ifn-/- 
mice (open circles) and C57BL/6 mice (filled black 

circles) showed similar clearance over the first 3 weeks of infection.  However, wild-type C57BL/6 mice became 

culture negative, whereas ifn-/- 
mice continued to exhibit low-level shedding of chlamydiae often alternating 

between culture negative and positive states.  Data points represent the mean ± SD of five mice and include both 

culture positive and negative mice at each time point.  
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Gross examination of peritoneal contents of ifn-/-
 mice sacrificed 35 days post-infection 

revealed ascites (10 of 10 mice), fibrinous peritonitis (8 of 10 mice), adhesions between the 

mesosalpingeal tissues and the small intestine (8 of 10 mice), and frank purulence in the uterine 

horns (5 of 10 mice).  These gross pathologic findings are similar to the findings described in 

humans with Fitz-Hugh-Curtis Syndrome.  When the genital tracts harvested 35 days post-

infection were analyzed histologically, the oviducts, uterine horns, and mesosalpingeal tissues 

from ifn-/-
 mice demonstrated a marked increase in neutrophilic and lymphocytic/monocytic 

inflammation (Figure 16A, D, G) when compared to wild-type mice (P < 0.002 by Mann-

Whitney U test).  

An increase in neutrophilic inflammation with destruction of mucosal epithelial cells, loss 

of luminal plicae, and a marked inflammatory exudate consisting of fibrin and neutrophils was 

observed in oviducts from ifn-/-
 mice (Figure 16C) when compared with oviducts from wild-

type mice (Figure 16B).  Similarly, increased neutrophilic inflammation, mucosal erosions and 

overlying exudate were apparent in the uterine horns of ifn-/-
 mice (Figure 16E, F).  

Mesosalpingeal tissues of the ifn-/-
 mice (Figure 16I) displayed increased inflammation as well 

as fat necrosis when compared to mesosalpingeal tissues of wild-type mice (Figure 16H). 
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Figure 16:  Ifn-/- 
mice exhibited enhanced genital tract pathology and an amplified neutrophil response to C. 

muridarum genital infection.   

Genital tract tissues were removed en bloc from C. muridarum-infected mice 35 days post infection (C57BL/6 

N=21; ifn-/-
 N=15).  Tissues were scored for neutrophilic (PMNs) and lymphocytic and monocytic inflammation. 

Histopathologic analysis of the (A-C) oviducts, (D-F) uterine horns, and (G-I) mesosalpingeal tissues (G-I) of (B, E, 

H) C57BL/6, and (C, F, I) ifn-/- 
mice shows significantly increased neutrophil and lymphocyte/monocyte infiltration 

in tissues from ifn-/- 
mice (** P < 0.002 by Mann-Whitney U test).  Boxes extend from the 25

th
 to 75

th
 percentiles 

and bars from the 5
th

 to 95
th

 percentiles.  Photomicrographs of (C, 4x) oviducts, (F, 20x) uterine horns, and (I, 20x) 

mesosalpingeal tissues from ifn-/- 
mice demonstrate a marked increase in neutrophilic infiltrates, edema and loss of 

tissue structure compared to similar tissues from C57BL/6 mice [(B, 4x) oviducts, (E, 20x) uterine horns, and (H, 

20x)] mesosalpinx. 
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3.4.8 Increased levels of Th17-related cytokines and chemokines were detected in genital 

tract secretions and oviducts from ifn-/-
 mice compared to wild-type mice infected with C. 

muridarum.   

Th17 cells have been shown to promote neutrophil influx through induction of neutrophil 

chemokines.  We examined the cytokine and chemokine milieu in the lower genital tract and 

oviducts of ifn-/-
 and C57BL/6 mice following C. muridarum genital tract infection.  Analysis of 

genital tract secretions from infected wild-type mice revealed an increase in IL-17 during the 

first 5 days of infection, after which IL-17 levels fell to baseline by day 10 (Figure 17A).  The 

high levels of IL-17 detected in secretions of the wild-type mice on days 1-5 may reflect 

production from NK cells induced early after infection (Figure 10B, C) (39). 

Although moderate increases in IL-17 were detected in ifn-/-
 mice during the first 5 days 

of infection, these levels were significantly lower than those of infected wild-type mice.  

However, by day 10, high IL-17 levels were detected in the secretions of ifn-/-
 mice, and 

remained elevated through day 28 (Figure 17A).  In addition, high levels of the Th17 cytokine 

IL-22 were found throughout the course of infection in ifn-/-
 mice (data not shown).   

Th17 responses are initiated by the combination of IL-6 and TGF-β and supported by DC 

IL-23 production.  Th17 cells induce the production of neutrophil chemoattractants such as GM-

CSF, IL-6 and CXC chemokines including CXCL1 (KC), and CXCL2 (MIP-2) (4,15,26,42,43).  

Significantly increased levels of the Th17-promoting cytokines TGF-β (data not shown) and IL-6 

(Figure 17B) were observed in the genital tract secretions of ifn-/-
 mice when compared to wild-

type mice.  TNFα was also significantly increased in genital tract secretions from ifn-/-
 mice 

when compared to wild-type mice (data not shown).  Thus, the cytokine milieu in the lower 
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genital tract of ifn-/-
 mice following C. muridarum infection is conducive to induction of a Th17 

response.  The neutrophil chemokine CXCL1 (KC) (Figure 17C) and GM-CSF (data not shown) 

(P < 0.001 by two-way RM ANOVA) were significantly increased in genital tract secretions of 

infected ifn-/-
 mice when compared to wild-type. 

Oviducts were harvested from ifn-/-
 and wild-type mice on days 7, 14, and 21 

representing early, mid- and late- infection in immunologically normal mice.  Similar levels of 

cytokines were noted in oviducts from wild-type and ifn-/-
 mice on day 7.  However, on days 14 

and 21, the levels of IL-17 (Figure 17D), IL-6 (Figure 17E), and TNFα (data not shown) were 

increased in oviduct homogenates from ifn-/-
 mice, as were the chemokines CXCL1 (KC) 

(Figure 17F) and CXCL2 (MIP-2) (data not shown). Thus, conditions in the upper genital tract of 

ifn-/-
 mice also reflect a Th17-favorable environment. 
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Figure 17:  Genital tract secretions and oviduct homogenates from ifn-/- 
mice demonstrated increased levels of 

Th17-related cytokines and chemokines following C. muridarum genital tract infection.  

C57BL/6 mice (filled dark circles) infected with C. muridarum exhibit early (A) IL-17 responses in genital 

secretions that are significantly higher than those of ifn-/- 
mice (open circles) on days 2-5 post-infection.  IL-17 

levels in secretions from infected ifn-/- 
mice (open circles) during days 7-35 post-infection were significantly higher 

than those from wild-type mice.  (B) IL-6 and (C) CXCL1 (KC) were significantly increased in the ifn-/- 
mice from 

day 7-35 of infection.  Each data point represents the mean ± SD of values from five mice in each group at each time 

point of a single individual experiment. P < 0.05 by two-way RM ANOVA for A, B, and C.  (D-F) Oviducts from C. 

muridarum infected C57BL/6 mice and ifn-/- 
mice were harvested on day 7, 14, and 21 post-infection. On day 7 

post-infection, cytokine levels were similar in oviducts from ifn-/- 
and C57BL/6 mice.  On day 14, levels of (D) IL-

17, (E) IL-6, and (F) CXCL1 (KC) were significantly elevated in oviducts from ifn-/- 
mice when compared to wild-

type.  On day 21, (D) IL-17 and (F) CXCL1 (KC) levels were significantly elevated in oviducts from ifn-/- 
mice. (** 

P ≤ 0.001; * P < 0.02 by two-way ANOVA). Each bar represents the mean ± SD of values from homogenates of 

five mice at each time point in a single individual experiment.  
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3.4.9 Oviducts from ifn-/-
 mice exhibited increased bacterial burden and enhanced 

neutrophil and Th17 infiltrates.   

To determine the role of pathogen-driven inflammatory cell recruitment to the oviduct, 

chlamydial burden was quantified by plaque assay and via real-time PCR for the Chlamydia 16S 

rRNA gene.  Significantly higher levels of viable bacteria were detected in the oviducts of ifn-/-
 

mice on day 21 (Figure 18A).  Consistent with these observations, we detected significantly 

increased amounts of chlamydial genomic DNA in the oviducts of ifn-/-
 mice compared to wild-

type on days 14 and 21 (P < 0.050, Student’s t-test) (data not shown).   

Flow cytometric analysis revealed increased numbers of neutrophils (Figure 18B) and 

CD4
+
 T cells (data not shown) in the oviducts of ifn-/-

 mice on days 14 and 21 when compared 

to wild-type.  IL-17 producing CD4+ T cells were detected in the oviducts of ifn-/-
 mice on day 

21 (Figure 18C) by intracellular cytokine staining; whereas, these cells were absent in the 

oviducts of wild-type mice on this day (data not shown).   

 CD4+ T cells in the iliac nodes of ifn-/-
 mice produced significantly greater amounts of 

IL-17 when stimulated with UV-EBs when compared to wild-type on days 7 (data not shown), 

21 (Figure 18D), and 28 (data not shown).  Sustained infection in the ifn-/-
 mice indicates that 

the enhanced Th17 and neutrophil responses were not effective compensatory bacterial control 

mechanisms. 
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Figure 18:  Increased bacterial burden in the oviducts of ifn-/- 
mice was associated with increased infiltration of 

neutrophils and Th17 cells.   

(A) Bacterial burden in the oviducts of 5 ifn-/- 
and 5 wild-type mice sacrificed on days 7, 14, and 21 post-infection 

in a single independent experiment were analyzed by plaque assay and a significant increase in viable Chlamydia in 

the oviduct was noted on day 21; * P < 0.02 two-way ANOVA. (B) Single cell suspensions generated from two 

pooled oviducts of each mouse were analyzed by flow cytometry for live neutrophils (Gr-1
high

Cd11c-F4/80
-
).  Data 

points represent the mean ± SD of values from 5 mice per group at each time point in a single independent 

experiment; ** P ≤ 0.001 by two-way ANOVA for wild-type versus ifn-/-
; 

@ 
P < 0.02 by two-way ANOVA for day 

7 vs. day 14 in wild-type mice.  (C) Th17 cells (CD3+CD4+ IL-17+) were detected in the oviducts of ifn-/- 
mice on 

day 21 post-infection.  Plot is gated on CD3+ cells.  (D) Iliac node mononuclear cells from individual mice 

sacrificed on day 21 were stimulated in vitro with UV-inactivated EBs with and without anti-CD4 for 96 hours and 

supernatants were analyzed for IL-17.  Data points represent the mean ± SD of values from 5 mice per group at each 

time point in a single independent experiment; ** P < 0.001, Student’s t-test.  



 96 

3.4.10 In vivo neutralization of IL-17 in ifnγ
-/- 

mice resulted in a significant decrease in G-

CSF and neutrophil influx but no increase in bacterial burden.   

Since oviduct epithelial cells secrete chemokines in response to chlamydial infection (18), it was 

possible that the enhanced neutrophil response was simply due to increased bacterial burden in 

the absence of IFN.  Therefore, we examined the contributions of IL-17 to enhanced neutrophil 

recruitment and to the outcome of infection in ifnγ
-/- 

mice by administration of anti-IL-17 

antibody.  G-CSF was absent in the oviducts of the anti-IL-17-treated ifnγ
-/- 

mice on day 21 post-

infection (Figure 19A), indicating that IL-17 was effectively neutralized and that an immune 

response had not been mounted against the administered antibody.  Flow cytometric analysis of 

leukocytes in the oviducts of anti-IL-17 and IgG2a-treated mice revealed a 65% reduction in 

frequency of neutrophils in the anti-IL-17 treated group (Figure 19B).  Frequencies of 

monocytes, CD4
+
, and CD8

+
 T cells were not significantly altered by anti-IL-17 treatment 

(Figure 19B).  Despite the significant reduction in neutrophils observed on day 21, no increase in 

bacterial DNA was found in the oviducts of anti-IL-17 treated ifnγ
-/- 

mice when compared with 

the IgG2a-treated ifnγ
-/- 

group (data not shown).  The reduction in neutrophil influx observed in 

anti-IL-17-treated ifnγ
-/- 

mice also did not alter oviduct pathology.  Histological examination 

revealed severe inflammation and oviduct dilatation in both groups (Figure 19C, D). Thus, in the 

absence of IFN, IL-17 plays a direct role in driving neutrophil influx into the oviducts, but IL-

17 and the downstream increase in neutrophils does not contribute to the control of infection. 

Sustained infection and leukocyte infiltration resulted in severe pathology in ifnγ
-/- 

mice, even in 

the absence of IL-17-mediated neutrophil influx.  
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Figure 19:  Administration of anti-IL-17 to ifnγ
-/-

 mice led to significantly reduced G-CSF and decreased numbers of 

neutrophils in the oviducts but did not improve pathology.   

Groups of five ifnγ
-/-

 mice infected intravaginally with C. muridarum and treated with IgG2a or anti-IL-17 were 

sacrificed on day 21 post-infection and oviducts were harvested.  (A) G-CSF was completely abrogated by IL-17 

neutralization (* P < 0.05 by Student’s t-test).  Bars represent the mean ± SEM of values from 5 mice per group in a 

single experiment.  (B) Percentages of live neutrophils (Ly6G (1A8)
+
Gr-1

high
), macrophages

 
(F4/80

+
), CD4+ T cells 

(CD3
+
CD4

+
CD8

-
) and CD8+ T cells (CD3

+
CD4

-
CD8

+
 cells) were determined by flow cytometry.  A 65% reduction 

in frequency of neutrophils was noted in the anti-IL-17 treated group compared with IgG2a-treated mice on day 21, 

(** P < 0.01 by ANOVA).  Data points represent the means ± SD of values from 5 mice per group in a single 

independent experiment.  (C, D) Oviducts were harvested and examined histologically from (C) IgG2a, and the (D) 

anti-IL-17 treated groups.  Oviduct pathology was not improved by anti-IL17 treatment; severe inflammation and 

oviduct dilatation along with destruction of mucosal epithelial cells, granuloma formation, and a marked 

inflammatory exudate were noted in both groups.  Photomicrographs are representative tissue samples from the 

oviducts of the (C, 40x) IgG2a-treated and (D, 40x) anti-IL-17-treated groups on day 21 post-infection.   
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3.5 DISCUSSION 

Control of chlamydial infection in the genital tract requires a robust Th1 response (45, 51, 74, 75, 

89).  Recent investigations indicate that IL-17 potentiates Th1 immunity and consequently plays 

an important role in the control of intracellular pathogens (105, 154).  We investigated the role of 

IL-17 in the control and pathologic outcome of C. muridarum genital tract infection using IL-17 

receptor deficient mice and IFNγ deficient mice.  Our data demonstrate that IL-17 promotes 

neutrophil recruitment and augments Th1 immunity but is not required for infection control or 

Chlamydia-induced pathology at this site.  

Following C. muridarum genital tract infection of C57BL/6 mice, we detected both Th1 

and Th17 antigen-specific CD4+ T-cells in the iliac nodes, the draining lymph nodes for the 

genital tract.  We noted a contraction of the T cell response in the iliac node on day 20, when 

compared with day 7, likely due to resolving infection and reduced antigen burden.    Ongoing 

experiments examining the kinetics of tissue-specific, antigen-specific Th1 and Th17 responses 

in the genital tract tissues by multi-color flow cytometric analysis, as well as examination of 

alternative IL-17 and IFN-producing cells (i.e. NK, NKT, , and CD4 T cells) operative in the 

cervix and oviducts of wild-type mice will further define the role of IL-17 during chlamydial 

infection.    

During C. muridarum pulmonary infection, IL-17 neutralization had a detrimental impact 

on disease course and development of Chlamydia-specific Th1 responses (105).  This parallels 

findings during pulmonary infection with Francisella tularensis LVS, where in the absence of 

IL-17, Th1 immunity was compromised (154). In contrast, results obtained during pulmonary M. 

tuberculosis infection of il23p19
-/-

 mice revealed that infection is eliminated at a normal rate 

despite the absence of IL-17 (153).  We determined that il17ra
-/-

 mice did not experience 
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increased bacterial load or augmented genital tract pathology when inoculated intravaginally 

with C. muridarum.  We detected lower levels of IFN in the genital tract secretions of il17ra
-/- 

mice early during infection and in the iliac node supernatants through day 35. Further 

examination revealed that the lower levels of IFN in the secretions of the il17ra
-/- 

mice could be 

attributed to decreased numbers of IFN-producing NK cells in the cervix, which is consistent 

with the documented role of IL-17 in inducing IFNγ production by NK cells (153).  It is possible 

that this decreased NK cell production of IFN contributes to the reduction in the Th1 response 

we noted in the iliac nodes of il17ra
-/-

 mice. Tseng and Rank demonstrated that depletion of NK 

cells during C. muridarum genital tract infection resulted in a shift towards a Th2 response and 

delayed resolution of infection (39). However, we did not detect increased IL-4 in the secretions 

of infected il17ra
-/-

 mice, indicating that such a shift did not occur.  It is possible that alternative 

pathways are induced in il17ra
-/-

 mice that prevent an augmented Th2 response when the NK cell 

IFN response is decreased.   

In both the C. muridarum and F. tularensis pulmonary infection models, Th1 immunity 

was compromised in anti-IL-17- treated or IL-17- deficient mice, a finding that was associated 

with significantly decreased dendritic cell production of IL-12p70 (105, 154).  We detected 

reduced levels of both IL-12p70 and IFNγ in the iliac nodes of il17ra
-/- 

mice, indicating that 

priming of the Th1 response was compromised in the absence of IL-17.  However, we did not 

detect the increase in bacterial load or IL-4 secretion that was observed when IL-17 was 

neutralized during C. muridarum pulmonary infection (105). We also observed significantly 

increased macrophage influx and enhanced macrophage TNFα production in il17ra
-/- 

mice.  A 

role for TNFα in contributing to control of C. muridarum genital tract infection has been 
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described (59) suggesting that this inflammatory response may have compensated for 

deficiencies in the Th1 response resulting in a normal course of infection.  

C. muridarum infects both the respiratory tract and genital tract, and this provides a 

unique opportunity to investigate the potential for site-specific differences in the mucosal 

inflammatory responses to this pathogen.  Although a decreased Th1 response was noted in the 

absence of IL-17 signaling in both the respiratory and genital tracts, we did not observe increased 

bacterial burden or a shift towards a Th2 response during genital tract infection of il17ra
-/-

 mice.  

It is possible that these differences may indicate site specificity in the development of the 

adaptive response to chlamydiae.  These site-specific differences could be related to distinct 

differences in the anatomy of the mucosal immune response in the female genital tract including 

the lack of inductive mucosal sites analogous to the mucosa associated lymphoid tissue (MALT) 

of the lungs or related to differences in immunologic priming by genital tract epithelial cells.  

Alternatively, the differences in responses may reflect variance resulting from the genetic 

background of the animals used in each study.  C57BL/6 mice, the genetic background for both 

the il17ra
-/- 

and ifnγ
-/- 

strains used in this study, are less susceptible to pulmonary infection with 

C. muridarum and experience reduced bacterial load, a shortened infection course, and less 

severe tissue pathology than Balb/c mice (108).  Thus, abrogation of the Th17 response may be 

more detrimental to host defense in the Balb/c strain used for the studies of pulmonary infection 

(30).   

Because IFN has been shown to negatively regulate the Th17 response (162, 163), we 

intravaginally inoculated ifnγ
-/-

 mice with C. muridarum, to determine the role of an unopposed 

Th17 response during chlamydial infection.  In the absence of CD4
+
 Th1 IFN production, we 

observed a significantly increased CD4
+
 Th17 response and increased neutrophil influx.  Ifnγ

-/-
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mice displayed significantly worsened pathology and elevated bacterial burden in the lower and 

upper genital tracts.  Administration of an anti-IL17 antibody raised against IL-17A confirmed a 

direct role for IL-17A in driving neutrophil influx in ifnγ
-/-

 mice, but IL-17 neutralization did not 

lead to enhanced bacterial burden, likely due to maintenance of macrophage influx.  We 

anticipated that if neutrophils were effectors of upper tract pathology, then administration of anti-

IL17 antibody might reduce the severity of disease.  Unfortunately, the intense infiltration of 

non-neutrophil leukocytes observed in the absence of IFNγ prevented adequate assessment of the 

role of neutrophils or IL-17 in pathology.  Because the antibody utilized in these experiments 

targeted IL-17A, it is possible that the continued presence of IL-17F provided sufficient 

signaling to result in production of neutrophil promoting chemokines and neutrophil influx, 

albeit at reduced levels, which could explain the absence of an effect on pathology in the 

antibody treated mice.  Further, continued signaling by IL-17F could also prevent enhanced 

macrophage influx such as that observed in the il17ra-/- mice.  

Our data have important implications for the prevention and treatment of human 

Chlamydia infections and the strategic design of vaccines and therapeutics to target chronic 

chlamydial disease.  The presence of augmented Th17 responses and enhanced neutrophilic 

infiltration in the absence of IFNγ indicate that these responses could be used as biomarkers for 

chronic infection and an inadequate Th1 response in humans.  In models of M. tuberculosis 

pulmonary infection, vaccination in the presence of IL-17 inducing adjuvant promotes Th1 

immunity and reduced bacterial burden (157).  Recent data from Yu et al demonstrated that a 

vaccine consisting of immunodominant chlamydial T-cell antigens afforded protection from 

infection that was associated with IFNγ/TNF and IFNγ/IL-17 double positive CD4+ T-cells 

(111).  Indeed, our data reveal that removal of IL-17 blunts Th1 priming during genital tract 
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infection.  Thus, the possibility exists that a chlamydial vaccine that induces a Th17 response 

may promote more effective Th1 immunity. 

In summary, we show for the first time that the Th17 response that occurs in the genital 

tract due to Chlamydia infection promotes but is not essential for induction of neutrophil influx 

or Th1 immunity.  In addition, we show that in the absence of the protective IFN response, a 

heightened Th17 response induces neutrophil influx.  The findings that chlamydial genital 

infection, in contrast to respiratory tract infection, resolves normally in the absence of IL-17 and 

in the presence of a diminished IFNγ response highlight the importance of examining site-

specific responses to infection.  Importantly, we determined that removal of IL-17 led to 

decreased neutrophil influx but enhanced macrophage influx and activation.  Thus, it is possible 

that in an immunologically intact host IL-17 not only drives neutrophil influx and Th1 immunity 

but also downregulates the monocyte/macrophage response.  Future studies will investigate IL-

17 mediated mechanisms of monocyte/macrophage inhibition and the role of the macrophage 

TNF response in controlling chlamydial infection.  
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4.0  IL-23 INDUCES IL-22 AND IL-17 PRODUCTION IN RESPONSE TO 

CHLAMYDIA MURIDARUM GENITAL TRACT INFECTION, BUT THE ABSENCE OF 

THESE CYTOKINES DOES NOT INFLUENCE DISEASE PATHOGENESIS 

4.1 ABSTRACT 

The cytokine response to Chlamydia genital tract infection is crucial for resolution of infection 

but can also result in irreversible tissue damage.  Interleukin 23 (IL-23) induces production of 

IL-22 and IL-17, and these cytokines are central immune mediators of both host defense and 

autoimmunity.  We determined that the IL-22 receptor was expressed in the genital tract, but 

infection of mice deficient in IL-22 revealed no difference in the course of lower genital tract 

infection or the development of oviduct pathology.  Infection of IL-23 knockout mice revealed 

reduced levels of IL-22 and IL-17 in the draining lymph nodes and genital tract but no difference 

in the kinetics of infection or oviduct damage.  IL-23 deficient and wild type mice also exhibited 

similar susceptibility to infection with low levels of Chlamydia.  These data demonstrate that a 

deficiency in IL-23, IL-17, and/or IL-22 does not result in a measureable phenotype and indicate 

that these cytokines perform either negligible or redundant functions in this model 
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4.2 INTRODUCTION 

Studies in animal models of Chlamydia genital tract infection have repeatedly demonstrated a 

central role for IFN production by CD4+ T cells in controlling infection and preventing the 

development of oviduct disease (53, 74, 75, 78, 164). This protective Th1 response is 

counterbalanced by the anti-inflammatory cytokine IL-10, which inhibits Th1 activation and 

delays clearance of C. muridarum infection from the genital tract (80). 

IL-22 is member of the IL-10 family of cytokines that exhibits complex protective and 

pathologic effects depending on the disease model examined.  Although IL-10 and IL-22 have 

limited homology, their heterodimeric receptor complexes share a common chain, IL-10 receptor 

beta, and predominately induce STAT3 activation (165-168). The unique subunit of the IL-22 

receptor, IL-22 receptor alpha-1, is expressed exclusively by non-hematopoietic cells including 

epithelial cells, while the IL-10-specific receptor subunit, IL-10 receptor alpha, is widely 

expressed by both hematopoietic and non-hematopoietic cells (166, 169). The expression pattern 

of the IL-22 receptor explains the localization of IL-22-induced responses to environmental 

interfaces including the skin, lungs, and gastrointestinal tract (149, 169-171). In addition, IL-22 

receptor mRNA has been detected in the female reproductive tract including the ovaries, cervix, 

and placenta (169, 172, 173).  

IL-22 promotes mucosal immunity by enhancing epithelial barrier integrity, expression of 

anti-microbial molecules, and mucin production (149, 170, 174, 175). The importance of IL-22 

in mucosal host defense was first documented in models of infection with extracellular bacteria 

including Klebsiella pneumoniae pulmonary infection and Citrobacter rodentium intestinal 

infection, where mice succumbed to infection when IL-22 was inhibited or absent (149, 170). In 

contrast, IL-22 induces immunopathology in the small intestine in response to peroral infection 
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with the intracellular parasite Toxoplasma gondii (176, 177). The reduced pathology observed 

upon neutralization of IL-22 in this model was associated with significant decreases in 

proinflammatory cytokine and chemokine production in the draining lymph nodes and ileum 

(176). Indeed, IL-22 has been demonstrated to induce production of several neutrophil 

chemokines (CXCL1, -2, -3, -5, -6, -8) in addition to up regulating expression of matrix 

metalloproteases (MMP1, -3, -10)(149, 172, 178, 179). Enhanced neutrophil influx and MMP 

production are clearly associated with oviduct damage in response to Chlamydia infection in the 

mouse model (31, 33, 35, 38, 137).  Thus, IL-22 induces responses in other models that are 

linked with disease development during chlamydial genital infection.     

There are a limited number of studies examining the role of IL-22 in the female 

reproductive tract under both physiologic conditions and in the context of infection.  IL-22-

producing immature NK cells have been detected in the human uterus, where they have been 

proposed to play a role in tissue regeneration after cyclic shedding (180). In the context of 

infectious diseases, mouse models of vaginal infection with Candida albicans and Neisseria 

gonorrheoae failed to show a requirement for IL-22 in infection control (181, 182). We 

previously reported significantly increased levels of IL-22 in genital tract secretions from C. 

muridarum-infected IFN-deficient mice, which were associated with a heightened Th17 

response, increased neutrophil infiltration, and the development of severe oviduct pathology 

(78). IL-22 and IL-17 production have also been observed by CD4+ T cells isolated from the 

cervical washes of women infected with C. trachomatis (113). These data indicate that IL-22 

may be involved in the pathogenesis of Chlamydia genital tract infection.  

IL-22 is produced by Th17 cells, Th22 cells,  T cells, lymphoid tissue inducer cells, 

and NK22 cells (171, 175, 183-187). Release of both IL-17 and IL-22 from the aforementioned 
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cells is enhanced by IL-23 (171) (175, 183, 187-190). IL-22 and IL-17 can cooperatively induce 

the production of proinflammatory cytokines, neutrophil chemokines, and anti-microbial 

molecules (149, 175, 179).  For example, IL-22 and IL-17 enhance production of S100A8 and 

S100A9, which form a heterodimeric complex known as calprotectin (175). Calprotectin induces 

neutrophil chemotaxis, and acts as an alarmin, potently amplifying inflammation (191, 192). The 

interplay between IL-17 and IL-22 has been shown to dictate whether IL-22 exhibits a tissue-

protective or damaging role (193).  Herein, we explored the possible cooperative effects of IL-17 

and IL-22, by examining the course and outcome of chlamydial infection in mice deficient in IL-

23.  

The intracellular life cycle of Chlamydia dictates that resolution of infection from the 

genital tract is dependent on the influx of CD4+ T cells.  Even in the presence of a robust innate 

inflammatory cell influx, such as observed in MHC class II deficient mice, infection is sustained 

at high levels indefinitely (45). Thus, we hypothesized that IL-22-mediated induction of anti-

microbial molecules was unlikely to be significantly beneficial in infection control in this model, 

which would be in accordance with findings in other models of intracellular bacterial infection 

including Mycobacterium tuberculosis and Listeria monocytogenes (176, 194, 195). However, 

given the importance of neutrophil activation and MMP production in development of 

chlamydial-induced oviduct damage (31, 35, 37, 38, 137), we hypothesized that IL-22-mediated 

induction of these processes would contribute to pathology, and this cytokine either 

independently, or in conjunction with IL-17, would play a detrimental rather than protective role 

during chlamydial genital tract infection.  We tested this hypothesis by comparing the course and 

outcome of C. muridarum genital tract infection in mice genetically deficient for IL-22 with 
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immunologically normal mice.  In addition, we utilized mice genetically deficient for IL-23 to 

determine if reductions in both IL-22 and IL-17 would ameliorate oviduct pathology.  

4.3 MATERIALS AND METHODS 

4.3.1 Strains, cell lines, and culture conditions   

Plaque-purified C. muridarum Nigg was used for all experiments and was isolated as previously 

described (17, 114). All chlamydial strains were propagated in L929 cells (115). Bacteria were 

titrated by plaque assay (114) or as inclusion forming units (IFU) using fluorescently tagged anti-

chlamydial lipopolysaccharde monoclonal antibody (Bio-Rad, Hercules, CA)(30).  

4.3.2 Animals  

Female C57BL/6 mice were obtained from The Jackson Laboratory (Bar Harbor, ME).  The IL-

22 knockout (IL-22 KO) mice were kindly provided by Dr. Wenjung Ouyan and the IL-23p19 

knockout (IL-23p19 KO) mice by Dr. Nico Ghilardi, both at Genentech.  IL-23p19 heterozygous 

mice used in these studies were the F1 progeny of a C57BL/6 and IL-23p19 KO mouse.  Mice 

were at least 7 weeks of age at the time of infection.  Mice were given food and water ad libitum 

in an environmentally controlled room with a cycle of 12 hours of light and 12 hours of darkness.  

All animal experiments were approved by the University Institutional Animal Care and Use 

Committee.  
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4.3.3 Immunohistochemical analysis of murine genital tract tissues for the IL-22 receptor   

Analysis of IL-22 receptor alpha-1 (IL-22R1) expression was conducted as previously described 

(196). Genital tract tissues were harvested from C57BL/6 mice, and tissue sections were made as 

described below (See section Microscopic histopathological assessment).  Sections were 

deparaffinized in xylene (3  10 minutes) and rehydrated through sequential washings with 

100%, 95% and 75% ethanol (2  10 minutes).  Antigen retrieval was performed by boiling for 

10 minutes in 10mM citrate buffer followed by incubation for 30 minutes at room temperature.  

After peroxidase blocking (3% hydrogen peroxide for 10 minutes), slides were blocked 

following the Vectastain ABC blocking protocol for Rat IgG (Vector Laboratories, 

Burlingame, CA).  Receptor expression was visualized using Rat anti-mouse IL-22R1 (R&D 

Systems, Clone: 496514) at a dilution of 1:50.  Additional tissues were incubated with Rat IgG2a 

(R&D Systems, Clone: 54447) as a control for nonspecific staining.  

4.3.4 Murine infection and monitoring   

Five to seven days prior to infection mice were subcutaneously injected with 2.5 mg of 

medroxyprogesterone (Depo-Provera
®

; Upjohn, Kalamazoo, MI) to induce a state of anestrous 

(116). Mice were intravaginally inoculated with 1x10
5 

IFU of C. muridarum Nigg diluted in 30 

l of sucrose-sodium phosphate-glutamic acid (SPG) buffer unless otherwise indicated.  Mice 

were monitored for cervicovaginal shedding via endocervical swabs (117), and IFU were 

calculated as previously described (30). Bacterial burden was measured in the oviducts by plaque 

assay (114). Lower genital tract (LGT) bacterial burden was enumerated for IL-22 KO and 

C57BL/6 mice in two independent experiments with 5-6 mice per strain per experiment.  The 
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course of infection in the LGT of IL-23p19 KO and C57BL/6 was compared in three 

independent experiments with 4-5 mice per strain.  A group of five IL-23p19 heterozygous mice 

was added for one of these experiments.  Bacteria were titrated from the oviducts of IL-23p19 

KO and C57BL/6 mice in a single experiment with 3-4 mice per strain per day of analysis.  

To determine the susceptibility of C57BL/6 and IL-23p19 KO mice to low doses of 

infection, 10-fold serial dilutions of C. muridarum Nigg ranging from 5x10
1
 to 5x10

4
 bacteria 

were resuspended in 30 l of SPG buffer and intravaginally inoculated into groups of 6-7 mice 

per dose per strain.  On day 6 post-infection, mice were euthanized, and their cervices were 

immediately processed for detection of infection via IFU (197).   

4.3.5 Processing of oviducts for flow cytometry  

Oviducts and cervices were processed for flow cytometric analysis as previously described (33, 

78). Briefly, tissues were harvested and minced with scissors.  For measurement of cytokines and 

bacterial burden, an aliquot of the minced tissue was stored at -80
o
C until analysis.  Cervices 

were digested with collagenase I (1mg/ml; Sigma-Aldrich, St. Louis, MO), and then cervices and 

oviducts were repeatedly passed through a 70 m filter to yield a single cell suspension.  Single 

cell suspensions were incubated with Fc Block(BD Pharmingen; Clone: 2.4G2), and cell surface 

proteins were subsequently stained with the indicated antibodies.  Stimulation of cells for 

analysis of intracellular cytokines was conducted as below (See section Detection of Chlamydia-

specific cytokine production by intracellular flow cytometry).  Flow cytometry data were 

acquired using an LSR II Analyzer (BD Biosciences) and analyzed via FlowJo software (Tree 

Star, Ashland, OR). 
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4.3.6 Detection of Chlamydia-specific cytokine production by intracellular flow cytometry   

For analysis of cytokine production, single cell suspensions generated from the cervix or 

oviducts of individual mice were incubated overnight in complete medium (DMEM containing 

10% FBS, 2 mM glutamine, 100 µM non-essential amino acids, 50 µM -mercaptoethanol, 100 

µg/ml vancomycin and 50 µg/ml gentamicin) with 5 μg/ml of gradient purified UV-inactivated 

C. muridarum elementary bodies (UV-EBs)(159).  GolgiPlug (1:500 final dilution; BD 

Biosciences) was added for the last 4 hours of incubation.  Cell surface proteins were stained 

with PerCP-Cy5.5 anti-mouse CD45 (Clone: 30-F11), V450 anti-mouse CD3 (Clone 500A2), 

and PE anti-mouse CD4 (Clone RM4-5) all from BD Biosciences.  After surface staining, cells 

were fixed, permeabilized, and stained with APC anti-mouse IFN (BD Biosciences, clone 

XMG1.2) according to manufacturers instructions (Cytofix/CytopermKit, BD Biosciences).  

Cytokine production by WT and IL-23p19 KO cells was analyzed on days 7, 10, and 14 of 

infection with 3-4 mice per strain per day in two independent experiments.  

4.3.7 Detection of cytokines in lower genital tract secretions and oviduct homogenates  

LGT secretions were collected via washing the vaginal vault with 100 μl of phosphate-buffered 

saline with protease inhibitor (Complete EDTA-free protease inhibitor tablets, Roche 

Diagnostics) during the first ten days of infection as previously described {Riley, 2012 #10190. 

IL-17, TNF, and IFN were quantified in these lavages and in the homogenized oviducts of 

C57BL/6 and IL-23p19 KO mice via multiparametric bead array (Millipore, Billerica, MA).  IL-

22 was measured by ELISA (R&D Systems, Minneapolis, MN).  Cytokines were monitored in 
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the LGT secretions of C57BL/6 and IL-23p19 KO mice in two independent experiments with 4-5 

mice per group, and cytokines were measured in the oviducts of 3-5 mice per group per day.  

4.3.8 Assessment of Chlamydia-specific cytokine responses in the iliac nodes   

Iliac nodes from IL-23p19 KO and C57BL/6 mice infected intravaginally with C. muridarum 

were harvested on days 0, 7, 14, 21, 28, 35, and 56 post infection.  Lymph nodes were processed 

to a single cell suspension and placed in culture with media alone or UV-EBs (5 µg/well). 

Supernatants were collected after 96 hours in culture for quantification of cytokines as described 

above.  Cytokine production by iliac lymph node mononuclear cells was evaluated using 5 mice 

per strain per day.  

4.3.9 Microscopic histopathological assessment   

Genital tracts were removed en bloc, fixed in 10% buffered formalin, and embedded in paraffin.  

Longitudinal 4-μm sections were cut and stained with hematoxylin and eosin.  Oviduct epithelial 

cell erosion and oviduct dilatation were assessed for tissues harvested on day 42 using a four-

tiered semi-quantitative scoring system by a pathologist blinded to the experimental design 

{Darville, 1997 #10212;Darville, 1997 #10212;Darville, 2001 #10231}. Oviduct pathology for 

IL-22 KO and C57BL/6 mice was compared on day 42 in two separate experiments with 5-6 

mice per group per experiment, and the same comparison was conducted for IL-23p19 KO and 

C57BL/6 mice.  
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4.3.10 Statistics   

Statistical comparison of flow cytometry data, cytokine levels, or the course of infection was 

conducted via two-way ANOVA with Bonferroni post-test analysis.  A Mann-Whitney U test 

was used to determine significant differences in pathology scores.  A Fisher’s exact test was used 

to determine differences in susceptibility to low dose infection.  Prism software (GraphPad 

Software, LaJolla, CA) was utilized for all statistical analysis.  Values of P < 0.05 were 

considered significant.   

4.4 RESULTS 

4.4.1 Murine genital tract epithelial cells express the IL-22 receptor.   

The IL-22 receptor is a dimeric complex of the IL-10 receptor beta chain (IL-10R2), which is 

ubiquitously expressed, and the IL-22 receptor alpha-1 chain (IL-22R1), which is only expressed 

by non-hematopoietic cells (166, 168, 169). Although a role for IL-22 receptor signaling has 

been reported at mucosal sites including the pulmonary and gastrointestinal tracts(149, 170), 

expression of this protein has not been previously described in the genital tract.  Using 

immunohistochemistry, we detected IL-22R1 expression in the murine ectocervix (Figure 20A), 

endocervix (Figure 20B), uterine horns (Figure 20C), and oviducts (Figure 20D and E).  

Receptor expression was localized to the epithelium, and no staining was observed for stromal 

cells of the genital tract.  No staining was observed when sections were incubated with the 

relevant immunoglobulin isotype (Figure 20F). 
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Figure 20:  IL-22 receptor expression was detected in the murine genital tract.   

Genital tracts from uninfected C57BL/6 mice were stained with anti-IL-22R1.  Ectocervix (A; magnification, x100), 

Squamocolumnar junction (B; magnification, x100), Uterine horn (C; magnification, x100), Oviduct (D; 

magnification, x200), Oviduct (E; magnification, x400), negative control (Rat IgG2a) uterine horn (F; 

magnification, x200).  

4.4.2 IL-22 deficiency had no effect on bacterial burden or oviduct pathology.  

Since we detected expression of IL-22R1, and we previously documented IL-22 in murine 

genital tract secretions during active C. muridarum infection (78), we sought to determine if IL-
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22 was involved in resolution of infection from the genital tract.  Comparison of the course of 

lower genital tract infection for C57BL/6 and IL-22 deficient mice revealed that infection 

resolved with normal kinetics in the absence of IL-22 (Figure 21A).  In addition, none of the 

mice exhibited clinical signs of bacterial dissemination as has been observed in models of 

infection with extracellular bacteria in the absence of IL-22 (149, 190). We also examined the 

possibility that IL-22 could influence oviduct pathology in this model.  Histological analysis 

revealed that erosion of the oviduct epithelium was comparable between strains (Figure 21B).  In 

addition, we detected similar degrees of oviduct dilatation in the presence and absence of IL-22, 

with 5 of 6 mice in both groups developing severe dilatation (Figure 21C).  

 

Figure 21:  Resolution of C. muridarum infection and the development of oviduct pathology were not influenced by 

the absence of IL-22.  

(A) The kinetics of lower genital tract infection for C57BL/6 (black squares) and IL-22 KO mice (open circles, 

dashed line) does not differ (P > 0.05 via two-way repeated measures ANOVA). Data points represent the mean ± 

SEM of IFU values from 6 mice per strain from a single representative experiment of two. (B,C) Histological 

analysis of oviduct epithelial cell erosion (B) and oviduct dilatation (C) in genital tracts harvested on day 42 post-

infection revealed no difference between the strains. (P > 0.05 via Mann-Whitney U-test).  Data points represent 

semi-quantitative scoring of oviduct pathology for individual mice with 6 mice per strain from a single experiment 

of two. C57BL/6 (black squares) and IL-22 KO mice (open circles).  Median indicated by horizontal line.   
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4.4.3 IL-23 induced IL-17 and IL-22 production in response to C. muridarum infection in 

the genital tract and iliac lymph nodes.  

 IL-23 is composed of the shared IL-12p40 subunit and the unique IL-23p19 subunit (198).  IL-

23 enhances the release of IL-17 and IL-22 from both innate and adaptive immune cells (171, 

175, 183, 188-190). In order to determine the role of IL-23 in the cytokine response to C. 

muridarum genital tract infection, we intravaginally infected IL-23p19 deficient mice.  Lower 

genital tract secretions were collected for the first 10 days of C. muridarum infection, and 

oviducts were harvested on day 10 post-infection.  These time points represent peak days of 

cytokine production at both sites (33). Examination of cytokine levels in the absence of IL-23 

revealed significantly reduced IL-17 (Figure 22A and E) and IL-22 (Figure 22B and F) but no 

difference in TNFα (Figure 22C and G) or IFNγ (Figure 22D and H) at either of these sites.  
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Figure 22: IL-23 induced production of IL-17 and IL-22 but not TNFα or IFNγ in the genital tract during C. 

muridarum infection. 

(A-D) Levels of IL-17 (A) and IL-22 (B) in the vaginal lavages of IL-23p19 KO mice (clear circles, dashed line) 

were significantly reduced compared to C57BL/6 mice (black squares), but no difference was detected for TNFα (C) 

or IFNγ (D). Data points represent the mean ± SEM for 4-5 mice per strain from one representative experiment of 

two. P < 0.05 for IL-17 and IL-22 (by two-way ANOVA over the interval measured). *, P < 0.05; ***, P < 0.001.  

(E-H) Measurement of cytokines in the homogenized oviducts of infected mice revealed significantly reduced levels 

of IL-17 (E) and IL-22 (F) in the absence of IL-23 but no difference in TNFα (G) and IFNγ (H). Data points 

represent the mean ± SEM for 3-5 mice strain per day.  P < 0.05 for IL-17 and IL-22 (by two-way ANOVA over the 

interval measured). ***, P < 0.001. 

 

IL-23 has been previously shown to promote the stability of the Th17 lineage (199). In 

order to determine the role of IL-23 in the adaptive immune response to Chlamydia, we 

harvested the iliac lymph nodes (ILN) from infected mice and stimulated them with C. 

muridarum elementary bodies.  In the absence of IL-23, Chlamydia-specific release of both IL-

17 and IL-22 was significantly reduced (Figure 23A and B).  Similar to our previous findings in 

IL-17 receptor deficient mice (78), IFN production was reduced on day 7 in the ILNs of IL-

23p19 deficient mice, but levels were comparable to those detected for wild-type mice by day 14 

(Figure 23C).  Despite early reductions of IFN in the ILN, flow cytometry revealed no 
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difference in the frequency of Chlamydia-specific IFN-producing CD3
+
CD4

+
 T cells in either 

the cervix or oviducts on days 7, 10, or 14 post-infection (data not shown).  These findings are in 

accordance with the detection of normal levels of IFNγ at both of these sites in the absence of IL-

23 (Figure 23D and H).  These data indicate that IL-23p19 KO mice provide an appropriate 

model to examine the role of a combined deficiency of IL-17 and IL-22 in chlamydial infection 

without the confounding effects that would result from reductions in the protective cytokine 

IFNγ (74, 75, 78).  

 

 

Figure 23:  In the absence of IL-23, Chlamydia-specific cytokine production was reduced in the iliac lymph nodes.  

(A-C) Significantly reduced levels of IL-17 (A), IL-22 (B), and IFNγ (C) were measured in the supernatants of Iliac 

lymph node mononuclear cells from IL-23p19 KO (white bars) mice restimulated in vitro for 96 hours in the 

presence of UV-EBs relative to those from C57BL/6 mice (black bars).  Bars represent the mean ± SEM for 5 

mice/strain.  P < 0.0001 for IL-17 and IL-22 and P < 0.05 for IFNγ (by two-way ANOVA over the interval 

measured). *, P < 0.05; **, P < 0.01; ***, P < 0.001.  

4.4.4 Infection resolved with normal kinetics in the absence of IL-23.   

Given the role of IL-17 and IL-22 in enhancing mucosal immunity, we sought to determine if the 

reductions in IL-17 and IL-22 that we observed in the absence of IL-23 impacted the ability of 

mice to control infection in either the lower or upper genital tract.  We followed the course of 
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lower genital tract infection in C57BL/6, IL-23p19 deficient and IL-23p19 heterozygous mice 

and found no difference in the kinetics of infection between any of the strains (Figure 24A).  We 

also found no difference in the bacterial burden in the oviducts over the peak days of infection in 

the absence of IL-23 (Figure 24B).   

 

Figure 24:  C. muridarum infection resolved with normal kinetics in the absence of IL-23.   

(A) The kinetics of lower genital tract infection for C57BL/6 (black squares), IL-23p19 KO (open triangles), and IL-

23p19 heterozygous mice (open circles) does not differ.  Data points represent the mean ± SEM of IFU values from 

4-5 mice per strain from a single experiment of three. (B) Analysis of bacterial burden in the oviducts revealed no 

difference between C57BL/6 (black bars) and IL-23p19 KO mice (white bars).  Bars represent the mean ± SEM of 

PFU for two pooled oviducts of individual mice with 3-4 mice per strain per day.  

 

Although we did not detect a difference in the kinetics of infection when mice were 

infected with 100,000 bacteria, we recognized that with such a high dose of infection, innate 

defense mechanisms induced by IL-22 and IL-17 may be overwhelmed.  To explore this 

possibility, we infected C57BL/6 and IL-23p19 deficient mice with doses of C. muridarum Nigg 

ranging from 50 to 50,000 microorganisms.  All of the mice from both strains established an 

active infection upon inoculation with as few as 500 IFU (data not shown).  When the innoculum 

was decreased to 50 IFU, 6 of 7 C57BL/6 mice and 2 of 6 IL-23p19 deficient mice developed an 
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active infection, but these differences were not statistically significant (P > 0.05 Fisher’s exact 

test). 

4.4.5 IL-23 was not required for influx of innate immune cells into the oviduct or the 

development of oviduct pathology.   

Innate immune responses are key for the development of chlamydia-induced immunopathology 

(31, 33-35, 100, 137), and IL-17 and IL-22 have been shown to cooperate in inducing release of 

neutrophil chemokines and promoting innate inflammation (149, 175, 179).  Thus, we examined 

the influx of innate inflammatory cells into the oviducts of wild-type and IL-23p19 deficient 

mice on day 10 post-infection.  Flow cytometry revealed no differences in the frequency of 

neutrophils, inflammatory monocytes, or macrophages between the strains at this time point 

(Figure 25A).  In accordance with these data, no improvement in the severity of oviduct 

dilatation was found in IL-23p19 deficient mice (Figure 25B).  
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Figure 25:  IL-23 was not required for influx of acute inflammatory cells into the oviducts or the development of 

oviduct pathology.   

(A) On day 10 post-infection, flow cytometric analysis revealed no difference in the frequency of innate 

inflammatory cells in the oviducts of C57BL/6 (black bars) and IL-23p19 KO mice (white bars).  Bars represent the 

mean ± SEM of the frequency of CD45
+
 cells in the oviducts of 4 mice per strain for one representative experiment 

of two.  PMN: Ly6G/C
high

 F4/80
neg

CD11c
neg

; Mono (inflammatory monocytes): Ly6G 
med 

F4/80
neg

CD11c
neg

; Mac 

(macrophages): F4/80
pos 

(B) Histological analysis of oviduct dilatation in genital tracts harvested on day 42 post-

infection revealed no difference between the strains (P > 0.05 via Mann-Whitney U-test). Data points represent 

semi-quantitative scoring of oviduct dilatation of individual mice for 5 mice per strain from one representative 

experiment of two. C57BL/6 (black squares) and IL-23p19 KO mice (open circles).  Median indicated by horizontal 

line.  

4.5 DISCUSSION 

In the studies outlined in this chapter, we explored the role of Th17 cells and the associated 

cytokines IL-22, IL-17, and IL-23 in the mouse model of Chlamydia genital tract infection.  We 

show for the first time that the epithelial cells of the murine genital tract express the unique 

subunit of the IL-22 receptor, IL-22R1.  We also demonstrate that IL-23 is required for IL-17 

and IL-22 production in response to C. muridarum infection and is necessary for the 

maintenance of a chlamydia-specific Th17 response in the draining lymph nodes.  However, we 

were unable to detect a requirement for any of these cytokines in resolution of infection, 
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susceptibility to low dose infection, or the development of oviduct pathology.  The normal 

resolution of infection observed for IL-23p19 deficient mice could be predicted given these mice 

developed a Th1 response comparable to wild-type mice.  Similarly, no compromise was seen in 

the ability of innate inflammatory cells to migrate into the oviducts of IL-23p19 deficient mice, 

and this influx was associated with oviduct pathology similar to that observed for C57BL/6 mice.  

The IL-22 receptor is a heterodimer of IL-22R1 and IL-10R2, with expression of IL-

22R1 limited to non-hematopoietic cells (169). IL-22R1 expression was previously detected in 

the human cervix and ovary by microarray (172), but protein expression in vivo has not been 

previously demonstrated.  We detected IL-22R1 expression localized to the epithelium of the 

ectocervix, endocervix, uterine horns, and oviducts of uninfected C57BL/6 mice.  Inflammatory 

stimuli including LPS, IFN, TNF, and IL-1 may induce higher levels of IL-22R1 expression 

during acute chlamydial infection (169, 200). Detection of this receptor on the epithelium of the 

genital tract is in accordance with reports of receptor expression by epithelial cells at 

environmental interfaces including the skin, lung, and gastrointestinal tract (149, 169-171). 

Columnar epithelial cells of the genital tract are the site of chlamydial replication and are highly 

susceptible to infection-induced damage.  Thus, the IL-22 receptor is appropriately located to 

play a role during chlamydial infection.  Despite detection of this receptor, we determined that C. 

muridarum infection resolved normally in IL-22 deficient mice.  Resolution of infection was also 

normal for IL-23p19 deficient mice despite nearly undetectable levels of both IL-17 and IL-22 in 

the lower and upper genital tract.  These findings are not unique to C. muridarum, as pulmonary 

infection with the intracellular bacterium Mycobacterium tuberculosis resolved normally in the 

absence of IL-17 and IL-22 (153, 176).   
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There are several possible explanations for why we observed normal control of 

chlamydial infection in IL-22 and IL-23p19 deficient mice.  It is likely that the intracellular 

replicative niche of chlamydiae hinders the potential protective capacity of anti-microbial 

proteins induced by these cytokines, which includes S100A proteins, -defensins, Reg proteins, 

and lipocalins (149, 172, 175).  Chlamydiae are susceptible to anti-microbial peptides in vitro 

(201, 202), but innate defense mechanisms have a limited ability to resolve C. muridarum 

infection in vivo independently of the adaptive immune response (45). It is also possible that the 

ability of chlamydiae to directly stimulate pattern recognition receptors (120) on epithelial cells 

and tissue resident immune cells obviates the requirement for epithelial-targeting cytokines 

peripheral to the Th1 response (34, 118, 120). Although IL-17 and IL-22 can induce the 

production of Th1 chemokines including CXCL9 (149), we observed no deficit in IFN 

production or Th1 migration to the genital tract of IL-23p19 deficient mice.  PRR stimulation by 

Chlamydia induces the production of many proinflammatory cytokines that can activate the same 

pathways as IL-22 and IL-17 (34, 120).  These cytokines, in combination with pathways induced 

directly by PRR stimulation, likely augment production of chemokines necessary for innate and 

adaptive inflammatory cell influx into the genital tract, thus obviating the requirement for IL-22 

and IL-17.  

It was previously observed that IL-17 played an important role in inducing the Th1 

response to C. muridarum infection in the lung and was required for normal resolution of 

pulmonary infection (105). This contrasts with our findings of only slight reductions in IFN and 

no compromise in resolution of genital tract infection in the absence of IL-17 receptor signaling 

(78), or IL-23-dependent induction of the Th17-related cytokines, IL-22 and IL-17 (current 

work). The genital tract is a mucosal site that must maintain a tolerogenic environment for proper 
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reproductive fitness.  Thus, there appears to be a site-specific role for IL-17 in defense against 

chlamydial infections, and this may hold true for IL-22 as well.  Such tissue-specificity is 

described for Candida albicans infection where Th17 cytokines were required for control of 

oropharyngeal candidiasis (203), but in vulvovaginal candidasis, infection resolved normally in 

the absence of IL-22, IL-17 and IL-23 (181).   

We also determined that Chlamydia-induced genital tract pathology was not altered in the 

absence of either IL-22 or IL-23.  It was difficult to predict whether IL-22 would prevent or 

induce tissue damage in this model given its complex and dual roles in other models.  We 

hypothesized that since IL-17 and IL-22 enhance neutrophil chemokine production and promote 

MMP release (149, 172, 178, 179), these cytokines would promote damage.  We expected to 

observe decreased epithelial erosion and oviduct hydrosalpinx in IL-22 and IL-23p19 deficient 

mice.  However, we determined that similar degrees of oviduct pathology developed in both the 

presence and absence of IL-17 (78), IL-22, and IL-23, which indicates that if these cytokines 

promote pathologic responses, their role is redundant with other cytokines.  On the other hand, 

IL-22 has been demonstrated to enhance epithelial regeneration after an inflammatory insult 

(149, 174, 193, 195, 196, 204). Despite known regenerative effects of this cytokine, we did not 

observe any difference in the degree of epithelial erosion in the oviducts of IL-22-deficient and 

wild-type mice.  When fully virulent C. muridarum are used for infection, enhanced early control 

of infection and prevention of ascension of Chlamydia to the oviduct may be required to prevent 

oviduct damage (16, 205). This does not preclude the potential for IL-22 to play a protective and 

regenerative role in the human genital tract, where Chlamydia trachomatis infection is frequently 

more indolent and chronic in nature (206). 
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We previously demonstrated that during C. muridarum genital infection, IFN-deficient 

mice exhibited significantly increased bacterial burden, enhanced production of Th17-

differentiating cytokines, predominant Th17 and neutrophilic responses, an increased IL-22 

response, and enhanced genital tract tissue damage (78). Chlamydia trachomatis has been shown 

to induce IL-23 by a combination of toll-like receptor stimulation and endoplasmic reticulum 

stress signals (207), both of which would be augmented in the presence of a suboptimal Th1 

response and increased bacterial burden.  CD4
+
 T cells isolated from the cervix of women 

actively infected with C. trachomatis have been observed to produce IL-17 and IL-22 (113).  

These cells may play dual roles due to the complex interactions of these cytokines in vivo (149, 

193). However, data in the mouse model indicate a primary role for Th1 cells in host defense and 

resolution of infection, and our data in mice deficient for the IL-17 receptor (78), or for Th17 

cells and their downstream cytokines reveal that this pathway is dispensable for inducing a 

robust Th1 response and for resolution of genital tract infection and does not contribute 

substantially to protection from tissue damage.  Given the fragile nature of the female oviduct, 

and the documented complex and often tissue injurious roles for IL-17 and IL-22, we propose 

that chlamydial vaccine strategies should avoid induction of these cytokines and focus on 

selective enhancement of the IFN response to chlamydial antigens.   
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5.0  EXPRESSION OF MYD88 BY CD4+ T CELLS IS REQUIRED FOR EFFICIENT 

RESOLUTION OF CHLAMYDIA MURIDARUM GENITAL TRACT INFECTION 

5.1 ABSTRACT 

MyD88 is required for efficient resolution of Chlamydia genital tract infection in the mouse 

model, but MyD88 mediated signals can also enhance tissue damaging innate immune responses.  

CD4+ T cells are the primary mediator of clearance of Chlamydia from the genital tract.  The 

goal of the studies outlined in this manuscript was to determine if MyD88 expression by CD4+ T 

cells enhanced resolution of infection.  Using the murine model of Chlamydia genital tract 

infection, we found that CD4+ T cell expression of MyD88 was necessary for resolution of 

infection.  This requirement was associated with a reduced ability of MyD88
-/-

 CD4+ T cells to 

accumulate in the draining lymph nodes and genital tracts when exposed to the same 

inflammatory milieu as wild-type CD4+ T cells.  We also demonstrated that the impaired 

infection control we observed in the absence of MyD88 could not be recapitulated by 

deficiencies in TLR or IL-1R signaling.  These findings were supported by our in vitro findings 

of increased apoptosis of MyD88
-/-

 CD4+ T cells in the absence of exogenous ligands for 

receptors upstream of MyD88.  Vaccination strategies should thus avoid activating MyD88 

mediated pathways that have the potential to induce tissue damaging immune responses, and 
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future studies should focus on delineating signaling pathways that directly promote CD4+ T cell 

survival.   

5.2 INTRODUCTION 

Due to its obligate intracellular lifecycle, Chlamydia is able to evade innate defense mechanisms 

that are effective against extracellular bacteria, and innate immune responses have been 

repeatedly correlated with the development of oviduct pathology (31, 33-35, 37).  In contrast, 

studies in the mouse model have revealed that the adaptive immune response is crucial for 

eradication of both primary (73) and secondary infection (51).  In addition, CD4+ Th1 cells are 

crucial for protection in both mice (45, 51, 74, 75, 77, 89) and women (20, 83, 85).  CD4+ T 

cells directly interact with infected epithelial cells and promote eradication of infection via IFN 

dependent and independent mechanisms (75, 89, 90, 94).   

Recognition of pathogens by pattern recognition receptors (PRRs) expressed by innate 

immune cells is crucial for effective induction of an adaptive immune response (208), but overly 

robust innate immune activation results in tissue damage.  Chlamydiae stimulate several PRRs 

including Toll-like receptor 2 (TLR2) (34, 209), TLR3 (210), TLR4 (211, 212), and nucleotide-

binding oligomerization domain-containing protein 1 (NOD1) (213).  Mice deficient in TLR2 

develop dramatically reduced levels of oviduct pathology in response to Chlamydia muridarum 

infection, but resolution of infection is not impacted by the absence of this receptor (34).  TLR4 

and NOD1 do not appear to play a central role in either tissue damage or induction of a 

protective immune response in the mouse model (34, 213).  These findings were corroborated by 

a study of women with Chlamydia trachomatis PID, which revealed that women with specific 



 129 

polymorphisms in TLR1, a receptor that signals by forming heterodimers with TLR2 (214), 

exhibited decreased rates of pregnancy, whereas no such association was found with 

polymorphisms in TLR4 (215).  A Dutch study found a nonsignificant association of the TLR4 

+896 G allele with tubal factor infertility (216).   

MyD88 is an adaptor molecule that is central to signaling via all TLRs except for TLR3 

and is required for signaling by the interleukin-1 (IL-1) family of cytokine receptors (217-221).  

Recognition of ligands by these receptors induces conformational changes that promote 

homotypic interactions between the Toll/interleukin-1 receptor (TIR) domain of these receptors 

and those of intracellular adaptor molecules including MyD88 (222-224).  Stabilized oligomers 

of MyD88 then interact via death domains with IL-1 receptor associated kinase (IRAK)1, 

IRAK2, and IRAK4 to form a Myddosome complex (223, 225-228).  This signal transduction 

cascade leads to NF-b and AP-1 mediated transcription of pro-inflammatory genes.  MyD88 is 

thus central to promoting innate immune activation and has been implicated in promoting 

resistance to a multitude of pathogens in the mouse model (Reviewed in (229)).  In humans, loss-

of-function mutations in MyD88 (230) and IRAK4 (231) have been associated with the 

development of severe and potentially fatal bacterial infections in children.   

 MyD88-mediated signals promote cytokine production by innate immune cells in 

response to Chlamydia infection (34, 118, 209, 232).  In addition, MyD88
-/-

 mice exhibit 

significantly impaired control of Chlamydia muridarum genital tract infection (197, 232, 233).  

Prolonged infection was associated with early reductions in natural killer (NK) cell IFN 

production in the cervix and a decreased frequency of CD4+ T cells in the upper genital tract.  

However, Chlamydia-specific CD4+ T cell proliferation and IFN production remained largely 
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intact in the draining lymph nodes, although a small increase in IL-4 production was detected 

(197).    

The importance of MyD88 in promoting adaptive immune responses to pathogens in 

murine models has been repeatedly attributed to its central role in innate immune activation.  

However, a requirement for MyD88 expression by adaptive immune cells has also been observed 

in models of infection and autoimmunity.  In a murine model of Toxoplasma gondii infection, 

control of infection was impaired even when MyD88-deficient adaptive immune cells were 

activated in the presence of normal antigen presenting cells (234).  These findings were 

recapitulated in two independent studies of murine lymphocytic choriomeningitis virus (LCMV) 

infection, which demonstrated that both CD4+ and CD8+ T cell survival was reduced in the 

absence of intrinsic expression of MyD88 (235, 236).  A requirement for MyD88 expression by 

CD4+ T cells was also demonstrated in a model of colitis where MyD88-deficient CD4+ T cells 

exhibited reduced accumulation and cytokine production both in vitro and in vivo (237, 238).  

Finally, a recent publication demonstrated that CD4+ T cell expression of MyD88 was required 

for Th17 differentiation and the development of experimental autoimmune encephalitis (EAE) 

(239).  Although the precise mechanism(s) behind this requirement for MyD88 in adaptive 

immune cells has not been determined, receptors upstream of MyD88 have been implicated in 

direct co-stimulation of T cells (240-245) 

The development of a vaccine against Chlamydia requires delineation of immune 

mechanisms of protection from those that cause pathology.  Activation of receptors upstream of 

MyD88, including TLR2 (34) and IL-1R (101), results in the development of oviduct damage in 

the mouse model.  Although it is clear from these findings that MyD88-mediated signals 

promote tissue-damaging responses to chlamydial infection, detection of prolonged genital tract 
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infection in MyD88
-/-

 mice indicates that this molecule also participates in protective immunity.  

A rapid and robust CD4+ T cell response is key for control of chlamydial infection and 

protection from disease (16, 45, 246), and MyD88 expression by adaptive immune cells has been 

implicated in promoting optimum responses in other models (234, 236-238).  Using bone 

marrow chimeric mice and CD4+ T cell adoptive transfer experiments we have determined that 

intrinsic expression of MyD88 in CD4+ T cells is required for accumulation of CD4+ T cells in 

infected tissues and efficient resolution of genital tract infection.  In vitro and in vivo 

experiments suggest that the CD4+ T cell specific effects of MyD88 are independent of TLR or 

IL-1R activation.   

5.3 MATERIALS AND METHODS 

5.3.1 Strains, cell lines, and culture conditions 

C. muridarum Nigg was used for all experiments and was isolated as previously described (17, 

114).  All chlamydial strains were propagated in L929 cells (115).  Bacteria were titrated by 

plaque assay (114) or as inclusion forming units (IFU) using fluorescently tagged anti-

chlamydial lipopolysaccharide monoclonal antibody (Bio-Rad, Hercules, CA) (30). 

5.3.2 Animals 

C57BL/6 (CD45.2+), B6129SF2/J (C57BL/6;129S), B6.129P2(SJL)-Myd88
tm1.1Defr

/J (MyD88
-/-

), 

B6.129S7-Rag1
tm1Mom

/J (Rag1
-/-

), B6.129S7-Ifng
tm1Ts

/J (IFN
-/-

), B6.129S7-Ifngr1
tm1Agt

/J (IFNR
-
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/-
), B6.SJL-Ptprc

a
 Pep3

b
/BoyJ (CD45.1+), B6.PL-Thy1

a
/CyJ (CD90.1+), B6;129S1-Tlr3

tm1Flv
/J 

(TLR3
-/-

) were obtained from The Jackson Laboratory (Bar Harbor, ME).  TLR2
-/-

TLR4
-/-

, 

TLR7
-/-

 (247), and TLR9
-/-

 (248) mice were kindly provided by Dr. Shizuo Akira.  Mice were 

given food and water ad libitum in an environmentally controlled room with a cycle of 12 hours 

of light and 12 hours of darkness.  The University Institutional Animal Care and Use Committee 

approved all animal experiments.  

5.3.3 Murine infection and monitoring 

Female mice of at least 6 weeks of age were subcutaneously injected with 2.5 mg of 

medroxyprogesterone (Depo-Provera
®
; Upjohn, Kalamazoo, MI) 5 to 7 days prior to infection to 

induce a state of anestrous (116).  Mice were intravaginally inoculated with 1x10
5 

IFU of C. 

muridarum Nigg diluted in 30 l of sucrose-sodium phosphate-glutamic acid (SPG) buffer 

unless otherwise indicated.  Mice were monitored for cervicovaginal shedding via endocervical 

swabs (117), and IFU were calculated as previously described (30).  Bacterial burden was 

measured in the oviducts, lungs, liver, and spleen by plaque assay (114).  C57BL/6 mice were 

used as controls for all strains of knockout mice except TLR3
-/-

 mice, which are on a mixed 

C57BL/6 and 129S background.  Thus, F2 hybrids of C57BL/6 and 129S mice were used as 

controls for those mice.   

5.3.4 Generation of Bone Marrow Chimeras 

Mice were injected subcutaneously with 2.5 mg of depot medroxyprogesterone acetate (Depo-

Provera
®
; Upjohn, Kalamazoo, MI) 5 days before irradiation.  Recipient mice were prepared for 
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the immunocompromised state that results from irradiation by replacing their normal diet with 

antibiotic food (1.2% sulfamethoxazole and 0.2% trimethoprim; Lab Diet, St. Louis, MO) and 

sterile acidified water (PH 2.5-3) for 10 days prior to the procedure.  Mice were irradiated with 2 

doses of 500 rads of X-ray irradiation separated by 6 hours.  Immediately following the final 

dose of irradiation, mice were reconstituted by intravenous (i.v.) injection of 710
6
 bone marrow 

cells from MyD88
-/-

 (CD45.2+) or WT (CD45.1+) mice.  MyD88
-/-

 cells were injected into WT 

(CD45.1+) recipients and WT (CD45.1+) cells into WT (CD45.2+) recipients.  Mice were 

maintained on acidified water and antibiotic food for 4 weeks following irradiation.  Chimerism 

was verified after 6 weeks using flow cytometry.  Mice were re-injected with Depo-Provera
®
 

after 6 weeks and infected with 110
6 

IFU of C. muridarum Nigg 1 week later.  Data are from 

one representative experiment of two with 5-6 mice per group.  

5.3.5 Generation of Mixed Bone Marrow Chimeras 

Recipient mice were fed antibiotic food (1.2% sulfamethoxazole and 0.2% trimethoprim; Lab 

Diet, St. Louis, MO) and sterile acidified water (PH 2.5-3) for 10 days prior to irradiation.  

Recipient mice were treated with two doses of 450 rads (900 rads total) of X-ray irradiation 

separated by 6 hours.  Immediately after irradiation, Rag1
-/-

 mice were reconstituted with 2.510
6
 

cells from a Rag1
-/-

 donor and 2.510
6 

cells from either a MyD88
-/-

, WT (CD45.1+), or IFN
-/-

 

donor.  IFNR
-/- 

mice were injected with 2.510
6
 cells from a Rag1

-/-
 donor and 2.510

6 
cells 

from a WT (CD45.1+) donor.  Six weeks after injection, mice were bled to determine the level of 

engraftment and were injected with Depo-Provera
®
.  Chimeras were infected with 110

6 
IFU of 

C. muridarum Nigg.  Groups consisted of 4-7 mice per donor: recipient combination.   
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5.3.6 CD4+ T cell Transfer into Rag1
-/-

 mice 

CD4+ T cells were isolated from the spleens of naïve C57BL/6 or MyD88
-/- 

mice by negative 

magnetic selection (CD4+ T cell isolation kit II; Miltenyi Biotech, Auburn, CA).  The purity of 

CD4+ T cells was determined to be > 93% for both strains by flow cytometry prior to transfer. 

Rag1
-/-

 mice were injected i.v. with 410
6 

CD4+ T cells from either strain.  The frequency of 

CD4+ T cells in the peripheral blood was determined using flow cytometry at 3 weeks after 

transfer.  Mice were injected with Depo-Provera
®

 4 weeks after transfer and were infected with 

C. muridarum 5 weeks after transfer.  Data are presented from one representative experiment of 

three with 5-6 mice per group.  Rag1
-/-

 mice that did not receive a CD4+ T cell transfer were 

infected in 3 independent experiments with a total of 15 mice.  

5.3.7 CD4+ T cell co-transfer experiment 

Ten days prior to receiving the CD4+ T cell transfer, WT recipient mice (CD45.2+ CD90.1+ 

CD90.2-) were injected with Depo-Provera
®
.  On the day of transfer, CD4+ T cells were isolated 

from the spleens of naïve WT (CD45.1+CD90.2+) or MyD88
-/- 

(CD45.2+CD90.2+) mice by 

negative magnetic selection (CD4+ T cell isolation kit II; Miltenyi Biotech, Auburn, CA).  

Recipient mice were injected i.v. with 410
6
 cells from both WT and MyD88

-/-
 mice (810

6
 cells 

total) and infected intravaginally with 110
6
 IFU of C. muridarum Nigg.  Four pools of cells per 

strain were processed independently from the beginning of the experiment and transferred into 

groups of 3 mice.  The average purity of CD4+ T cells in these preparations was 88% for both 

strains of mice.  Ten days post infection, mice were euthanized, and single cell suspensions were 

generated from their genital tracts and iliac nodes.  The cervix and uterine horns were treated 
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with collagenase I (1 mg/ml; Sigma-Aldrich, St. Louis, MO) while the oviducts and iliac lymph 

nodes were mechanically disrupted using the previously described protocol (33, 78).  Cells from 

the cervix, uterine horns, and oviducts were pooled for analysis.  Donor-derived cells were 

enriched using a CD90.2 positive selection kit (Miltenyi Biotech, Auburn, CA) prior to surface 

staining.  The frequency of CD4+ T cells from each strain of mice was determined by flow 

cytometry.  Cells were stained for the following cell surface markers: anti-CD4 PE (Clone: 

RM4-5), anti-CD3 V450 (Clone: 500A2), anti-CD90.1 FITC (Clone: OX-7), anti-CD90.2 PE-

Cy7 (Clone: 53-2.1), anti-CD45.1 PerCP-Cy5.5 (Clone: A20), and anti-CD45.2 APC (Clone: 

104).  All antibodies were from BD Biosciences (San Jose, CA).  Data shown represent the 

frequencies of donor cells in either the genital tract or iliac lymph nodes from 4 groups of three 

recipient mice.   

5.3.8 In vitro analysis of CD4+ T cell apoptosis  

Naïve CD4+ T cells were isolated from the spleens of MyD88
-/-

 (CD45.2) and WT (CD45.1+) 

mice via negative magnetic selection (Mouse Naïve CD4+ T cell isolation kit; STEMCELL 

Technologies, Vancouver, BC).  Isolated T cells were combined at a 1:1 ratio (110
5
 cells per 

strain) in a 96 well plate in complete medium.  Complete medium consisted of DMEM (Thermo 

Fisher Scientific; Pittsburgh, PA), 10% fetal bovine serum (Thermo Scientific Hyclone, 

Pittsburgh, PA), vancomycin (100 g/ml; Sigma-Aldrich, St. Louis, MO), gentamicin (50 g/ml; 

Life Technologies Gibco, Grand Island, NY), Glutamax (1 mg/ml; Life Technologies Gibco, 

Grand Island, NY), 2-mercaptoethanol (50 M; Sigma-Aldrich, St. Louis, MO), and non-

essential amino acids (0.5 mg/ml; Life Technologies Gibco, Grand Island, NY).  Cells were 

incubated with the indicated combination of the following reagents: plate-bound anti-CD3 (1 
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g/ml, Clone 145-2C11; eBioscience, San Diego, CA), soluble anti-CD28 (1 g/ml, Clone 

37.51; Biolegend, San Diego, CA), IL-2 (5 ng/ml; Peprotech, Rocky Hill, NJ), IL-12p70 (10 

ng/ml; Peprotech, Rocky Hill, NJ), and anti-IL-4 (1 g/ml; Clone: 11B11; eBioscience, San 

Diego, CA).  After three days in culture, cells were either directly stained for flow cytometry or 

were transferred to a new 96-well plate and incubated with complete medium without any 

stimulatory reagents for an additional 24 hours prior to antibody staining.  Surface staining was 

conducted using the following antibody combination:  anti-TCR  chain V450 (Clone: H57-

597), anti-CD4 PE-Cy7 (Clone: RM4-5), anti-CD45.2 APC (Clone: 104), and anti-CD25 PE 

(Clone: PC61).  After surface staining, apoptosis was measured by staining with Annexin V-

FITC according to the manufacturer’s instructions (Annexin V-FITC Apoptosis Detection Kit I).  

Approximately 10 minutes prior to analysis, 5 l of 7-Amino-Actinomycin D (7-AAD) was 

added to the samples.  All antibodies and reagents used for staining were from BD Biosciences 

(San Jose, CA).  Data shown represent the mean  SEM of triplicate wells for each condition 

from one representative experiment of two.   

5.3.9 Statistics   

Comparison of the course of infection was conducted via Two-way repeated measures (RM) 

ANOVA with Bonferroni post-test analysis.  A Log-rank (Mantel-Cox) Test was used to 

compare the duration of infection.  Significant differences in the frequency of cells accumulating 

in the genital tract and lymph nodes in the T cell co-transfer experiment was determined via 

Mann-Whitney U-test.  Apoptosis was compared between strains under different stimulatory 

conditions in vitro by Two-way ANOVA with Bonferroni post-test analysis.  Prism software 
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(GraphPad Software, LaJolla, CA) was utilized for all statistical analysis.  Values of P < 0.05 

were considered significant.   

5.4 RESULTS 

5.4.1 MyD88 expression by hematopoietic cells was required for normal resolution of 

Chlamydia muridarum genital tract infection.   

Epithelial cells represent the primary niche for Chlamydia in the genital tract (249-251), and 

MyD88 participates in Chamydia-induced cytokine production by these cells (118, 209).  We 

first sought to determine if the prolonged infection detected in the absence of MyD88 (197, 232, 

233) could be observed for mice with a MyD88 deficient hematopoietic compartment and a wild-

type epithelium.  Bone marrow chimeras can be utilized for this purpose because hematopoietic 

cells are more sensitive to irradiation than epithelial or stromal cells.  After irradiation, the 

hematopoietic compartment can be reconstituted by bone marrow from a donor strain of mice 

while the epithelium retains the genotype of the recipient strain.  Wild-type (WT; CD45.2+ or 

CD45.1+) mice were irradiated, and their bone marrow was reconstituted with either WT 

(CD45.1+) or MyD88
-/-

 (CD45.2+) cells.  Recipient mice with a MyD88 deficient epithelium 

were not included in this analysis due the potentially confounding effects resulting from the 

enhanced sensitivity of MyD88 deficient epithelial cells to irradiation (252).  The frequency of 

donor derived CD45+ cells was above 90% for all of the mice (data not shown).  In addition, the 

frequency of CD45+ cells in the peripheral blood that were CD3+CD4+ T cells was similar 

between the strains (WT donor: 5.4  1.0%; MyD88
-/-

 donor: 6.5  0.87%; P > 0.05 by Mann-
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Whitney U-test).  Indeed, MyD88
-/- 

bone marrow has been previously observed to have no 

deficiency in its ability to reconstitute irradiated recipient mice (253). 

When mice with WT stromal/epithelial cells were reconstituted with MyD88
-/-

 bone 

marrow (MyD88
-/-

 Donor: WT Recipient), infection was significantly increased (P < 0.0001 by 

Two-Way RM ANOVA; Figure 26A) and prolonged (P < 0.01 by Log-rank test; Figure 26B) 

relative to that observed for recipients of wild-type bone marrow (WT Donor: WT Recipient 

mice).  These data indicate that MyD88 is required in hematopoietic cells for normal resolution 

of Chlamydia muridarum infection even in the presence of wild-type epithelial cells. 

 

Figure 26:  MyD88 was required in hematopoietic cells for normal resolution of C. muridarum genital tract infection 

(A) Bone marrow chimeras were generated with the following strain combinations: WT Donor: WT recipient (black 

circles) and MyD88
-/- 

Donor: WT Recipient (white triangles). Mice were intravaginally infected with C. muridarum, 

and the course of infection was monitored with lower genital tract swabs. Data points represent the mean ± SEM of 

5-6 mice per group from one representative experiment of two.  Significance determined via Two-way RM ANOVA 

with Bonferroni post-test. Comparison of strains on individual days: * P < 0.05, *** P < 0.001.  Comparison of 

groups over the interval measured: P < 0.0001 for WT Donor: WT Recipient vs. MyD88
-/- 

Donor: WT recipient.  (B) 

Infection was significantly prolonged in mice reconstituted with MyD88
-/- 

bone marrow (dashed line) relative to 

mice with WT bone marrow (solid line).  Data points represent the first day of a negative titer in the lower genital 

tract for the mice described in (A).  P < 0.01 by Log-rank (Mantel-Cox) Test.  
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5.4.2 MyD88 expression by adaptive immune cells was required for normal resolution of 

C. muridarum genital tract infection.    

MyD88-mediated signals promote activation of innate immune cells in response to Chlamydia 

muridarum (34, 232).  In addition, MyD88 expression by adaptive immune cells has been shown 

to be important in murine models of infection and autoimmunity(234-236, 254).  We sought to 

determine if there was a role for MyD88 in promoting resolution of chlamydial infection in mice 

with a WT antigen presenting cell (APC) compartment and MyD88 deficiency solely in the 

adaptive immune cells.  To this end, we generated mixed bone marrow chimeras based on the 

experimental design used by LaRosa et al (234).  WT, MyD88
-/-

, or IFN
-/-

 bone marrow was 

combined at a 1:1 ratio with Rag1
-/-

 bone marrow and transferred into irradiated Rag1
-/-

 

recipients (Figure 27A, B).  Rag1
-/- 

mice have normal APCs but no adaptive immune cells.  Thus, 

the bone marrow from WT, MyD88
-/-

, or IFN
-/- 

mice served as the only source of adaptive cells, 

while Rag1
-/-

 bone marrow acted as a source of functional APCs.  Irradiation of the Rag1
-/-

 

recipients provided a niche for engraftment of the donor-derived bone marrow.  Rag1
-/-

 mice 

were used as recipients to ensure that all T cells were derived from the donor because irradiation 

cannot eliminate 100% of recipient cells.  Irradiated IFNR
-/-

 mice were reconstituted with mixed 

WT + Rag1
-/-

 bone marrow as a positive control (Figure 27A, B) due to the central role for IFN 

signaling at the level of the genital tract epithelium (74, 75, 78, 90, 164).  Verification of 

chimerism at six weeks after transfer was performed using disparate markers present on the WT 

(CD45.1+) and Rag1
-/-  

(CD45.2+) donor cells.  Analysis of cells in the peripheral blood revealed 

as expected, that 100% of CD3+CD4+ and CD3+CD8+ T cells in irradiated Rag1
-/- 

recipients 

were derived from the WT (CD45.1+) donor while 53  3% of Ly6G/C
high

 innate cells were 
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derived from the WT donor.  In addition, the frequency of CD3+ CD4+ T cells in the peripheral 

blood did not significantly differ between the groups (data not shown).  We were unable to verify 

the frequencies of MyD88
-/-

 or IFN
-/-

 adaptive immune cells since there is no disparate marker 

between these strains and Rag1
-/- 

mice.  However, an identical irradiation protocol, and the same 

pool of Rag1
-/- 

bone marrow cells were used for all of the groups. 

The chimeras were intravaginally infected with C. muridarum 7 weeks after bone marrow 

transfer.  Mice with a MyD88
-/-

 or IFN
-/- 

adaptive compartment exhibited a significantly 

increased infection relative to mice with a WT adaptive immune compartment (Figure 27C).  

The course of infection did not differ between mice lacking either MyD88 or IFN in their 

adaptive immune cells (Figure 27C).  Mice with WT adaptive immune cells but IFNR
-/-

 

stromal/epithelial cells also exhibited a significantly increased infection compared to mice with a 

WT adaptive immune compartment and IFN responsive stromal/epithelial cells (Figure 27B).  

In addition, comparison of the bacterial burden in the lower genital tract between days 5 and 16 

revealed a significantly increased infection only for IFNR
-/- 

recipient mice (P < 0.01 Two-Way 

RM ANOVA) and not for the Rag1
-/-

 recipients with MyD88
-/-

 or IFN
-/- 

adaptive cells (P > 0.05 

Two-Way RM ANOVA).   
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Figure 27:  MyD88 expression and IFNγ production by adaptive immune cells as well as IFNγR expression by the 

stromal compartment was required for normal resolution of C. muridarum genital tract infection. 

(A, B) Bone marrow chimeras were generated with the following donor: recipient combinations. WT + Rag1
-/- 

Donors: Rag1
-/- 

Recipient (black circles); MyD88
-/- 

+ Rag1
-/- 

Donors: Rag1
-/- 

Recipient (white triangles); IFNγ
-/-

 + 

Rag1
-/- 

Donors: Rag1
-/- 

Recipient (black square, dashed line); WT + Rag1
-/- 

Donors: IFNγR
-/- 

recipient (black 

triangle).  Data points represent the mean ± SEM of 4-7 mice per group.  Significance determined via Two-way RM 

ANOVA with Bonferroni post-test. Comparison of individual days: * P < 0.05, ** P < 0.01, *** P < 0.001 chimeras 

vs. WT + Rag1
-/- 

Donors: Rag1
-/- 

Recipient group. Comparison of groups over the interval measured: P < 0.05 for 

WT + Rag1
-/- 

Donors: Rag1
-/- 

Recipient group vs. each of the three other groups.  P > 0.05 for MyD88
-/- 

+ Rag1
-/- 

Donors: Rag1
-/- 

Recipient vs. IFNγ
-/-

 + Rag1
-/- 

Donors: Rag1
-/- 

Recipient  

5.4.3 MyD88 expression by CD4+ T cells was required for normal resolution of C. 

muridarum genital tract infection.   

The mixed bone marrow chimera experiment (Figure 27) essentially permitted observation of the 

role of MyD88 in CD4+ T cells because neither a deficiency in antibody nor CD8+ T cells 

influences resolution of primary infection with C. muridarum (45, 255).  In order to specifically 

analyze the role of MyD88 in CD4+ T cells, we compared the course of infection in Rag1
-/-

 mice 

that received CD4+ T cells from either MyD88
-/-

 mice or WT mice.  Prior to infection, the 
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frequency of CD3+CD4+ T cells in the peripheral blood did not significantly differ between the 

strains (WT: 4.96  0.36%; MyD88
-/-

: 3.70  0.61% of CD45+ cells; P > 0.05 by Student’s t-

test).  The course of infection in the lower genital tract was both significantly elevated (P < 0.01 

by Two-way RM ANOVA) and prolonged (P < 0.001 by Log-rank Test) upon transfer of 

MyD88
-/-

 CD4+ T cells relative to transfer of WT CD4+ T cells (Figure 28A, B).  The median 

day of resolution of infection for mice with WT CD4+ T cells was day 23 and with MyD88
-/- 

CD4+ T cells, it was day 47 (Figure 28B).  However, Rag1
-/-

 mice that did not receive a T cell 

transfer shed high levels of bacteria until they began to exhibit symptoms of systemic illness 

including tachypnea, hunching, lethargy, and death between days 14 and 25 post-infection 

(Figure 28C).  This was observed in a total of 15 mice from three independent experiments.  A 

group of moribund Rag1
-/- 

mice was sacrificed on day 25 post-infection, and Chlamydia was 

detected in the oviducts, lungs, liver and spleen (Figure 28D).  Thus, although clearance of 

infection was impaired in the absence of MyD88 in CD4+ T cells, infection eventually resolved, 

and dissemination of infection was prevented. 
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Figure 28:  MyD88 was intrinsically required in CD4+ T cells for efficient resolution of C. muridarum from the 

lower genital tract. 

(A) Rag1
-/- 

were injected with 4×10
6
 CD4+ T cells isolated from the spleens of naïve WT (black squares) or MyD88

-

/- 
mice (white circle, dashed line) and intravaginally inoculated with C. muridarum 5 weeks later.  Data points 

represent the mean ± SEM of 5-6 mice per group from one representative experiment of three.  P < 0.01 for WT 

CD4+ T cell recipients vs. MyD88
-/- 

CD4+ T cell recipients over the interval measured via Two-way RM ANOVA 

with Bonferroni post-test. Comparison of individual days: * P < 0.05, ** P < 0.01, *** P < 0.001. (B) Infection was 

significantly prolonged when Rag1
-/- 

mice were reconstituted with MyD88
-/- 

CD4+ T cells (black line) compared to 

WT CD4+ T cells (dashed line). P < 0.001 by Log-rank (Mantel-Cox) Test. (C) Rag1
-/- 

(white circle) infected with 

C. muridarum exhibited a significantly increased infection in the lower genital tract relative to C57BL/6 mice (black 

squares) starting on day 7.  Data points represent the mean ± SEM of 4 mice per group from one representative 

experiment of three. *** P < 0.001 for individual days by Two-Way ANOVA with Bonferroni post-test. (D) 

Titration of organs from moribund Rag1
-/- 

mice sacrificed on day 25 post infection.  Bars represent the mean ± SEM 

of plaque assay titers from for three mice.   
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5.4.4 Accumulation of MyD88
-/- 

CD4+ T cells was impaired relative to WT CD4+ T cells.    

After demonstrating a role for MyD88 in CD4+ T cells in promoting resolution of C. muridarum 

infection (Figure 28), we sought to define the mechanism responsible for this requirement.  

MyD88-mediated signals have been implicated in the survival of CD4+ and CD8+ T cells in 

other models of infection (234-236).  To determine if MyD88
-/-

 deficient CD4+ T cells exhibited 

impaired accumulation in the genital tract and iliac nodes when exposed to the same 

inflammatory milieu as WT CD4+ T cells, we conducted a co-transfer experiment where a 1:1 

ratio of MyD88
-/-

 and WT CD4+ T cells was transferred into immunologically normal mice 

(Figure 29A).  Mice were intravaginally infected with C. muridarum at the time of T cell 

transfer.  By day 10 post-infection, there was a significantly decreased frequency of MyD88
-/-

 

CD4+ T cells in both the iliac lymph nodes and genital tract (Figure 29B).  This difference was 

particularly striking in the genital tract where an average of 74% of donor cells were from the 

WT donor (Figure 29B).  These data indicate that MyD88 expression by CD4+ T cells is 

required for accumulation of these cells in the iliac lymph nodes and genital tract.   
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Figure 29:  A significantly decreased frequency of MyD88
-/- 

CD4+ T cells relative to WT CD4+ T cells was detected 

when CD4+ T cells were co-transferred into immunologically normal mice.  

(A) Schematic of CD4+ T cell co-transfer experiment.  (B) Frequency of donor WT (CD45.1+CD45.2-CD90.2+) 

and MyD88
-/- 

(CD45.1-CD45.2+CD90.2+) CD4+ T cells isolated from the iliac lymph nodes and genital tract of 

recipient mice (CD90.2-CD90.1+) on day 10 post infection.  Bars represent the mean ± SEM of the frequency of 

CD3+CD4+ T cells recovered from 4 groups of 3 mice.  * P < 0.05 by Mann Whitney U-test.  

5.4.5 Mice deficient in receptors upstream of MyD88 did not recapitulate the phenotype 

of MyD88
-/-

 mice.  

 Detection of decreased accumulation of MyD88
-/- 

CD4+ T cells compared to WT CD4+ T cells 

(Figure 29B) exposed to the same inflammatory milieu indicated that a MyD88-mediated signal 

might act to directly co-stimulate T cells during chlamydial infection.  Signaling through several 

Toll-like receptors (TLRs) including TLR2 (240), TLR3 (241), TLR4 (242), TLR5 (243), TLR7 

(243), and TLR9 (241) has been observed to directly co-stimulate T cells and promote their 

survival.  We sought to determine if a deficiency in any of these receptors could recapitulate the 

significantly prolonged infection we observed in the absence of MyD88.  We have previously 

observed that mice deficient in TLR2 or TLR4 resolve infection from the lower genital tract 
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normally (34).  We next infected mice deficient in both TLR2 and TLR4 in order to determine if 

these receptors served redundant roles; however, infection resolved with normal kinetics in the 

absence of both of these receptors (Figure 30A).  Although TLR3 signaling is not MyD88 

dependent, we sought to determine if TLR3-mediated signals could promote resolution of 

infection since poly(I:C) can promote the survival of CD4+ T cells (241)(Figure 30B).  

Resolution of infection from mice deficient in TLR3 was normal.  We also determined that 

TLR7 was not required for normal resolution of infection (Figure 30C).  Chlamydia possesses 

unmethylated deoxycytidyl-phosphate-deoxyguanosine (CpG) dinucleotides (256), which 

represent potential ligands for TLR9 (248).  However, TLR9
-/-

 mice also resolved infection 

normally (Figure 30D).  The role of TLR5 was not examined because Chlamydiae are non-

motile bacteria that do not express flagellin.  

MyD88 is also required for signaling via the IL-1 family of cytokine receptors, which 

includes receptors for IL-1, IL-18, and IL-33.  Mice deficient in the IL-1 receptor exhibit an 

increased bacterial burden in the lower genital tract, but infection is not significantly prolonged 

relative to WT mice (101).  We have observed that IL-18 deficient mice resolve infection from 

the genital tract normally (data not shown), which is in agreement with the normal resolution of 

infection observed in NLRP3
-/-

 mice that have significantly impaired IL-18 production in 

response to Chlamydia (101).   Finally, we did not pursue evaluation of IL-33 deficient mice 

since IL-33 induces Th2 responses and so is not likely to promote resolution of chlamydial 

infection (221).   
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Figure 30:  TLR deficiencies did not impair resolution of C. muridarum.   

Mice deficient in (A) TLR2 and TLR4 (white triangles), (B) TLR3 (white diamonds, dotted line), (C) TLR7 (white 

circles), or (D) TLR9 (white squares) were intravaginally infected with C. muridarum, and the course of infection 

was compared to the appropriate control strain.  C57BL/6 controls were used for all strains except for TLR3
-/- 

mice, 

where the F2 generation of C57BL/6 and 129S mice was used.  No differences were detected between the course of 

infection in the lower genital tract of any of the knockout strains and their matching control ( P > 0.05 by Two-way 

RM ANOVA).  Data points represent the mean ± SEM of 5 mice per strain and are from one representative 

experiment of three for the TLR2
-/-

TLR4
-/- 

and TLR9
-/- 

mice and from a single experiment with TLR7
-/- 

and TLR3
-/- 

mice.  
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5.4.6 MyD88 deficient cells exhibited impaired survival upon activation in vitro.   

Our in vivo data indicate that deficiencies in receptors upstream of MyD88 do not recapitulate 

the phenotype of MyD88
-/-

 mice (Figure 30).  These findings are similar to what has been 

described in other murine models (234, 236).  We then sought to determine if impaired 

accumulation of MyD88
-/- 

T cells would occur in vitro in the absence of TLR or IL-1R agonists, 

supporting the hypothesis that the accumulation defect observed in vivo (Fig. 4B) was 

independent of receptors upstream of MyD88.  Naïve CD4+ T cells (CD25-CD44-) were isolated 

from the spleens of MyD88
-/- 

(CD45.2) and WT (CD45.1+) mice.  These cells were mixed at a 

1:1 ratio and stimulated in vitro with different combinations of the following reagents:  anti-CD3 

(1 g/ml), anti-CD28 (1 g/ml), IL-2 (5 ng/ml), IL-12p70 (10 ng/ml), and anti-IL-4 (1g/ml) 

(Fig. 6).  A co-culture of MyD88
-/-

 and WT T cells was performed in order to prevent 

confounding effects that could result from differences in the inflammatory milieu.  After 3 days 

in culture, activated T cells (CD25+) were either examined for their viability based on Annexin 

V and 7-amino-actinomycin D (7-AAD) staining or were removed from culture and replated for 

an additional 24 hours with media alone prior to analysis of apoptosis.  After 3 days and 3 days + 

24 hrs rest, the level of CD25 expression by CD25+CD4+ T cells did not differ between the 

strains (Figure 31A, B).  However, the frequency of apoptotic (AnnexinV+7AAD-) 

CD4+CD25+ T cells was significantly increased in the absence of MyD88 under all stimulatory 

conditions tested (Figure 31C).  After an additional 24 hrs without stimulation, there was no 

longer a difference in the frequency of apoptotic cells in the group that had been stimulated with 

anti-CD3 alone, but the frequency of apoptotic cells was significantly increased in the absence of 

MyD88 under all other stimulatory conditions (Figure 31D).  The frequency of cells from either 

strain that up-regulated CD25 upon incubation with media alone for three days was negligible, so 
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that group was not included in analysis of apoptosis.  These data indicate that activated MyD88 

deficient CD4+ T cells have an increased propensity towards apoptosis even in the absence of 

exogenous TLR/IL-1R ligands.    

  

Figure 31:  MyD88
-/- 

CD4+ T cells exhibited increased apoptosis when activated in vitro. 

Naïve CD4+ T cells from MyD88
-/- 

and WT (CD45.1+) mice were co-cultured in vitro in the presence of the 

indicated stimulatory reagents for three days. (A, B) The level of CD25+ expression by activated CD4+ CD25+ T 

cells from each strain was determined after (A) 3 days or (B) after incubation with media alone for an additional 24 

hrs.  (C, D) The frequency of CD4+ CD25+ cells that were apoptotic (Annexin V+ 7AAD-) was determined after 

(C) 3 days or (D) 3 days + 24 hrs in media alone.  *** P < 0.001 by Two-Way ANOVA with Bonferroni post-test.  

Bars represent the mean ± SEM of triplicate wells from one representative experiment of two.  
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5.5 DISCUSSION 

In the this chapter, we present the results of our studies examining the role of the adaptor 

molecule MyD88 in the development of an effective adaptive immune response to Chlamydia 

genital tract infection.  In doing so we attempt to provide a mechanism for the significantly 

impaired resolution of infection previously observed in MyD88 deficient mice (197, 232, 233).  

The increased bacterial burden observed in the absence of MyD88 was associated with the 

development of severe oviduct pathology (197, 233), which indicated that MyD88-dependent 

signaling was a double-edged component of the immune response to Chlamydia genital tract 

infection.  Mice deficient in receptors upstream of MyD88, including TLR2 knockout mice (34) 

and IL-1 receptor knockout mice (101), exhibit significantly reduced oviduct pathology.  

However, signaling via MyD88 is necessary to effectively control infection and prevent the 

tissue damage that can result from a significantly increased bacterial burden.  The goal of the 

studies outlined in this manuscript was to determine if the role of MyD88 in promoting the 

adaptive immune response could be separated from its involvement in promoting tissue 

damaging innate immune responses.   

We first explored whether the prolonged infection observed in the absence of MyD88 

could at least partially be attributed to a lack of MyD88 in circulating hematopoietic cells.  We 

determined that bone marrow chimeras with a MyD88 deficient hematopoietic compartment and 

wild-type epithelial/stromal cells did indeed exhibit a significantly prolonged infection.  

Although the role of MyD88 in enhancing innate and adaptive responses to Chlamydia would 

seem intuitive, it was important to rule out the possibility that a deficiency in MyD88 expression 

by the epithelium of the genital tract was required to observe impaired resolution of infection.  In 

vitro experiments have shown that genital tract epithelial cells produce significantly lower levels 
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of cytokines in response to Chlamydia in the absence of MyD88 (118).  In addition, MyD88 can 

directly interact with the IFN receptor (257), which could be important in IFN-mediated 

clearance of Chlamydia from epithelial cells.  The significantly prolonged infection we observed 

for the bone marrow chimeras in the presence of a wild-type epithelium pointed to an important 

role for MyD88 expression by circulating immune cells, although it did not exclude the 

possibility that MyD88 signaling at the level of the epithelium participated in controlling 

infection.   

An important technical point regarding the use of bone marrow chimeras in this model is 

that X-ray irradiation can influence the architecture of the genital tract.  We observed that the 

bacterial burden in the lower genital tract of irradiated mice was 10 to 100 fold lower than that of 

non-irradiated mice at the peak of infection.  In addition, at the time of sacrifice, the uterine 

horns and cervices of mice that had been irradiated where significantly smaller than those of 

non-irradiated mice.  These effects may preclude the use of this type of experiment in describing 

immune mediators of genital tract pathology.  It also prevented us from analyzing mice with a 

MyD88-deficient epithelium because these mice exhibit a further increase in susceptibility to 

radiation-induced damage due to a higher proliferative rate of epithelial cells (252).  Despite 

these caveats, we determined that mice with Myd88 deficient hematopoietic cells exhibited a 

course of infection that directly paralleled that observed in MyD88
-/-

 mice.  These findings 

indicated that tissue damage resulting from the action of MyD88-mediated signals at the level of 

the epithelium, as has been described for IL-1 in vitro (97), could potentially be separated from 

those that were protective.   

We next used mixed bone marrow chimeras to more specifically explore the role of 

MyD88 in promoting clearance mediated by hematopoietic cells, with a focus on MyD88 
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expression by adaptive immune cells.  The mixed bone marrow chimera experimental design was 

based on a previous manuscript, which showed that MyD88 expression by adaptive immune cells 

was required for control of Toxoplasma gondii infection (234).  In these experiments, WT, 

MyD88
-/-

, or IFN
-/- 

bone marrow was mixed with an equal ratio of Rag1
-/-

 bone marrow and 

transferred into irradiated Rag1
-/-

 recipients.  The Rag1
-/-

 bone marrow provided a large pool of 

normal innate immune cells for priming of the adaptive immune response.  In these experiments, 

mice with MyD88
-/-

 or IFN
-/-

 adaptive cells exhibited similar courses of infection, which were 

significantly increased compared to mice with WT adaptive cells.  We also showed that mice 

with an IFNR
-/- 

deficient epithelium but normal adaptive immune cells exhibited an early 

increase in infection that was not observed for the mice with MyD88
-/-

 or IFN
-/-

 adaptive cells 

but an IFN responsive epithelium.  These findings indicate that IFN production by innate 

immune cells can contribute to early control of infection, but IFN provided by adaptive cells is 

critical for efficient resolution of infection.  The mixed-bone marrow chimera experiment also 

revealed that the prolonged infection observed in the presence of MyD88
-/- 

adaptive immune 

cells was similar to that observed when adaptive cells could not produce IFN.  Thus, intrinsic 

expression of MyD88 may be required for an optimal T cell IFN response in the genital tract.  

However, this is not likely due to a decreased ability of MyD88 deficient CD4+ T cells to 

differentiate into Th1 cells because that has been repeatedly demonstrated to be unimpaired both 

in vitro and in the presence of normal APCs in vivo (236, 237, 239). 

We used a CD4+ T cell transfer model to confirm our suspicions that MyD88 expression 

by CD4+ T cells was necessary for eradication of Chlamydia from the genital tract, since CD4+ 

T cells are the only adaptive immune cell required for clearance of primary infection in this 

model (45).  Interestingly, the impaired resolution of infection observed upon transfer of MyD88
-
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/- 
CD4+ T cells to Rag1

-/-
 mice was much more pronounced than what we observed in the mixed 

bone marrow chimera experiments.  One potential explanation for this observation is that the 

length of infection was reduced in the bone marrow chimeras due to effects of irradiation on the 

architecture of the genital tract.  It is also possible that since the mice were provided with a fixed 

number of CD4+ T cells in the T cell transfer model, and the Rag1
-/- 

recipients do not produce 

adaptive immune cells, they could not compensate for impairments in infection control with an 

increased release of adaptive immune cells from the bone marrow compartment.  These findings 

also provided clues that impaired survival of T cells was responsible for the delayed resolution of 

infection, since release of cells from the bone marrow could replace failing adaptive immune 

cells in the bone-marrow chimera experiments, but this could not occur upon transfer of a finite 

number of CD4+ T cells into to the Rag
-/-

 mice.  Indeed, impaired survival of MyD88 deficient 

adaptive immune cells has been previously observed by others characterizing a requirement for 

MyD88 in CD4+ T cells (235, 237, 238) and CD8+ T cells (236).   

Mechanistic experiments revealed that MyD88 deficient CD4+ T cells were impaired in 

their ability to accumulate in the genital tract and iliac lymph nodes when exposed to the same 

inflammatory milieu as WT CD4+ T cells.  This is similar to what was observed in a CD4+ T 

cell transfer model of colitis, where naïve MyD88
-/- 

CD4+ T cells exhibited impaired 

accumulation in a variety of organs when co-transferred with wild-type CD4+ T cells (238).  

This was also observed in mixed bone marrow chimeras infected with LCMV, where MyD88
-/- 

CD8+ T cells exhibited significantly reduced accumulation in the spleen relative to WT T cells 

in the same mouse (236).  Similar results were obtained upon transfer of LCMV specific MyD88 

deficient and WT CD8+ T cells into WT recipients.  The detection of a significantly reduced 

number of MyD88 deficient CD8+ T cells responding to LCMV was associated with an 
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increased rate of apoptosis and not a defect in proliferation (236).  This would explain why we 

previously observed normal proliferation of Chlamydia-specific CD4+ T cells in MyD88
-/- 

mice 

but a reduced frequency of these cells in the genital tract in the presence of a dramatically 

increased bacterial burden (197).  

We attempted to find a receptor upstream of MyD88 signaling that would explain the 

deficiencies we observed in its absence.  Our current and former studies show that mice with 

deficiencies in TLR2 (34), TLR2 and TLR4, TLR4 (34), TLR7, TLR9, IL-1R (101), and IL-18R 

do not exhibit delayed resolution of infection.  These negative data could indicate that an 

untested TIR domain-containing receptor participates in MyD88 mediated control of infection or 

that a combination of deficiencies can explain this impaired resolution.  However, it is also 

possible that MyD88 plays an unconventional role in promoting T cell survival.  Our in vitro 

apoptosis assays were conducted without the addition of exogenous TLR/IL-1R ligands, and we 

still observed an increased rate of apoptosis in the absence of MyD88.  Although we cannot rule 

out a role for autologous cytokine production or molecules released from dying cells in co-

stimulating these cells, the fact that the level of CD25 expression by MyD88
-/-

 and WT T cells 

under the stimulatory conditions tested was comparable, indicates that these cells were not 

exposed to different exogenous activating signals as would occur in the presence of signaling via 

mediators upstream of MyD88.  Rather, these findings indicate that stimulatory signals are able 

to promote similar levels of activation in MyD88 deficient T cells, but defects arise after the 

divergence of activating and survival signals.  This is similar to what was observed in a model of 

LCMV (236), where differentiation and activation of MyD88 deficient CD8+ T cells was 

normal, but accumulation was dramatically impaired.  Interestingly, a number of MyD88-

mediated signals that are TIR domain independent have been described such as a role for MyD88 
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in interacting with the IFNR (257), Phosphatidylinositol 3-kinase (PI-3K) (258, 259), Fas-

associated death domain protein (FADD)(260, 261), IFN regulatory factor (IRF)1 (262), IRF5 

(262, 263), and IRF7 (264).  FADD has been observed to prevent MyD88 mediated 

proinflammatory signals, so we could speculate that MyD88 could reciprocate by preventing 

FADD mediated proapoptotic signals (265).  Our findings also indicate that the intrinsic 

requirement for MyD88 in CD4+ T cells for normal resolution of Chlamydia genital tract 

infection is not at all specific to this model.  That would explain why similar findings have been 

observed across several models without an upstream mechanism (234-236).  

We were unable to find a receptor upstream of MyD88 that was required for resolution of 

Chlamydia from the genital tract.  Thus, direct stimulation of MyD88-dependent receptors on 

CD4+T cells does not significantly enhance protective immunity during chlamydial infection.   

In addition, activation of these pathways in CD4+ T cells has been shown to lead to detrimental 

responses in murine models, including induction of pathologic Th17 responses (239), EAE 

(239), and IBD (237, 238).  These data indicate that activation of TLR and IL-1R receptors on 

CD4+ T cells should not be incorporated into a vaccination strategy.  On the other hand, MyD88 

augments the longevity of CD4+ T cells.  In the absence of MyD88, small reductions in CD4+ T 

cell accumulation in the lymph nodes translate into dramatically decreased numbers of CD4+ T 

cells in the genital tract and impaired resolution of infection.  Although the specific mechanisms 

whereby MyD88 promotes T cell longevity have not been determined, these studies show that 

MyD88 is clearly a necessary component of an effective adaptive immune response to 

Chlamydia.  Determination of signaling pathways that promote CD4+ T cell survival would 

accelerate vaccine development.  
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6.0  CONCLUSIONS AND FUTURE DIRECTIONS 

These studies show that vaccine strategies must be focused on inducing long-lived Th1 responses 

to Chlamydia.   Neutrophils are extremely dangerous for the oviduct, which is vulnerable to 

direct damage by the immune response and to the ongoing damage that occurs when scarring of 

the oviduct leads to the accumulation of fluid known as hydrosalpinx.  In order for neutrophil-

mediated damage to be avoided, the ascension and replication of Chlamydia in the UGT must 

either be prevented or abbreviated.  We determined that infection with plasmid-deficient 

Chlamydia resulted in a reduced influx of neutrophils into the oviducts, which was associated 

with lower levels of neutrophil chemokines and an impaired ability to delay neutrophil apoptosis.  

Although the mechanism behind the decreased inflammation has yet to be completely elucidated, 

our previous studies indicated that the plasmid-deficient strain of C. muridarum did not signal 

via TLR2 (17).  The ligand(s) that stimulates TLR2 could represent a vaccine target for 

prevention of the development of oviduct damage.  Our studies also show that the Th17 response 

is likely more harmful than protective in this model.  We found that when IFN was absent, a 

markedly enhanced Th17 response in the genital tract was associated with increased neutrophil 

influx and tissue damage.  We did not detect a phenotype in the absence of IL-17, IL-22, or IL-

23 in our other studies, but this is likely because these knockout mice were on the Th1-biased 

C57BL/6 background.  Our studies conducted in the absence of IFN demonstrate the damage 

that can occur in the presence of an augmented Th17 response and show that vaccine strategies 
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that promote a Th17 response to Chlamydia either intentionally or inadvertently should be 

avoided.  In addition, we have determined that CD4+ T cell longevity is crucial for efficient 

resolution of infection from the genital tract.  An effective vaccine must prime Chlamydia-

specific CD4+ T cells in the lymph nodes, and these cells must survive long enough to travel to 

the genital tract and successfully combat infection.    

Future studies will focus on identifying immune responses in the peripheral blood of 

women that are associated with protection from UGT infection and disease.  These studies will 

be correlated with responses in the endometrium with the hopes of identifying the phenotypes of 

and antigens recognized by CD4+ T cells that prevent Chlamydia from ascending to the 

vulnerable tissues of the UGT.  We will also determine whether sterilizing immunity to 

Chlamydia develops in women in response to genital tract infection and if protective immune 

responses can de separated from those that are pathologic.  
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