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Randomized clinical trials (RCTs) are widely used as the gold standard for comparative medical 

studies.  Using randomization to determine treatment assignment assures that all patients have 

the same chance of being assigned to each treatment group and that the treatment groups are 

comparable in terms of the distributions of prognostic factors.  When treatment groups are not 

comparable, the power of statistical test will be decreased.  Moreover, the problem of imbalance 

becomes more notable when it occurs in the important prognostic factors because it could result 

in a significant bias when assessing differences by treatment group.     

The most intuitive and simple form of randomization is complete randomization.  

However, with complete randomization there is still a chance for an imbalance on prognostic 

factors.  In order to overcome the problem of imbalance when using complete randomization, 

restricted randomization procedures were proposed.  However, some have argued that an 

unintended consequence of the restrictions placed on randomization is that they could create 

patterns that allow for the prediction of future treatment allocation.  Furthermore, some have 

questioned the accuracy of model-based statistical inference using conventional asymptotic test 

under restrictions placed on the treatment allocation. 

This dissertation is concerned with an assessment of the performance of biased-coin 

minimization.  The assessment is twofold.  The first aspect is to determine in terms of balancing 
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properties and also in terms of the probability of predicting treatment assignment when using 

biased-coin minimization.   The second aspect is to compare the results from the classical 

statistical test, log-rank test, based on population model and the randomization test from the 

randomization model while biased-coin minimization is applied.        

 Randomized clinical trials are the gold standard of research for demonstrating the 

efficacy of therapies used to treat patients in the general community.  Allocation methods that 

promote balance in key prognostic factors between treatment groups are important to assure the 

accuracy and validity of results from clinical trials.  It is important to assess the properties of 

dynamic allocation methods to demonstrate the validity of these methods as they are applied in 

research that is designed to develop treatments that are used to enhance the public health.    
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1.0 INTRODUCTION 

1.1 OVERVIEW 

As groups of patients to be compared may differ in some ways even before any treatment is 

applied, one particular concern in interpreting the comparison of different treatments with regard 

to their efficacy is whether the patients allocated to the different treatment groups are comparable 

with respect to important characteristics.1  In addition to the effect of the treatment, other factors 

known as prognostic variables can also influence patient’s response.  Randomized clinical trials 

(RCTs) are widely used as the gold standard for comparative medical studies, whereas 

nonrandomized study designs are commonly criticized as being most susceptible to bias and 

confounding which would cast doubt on the validity of study findings.  The superiority of the 

RTCs is derived from the fundamental use of randomization to determine treatment assignment 

assuring that all patients have the same chance of being assigned to each treatment group and 

that the distribution of prognostic factors would be similar between treatment groups.  However, 

there are some issues with randomization which will be discussed later. 

 An important aspect of the use of randomization for treatment assignment is the reduction 

of selection bias. In most randomized clinical trials, patients sequentially enter the study, and the 

treatment for each patient is assigned at the time of study entry according to an advance 

generated treatment allocation process which should not be predictable. This unpredictability 

eliminates the possibility of identifying future allocations by either observing the allocation 

sequence directly or detecting patterns among the allocations already made.  An investigator’s 

knowledge of the upcoming treatment assignment can introduce bias by his either conscious or 

unconscious selection of patients to receive a preferred treatment.  For example, when the next 

allocation is guessed to be to the ‘experimental’ group (rather than to the ‘control’ group), the 
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investigator may give preferential consideration to a patient with better prognosis for entry into 

the study, thus hoping to ensure a better outcome result for the particular patient as compared to 

a patient who may have comorbid conditions and may have more server toxicity from the 

experimental treatment than with the control treatment. This can easily be accomplished by 

delaying a patient’s entry into the trial until the next allocation of the preferred treatment occurs.  

Frequent occurrence of this tendency could lead to bias treatment assignment and imbalance in 

prognosis profiles between the groups and bias in the treatment comparison.2 

 Other design features, beyond randomization, are also crucial to the validity of RCT 

results such as masking, allocation concealment, and the intent-to-treat approach to data analysis.  

However, this study will focus on discussions of different facets of randomization procedures.  

Randomization procedures can be distinguished into five types: complete randomization, 

restricted randomization, covariate-adaptive randomization, response adaptive randomization, 

and covariate-adjusted response-adaptive randomization.3,4  Complete randomization can 

eliminate selection bias but it may introduce a significant possibility of imbalance in prognostic 

factors between treatment groups.  In order to overcome this disadvantage, restricted 

randomization designs place some constraints on treatment assignments and force clinical trials 

to be balanced.  On the other hand, covariate-adaptive randomization promotes balance by 

treatment on known covariates as well as overall treatment allocation.  Response-adaptive 

randomization can mitigate the ethical issue by skewing the allocation probability to favor the 

treatment that performs better over time.  Finally, covariate-adjusted response-adaptive 

randomization uses both covariate and response information for making treatment assignments.  

A more in-depth overview and discussion for each type of randomization is provided in the next 

section.  
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1.2 RANDOMIZATION METHODS 

1.2.1 Complete Randomization 

Randomization based on a single sequence of random assignments is known as simple 

randomization.5This technique maintains complete randomness of the assignment of a person to 

a particular group.  There are no restrictions placed on the nature of the randomization sequence.  

Assuming the trial has two treatment groups (control versus experimental group), complete 

randomization is equivalent to tossing a fair coin and the side of the coin (i.e., heads =control, 

tails=treatment) determines the assignment of each person.  The distinguish feature of complete 

randomization is that the allocation does not depend on the patient’s prognostic factors or on 

other patient characteristics.2 

Besides simplicity, complete randomization has several attractive properties.  It provides 

optimal protection against certain types of bias.  For example, no selection bias can take place 

because the treatment allocation from complete randomization is not predictable.6  Also, it has 

the advantage of serving as a basis for standard inferential procedures because this method 

ensures that each sequence of allocation is equally likely.7  This eliminates the need for 

probability assumptions on the responses of the individual experimental units and guarantees the 

validity of the stated significance level.8 

Unfortunately, complete randomization suffers from a disadvantage that makes it 

unattractive in practice; the proportion of patients in treatment groups may differ and the 

treatment groups may have different prognostic profiles by chance.2  Ideally, complete 

randomization is expected to have resulted in treatment assignment that would have 

approximately equal number of patients in each treatment group and achieve relative balance of 

all known and unknown prognostic factors between treatment groups.  In practice, it is not 
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unusual to observe disparate sample size or considerable imbalance on important prognostic 

factor between treatment groups, particularly in small trials or trials with many prognostic 

factors.4  It is desirable to ensure an approximately equal number of patients across the treatment 

at several times throughout the trail.  This because there may be time trends, causing a possible 

unintentional bias if a disproportionate number of early patients was assigned to a specific group. 

The main concern with the problem of imbalance is that it will decrease the precision of 

the estimator and the power of statistical test.  It was shown that if a study has power of 0.90 

with an exact equal balance between treatments, power is reduced to less than 0.85 if the 

treatment imbalance (the larger of the two sample fraction) is on the order of 0.70 or greater9yet 

the probability of such extreme imbalance is fairly low.6 

The problem of imbalance becomes more notable when it occurs in an important 

prognostic factor (such as the patient’s condition or the severity of the disease) because it would 

result in bias and confound the treatment comparison.  Improving the balance of patient 

characteristics among the treatment groups potentially increases the accuracy and precision of 

the results, and, thus, it increases the credibility and the acceptance of the results.10,11 

Kernan et al12 investigated the chances of an imbalance for two treatment groups on a 

binary prognostic factor that is present in 15% of patients through a simulation study involving 

10,000 hypothetical trials. The chance that the two treatment groups will differ by more than 

10% for the proportion of patients with the prognostic factor is 33% for a trial of 30 patients, 

24% for a trial of 50 patients, 10% for a trial of 100 patients, 3% for a trial of 200 patients, and 

0.3% for a trial of 400 patients.  They also found that the chance of imbalance is greater when 

the prognostic factor has higher prevalence.  Additionally, Buyse13 stated that the problem of 

imbalance becomes more acute as the sample size decreases and the number of patient 
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characteristics of interest increases.  For a trial of 100 patients, the chance of observing severe 

imbalance (more imbalanced than 40:60) between the two treatment groups is 20% when one 

prognostic factor is considered.  If more prognostic factors are considered, the chance of such an 

imbalance occurring for at least one of factors increases dramatically.  With five characteristics, 

it is up to 68%; with 10 characteristics, it is up to 90%. 

The need for treatment balance across prognostic factors is critically important in 

situations involving small trials, trials with interim analyses that may be stopped early, trials 

where the analysis of subgroups is considered important, or trials where the credibility of an 

unbalanced trial is considered problematic to widespread acceptance of its results.11,14 

Using statistical techniques such as analysis of covariance (ANCOVA) or multiway 

analysis of variance may be considered to adjust for between-group difference with respect to the 

covariates.  However, this approach has several disadvantages.15  Adjustment that is based on 

observed imbalances that had not been specified before the start of the study is undesirable, 

because the statistical analysis of a clinical trial should not be adapted once results are known.  

Second, the results of the adjusted analysis can only be correctly interpreted if the analysis model 

fits the data.  For example, when analysis of covariance is used, the relationship between the 

covariate and the outcome should follow a straight line in each treatment group, and those lines 

have to be parallel.  Often this is unclear, and especially when the study is small and the 

imbalance large, these assumptions may be difficult to verify.  The bias in analysis could be 

exacerbated when the relationship of the covariate to the dependent variable is nonlinear (and 

also raises the likelihood of unequal slops among treatment groups).  Finally, whatever 

adjustment method is used, unbalanced covariates lead to loss of power. The reason is that 
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adding covariates would lower the number of degrees of freedom. This will be irrelevant in large 

trials, but it can have an impact in small trials. 

Therefore, the preferable approach to obtain balance of important prognostic factors 

between groups is to apply treatment allocation methods other than simple randomization.  

 

1.2.2 Restricted Randomization 

1.2.2.1 Permuted block designs 

The permuted block design divides the experiment into blocks of even length and within each 

block randomizes equal number of patients into treatment groups.  The block size is determined 

before beginning the study and should be a multiple of the number of groups (i.e., with 2 

treatment groups, block size of either 4 or 6).  After block size has been determined, all possible 

balanced combinations of assignment within the block (i.e., equal number for all groups within 

the block) must be calculated.  Blocks are then randomly chosen to determine the patients’ 

assignment into the groups. 

Although permuted block will maintain equal or nearly equal group sizes across time, 

selection bias can occur if the investigators are not blinded to block size and treatment 

assignment.  For example, the last treatment of a block can be predicted with certainty if one has 

counted the treatments assigned and has determined the block size.  The decision whether to 

enroll the next study candidate therefore could be inadvertently affected.   

 

1.2.2.2 Efron’s biased coin design 

As a means of limiting selection bias while maintaining treatment groups of approximately equal 

size, "biased coin" design was introduced by Efron.8  This technique introduces an element of 

unpredictability of randomization into an otherwise deterministic scheme.1For a trial with two 
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treatments, the next patient is assigned to either treatment with probability of 0.5 if treatment 

numbers are equal, otherwise patient is assign to the treatment that would reduce the imbalance 

with probability p> 0.5.  As a specific example, Efron proposed taking 𝑝 = 0.67 because he 

showed that when the probability of assignment is 0.67, it would achieve a good compromise 

between treatment imbalance and increased randomness. 

With the probability of assignment equals 0.67, the experiment has an asymptotic 

probability of 0.5 achieving perfect balance for even sample sizes, and an asymptotic 

probability of 0.75 being as close as possible to balanced for odd sample sizes. 

 

1.2.2.3 Wei’s adaptive biased coin design 

In Efron’s biased coin design, the bias of the coin is constant, regardless of the degree of 

imbalance.  Wei proposed an adaptive biased coin design in which the probability of assignment 

adapts according to the degree of imbalance.  The urn design is the most widely studied of the 

adaptive biased coin designs.  Suppose one starts with an urn contains α white and α red balls.  

To determine a treatment assignment a ball is drawn at random and replaced. If the ball is white, 

treatment A is assigned; if the ball is red then treatment B is assigned. Furthermore, β additional 

balls of the opposite color of the ball drawn are added to the urn.  This drawing procedure is 

repeated for each treatment assignment.  In this way, the urn composition is skewed to increase 

the probability of assignment to the treatment that has been selected least often thus far. 

The urn design forces a small trial to be balanced but behaves like complete 

randomization as the size of the trial increases. As a result, the treatment assignments within a 

sequence generated by the urn design are not as predictable as those of other restricted 

randomization procedures, and the vulnerability to bias is reduced.  



8 
 

 Even though overall sample size balance by treatment group may be achieved with these 

methods, groups may be generated that are rarely comparable in terms of certain covariates. 

 

1.2.2.4 Stratified randomization 

Stratified randomization is a two-stage procedure in which patients are first grouped into strata 

according to predefined prognostic variables.  Within each stratum, patients are then assigned to 

a treatment group according to separate randomization sequence.16  For example, suppose that 

there is one prognostic factor, age, with two levels: under 65 years and 65 years or older.  A 

separate randomization sequence is employed for each stratum.  There is a possibility to observe 

imbalance within individual strata when stratification randomization is performed because it 

does not force overall balance between treatments.4  For finite samples, with a large number of 

small strata, imbalances are additive across strata, and can result in an overall imbalance of some 

significance.  This is less likely to occur when there are small numbers of large strata. 

 The most commonly used method for implementing a stratified treatment allocation is to 

use permuted blocks that guarantee perfect balance between the treatment groups after entry of a 

certain number of subjects.  This is called stratified blocked randomization.  Consider a trial with 

two treatment groups (control and experimental) and suppose that we wish to take two 

prognostic factors, sex and clinical stage (early versus late) into account when allocating 

treatment.  To balance both, we would form four strata namely: female-early, female-late, male-

early, and male-late. Blocked assignments are generated for each stratum.  A block usually 

comprises four or six randomly ordered treatment assignments and, within each block, equal 

numbers of patients are assigned to each treatment.  Patients are randomized within block after 

block until the study is complete.  Therefore, with permuted block design, there is no imbalance 

within strata or in aggregate as long as all blocks are filled. 
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The balance resulting from stratified blocked randomization can reduce type I error and 

improve power by reducing unwanted variation.  Theoretical benefits include facilitation of 

subgroup analyses and interim analysis.12 However, stratification randomization becomes 

difficult to implement as the number of prognostic factors increases especially if those variables 

have more than 2 levels because the total number of combinations strata soon grows 

exponentially and this can lead to very few sample sizes within strata.  For example, a study with 

4 prognostic variables which have 2, 3, 3 and 4 levels has a total of 2*3*3*4=72 strata.  If only 

100 patients are able to enter the study, some strata will probably contain no patients and many 

more will have only one.  This method therefore may fail to achieve its basic aim for small trials 

or trials with many prognostic variables, since in most strata the first permuted block of 

treatment will be only partially assigned and considerable imbalance between treatment groups 

for any factor or overall could still exist.  Therneau purported that a balance in covariates begins 

to fail when the number of factor level combinations approaches half the sample size.17 Another 

limitation of using a stratified approach is that all continuous valued covariates must be forced 

into strata, often created using arbitrary cutoffs which could ultimately result in large magnitude 

and scale differences across groups thereby creating imbalance and bias. 

  

1.2.3 Covariate-Adaptive Randomization 

To prevent substantial imbalance between treatment groups in trials with a large number of 

prognostic factors, minimization is considered an alternative approach to randomized blocks.  

Minimization was first proposed by Taves18 in 1974 and independently generalized by Pocock 

and Simon19 in 1975.  It is classified as a “dynamic allocation” or “covariate adaptive” method 
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because the allocation of next patient depends on the current balance of treatments to all previous 

patients with regard to the pre-specified prognostic factors.14,20,21 

Instead of balancing treatment numbers in each possible combination of the prognostic 

variables, minimization aims to balance the marginal treatment totals for each level of each 

factor.  It is done by allocating the new patient to the treatment group in such a way that 

treatment imbalance after allocation of the patient is as small as possible.  Based on the 

characteristics of the new patient, the Taves method adds marginal totals of the corresponding 

covariate categories for each group and compares the totals.18  The patient then is assigned to the 

group with the lower covariate total to minimize imbalance.  In Taves method, the probability of 

allocating the new patient to the preferred treatment group is one: that is, the patient is always 

allocated to the treatment group which results in lower overall imbalance. Such deterministic 

allocation is not desirable from the standpoint of predictability and principle of randomness. 

Pocock and Simon define a more general method where treatment assignment involves 

three parameters: (1) the level of imbalance between treatment groups for any given factor, (2) 

the overall imbalance across all prognostic factors being considered, and (3) the probability with 

which the patient will be allocated to the treatment group which leads to the least overall 

imbalance.19  The level of imbalance between the treatment groups for a particular level of a 

prognostic factor may be calculated in several ways such as standard deviation, variance, range, 

an upper limit of acceptable imbalance or a sign rule.  The most intuitive method is to use the 

standard deviation or variance of the numbers of patients in each treatment group who occupy 

that level of the prognostic factor.  If there are two treatment groups, the standard deviation of 

these numbers is equivalent to the magnitude of the difference between the two numbers.  

Overall imbalance is usually calculated by taking the sum of the individual imbalances and it is 
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calculated for two scenarios if the new patient is allocated to the active treatment or control 

group.  When combining the imbalances across all prognostic factors, it is appropriate to assign 

weights greater than unity to variables that are considered more important to achieve balance on 

because they are more strongly related to outcome than others.  To decrease the predictability of 

treatment assignment, Pocock and Simon provide several formulae which may be used to 

calculate the probability of assigning the patient to the preferred treatment group.19  If there are 

two treatments, the probability of the patient being assigned to the preferred treatment group 

should be chosen in the range from 0.5 to 1.  Pocock has further suggested that a random element 

of between 0.66 and 0.75 should be incorporated into the minimization algorithm in order to 

reduce predictability.  If several treatments are tied with respect to imbalance score, treatment 

assignment is determined at random. 

Minimization has been shown to be superior to stratified randomization in producing 

balance for the separate prognostic factors and overall.19  Although such sequential treatment 

allocation provides good levels of balance at the margins of prognostic factors, there is no 

guarantee that balance will exist within combinations of prognostic factors.22,23  The extent of the 

failure of minimization to balance within strata, however, has neither been explicitly stated nor 

empirically demonstrated.22,23,24  The other concern of this method is that treatment assignment 

sometimes become highly predictable.  This predictability stems from the knowledge of the 

characteristics of earlier patients and the current allocation which may suggest the next 

allocation.  Various modifications have been proposed to overcome the shortcomings of original 

minimization.  For example, to overcome the predictability, Hofmeijeret al.25 developed 

parameterized dynamic minimization (PDM), in which the assigned probability is not fixed but 

depends on the actual level of imbalance of treatment allocations to the patients already enrolled. 
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A contentious aspect of minimization is that, the validity of model-based statistical 

inference using conventional asymptotic tests may be questionable under restrictions placed on 

the treatment allocation,6,9,12 because the distributional properties of treatment effect estimators, 

in situation where minimization has been used, might not be accurately portrayed by 

conventional statistical methods.  Therefore, it is claimed that if minimization is used as the 

method of treatment allocation, the analysis must use permutation tests, rather than the 

asymptotic tests.  However, there is a limited understanding of the impact of using standard 

statistical methods which assume randomness to analyze trials employing minimization 

randomization. 

 

1.2.4 Response Adaptive Randomization 

The response adaptive (RA) randomization is a class of flexible ways of adjusting the future 

treatment assignment probability favoring the treatments observed to have comparatively 

superior responses based on accumulating interim observed information on the previous patients’ 

responses to treatment in the ongoing trial. As the trial progresses, more patients can be assigned 

to the putatively superior treatment based on the accrued data.  The optimization of such a 

scheme can be more efficient in selecting effective treatments or eliminating ineffective ones and 

also more ethical because more patients are treated with effective treatments.  

However, it lacks a mechanism to actively control the imbalance of prognostic factors 

across treatment groups.  The problem of imbalance in prognostic factors can be magnified in 

trials that use RA randomization rather than equal randomization because the former will result 

in smaller sample sizes for inferior treatment groups that may have larger chance of having 

imbalance in prognostic factors across treatment groups.  The other major concern about RA 
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randomization is that it could reduce the statistical power caused by inducing correlation among 

treatment assignments that leads to extra binomial variability.  

 

1.2.5 Covariate-Adjusted Response Adaptive Randomization 

Covariate-adjusted response-adaptive randomization (CARA) procedures extended the RA 

procedures in acknowledging the facts that the patient population is usually heterogeneous and 

that certain patient characteristics may have impact on the outcome of treatment.  Hu and 

Rosenberger3 define a covariate-adjusted response-adaptive (CARA) randomization procedure as 

a design that the treatment allocation probability for a current patient depends on the history of 

previous patients’ treatment assignments, responses and covariates as well as the covariates of 

the current patient. 

 

1.3 STATISTICAL INFERENCE 

There are two principle ways in which the statistical inferential process can be employed.  One 

way is by use of the population model of inference and the other way is by use of the 

randomization model of inference.26   These two methods of statistical inference are described 

below. 

 

1.3.1 The Population Model Based Inference 

The concept of a population model (sometimes known as the classical model) proposed by 

Neyman and Pearson4 is the most commonly used basis for the development of a statistical test. 

The essential feature of the population model is that the experimental groups must be drawn 

randomly from defined relatively large populations.  Another essential feature is that the 
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responses under study are assumed to be distributed within the sampled population in a specific 

mathematically defined distribution.  For example, when the response values result from 

measurements made on an interval scale, the most common assumption is that the population 

values conform to the normal distribution while if the measurements are nominal (categorical), 

the most common assumption is that the population distribution is of a binomial or multinomial 

form. 

Proper tests of the null hypothesis must be consistent with the assumed population 

distribution.  If a normal distribution is postulated, this leads to the classical student’s t statistic 

or Fisher’s F statistic.  The test statistic is referred to the t and F distributions to allow for the fact 

that the samples are small compared to the size of the population.  Therefore, in addition to the 

theoretical premises of population model described above, certain practical assumptions are 

specific to the tests employed under the population model.  For instance, if the t or F test is used, 

it is required that the populations under study be normally distributed and of equal variance.    

One of the benefits of working under the population model is that it is easy to generalize 

the statistical inference, in the sense that it should hold true for all similar experiments in which 

the same populations are randomly sampled.  However, there are two main sources of difficulty 

with the population model of inference.  The first and most important is that it is almost 

impossible to have random samples from defined large populations.  The second is that there is 

always uncertainty how well the assumptions of population model are satisfied. Furthermore, 

when there is evidence to believe that the assumptions about the distribution of the population 

are violated, complicated modifications of the classical tests must be made to control the risks of 

statistical error.  
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1.3.2 The Randomization Model Based Inference 

In contrast to most classical statistical tests which are based on population model, permutation 

tests (or randomization tests) are from the randomization model that does not require any 

statistical assumptions about the data beyond those inherently satisfied due to the randomization 

itself.  The null hypothesis under the randomization model is different from that under a 

population model, which is typically based on the equality of parameters from a known 

distribution.  The essential feature of a permutation test is that, under the null hypothesis of no 

treatment effect, the set of observed responses is assumed to be a set of fixed values that are not 

affected by treatment.9  That is, under the null hypothesis, each patient’s observed response is 

what would have been observed regardless of which treatment group had been assigned.  Then 

the observed difference between the treatment groups depends only on the way in which the 

patients were randomized, i.e., the particular randomization procedure employed.  The measure 

of the treatment group difference is used as the test statistic of permutation tests.  The 

distribution of the permutation test statistic is evaluated over the reference set of all possible 

randomization sequences that could be generated by the method of randomization used.  The 

reference set is then used to evaluate the tail probability value in comparison to the given 

observed test statistic.  The p-value is obtained by evaluating how far in the extremities of the 

permutation distribution the real observed test statistic lies.14  A very small p-value indicates that 

the observed value is quite extreme compared to the reference set providing evidence to conclude 

that there is a difference between treatment groups.  However, the statistical inference under 

randomization model refers only to the actual experiment which has been performed.  

Permutation tests are assumption-free, but depend explicitly on the particular randomization 

procedure used.   
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 One reason why permutation tests are not better known is that there is a steep increase in 

the number of possible permutations of the data as the size and number of randomized groups 

increases.  For instance, when there are two independent groups and the sample sizes are 𝑛1 and 

𝑛2, the number of all possible  ways of assigning the participants to the two groups is (𝑛1+𝑛2)!
𝑛1!𝑛2!

. 
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2.0 PURPOSE OF THE STUDY 

2.1 STATEMENT OF THE PROBLEMS 

About one quarter of phase III multi-arm cancer clinical trials published in 13 major oncology 

journals from 1995-2005 reported using some form of dynamic allocation (DA) method and the 

frequency of DA use increased over time.27  Yet details sufficient to assess the performance of 

DA are rarely reported.  Further, the distributional properties of treatment effect estimators, in 

situation where dynamical allocation has been used, might not be accurately portrayed by 

conventional statistical methods.  The critical point is that a dynamic allocation assigns treatment 

based on the current participant’s covariates and the covariates and allocations of previous 

participants, and it is unclear what the consequences of this are for the sampling distributions of 

conventional treatment effect estimators.  For simplicity, in this study, we confine our attention 

to the minimization method. 

 

2.2 OBJECTIVES OF THE STUDY 

The first aspect of this study is concerned mainly with the assessment for the performance of 

biased-coin minimization applied to multicenter clinical trials, in terms of balancing properties 

and also in terms of predictability of the next treatment allocation, under various scenarios of 

trials with different sample sizes, different numbers of prognostic factors to be balanced.  These 

assessments are conducted under two situations: (a) clinical site is not included as one of the 

stratification factors, and (b) clinical site is included as one of the stratification factors.  We also 

adopted different treatment imbalance tolerance levels, ranging from 2 to 4 and various 

assignment probabilities of the biased-coin, ranging from 0.6 to 0.8 to investigate how these two 

parameters in the biased-coin minimization algorithm affect its performs. 
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Using conventional methods like the log-rank test for conducting hypothesis tests for 

trials that employed biased-coin minimization may be inconsistent with statistical theory; many 

statisticians feel that in practice, there will not be substantial differences between the log-ranked 

test and the randomization test.  Thus, another aspect of this study is to compare the results from 

the log-ranked test and randomization test to evaluate such claims under a variety of trial 

scenarios and also distinguish the situations in which the permutation test might be necessary 

from those in which it might not.  
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3.0 METHODS 

3.1 DESCRIPTION OF STUDY POPULATIONS 

Data from three of randomized clinical trial populations from the National Surgical Breast and 

Bowel Project (NSABP) will be used in undertaking work on this dissertation.  These trials 

include B-24, B-28 and P-1.  Some background information for these three studies is provided 

below.  The number of patients and center involved, and the number of prognostic factors 

included in the minimization algorithms in these three trials are detailed in Table 3.1.  Also, 

Tables A1, A2 and A3 of the Appendix A provide the distributions of some key demographic 

and tumor characteristics by treatment groups for these three trials. 

 

Table 3.1 The number of patients and clinical sites involved, and the number of prognostic 
factors in three NSABP trials 

Trial Number of 
Patients 

Number of 
Clinical Sites 

Number of Patients 
Per Site (range, mean, 

median) 

Number of 
Stratification Factors 

other than Clinical Site 
B-24 1,801 260 (1-18, 6.9, 3) 1 
B-28 3,060 208 (1-97, 15.0, 9) 3 
P-1 13,388 129 (3-409, 103.8, 87) 4 

 

3.1.1 NSABP B-24 Trial 

The specific aim for the B-24 trial28 was to determine, for patients with noninvasive intraductal 

cancer (DCIS), whether lumpectomy and breast irradiation plus prolonged tamoxifen therapy is 

more effective than lumpectomy and breast irradiation without tamoxifen in preventing the 

subsequent development of ipsilateral and contralateral breast cancers. Women with DCIS were 

eligible for inclusion in the study if their life expectancy was at least 10 years. A total of 1,804 

patients were randomly assigned radiation therapy to the ipsilateral breast and placebo or 

radiation therapy followed by tamoxifen.  To avoid an imbalance in characteristics according to 
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treatment assignment, biased-coin minimization with respect to age (≤49 years or >49 years) was 

performed. 

 

3.1.2 NSABP B-28 Trial 

The B-28 trial29 was designed to determine whether four cycles of adjuvant paclitaxel (Taxol®) 

after four cycles of adjuvant doxorubicin/cyclophosphamide (AC) will prolong disease-free 

survival (DFS) and overall survival (OS) compared with four cycles of AC alone in patients with 

resected operable breast cancer and histologically positive axillary lymph nodes.  Eligible 

patients must have had no evidence of metastatic disease and should have undergone either 

lumpectomy plus axillary node dissection or total mastectomy plus axillary node dissection.  

Patients assignment to the two treatment groups was balanced with respect to histologic nodal 

status (1-3, 4-9, ≥10 positive nodes), assigned tamoxifen administration (no, yes), type of surgery 

(mastectomy, lumpectomy) and institution using biased-coin minimization.  A total of 3,060 

patients were randomized to this trial. 

 

3.1.3 NSABP P-1 Trial 

The primary aim of the P-1 trial30 was to test the hypothesis that long-term treatment with 

tamoxifen is effective in preventing invasive breast cancer among women who never had breast 

cancer but were at high risk for developing this disease. Women at increased risk for breast 

cancer because they: 1) were 60 years of age or older, 2) were 35–59 years of age with a 5-year 

predicted risk for breast cancer of at least 1.66%; or 3) had a history of lobular carcinoma in situ 

were randomly assigned to receive placebo or 20 mg/day tamoxifen for 5 years.  Patients 

assignment to the two treatment groups was balanced using biased-coin minimization with 
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respect to age (35–49 years, 50–59 years, ≥60 years), race (black, white, other), history of LCIS 

(yes, no), and breast cancer RR (<2.5, 2.5–3.9, ≥4.0).  There were 13,388 women randomized to 

this study. 

 

3.2 MINIMIZATION ALGORITHM USED IN NSABP 

The minimization algorithm used in NSABP trials is biased-coin minimization which 

incorporates a random element 𝑝𝑎𝑠𝑠𝑖𝑔𝑛 (e.g. 𝑝𝑎𝑠𝑠𝑖𝑔𝑛 = 0.6), balancing on clinical site and 

selected prognostic factors.  The process of the minimization is shown in Figure 1.  Suppose that 

a new patient enters the study with two treatment groups (A and B), and that his (or her) levels of 

the m prognostic variables are 𝑟1, 𝑟2, etc., up to 𝑟𝑚.  In order to make the allocation for the new 

patient, we first find the numbers of patients being allocated to A and B so far for the same levels 

𝑟1, 𝑟2, … , 𝑟𝑚 of the variables as the new patient about to be randomized.  Suppose that the 

numbers of patients at Level 𝑟1 of variable 1 already allocated to A and to B are 𝑎1 and  𝑏1 

respectively.  For Level 𝑟2 of variable 2, suppose that the corresponding numbers are 𝑎2 and 𝑏2, 

and so on up to Level 𝑟𝑚 of variable m, where the numbers already allocated to A and B are 𝑎𝑚 

and 𝑏𝑚 respectively.  Then, For each treatment group, sum the numbers of patients across all 

stratification factors to obtain the total for treatment A and treatment B.   The difference between 

the sum for treatment A and that for treatment B is used as the imbalance metric to determine the 

preferred treatment group during minimization.  When the imbalance score exceed a pre-

specified tolerance value then the difference in stratification factors between treatment groups is 

viewed as imbalanced otherwise it is regarded as balanced.  Tolerance values of 2 to 4 are used 

for the work.  When the treatment groups are imbalanced, the treatment group that will most 

reduce imbalance get 60% probability of assignment while when the treatment groups are 
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balanced, the assign probability to each treatment groups is equal (i.e. 𝑝𝑎𝑠𝑠𝑖𝑔𝑛 = 0.5).  Various 

assignment probabilities ranging from 0.6 to 0.8 are performed for the work. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Imbalanced (imbalance score >4) 
The treatment group that will most reduce 

imbalance get 60% probability of assignment 

Find the numbers of patients being allocated to treatment A and 
treatment B so far, for the same levels of each stratification factors as 

the new patient about to be randomized  

For each treatment group, sum the numbers of patients across all 
stratification factors to obtain the total for treatment A and treatment 
B..  The difference between the totals for treatment A and treatment 
B is used as treatment imbalance score to determine the preferred 

treatment group during minimization 

 

Balanced (imbalance score ≤4) 
The assign probability to each treatment 

group is equal (i.e. 𝑝𝑎𝑠𝑠𝑖𝑔𝑛 = 0.5) 

Figure 1. The biased-coin minimization algorithm used in NSABP trials 
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3.3 ASSESSMENT OF THE PERFORMANCE OF THE BIASED-COIN 

MINIMIZATION ALGORITHM 

The clinical site and stratification data of the actual populations in the three NSABP trials 

described above were used to generate the randomizations.  Each population was randomized 

1,000 times under each imbalance tolerance level and biased-coin probability. 

 

3.3.1 Balancing Properties of Biased-Coin Minimization  

Data from each set of 1,000 randomizations was used to determine the balancing performance of 

biased-coin minimization.  Specifically, we will assess: 1) the overall treatment imbalance; 2) the 

treatment imbalance within the levels of stratification factors; and 3) the treatment imbalance 

within clinical centers with more than 15 patients randomized.  The overall treatment imbalance 

𝑡𝐴𝐵, defined as the absolute difference in the total number of treatment A and treatment B 

assignment made in the trial.  The treatment imbalance within the levels of stratification factors 

was determined as the maximum imbalance within the levels is greater than 4.  Assuming we 

take into account P stratification factors with 𝑙1, 𝑙2, … , 𝑙𝑝 levels, the treatment imbalance for 

factor i is defined as  

𝑡𝐴𝐵(𝑓𝑎𝑐𝑡𝑜𝑟 𝑖) = 𝑚𝑎𝑥

⎩
⎨

⎧
𝑡𝐴𝐵(𝑖,1)(𝑓𝑎𝑐𝑡𝑜𝑟 𝑖, 𝑙𝑒𝑣𝑒𝑙 1),
𝑡𝐴𝐵(𝑖,2)(𝑓𝑎𝑐𝑡𝑜𝑟 𝑖, 𝑙𝑒𝑣𝑒𝑙 2),
… … … … … … … … … … … … ,
𝑡𝐴𝐵(𝑖,𝑙𝑖)(𝑓𝑎𝑐𝑡𝑜𝑟 𝑖, 𝑙𝑒𝑣𝑒𝑙 𝑙𝑖)⎭

⎬

⎫
 .   

The 𝑡𝐴𝐵(𝑖,𝑗) (𝑓𝑎𝑐𝑡𝑜𝑟 𝑖, 𝑙𝑒𝑣𝑒𝑙 𝑗) = �𝑁𝐴,𝑛(𝑖,𝑗) − 𝑁𝐵,𝑛(𝑖,𝑗)� where 𝑛(𝑖, 𝑗) is the number of patients 

with level j for factor i and d is the pre-specified imbalance tolerance, which will be 4 in this 

study.   The treatment imbalance within clinical sites with more than 15 patients randomized was 

determined as the proportion of clinical sites with more than 15 for whom the absolute difference 

between the number of treatment A and treatment B at that center is greater than 4. 
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The treatment allocation was simulated 1,000 times and thus these balancing 

measurements given above were evaluated over the set of 1,000 replications.  As a result we 

obtained distribution functions of the three balancing properties defined above. 

 

3.3.2 Predictability of Next Treatment Allocation 

We adopted three different methods whereby one might predict the next treatment allocation 

identified by Hills et al.28 to mimic how one may attempt to predict the next treatment allocation.  

The different methods of prediction are described below. 

Method 1: Prediction based upon knowledge of the previous treatment allocation only, whereby 

the alternative treatment to that previously allocated to the site is predicted. 

Method 2: Prediction based upon knowledge of all previous allocations to the clinical site and 

the treatment group with the least number of patients is predicted. 

Method 3: Prediction as in method 2, however based upon only the previous three allocations to 

the clinical site. 

Predictability was measured as the percentage of treatment allocations that are predicted 

correctly, that is those corresponding to the treatment allocation identified via the minimization 

method employed.  The prediction of the first treatment allocation is considered as “pure 

guesswork” as there is no information upon which to base a guess.  In addition, for methods 2 

and 3, occasionally the number of patients in each treatment group at the time of prediction is 

equal (for method 3 this occurs when only two patients have been randomized), and hence the 

prediction of treatment allocation cannot be based on the knowledge of previous allocations.  

The predictions in this situation are also classed as “pure guesswork.”  The calculation of 

predictability did not include these “pure guesswork” situations. 
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Prediction rates were calculated for each clinical site and used to calculate mean 

prediction rates per trial.  We then calculated the average predictability rates over the 1,000 

simulated treatment allocation sequences. 

 

3.4 COMPARISON OF RESULTS FROM THE LOG-RANK TEST AND THE 

RANDOMIZATION TEST 

3.4.1 Simulation Framework for Assessing the Agreement between the Log-rank Test and 

the Randomization Test 

We generated parameters with similar distributions as those in the populations of the three 

NSABP trials mentioned in the previous section in terms of sample size, censoring distribution 

and baseline hazard function in each trial.   

The steps used to generate a right-censored data set are shown below. 

STEP 1: Generate stratification variables  

- Generate stratification variables from a binomial distribution (for 2-level variable) or 

multinomial distribution (for multilevel variable) with the frequency distributions of 

variables from the actual population in each trial.   

STEP 2: Generate the sequence of randomization 

- Generate the time, trand, at which the patient was randomized to the treatment group 

following an uniform distribution within the accrual time of the trial.    

STEP 3: Generate treatment variable 

- Treatment assignment is determined by applying biased-coin minimization algorithm 

incorporating with imbalance tolerance level=2 and the biased-coin probability=0.7 to 

have balanced treatment assignment.  
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STEP 4: Generate the randomly right censored observations 

- Generate time from trial start to theoretical event, 𝑡𝑡ℎ𝑒𝑜𝑟𝑦, from an exponential 

distribution (i.e. assuming the baseline hazard function is constant) using the 

estimated parameters based on the baseline hazard functions of  the population for two 

treatment groups, respectively. 

- Determine the time in the study, tstudy, by subtracting the time of being randomized 

from the whole time period of trial, t. 

- Compare time from trial start to theoretical event, 𝑡𝑡ℎ𝑒𝑜𝑟𝑦, with the time in the study, 

𝑡𝑠𝑡𝑢𝑑𝑦. We denote the time and indicator variables as follows: 

𝑡𝑜𝑏𝑠 [𝑖] = min (𝑡𝑡ℎ𝑒𝑜𝑟𝑦[𝑖], 𝑡𝑠𝑡𝑢𝑑𝑦[𝑖]) 

𝐸𝑣𝑒𝑛𝑡[𝑖] = �
0 𝑖𝑓 𝑡𝑡ℎ𝑒𝑜𝑟𝑦[𝑖] >  𝑡𝑠𝑡𝑢𝑑𝑦[𝑖]
1 𝑖𝑓 𝑡𝑡ℎ𝑒𝑜𝑟𝑦[𝑖] ≤ 𝑡𝑠𝑡𝑢𝑑𝑦[𝑖]  

For each of the three NSAB trials, we separately generated 1,000 simulated data sets with 

sample size that was equal to that for each of the three trials. 

 

3.4.2 The Log-rank Test  

The log-rank test which takes the whole follow up period into account is the most popular 

method of comparing the survival of groups.  It has the considerable advantage that it does not 

require that one know the shape of the survival curve or the distribution of survival times.  The 

log-rank test is used to test the null hypothesis that there is no difference between the populations 

in the probability of an event at any time point.  The test statistic is calculated as follows: 

𝜒2(𝑙𝑜𝑔𝑟𝑎𝑛𝑘) = (𝑂1−𝐸1)2

𝐸1
+ (𝑂2−𝐸2)2

𝐸2
, where 𝑂1 and 𝑂2 are the total numbers of observed events in 

groups 1 and 2, respectively, and 𝐸1 and 𝐸2 the total numbers of expected events.   
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If the null hypothesis is true, we expect 𝑒𝑖𝑗 = 𝑛𝑖𝑗 ∗
𝑑𝑗
𝑛𝑗

, where 𝑛𝑖𝑗 is the number at risk just 

prior to time j in group i= 1, 2; 𝑛𝑗  is the total number of cases that are at risk just prior to time j; 

𝑑𝑗 is the total number of events at time j in both groups.  The total expected number of events for 

a group is the sum of the expected number of events at the time of each event.  Then the test 

statistic is compared with the chi-square distribution with 1 degree of freedom and the 

corresponding p-value is obtained.  

For each of the simulated data, we perform the log-rank test and record the p-value for 

the two-sided hypothesis test for the difference between treatment groups. 

 

3.4.3 The Randomization Test  

Let Ω denote the size of the reference set and S be the test statistic of interest, which can be any 

measure of the difference between the treatment groups.  Define 𝑆𝑤 to be the value of S for 

sequence w, 𝑤 = 1, … ,Ω and 𝑆𝑜𝑏𝑠 to be the given observed test statistic based on the sequence 

𝑤𝑜𝑏𝑠 actually used.  Let W record realizations of particular randomization sequences; W has a 

probability distribution depending on the particular randomization procedure employed.  Then 

the two-sided p value of the permutation test is given by 

                       𝑝 = ∑ 𝐼(|𝑆𝑤 −  𝑆̅| ≥ |𝑆𝑜𝑏𝑠 −  𝑆̅|)Pr (𝑊 = 𝑤)Ω
𝑤=1 ,                                    (1) 

where 𝑆̅ = ∑ 𝑆𝑤Pr (𝑊 = 𝑤)Ω
𝑤=1  and 𝐼(. ) is the indicator function.  

However, it is practically infeasible to computation the equation (1) especially if the 

sample size and number of randomized groups is large.  Using the NSABP B-24 trail as the 

example, the sample size is 1801 and the all possible ways of assigning equal number of 

participants to each group would be 1801!
900!901!

.  It is therefore usually to use Monte Carlo sampling 

from all possible assignments to estimate the true permutation test p value, that is as a 
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randomization test.  Let 𝑆𝑚,𝑚 = 1,2, … ,𝑀, denotes the mth test statistic randomly sampled from 

the all possible assignments evaluated under the condition that the order of patient’s visits, 

responses, and covariate values are all fixed.  Then, a two-sided Monte Carlo p value for a test 

that rejects for large values of 𝑆𝑜𝑏𝑠 is 

                                   �̂� = 1+∑ 𝐼(|𝑆𝑚−�̅�|≥|𝑆𝑜𝑏𝑠−�̅�|)𝑀
𝑚=1

𝑀+1
, 𝑆̅ = ∑ 𝑆𝑚

𝑀
𝑀
𝑚=1                                     (2) 

For each of the simulated data, the two-sided p-value of for the randomization test was 

estimated by Monte Carlo sampling (2) with M=1,000 replications under the condition that the 

order of patient’s visits, responses, and covariate values are all fixed.   

To compare the performances of these two statistical tests for trials employing biased-

coin minimization, we compared the proportions of the 1,000 simulations for which we obtain a 

p-value<0.05 from the log-rank test to that obtained from the randomization test to determine 

whether the nominal significance level (5%) is maintained.  We also assess the agreement on the 

significance/ non-significance of p-values from two tests in the 1,000 simulations.  Further, in 

order to investigate the influence of effect size on the comparison of results from the two tests, 

we carried out simulations using parameters from each trial with four scenarios of hazard ratio: 

0.50, 0.60, 0.80, and 0.90 under statistical power of 0.8. 
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4.0 RESULTS 

4.1 BALANCING PROPERTIES OF BIASED-COIN MINIMIZATION 

4.1.1 The Overall Treatment Imbalance 

Figures 2, 3 and 4 display the histograms of the overall treatment imbalance over 1,000 

simulated treatment allocations for NSABP B-24, B-28 and P-1 comparing different scenarios of 

treatment allocation imbalance tolerance levels and assignment probabilities of the biased-coin in 

the minimization algorithm.  The mean and its 95% confidence interval of the overall treatment 

imbalance under the different scenarios from 1,000 simulated treatment allocations for three 

trials are presented in Tables 4.1.1.  The mean overall imbalance between the two treatment 

groups does not exceed 6 for any of the scenarios as the minimization randomization is applied.  

This compared with simple randomization where the mean level of overall treatment imbalance 

is greater than 33 in B-24 trial, 43 in B-28 trial, and 90 in P-1 trial.  Such results are shown in 

both the conditions when the clinical site is not included as one of the stratification factors (Table 

4.1.1a) and when the clinical site is included (Table 4.1.1b).   

 The average overall treatment imbalance and its variability increase as the treatment 

allocation imbalance tolerance level increases and these parameters decrease as the assignment 

probability of the biased-coin increases.  These results are as expected from the definition of the 

minimization procedure, in that as the less the treatment assignments are left to be randomly 

chosen, the overall treatment imbalance would become lower.  In the condition that the clinical 

site is not included as one of the stratification factors, the average overall treatment imbalance 

increases up to1.27 as the treatment assignment imbalance tolerance level increases from 2 to 4, 

and it decreases up to 2.75 as the assignment probabilities of the biased-coin increases from 0.6 

to 0.8.  In the B-24 trial, when the biased-coin probability is 0.6, the average overall treatment 
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imbalance only increases 0.42 as the treatment assignment imbalance tolerance level increases 

from 2 to 3 yet, it increases 1.03as the treatment assignment imbalance tolerance level increases 

from 2 to 4.  When the biased-coin probability is 0.7 or 0.8, the average overall treatment 

imbalance increases 0.64 and 0.58 as the treatment allocation imbalance tolerance level increases 

from 2 to 3 and the increase becomes 1.27 and 1.18 as the treatment allocation imbalance 

tolerance level increases from 2 to 4.  However, in the B-28 and P-1 trials where the sample size 

is larger, the increase in the average overall treatment imbalance along with the increase in 

imbalance tolerance level is minimal.  The increase exceeds 0.30 only when the biased-coin 

probability is greater than 0.7 and the treatment allocation imbalance tolerance level increases 

from 2 to 4.  Also, the maximum increase does not surpass 0.40 in the B-28 or P-1 trials.  The 

decrease in the average overall treatment imbalance resulting from the increase in the biased-

coin probability is greater than 1.25 no matter what value of the treatment allocation imbalance 

tolerance level is in three trials and the magnitude of the decrease raises as the sample size is 

larger.  For most scenarios, the inclusion of clinical site as a stratification factor slightly 

increases the overall treatment imbalance.  The maximum value of the average overall treatment 

imbalance is 5.42 in B-24 trial yet the average overall treatment imbalance is below 5 in B-28 

and P-1 trials for the biased-coin probability of 0.6.   
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(a) When clinical site is not considered as one of the stratification factors  

 

(b) When clinical site is considered as one of the stratification factors  

 
Figure 2.  The histograms of the overall treatment imbalance over 1,000 simulated 
treatment allocations for NSABP B-24 Trial 
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(a) When clinical site is not considered as one of the stratification factors  

 

(b) When clinical site is considered as one of the stratification factors  

 
Figure 3.  The histograms of the overall treatment imbalance over 1,000 simulated 
treatment allocations for NSABP B-28 Trial 
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(a) When clinical site is not considered as one of the stratification factors  

 

(b) When clinical site is considered as one of the stratification factors  

 
Figure 4.  The histograms of the overall treatment imbalance over 1,000 simulated 
treatment allocations for NSABP P-1 Trial 
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Table 4.1.1a The mean overall treatment imbalance from 1,000 simulated treatment 
allocations of complete set of trials when clinical site is not included as one of the 
stratification factors. 
Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

B-24 trial (n=1,801)  B-28 trial (n=3,060)  P-1 trial (n=13,388) 

Mean 95% CI  Mean 95% CI  Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 4.44 (4.22, 4.66)  3.92 (3.71, 4.13)  4.06 (3.85, 4.27) 
0.7 2.91 (2.77, 3.04)  2.04 (1.92, 2.15)  2.09 (1.97, 2.20) 
0.8 2.47 (2.37, 2.58)  1.43 (1.35, 1.52)  1.41 (1.33, 1.49) 

Treatment assignment imbalance tolerance level=3 
0.6 4.86 (4.63, 5.08)  4.02 (3.82, 4.22)  4.26 (4.04, 4.48) 
0.7 3.55 (3.40, 3.71)  2.16 (2.04, 2.28)  2.27 (2.15, 2.39) 
0.8 3.05 (2.92, 3.18)  1.56 (1.47, 1.65)  1.51 (1.42, 1.60) 

Treatment assignment imbalance tolerance level=4 
0.6 5.47 (5.21, 5.73)  4.08 (3.87, 4.29)  4.37 (4.15, 4.59) 
0.7 4.18 (3.99, 4.37)  2.41 (2.29, 2.54)  2.39 (2.26, 2.51) 
0.8 3.65 (3.49, 3.81)  1.76 (1.65, 1.86)  1.75 (1.66, 1.85) 

Simple randomization 
0.5 34.54 (32.99, 36.10)  43.68 (41.66, 45.70)  97.38 (92.90, 101.86) 
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Table 4.1.1b The mean overall treatment imbalance from 1,000 simulated treatment 
allocations of complete set of trials when clinical site is included as one of the stratification 
factors. 
Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

B-24 trial (n=1,801)  B-28 trial (n=3,060)  P-1 trial (n=13,388) 

Mean 95% CI  Mean 95% CI  Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 4.90 (4.67, 5.15)  4.18 (3.96, 4.40)  4.42 (4.19, 4.65) 
0.7 3.01 (2.87, 3.15)  2.12 (2.00, 2.24)  2.23 (2.11, 2.35) 
0.8 2.49 (2.39, 2.60)  1.59 (1.50, 1.68)  1.44 (1.35, 1.53) 

Treatment assignment imbalance tolerance level=3 
0.6 5.03 (4.80, 5.27)  4.23 (4.01, 4.45)  4.69 (4.44, 4.93) 
0.7 3.44 (3.29, 3.60)  2.26 (2.14, 2.38)  2.50 (2.36, 2.63) 
0.8 2.74 (2.62, 2.87)  1.66 (1.57, 1.76)  1.69 (1.59, 1.78) 

Treatment assignment imbalance tolerance level=4 
0.6 5.42 (5.16, 5.68)  4.46 (4.23, 4.69)  4.60 (4.36, 4.84) 
0.7 3.98 (3.80, 4.16)  2.41 (2.28, 2.54)  2.53 (2.40, 2.66) 
0.8 3.32 (3.17, 3.46)  1.88 (1.78, 1.98)  1.77 (1.67, 1.87) 

Simple randomization 
0.5 35.18 (33.60, 36.75)  42.75 (40.69, 44.80)  87.29 (83.34, 91.23) 
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4.1.2 The Treatment Imbalance within Stratification Factors 

The treatment imbalance within stratification factors was assessed by two measurements over 

1000 simulated treatment allocations of the complete set for each of the three trials: 1) the 

proportion for which the maximum treatment imbalance in any stratification factor is greater 

than 4; and 2) the mean maximum imbalance within the levels of the stratification factors.  The 

results of these two balancing properties for three trials are present below separately.  

4.1.2.1 NSABP B-24 trial 

Table 4.1.2.1 provides the results of simulations for the effect of stratification in the B-24 trial.  

Age, defined in two levels, was the only stratification factor used in B-24.  The results from the 

simulations show that the proportion for which the maximum imbalance within either age strata 

being greater than 4 in 1,000 simulated treatment allocations dramatically decreases to below 

0.50 when the biased-coin minimization is applied whereas the proportion is around 0.98 when 

the simple randomization is applied.  The mean maximum treatment imbalance within the 2 

levels of age decreases from 34 as simple randomization is applied to less than 6 as the 

minimization randomization is applied.  Although the inclusion of clinical sited as the 

stratification factor would increase the treatment imbalance within the stratification factor, the 

proportion for which the maximum imbalance in one of the age strata being greater than 4 in 

1,000 simulated treatment allocation is still below 0.6 and the mean maximum imbalance within 

the 2 levels of age is less than 5.50.  The proportion for which the maximum imbalance in one of 

the age strata being greater than 4 and the maximum imbalance within the 2 levels of age 

decreases as the assignment probabilities of the biased-coin increases.   
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Table 4.1.2.1  The proportion of 1,000 simulations for which the maximum treatment imbalance within either of the two-level 
stratification factor of age in B-24 trial, is greater than 4 and the mean maximum treatment imbalance within either of the two 
levels of age for the B-24 trial simulations. 
Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

Clinical Site is not included as 
one of the stratification factors 

Clinical Site is included as 
one of the stratification factors 

Proportion for which 
the maximum 
imbalance > 4 

Mean 95% CI 
Proportion for which 

the maximum 
imbalance is > 4 

Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 0.313 4.32 (4.15, 4.51) 0.472 4.85 (4.66, 5.03) 
0.7 0.082 2.78 (2.68, 2.88) 0.174 3.01 (2.90, 3.11) 
0.8 0.017 2.29 (2.21, 2.36) 0.056 2.44 (2.36, 2.51) 

Treatment assignment imbalance tolerance level=3 
0.6 0.410 4.90 (4.72, 5.08) 0.541 5.17 (4.99, 5.34) 
0.7 0.139 3.44 (3.33, 3.54) 0.265 3.53 (3.41, 3.65) 
0.8 0.032 3.07 (2.99, 3.15) 0.112 2.75 (2.66, 2.84) 

Treatment assignment imbalance tolerance level=4 
0.6 0.489 5.48 (5.29, 5.66) 0.572 5.49 (5.30, 5.68) 
0.7 0.260 4.02 (3.91, 4.14) 0.350 3.91 (3.79, 4.03) 
0.8 0.105 3.50 (3.41, 3.59) 0.244 3.39 (3.29, 3.49) 

Simple randomization 
0.5 0.982 33.81 (32.66, 34.96) 0.986 34.58 (33.46, 35.70) 
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4.1.2.2 NSABP B-28 trial 

Table 4.1.2.2a and 4.1.2.2b display the results of simulations to assess the effect of stratification 

in the B-28 Trial.  In this study there were three stratification factors including number of nodes 

(3 levels), Tamoxifen administration (2 levels) and type of surgery (2 levels).  The results 

indicate that as the assignment probabilities of the biased-coin increases from 0.6 to 0.7 or 0.8, 

the minimum reduction in the proportion of the maximum imbalance in each stratification factor 

greater than 4 in 1,000 simulated treatment allocation is 0.28 and 0.40, respectively; while the 

minimum reduction in the mean level of maximum imbalance within the levels of these 

stratification factors could be 2.18 and 2.99, respectively.  Number of nodes, a factor with three 

levels, has higher mean level of maximum imbalance within the levels of these stratification 

factors than the other two factors, which possessed two levels.  This is true regardless of the 

treatment allocation imbalance tolerance level or the assignment probability of the biased-coin 

but the difference in the mean level of maximum imbalance within the levels of stratification 

factors is quite small if simple randomization is performed.  Also, the decrease in treatment 

imbalance within stratification factors resulting from larger biased-coin probability is larger for 

the factor with more levels.  As expected, the inclusion of clinical site as the stratification factor 

increases the treatment imbalance within the stratification factors.  Although the proportion of 

the maximum imbalance in each stratification factor greater than 4 is higher than 0.50 when 

considering a biased-coin probability of 0.6, the mean maximum imbalance within any levels of 

the stratification factors is still below 7. 

4.1.2.3 NSABP P-1 trial   

The results of simulations to assess the effect of stratification in the P-1 trial are shown in Table 

4.1.2.3a and Table 4.1.2.3b.  There were four stratification factors used in the P-1 study 
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including age (3 levels), race (3 levels), history of LCIS (2 levels) and breast cancer relative risk 

(3 levels).  The mean maximum treatment imbalance within any levels of the stratification 

factors decreases from above 90 as simple randomization is applied to less than 8 as the 

minimization randomization is applied.  When considering a biased-coin probability above 0.7, 

the mean maximum treatment imbalance within any levels of the stratification factors would be 

less than 5.  Again, the maximum imbalance within the levels of these stratification factors for 

the factors that have 3 levels is higher than the factor with 2 levels and the decrease in treatment 

imbalance within stratification factors resulting from larger biased-coin probability is larger for 

the factor with more levels. 
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Table 4.1.2.2a  The proportion of 1,000 simulations for which the maximum imbalance within any level of the three stratification 
factors in B-28 trial is greater than 4 and the mean maximum imbalance within any levels of three stratification factors for the B-28 
trial simulations  when clinical site is not included as one of the stratification factors. 

Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

Number of nodes 
(3 levels) 

Tamoxifen administration 
(2 levels) 

Type of Surgery 
(2 levels) 

Proportion 
for which 

the 
maximum 
imbalance 

is > 4 

Mean 95% CI 

Proportion 
for which 

the 
maximum 
imbalance 

is > 4 

Mean 95% CI 

Proportion 
for which 

the 
maximum 
imbalance 

is > 4 

Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 0.61 6.29 (6.07, 6.51) 0.58 5.14 (4.93, 5.35) 0.44 5.10 (4.89, 5.30) 
0.7 0.15 3.46 (3.35, 3.57) 0.19 2.75 (2.64, 2.85) 0.11 2.74 (2.63, 2.85) 
0.8 0.03 2.41 (2.33, 2.48) 0.05 1.93 (1.86, 2.01) 0.01 1.95 (1.87, 2.03) 

Treatment assignment imbalance tolerance level=3 
0.6 0.63 6.41 (6.21, 6.62) 0.58 5.19 (4.99, 5.38) 0.45 5.35 (5.14, 5.56) 
0.7 0.18 3.49 (3.37, 3.60) 0.22 2.89 (2.78, 3.00) 0.11 2.86 (2.75, 2.97) 
0.8 0.04 2.72 (2.63, 2.80) 0.09 2.20 (2.12, 2.29) 0.02 2.13 (2.04, 2.21) 

Treatment assignment imbalance tolerance level=4 
0.6 0.64 6.77 (6.54, 7.00) 0.62 5.42 (5.21, 5.63) 0.45 5.51 (5.28, 5.74) 
0.7 0.27 3.80 (3.67, 3.92) 0.30 3.24 (3.12, 3.36) 0.17 3.15 (3.03, 3.27) 
0.8 0.09 3.02 (2.92, 3.11) 0.12 2.41 (2.32, 2.50) 0.05 2.42 (2.33, 2.52) 

Simple randomization 
0.5 0.997 43.38 (41.86, 44.90) 0.992 43.77 (42.10, 45.44) 0.995 43.16 (41.77, 44.55) 
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Table 4.1.2.2b  The proportion of 1,000 simulations for which the maximum imbalance within any level of the three 
stratification factors in B-28 trial is greater than 4 and the mean maximum imbalance within any levels of three stratification factors 
for the B-28 trial simulations when clinical site is included as one of the stratification factors. 

Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

Number of nodes 
(3 levels) 

Tamoxifen administration 
(2 levels) 

Type of surgery 
(2 levels) 

Proportion 
for which 

the 
maximum 
imbalance 

is > 4 

Mean 95% CI 

Proportion 
for which 

the 
maximum 
imbalance 

is > 4 

Mean 95% CI 

Proportion 
for which 

the 
maximum 
imbalance 

is > 4 

Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 0.64 6.75 (6.52, 6.97) 0.60 5.39 (5.18, 5.59) 0.48 5.48 (5.26, 5.69) 
0.7 0.18 3.59 (3.48, 3.71) 0.22 2.85 (2.74, 2.96) 0.11 2.83 (2.72, 2.94) 
0.8 0.04 2.60 (2.51, 2.68) 0.07 2.11 (2.03, 2.19) 0.02 2.12 (2.04, 2.20) 

Treatment assignment imbalance tolerance level=3 
0.6 0.64 6.78 (6.56, 7.00) 0.65 5.75 (5.54, 5.97) 0.51 5.55 (5.35, 5.76) 
0.7 0.21 3.71 (3.59, 3.83) 0.28 3.07 (2.95, 3.19) 0.14 3.03 (2.91, 3.15) 
0.8 0.07 2.80 (2.70, 2.89) 0.09 2.24 (2.15, 2.32) 0.04 2.33 (2.24, 2.42) 

Treatment assignment imbalance tolerance level=4 
0.6 0.67 6.98 (6.76, 7.19) 0.65 5.82 (5.60, 6.04) 0.54 5.89 (5.67, 6.11) 
0.7 0.27 4.03 (3.91, 4.15) 0.32 3.34 (3.21, 3.46) 0.18 3.35 (3.23, 3.47) 
0.8 0.12 3.10 (3.00, 3.20) 0.15 2.55 (2.46, 2.64) 0.04 2.46 (2.36,2.55 ) 

Simple randomization 
0.5 0.996 42.02 (40.50, 43.53) 0.986 42.18 (40.48, 43.88) 0.987 43.95 (42.45, 45.45) 
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Table 4.1.2.3a  The mean maximum imbalance within any levels of the four stratification factors in the P-1 trial over 1,000 
simulations of treatment allocations when clinical site is not included as one of the stratification factors. 

Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

Age 
(3 levels) 

Race 
(3 levels) 

History of LCIS 
(2 levels) 

Breast cancer relative risk 
(3 levels) 

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 7.23 (6.99, 7.46) 7.09 (6.86, 7.32) 5.66 (5.45, 5.88) 7.09 (6.86, 7.32) 
0.7 3.78 (3.67, 3.90) 3.68 (3.57, 3.79) 2.96 (2.85, 3.06) 3.66 (3.54, 3.78) 
0.8 2.59 (2.51, 2.67) 2.58 (2.50, 2.65) 2.03 (1.95, 2.11) 2.50 (2.42, 2.58) 

Treatment assignment imbalance tolerance level=3 
0.6 7.28 (7.05, 7.52) 7.33 (7.09, 7.57) 5.93 (5.71, 6.15) 7.27 (7.04, 7.50) 
0.7 4.07 (3.94, 4.19) 4.00 (3.88, 4.13) 3.10 (2.98, 3.22) 3.84 (3.72, 3.96) 
0.8 2.91 (2.82, 3.00) 2.86 (2.78, 2.95) 2.17 (2.08, 2.26) 2.86 (2.77, 2.95) 

Treatment assignment imbalance tolerance level=4 
0.6 7.38 (7.14, 7.62) 7.66 (7.42, 7.90) 5.92 (5.69, 6.14) 7.45 (7.22, 7.69) 
0.7 4.23 (4.10, 4.36) 4.15 (4.03, 4.28) 3.34 (3.21, 3.46) 4.19 (4.06, 4.32) 
0.8 3.19 (3.10, 3.29) 3.21 (3.11, 3.30) 2.48 (2.38, 2.57) 3.09 (2.99, 3.18) 

Simple randomization 
0.5 90.97 (88.55, 93.39) 96.37 (92.08, 100.66)  96.92 (92.68, 101.17) 93.25 (90.41, 96.08) 
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Table 4.1.2.3b  The mean maximum imbalance within any levels of the four stratification factors in P-1 trial over 1,000 
simulated treatment allocations for complete set of trial when clinical site is included as one of the stratification factors. 

Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

Age 
(3 levels) 

Race 
(3 levels) 

History of LCIS 
(2 levels) 

Breast cancer relative risk 
(3 levels) 

Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 7.73 (7.49, 7.97) 7.70 (7.46, 7.94) 6.13 (5.90, 6.36) 7.71 (7.46, 7.95) 
0.7 3.96 (3.83, 4.08) 4.02 (3.90, 4.15) 3.15 (3.03, 3.27) 4.03 (3.90, 4.16) 
0.8 2.76 (2.67, 2.85) 2.81 (2.72, 2.90) 2.14 (2.05, 2.23) 2.79 (2.70, 2.88) 

Treatment assignment imbalance tolerance level=3 
0.6 7.98 (7.74, 8.23) 7.84 (7.60, 8.09) 6.42 (6.18, 6.67) 7.94 (7.69, 8.18) 
0.7 4.23 (4.10, 4.35) 4.34 (4.21, 4.47) 3.40 (3.27, 3.53) 4.20 (4.07, 4.33) 
0.8 3.01 (2.92, 3.10) 3.06 (2.97, 3.16) 2.34 (2.25, 2.43) 2.97 (2.88, 3.07) 

Treatment assignment imbalance tolerance level=4 
0.6 8.18 (7.92, 8.45) 7.87 (7.62, 8.11) 6.55 (6.30, 6.79) 8.11 (7.85, 8.37) 
0.7 4.42 (4.29, 4.55) 4.38 (4.24, 4.51) 3.46 (3.34, 3.59) 4.42 (4.28, 4.55) 
0.8 3.23 (3.14, 3.33) 3.19 (3.09, 3.29) 2.49 (2.39, 2.58) 3.10 (3.00, 3.19) 

Simple randomization 
0.5 86.21 (83.88, 88.54) 86.56 (82.81, 90.32)  87.91 (84.15, 91.67) 86.98 (84.35, 89.60) 
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4.1.3 The Treatment Imbalance within Clinical Site   

The proportion of clinical sites that exhibited an imbalance by treatment arm that was 5 or 

greater was used to assess the likelihood of obtaining a substantial treatment imbalance within 

site.  Only those sites that randomized at least 15 patients were included in this assessment.  The 

findings from the 1,000 simulated treatment allocations are shown in both the conditions when 

the clinical site is not included as one of the stratification factors (Table 4.1.3a) and when the 

clinical site is included (Table 4.1.3b).  

When the clinical site is not considered as one of the stratification factors, neither change 

in the level of imbalance tolerance or change in the treatment allocation probability result in any 

noticeable change in the proportion of sites having a within-site treatment imbalance of 5 or 

greater and the results for all scenarios are close to that seen when just simple randomization is 

applied.  However, the proportion of sites having a within-site treatment imbalance of 5 or 

greater seems to increase as the sample size of trial is larger.  The proportion of sites having a 

within-site treatment imbalance of 5 or greater is about 0.28 for B-24 trial (n=1,801) and about 

0.56 for P-1 trial (n=13,388).  On the other hand, when clinical site is included as one of the 

stratification factors, an increase in the treatment allocation probability dramatically decreases 

the within-site imbalance as expected.  The proportion of sites having a within-center treatment 

imbalance of 5 or greater decreases to less than 0.20 for B-24 and B-28 trials and less than 0.40 

for P-1 trial even in the situation of 0.6 biased-coin probability and the proportion would be more 

minimal when the biased-coin probability above 0.7 is considered. 
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Table 4.1.3a The mean proportion of sites with more than 15 patients for whom the 
absolute difference between the numbers of patients in two treatment groups at that site is 
5 or greater for each trial over 1,000 simulated treatment allocations for complete set of 
trials when clinical site is not included as one of the stratification factors. 
Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

B-24 trial (n=1,801) B-28 trial (n=3,060) P-1 trial (n=13,388) 

Mean 95% CI Mean 95% CI Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 0.280 (0.275, 0.285) 0.320 (0.316, 0.324)  0.557 (0.555, 0.560) 
0.7 0.275 (0.270, 0.280) 0.319 (0.315, 0.323)  0.552 (0.549, 0.555) 
0.8 0.275 (0.270, 0.280) 0.315 (0.312, 0.319)  0.552 (0.550, 0.555) 

Treatment assignment imbalance tolerance level=3 
0.6 0.273 (0.268, 0.278) 0.321 (0.318, 0.325)  0.555 (0.552, 0.558) 
0.7 0.271 (0.266, 0.276) 0.322 (0.318, 0.325)  0.553 (0.550, 0.556) 
0.8 0.273 (0.268, 0.278) 0.322 (0.318, 0.325)  0.552 (0.549, 0.555) 

Treatment assignment imbalance tolerance level=4 
0.6 0.275 (0.270, 0.281) 0.320 (0.316, 0.324)  0.556 (0.553, 0.559) 
0.7 0.276 (0.271, 0.281) 0.321 (0.317, 0.325)  0.555 (0.552, 0.558) 
0.8 0.272 (0.267, 0.277) 0.319 (0.315, 0.323)  0.552 (0.549, 0.555) 

Simple randomization 
0.5 0.278 (0.273, 0.283) 0.326 (0.322, 0.329)  0.559 (0.556, 0.561) 
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Table 4.1.3b The mean proportion of sites with more than 15 patients for whom the 
absolute difference between the numbers of patients in two treatment groups at that center 
is 5 or greater for each trial over 1,000 simulated treatment allocations for complete set of 
trials when clinical site is included as one of the stratification factors. 

Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

B-24 trial (n=1,801) B-28 trial (n=3,060) P-1 trial (n=13,388) 

Mean 95% CI Mean 95% CI Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 0.134 (0.130, 0.138) 0.212 (0.209, 0.216) 0.359 (0.356, 0.362) 
0.7 0.040 (0.038, 0.042) 0.079 (0.077, 0.081) 0.123 (0.121, 0.125) 
0.8 0.009 (0.008, 0.011) 0.021 (0.019, 0.022) 0.031 (0.030, 0.032) 

Treatment assignment imbalance tolerance level=3 
0.6 0.149 (0.145, 0.153) 0.217 (0.214, 0.220) 0.365 (0.363, 0.368) 
0.7 0.058 (0.055, 0.061) 0.093 (0.091, 0.095) 0.137 (0.135, 0.139) 
0.8 0.020 (0.018, 0.022) 0.033 (0.031, 0.034) 0.042 (0.041, 0.043) 

Treatment assignment imbalance tolerance level=4 
0.6 0.168 (0.163, 0.172) 0.222 (0.219, 0.226) 0.371 (0.368, 0.373) 
0.7 0.084 (0.081, 0.087) 0.109 (0.107, 0.112) 0.154 (0.152, 0.156) 
0.8 0.043 (0.040, 0.045) 0.048 (0.047, 0.050) 0.059 (0.058, 0.060) 

Simple randomization 
0.5 0.277 (0.271, 0.282) 0.323 (0.319, 0.327) 0.558 (0.555, 0.561) 
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4.1.4 Evaluation of the Effects from Different Dimensions in a Clinical Trial on the 

Balancing Properties  

To further  describe the impact that the different dimensions of clinical trial design (sample size, 

number of stratification factors and number of levels within a stratification factor) have on the 

balancing properties, we present a series of simulations of treatment allocation for first 1,801 

patients, first 3,060 patients, and all patients in P-1 trial considering four sets of variables, 

containing one, two, three and all four of the stratification factors in P-1 trial for the different 

scenarios of imbalance tolerance and bias-coin assignment probabilities.  In order to assess the 

sole effect from different dimensions of trial design on treatment balance, results are compared 

across different scenarios within one dimension, controlling the other two dimensions.   

First, we explore the effect of different numbers of levels within stratification factors on 

the overall treatment imbalance.  The results of the mean overall treatment imbalance 

considering one stratification factor (Table 4.1.4.1a and Table 4.1.4.1b) and three stratification 

factors (Table 4.1.4.1c and Table 4.1.4.1d) with different numbers of stratification factor levels 

across different sample sizes are summarized in Table 4.1.4.1.  When controlling for the number 

of stratification factors and the number of levels in a stratification factor, the result shows that 

the sample size does not have a significantly consistent effect on the overall treatment imbalance. 

When the number of stratification factor is the same, the overall treatment imbalance would 

increase when there are more levels within stratification factor.  We also explore the effect of 

different numbers of stratification factors on the overall treatment imbalance .  The results from 

the scenarios considering different numbers of stratification factors (2 factors versus 4 factors) 

displayed in the table 4.1.4.2a – 4.1.4.2b show that more stratification factors are considered 
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would decrease the overall treatment imbalance.  Further, such relationships are both shown in 

the treatment allocation with different sample size.  

In light of the result that the change in treatment imbalance within clinical site is quite 

small when clinical site is not included as one of the stratification factors, we consider only the 

scenario of including clinical site as one of the stratification factors while investigating the effect 

from different dimensions on the treatment imbalance within center.  Tables 4.1.4.3 shows the 

mean proportion of clinical sites with more than 15 patients for whom the treatment imbalance at 

that site is 5 or greater considering one stratification factor (Tables 4.1.4.3a) and three 

stratification factors (Tables 4.1.4.3b) with different numbers of stratification factor levels across 

different sample sizes.  The magnitude of the within-site treatment imbalance is smaller as the 

biased-coin probability is increased; and, when the treatment assignment probability is greater 

than 0.6, sample size has little effect on the magnitude of within-site treatment imbalance. Also, 

number of stratification factor levels has a negligible effect on the treatment imbalance within 

clinical site in all scenarios.  Lastly, the result in Table 4.1.4.4 shows that more treatment 

imbalance within clinical site would be introduced as more stratification factors are considered to 

be balanced. 
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Table 4.1.4.1a The comparison of the mean overall treatment imbalance for each dataset over 
1,000 simulated treatment allocations for one stratification factor with two or three levels when 
clinical site is not included as one of the stratification factors. 

Number of 
stratification 
factors and  
stratification 
factor levels 

Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

n=1,801 n=3,060 n=13,388 

Mean 95% CI Mean 95% CI Mean 95% CI 

1 factor 
with 2 
levels 

Treatment assignment imbalance tolerance level=2 
0.6 4.42 (4.21, 4.64) 4.27 (4.05, 4.49) 4.50 (4.27, 4.73) 
0.7 2.95 (2.81, 3.08) 2.80 (2.66, 2.94) 2.86 (2.71, 3.00) 
0.8 2.52 (2.42, 2.63) 2.10 (1.99, 2.21) 2.25 (2.14, 2.37) 

Treatment assignment imbalance tolerance level=3 
0.6 4.99 (4.76, 5.23) 4.99 (4.75, 5.23) 5.05 (4.80, 5.30) 
0.7 3.48 (3.32, 3.63) 3.47 (3.30, 3.63) 3.54 (3.37, 3.71) 
0.8 3.04 (2.91, 3.17) 3.12 (2.97, 3.27) 3.02 (2.87, 3.16) 

Treatment assignment imbalance tolerance level=4 
0.6 5.25 (5.01, 5.50) 5.40 (5.13, 5.67) 5.44 (5.19, 5.69) 
0.7 4.07 (3.89, 4.24) 3.99 (3.81, 4.17) 3.88 (3.69, 4.06) 
0.8 3.71 (3.54, 3.87) 3.60 (3.44, 3.77) 3.48 (3.32, 3.65) 

1 factor 
with 3 
levels 

Treatment assignment imbalance tolerance level=2 
0.6 5.81 (5.53, 6.09) 5.52 (5.24, 5.80) 5.39 (5.12, 5.67) 
0.7 3.62 (3.46, 3.78) 3.34 (3.18, 3.51) 3.53 (3.37, 3.70) 
0.8 2.92 (2.79, 3.05) 2.82 (2.67, 2.96) 2.79 (2.65, 2.93) 

Treatment assignment imbalance tolerance level=3 
0.6 6.28 (5.99, 6.57) 6.13 (5.83, 6.43) 6.18 (5.87, 6.48) 
0.7 4.36 (4.16, 4.56) 4.27 (4.07, 4.47) 4.12 (3.92, 4.32) 
0.8 3.70 (3.54, 3.86) 3.64 (3.47, 3.82) 3.64 (3.47, 3.81) 

Treatment assignment imbalance tolerance level=4 
0.6 6.81 (6.48, 7.13) 6.47 (6.16, 6.78) 6.38 (6.08, 6.68) 
0.7 5.16 (4.93, 5.39) 4.71 (4.49, 4.93) 4.83 (4.60, 5.06) 
0.8 4.35 (4.15, 4.55) 4.49 (4.28, 4.70) 4.51 (4.31, 4.72) 
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Table 4.1.4.1b The comparison of the mean overall treatment imbalance for each dataset over 
1,000 simulated treatment allocations for one stratification factor with two or three levels when 
clinical site is included as one of the stratification factors. 

Number of 
stratification 
factors and  
stratification 
factor levels 

Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

n=1,801 n=3,060 n=13,388 

Mean 95% CI Mean 95% CI Mean 95% CI 

1 factor 
with 2 
levels 

Treatment assignment imbalance tolerance level=2 
0.6 4.85 (4.60, 5.09) 4.87 (4.63, 5.10) 5.35 (5.09, 5.62) 
0.7 3.05 (2.91, 3.19) 2.91 (2.76, 3.07) 3.08 (2.92, 3.23) 
0.8 2.36 (2.26, 2.47) 2.17 (2.05, 2.28) 2.19 (2.07, 2.31) 

Treatment assignment imbalance tolerance level=3 
0.6 5.31 (5.06, 5.55) 5.20 (4.94, 5.45) 5.23 (4.96, 5.49) 
0.7 3.45 (3.30, 3.61) 3.38 (3.21, 3.55) 3.37 (3.20, 3.53) 
0.8 2.99 (2.86, 3.12) 2.63 (2.49, 2.76) 2.64 (2.50, 2.78) 

Treatment assignment imbalance tolerance level=4 
0.6 5.49 (5.22, 5.75) 5.56 (5.28, 5.84) 5.90 (5.62, 6.19) 
0.7 3.89 (3.71, 4.06) 3.81 (3.62, 3.99) 3.89 (3.70, 4.08) 
0.8 3.27 (3.13, 3.42) 3.12 (2.97, 3.28) 3.03 (2.88, 3.17) 

1 factor 
with 3 
levels 

Treatment assignment imbalance tolerance level=2 
0.6 6.02 (5.75, 6.29) 6.03 (5.72, 6.33) 6.46 (6.14, 6.77) 
0.7 3.81 (3.64, 3.98) 3.65 (3.47, 3.82) 3.76 (3.57, 3.95) 
0.8 2.81 (2.69, 2.93) 2.81 (2.67, 2.95) 2.81 (2.67, 2.95) 

Treatment assignment imbalance tolerance level=3 
0.6 6.14 (5.84, 6.45) 6.62 (6.30, 6.94) 7.09 (6.74, 7.43) 
0.7 4.38 (4.17, 4.58) 4.10 (3.90, 4.30) 4.13 (3.93, 4.33) 
0.8 3.31 (3.15, 3.46) 3.28 (3.12, 3.45) 3.26 (3.10, 3.41) 

Treatment assignment imbalance tolerance level=4 
0.6 6.79 (6.47, 7.10) 6.66 (6.33, 6.99) 7.01 (6.66, 7.36) 
0.7 4.82 (4.60, 5.03) 4.68 (4.46, 4.90) 4.61 (4.39, 4.82) 
0.8 3.86 (3.68, 4.03) 3.58 (3.40, 3.75) 3.68 (3.50, 3.86) 
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Table 4.1.4.1c The comparison of the mean overall treatment imbalance for each dataset over 
1,000 simulated treatment allocations for three stratification factors with varying levels when 
clinical site is not included as one of the stratification factors. 

Number of 
stratification 
factors and  
stratification 
factor levels 

Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

n=1,801 n=3,060 n=13,388 

Mean 95% CI Mean 95% CI Mean 95% CI 

3 factors 
(1 with 2 

levels and 2 
with 3 levels) 

Treatment assignment imbalance tolerance level=2 
0.6 4.00 (3.81, 4.19) 4.01 (3.80, 4.22) 4.12 (3.90, 4.33) 
0.7 2.30 (2.19, 2.40) 2.20 (2.08, 2.32) 2.19 (2.07, 2.31) 
0.8 1.73 (1.65, 1.80) 1.63 (1.55, 1.72) 1.56 (1.46, 1.65) 

Treatment assignment imbalance tolerance level=3 
0.6 3.93 (3.73, 4.12) 4.21 (3.99, 4.42) 4.34 (4.11, 4.57) 
0.7 2.37 (2.26, 2.47) 2.24 (2.12, 2.35) 2.36 (2.24, 2.49) 
0.8 1.89 (1.81, 1.98) 1.67 (1.58, 1.77) 1.72 (1.62, 1.82) 

Treatment assignment imbalance tolerance level=4 
0.6 4.06 (3.86, 4.26) 4.23 (4.02, 4.44) 4.35 (4.13, 4.57) 
0.7 2.57 (2.45, 2.68) 2.66 (2.52, 2.79) 2.48 (2.35, 2.61) 
0.8 2.13 (2.03, 2.22) 1.93 (1.83, 2.04) 1.96 (1.86, 2.07) 

3 factors 
 (all with 3 

levels) 

Treatment assignment imbalance tolerance level=2 
0.6 4.27 (4.06, 4.48) 4.42 (4.19, 4.64) 4.55 (4.32, 4.77) 
0.7 2.44 (2.33, 2.56) 2.27 (2.14, 2.40) 2.43 (2.30, 2.55) 
0.8 1.82 (1.75, 1.90) 1.72 (1.62, 1.81) 1.57 (1.48, 1.66) 

Treatment assignment imbalance tolerance level=3 
0.6 4.14 (3.95, 4.33) 4.32 (4.10, 4.53) 4.56 (4.33, 4.78) 
0.7 2.60 (2.48, 2.72) 2.60 (2.47, 2.73) 2.48 (2.35, 2.61) 
0.8 2.05 (1.97, 2.14) 1.88 (1.78, 1.98) 1.90 (1.80, 2.01) 

Treatment assignment imbalance tolerance level=4 
0.6 4.53 (4.31, 4.74) 4.50 (4.27, 4.72) 4.64 (4.40, 4.87) 
0.7 2.71 (2.59, 2.83) 2.75 (2.60, 2.89) 2.72 (2.57, 2.86) 
0.8 2.29 (2.18, 2.39) 2.21 (2.10, 2.33) 2.06 (1.95, 2.17) 
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Table 4.1.4.1d The comparison of the mean overall treatment imbalance for each dataset over 
1,000 simulated treatment allocations for three stratification factors with varying levels when 
clinical site is included as one of the stratification factors. 

Number of 
stratification 
factors and  
stratification 
factor levels 

Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

n=1,801 n=3,060 n=13,388 

Mean 95% CI Mean 95% CI Mean 95% CI 

3 factors 
(1 with 2 

levels and 2 
with 3 levels) 

Treatment assignment imbalance tolerance level=2 
0.6 4.04 (3.84, 4.24) 4.36 (4.13, 4.59) 4.62 (4.38, 4.85) 
0.7 2.47 (2.35, 2.58) 2.34 (2.22, 2.46) 2.45 (2.31, 2.58) 
0.8 1.86 (1.78, 1.94) 1.60 (1.51, 1.69) 1.64 (1.55, 1.74) 

Treatment assignment imbalance tolerance level=3 
0.6 4.32 (4.10, 4.54) 4.32 (4.11, 4.52) 4.57 (4.34, 4.79) 
0.7 2.53 (2.41, 2.65) 2.49 (2.36, 2.62) 2.47 (2.33, 2.60) 
0.8 1.95 (1.87, 2.03) 1.80 (1.70, 1.89) 1.83 (1.74, 1.93) 

Treatment assignment imbalance tolerance level=4 
0.6 4.12 (3.92, 4.31) 4.33 (4.12, 4.54) 4.71 (4.46, 4.95) 
0.7 2.68 (2.55, 2.80) 2.70 (2.56, 2.85) 2.73 (2.59, 2.87) 
0.8 2.08 (1.99, 2.17) 1.99 (1.88, 2.10) 2.00 (1.89, 2.11) 

3 factors 
 (all with 3 

levels) 

Treatment assignment imbalance tolerance level=2 
0.6 4.22 (4.02, 4.42) 4.47 (4.24, 4.69) 4.88 (4.63, 5.13) 
0.7 2.57 (2.46, 2.69) 2.48 (2.35, 2.61) 2.57 (2.44, 2.70) 
0.8 2.01 (1.92, 2.09) 1.82 (1.72, 1.92) 1.82 (1.71, 1.92) 

Treatment assignment imbalance tolerance level=3 
0.6 4.49 (4.28, 4.71) 4.42 (4.20, 4.64) 5.13 (4.88, 5.38) 
0.7 2.76 (2.63, 2.88) 2.64 (2.51, 2.78) 2.77 (2.62, 2.91) 
0.8 2.12 (2.02, 2.21) 1.93 (1.82, 2.03) 1.90 (1.80, 2.00) 

Treatment assignment imbalance tolerance level=4 
0.6 4.61 (4.37, 4.84) 4.72 (4.48, 4.95) 5.36 (5.10, 5.62) 
0.7 2.89 (2.76, 3.03) 2.87 (2.72, 3.01) 2.91 (2.77, 3.06) 
0.8 2.27 (2.17, 2.37) 2.17 (2.05, 2.28) 2.27 (2.15, 2.39) 
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Table 4.1.4.2a The comparison of the mean overall treatment imbalance for each dataset over 
1,000 simulated treatment allocations for different numbers of stratification factors when 
clinical site is not included as one of the stratification factors. 

Number of 
stratification 
factors and  
stratification 
factor levels 

Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

n=1,801 n=3,060 n=13,388 

Mean 95% CI Mean 95% CI Mean 95% CI 

2 factors 
(both are 

with 3 
levels) 

Treatment assignment imbalance tolerance level=2 
0.6 4.51 (4.29, 4.73) 4.24 (4.03, 4.45) 4.79 (4.54, 5.03) 
0.7 2.75 (2.62, 2.88) 2.54 (2.41, 2.67) 2.63 (2.49, 2.76) 
0.8 2.10 (2.01, 2.19) 1.77 (1.67, 1.87) 1.93 (1.83, 2.03) 

Treatment assignment imbalance tolerance level=3 
0.6 4.26 (4.06, 4.46) 4.75 (4.50, 4.99) 4.95 (4.70, 5.20) 
0.7 3.06 (2.92, 3.20) 2.90 (2.75, 3.05) 2.88 (2.72, 3.03) 
0.8 2.49 (2.38, 2.60) 2.55 (2.42, 2.68) 2.21 (2.10, 2.32) 

Treatment assignment imbalance tolerance level=4 
0.6 4.55 (4.34, 4.77) 4.99 (4.74, 5.25) 5.40 (5.13, 5.67) 
0.7 3.32 (3.17, 3.47) 3.29 (3.12, 3.45) 3.50 (3.33, 3.66) 
0.8 2.71 (2.59, 2.83) 2.58 (2.46, 2.71) 2.66 (2.53, 2.79) 

4 factors 
 (3 with 3 

levels and 1 
with 2 
levels) 

Treatment assignment imbalance tolerance level=2 
0.6 4.02 (3.82, 4.22) 3.68 (3.49, 3.88) 4.06 (3.85, 4.27) 
0.7 2.29 (2.19, 2.40) 2.13 (2.01, 2.24) 2.09 (1.97, 2.20) 
0.8 1.64 (1.57, 1.71) 1.43 (1.34, 1.52) 1.41 (1.33, 1.49) 

Treatment assignment imbalance tolerance level=3 
0.6 3.98 (3.78, 4.17) 4.20 (3.98, 4.41) 4.26 (4.04, 4.48) 
0.7 2.37 (2.26, 2.48) 2.21 (2.08, 2.33) 2.27 (2.15, 2.39) 
0.8 1.79 (1.71, 1.86) 1.56 (1.47, 1.66) 1.51 (1.42, 1.60) 

Treatment assignment imbalance tolerance level=4 
0.6 4.17 (3.96, 4.39) 3.94 (3.74, 4.15) 4.37 (4.15, 4.59) 
0.7 2.54 (2.43, 2.66) 2.33 (2.20, 2.45) 2.39 (2.26, 2.51) 
0.8 1.89 (1.81, 1.97) 1.63 (1.54, 1.73) 1.75 (1.66, 1.85) 
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Table 4.1.4.2b The comparison of the mean overall treatment imbalance for each dataset over 
1,000 simulated treatment allocations for different numbers of stratification factors when 
clinical site is included as one of the stratification factors. 

Number of 
stratification 
factors and  
stratification 
factor levels 

Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

n=1,801 n=3,060 n=13,388 

Mean 95% CI Mean 95% CI Mean 95% CI 

2 factors 
(both are 

with 3 
levels) 

Treatment assignment imbalance tolerance level=2 
0.6 4.48 (4.26, 4.69) 4.78 (4.52, 5.04) 5.35 (5.08, 5.61) 
0.7 2.78 (2.65, 2.90) 2.73 (2.59, 2.87) 2.93 (2.79, 3.08) 
0.8 2.10 (2.00, 2.19) 2.06 (1.95, 2.17) 2.05 (1.94, 2.16) 

Treatment assignment imbalance tolerance level=3 
0.6 4.56 (4.34, 4.78) 4.85 (4.60, 5.09) 5.66 (5.38, 5.94) 
0.7 3.14 (3.00, 3.29) 3.12 (2.96, 3.27) 3.20 (3.04, 3.35) 
0.8 2.48 (2.37, 2.59) 2.30 (2.18, 2.42) 2.49 (2.36, 2.61) 

Treatment assignment imbalance tolerance level=4 
0.6 4.81 (4.57, 5.05) 5.19 (4.92, 5.45) 5.65 (5.37, 5.92) 
0.7 3.49 (3.33, 3.64) 3.33 (3.17, 3.48) 3.31 (3.13, 3.48) 
0.8 2.67 (2.55, 2.79) 2.62 (2.49, 2.76) 2.57 (2.44, 2.71) 

4 factors 
 (3 with 3 

levels and 1 
with 2 
levels) 

Treatment assignment imbalance tolerance level=2 
0.6 4.21 (4.00, 4.41) 4.34 (4.12, 4.56) 4.42 (4.19, 4.65) 
0.7 2.27 (2.17, 2.38) 2.24 (2.11, 2.36) 2.23 (2.11, 2.35) 
0.8 1.78 (1.70, 1.85) 1.46 (1.37, 1.55) 1.44 (1.35, 1.53) 

Treatment assignment imbalance tolerance level=3 
0.6 4.18 (3.98, 4.38) 4.02 (3.81, 4.23) 4.69 (4.44, 4.93) 
0.7 2.44 (2.33, 2.54) 2.31 (2.18, 2.43) 2.50 (2.36, 2.63) 
0.8 1.83 (1.75, 1.90) 1.72 (1.62, 1.81) 1.69 (1.59, 1.78) 

Treatment assignment imbalance tolerance level=4 
0.6 4.04 (3.85, 4.23) 3.98 (3.76, 4.19) 4.60 (4.36, 4.84) 
0.7 2.52 (2.40, 2.64) 2.41 (2.28, 2.54) 2.53 (2.40, 2.66) 
0.8 1.97 (1.88, 2.06) 1.70 (1.60, 1.80) 1.77 (1.67, 1.87) 
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Table 4.1.4.3a The comparison of the mean proportion of clinical sites with more than 15 
patients for whom the absolute difference between the numbers of patients in two treatment 
groups at that site is 5 or greater for each dataset over 1,000 simulated treatment allocations 
for one stratification factor with two or three levels when clinical site is included as one of the 
stratification factors. 

Number of 
stratification 
factors and  
stratification 
factor levels 

Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

n=1,801 n=3,060 n=13,388 

Mean 95% CI Mean 95% CI Mean 95% CI 

1 factor 
with 2 
levels 

Treatment assignment imbalance tolerance level=2 
0.6 0.159 (0.155, 0.162) 0.153 (0.150, 0.156) 0.216 (0.213, 0.218) 
0.7 0.046 (0.044, 0.049) 0.040 (0.038, 0.041) 0.044 (0.043, 0.045) 
0.8 0.010 (0.009, 0.011) 0.008 (0.008, 0.009) 0.009 (0.008, 0.010) 

Treatment assignment imbalance tolerance level=3 
0.6 0.174 (0.170, 0.178) 0.170 (0.167, 0.173) 0.235 (0.232, 0.237) 
0.7 0.067 (0.065, 0.069) 0.061 (0.059, 0.063) 0.069 (0.068, 0.071) 
0.8 0.023 (0.022, 0.025) 0.021 (0.020, 0.022) 0.021 (0.020, 0.022) 

Treatment assignment imbalance tolerance level=4 
0.6 0.190 (0.186, 0.194) 0.188 (0.185, 0.191) 0.263 (0.260, 0.265) 
0.7 0.094 (0.091, 0.097) 0.086 (0.084, 0.088) 0.101 (0.100, 0.103) 
0.8 0.046 (0.044, 0.049) 0.041 (0.039, 0.042) 0.043 (0.042, 0.045) 

1 factor 
with 3 
levels 

Treatment assignment imbalance tolerance level=2 
0.6 0.155 (0.151, 0.158) 0.153 (0.150, 0.155) 0.214 (0.211, 0.216) 
0.7 0.046 (0.044, 0.048) 0.041 (0.040, 0.043) 0.043 (0.042, 0.045) 
0.8 0.009 (0.008, 0.010) 0.008 (0.008, 0.009) 0.009 (0.008, 0.009) 

Treatment assignment imbalance tolerance level=3 
0.6 0.176 (0.172, 0.179) 0.171 (0.168, 0.174) 0.237 (0.234, 0.239) 
0.7 0.068 (0.065, 0.070) 0.061 (0.059, 0.062) 0.070 (0.069, 0.072) 
0.8 0.024 (0.022, 0.026) 0.020 (0.018, 0.021) 0.022 (0.021, 0.022) 

Treatment assignment imbalance tolerance level=4 
0.6 0.193 (0.190, 0.197) 0.188 (0.185, 0.191) 0.263 (0.260, 0.265) 
0.7 0.094 (0.091, 0.098) 0.087 (0.085, 0.089) 0.101 (0.099, 0.103) 
0.8 0.047 (0.045, 0.050) 0.041 (0.040, 0.043) 0.043 (0.042, 0.044) 
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Table 4.1.4.3b The comparison of the mean proportion of clinical sites with more than 15 
patients for whom the absolute difference between the numbers of patients in two treatment 
groups at that site is 5 or greater for each dataset over 1,000 simulated treatment allocations 
for three stratification factors with varying levels when clinical site is included as one of the 
stratification factors. 

Number of 
stratification 
factors and  
stratification 
factor levels 

Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

n=1,801 n=3,060 n=13,388 

Mean 95% CI Mean 95% CI Mean 95% CI 

3 factors 
(1 with 2 

levels and 2 
with 3 
levels) 

Treatment assignment imbalance tolerance level=2 
0.6 0.214 (0.210, 0.218) 0.215 (0.212, 0.218) 0.321 (0.318, 0.324) 
0.7 0.085 (0.082, 0.088) 0.079 (0.077, 0.081) 0.095 (0.093, 0.096) 
0.8 0.024 (0.023, 0.026) 0.020 (0.019, 0.021) 0.020 (0.019, 0.021) 

Treatment assignment imbalance tolerance level=3 
0.6 0.223 (0.218, 0.227) 0.223 (0.220, 0.226) 0.333 (0.330, 0.335) 
0.7 0.098 (0.095, 0.101) 0.093 (0.091, 0.095) 0.113 (0.112, 0.115) 
0.8 0.036 (0.035, 0.038) 0.031 (0.030, 0.033) 0.035 (0.034, 0.036) 

Treatment assignment imbalance tolerance level=4 
0.6 0.226 (0.222, 0.230) 0.226 (0.222, 0.229) 0.342 (0.340, 0.345) 
0.7 0.114 (0.111, 0.117) 0.107 (0.105, 0.109) 0.133 (0.131, 0.135) 
0.8 0.054 (0.052, 0.056) 0.047 (0.045, 0.048) 0.050 (0.049, 0.051) 

3 factors 
 (all with 3 

levels) 

Treatment assignment imbalance tolerance level=2 
0.6 0.217 (0.212, 0.221) 0.212 (0.209, 0.216) 0.326 (0.323, 0.329) 
0.7 0.085 (0.082, 0.087) 0.079 (0.077, 0.081) 0.094 (0.093, 0.096) 
0.8 0.024 (0.022, 0.025) 0.020 (0.019, 0.021) 0.020 (0.019, 0.021) 

Treatment assignment imbalance tolerance level=3 
0.6 0.218 (0.214, 0.223) 0.220 (0.217, 0.223) 0.331 (0.329, 0.334) 
0.7 0.099 (0.095, 0.102) 0.091 (0.089, 0.094) 0.113 (0.112, 0.115) 
0.8 0.037 (0.035, 0.039) 0.032 (0.031, 0.034) 0.035 (0.034, 0.036) 

Treatment assignment imbalance tolerance level=4 
0.6 0.229 (0.225, 0.233) 0.226 (0.223, 0.229) 0.340 (0.337, 0.343) 
0.7 0.114 (0.110, 0.117) 0.110 (0.107, 0.112) 0.133 (0.131, 0.135) 
0.8 0.051 (0.049, 0.053) 0.046 (0.044, 0.047) 0.052 (0.051, 0.053) 
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Table 4.1.4.4 The comparison of the mean proportion of clinical sites with more than 15 
patients for whom the absolute difference between the numbers of patients in two treatment 
groups at that site is 5 or greater for each dataset over 1,000 simulated treatment allocations 
for different numbers of stratification factors when clinical site is included as one of the 
stratification factors. 

Number of 
stratification 
factors and  
stratification 
factor levels 

Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

n=1,801 n=3,060 n=13,388 

Mean 95% CI Mean 95% CI Mean 95% CI 

2 factors 
(both are 

with 3 
levels) 

Treatment assignment imbalance tolerance level=2 
0.6 0.193 (0.189, 0.197) 0.189 (0.186, 0.192) 0.275 (0.273, 0.278) 
0.7 0.064 (0.061, 0.066) 0.059 (0.057, 0.060) 0.068 (0.066, 0.069) 
0.8 0.015 (0.014, 0.016) 0.013 (0.012, 0.014) 0.013 (0.013, 0.014) 

Treatment assignment imbalance tolerance level=3 
0.6 0.203 (0.199, 0.207) 0.197 (0.193, 0.200) 0.290 (0.287, 0.292) 
0.7 0.082 (0.079, 0.085) 0.075 (0.073, 0.077) 0.090 (0.089, 0.092) 
0.8 0.030 (0.029, 0.032) 0.026 (0.024, 0.027) 0.027 (0.026, 0.028) 

Treatment assignment imbalance tolerance level=4 
0.6 0.208 (0.203, 0.212) 0.210 (0.207, 0.213) 0.304 (0.302, 0.307) 
0.7 0.105 (0.102, 0.108) 0.096 (0.094, 0.098) 0.117 (0.115, 0.119) 
0.8 0.047 (0.045, 0.049) 0.041 (0.039, 0.042) 0.045 (0.044, 0.046) 

4 factors 
 (3 with 3 

levels and 1 
with 2 
levels) 

Treatment assignment imbalance tolerance level=2 
0.6 0.234 (0.230, 0.238) 0.234 (0.230, 0.237) 0.359 (0.356, 0.362) 
0.7 0.104 (0.101, 0.107) 0.099 (0.096, 0.101) 0.123 (0.121, 0.125) 
0.8 0.031 (0.029, 0.033) 0.029 (0.027, 0.030) 0.031 (0.030, 0.032) 

Treatment assignment imbalance tolerance level=3 
0.6 0.238 (0.234, 0.243) 0.238 (0.235, 0.241) 0.365 (0.363, 0.368) 
0.7 0.117 (0.113, 0.120) 0.108 (0.106, 0.111) 0.137 (0.135, 0.139) 
0.8 0.044 (0.042, 0.046) 0.039 (0.037, 0.040) 0.042 (0.041, 0.043) 

Treatment assignment imbalance tolerance level=4 
0.6 0.242 (0.238, 0.247) 0.241 (0.238, 0.244) 0.371 (0.368, 0.373) 
0.7 0.128 (0.124, 0.131) 0.123 (0.121, 0.126) 0.154 (0.152, 0.156) 
0.8 0.060 (0.058, 0.063) 0.052 (0.051, 0.054) 0.059 (0.058, 0.060) 
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4.2 PROBABILITY OF PREDICTING TREATMENT ALLOCATION 

The probability of predicting the next treatment allocation is calculated for each of the three 

NSABP trials using the three predictive methods defined in Section 3.3.2.  Different treatment 

allocation imbalance tolerance levels and different assignment probabilities of the biased-coin in 

the minimization algorithm are considered.   

Table 4.2.1 displays the mean treatment allocation predictability rates based on the 

predictive method 1 in which the prediction based upon knowledge of the previous treatment 

allocation only.  When clinical site is not included as one of the stratification factors, the change 

in mean predictability rates for predictive method 1 is minimal no matter what the treatment 

allocation imbalance tolerance level or the treatment allocation probability is considered and all 

values are 0.508 or less (Table 4.2.1a).  When the clinical site is included as one of the 

stratification factors (Table 4.2.1b), the mean predictability rates for predictability method 1 are 

increased compared to that when site is not included.  However, the maximum value even in the 

extreme situation of 0.8 biased-coin probability is still relatively low at 0.554.  When considering 

more reasonable scenario with treatment imbalance tolerance level of 4 and a biased-coin 

probability of 0.6, the largest predictability rate is only 0.512.  In general, predictability rates 

tends to decrease as the treatment imbalance tolerance level increases from 2 to 4, and it 

increases as the assignment probabilities of the biased-coin increases from 0.6 to 0.8.  Also, from 

comparison of the predictability rates across the three trials, it can be seen that the predictability 

rate decreases only slightly as the sample size of trial becomes larger. 
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Table 4.2.1a The mean treatment allocation predictability rates for each trial based on 
predictive method 1 over 1,000 simulations when clinical site is not included as one of the 
stratification factors. 
Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

B-24 trial (n=1,801) B-28 trial (n=3,060) P-1 trial (n=13,388) 

Mean 95% CI Mean 95% CI Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 0.502 (0.501, 0.502) 0.502 (0.502, 0.503)  0.503 (0.5028, 0.5033) 
0.7 0.502 (0.501, 0.503) 0.503 (0.502, 0.503)  0.506 (0.5056, 0.5062) 
0.8 0.504 (0.503, 0.505) 0.503 (0.502, 0.504)  0.508 (0.5076, 0.5082) 

Treatment assignment imbalance tolerance level=3 
0.6 0.502 (0.501, 0.502) 0.502 (0.502, 0.503)  0.503 (0.5028, 0.5034) 
0.7 0.503 (0.502, 0.503) 0.503 (0.502, 0.503)  0.506 (0.5055, 0.5061) 
0.8 0.503 (0.502, 0.504) 0.503 (0.503, 0.504)  0.507 (0.5068, 0.5074) 

Treatment assignment imbalance tolerance level=4 
0.6 0.501 (0.500, 0.502) 0.502 (0.501, 0.502)  0.503 (0.5025, 0.5031) 
0.7 0.502 (0.502, 0.503) 0.502 (0.502, 0.503)  0.505 (0.5050, 0.5056) 
0.8 0.502 (0.501, 0.503) 0.503 (0.503, 0.504)  0.507 (0.5064, 0.5069) 
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Table 4.2.1b The mean treatment allocation predictability rates for each trial based on 
predictive method 1 over 1,000 simulations when clinical site is included as one of the 
stratification factors. 
Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

B-24 trial (n=1,801) B-28 trial (n=3,060) P-1 trial (n=13,388) 

Mean 95% CI Mean 95% CI Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 0.517 (0.516, 0.518) 0.510 (0.509, 0.510)  0.507 (0.5065, 0.5071) 
0.7 0.535 (0.534, 0.536) 0.524 (0.523, 0.524)  0.517 (0.5172, 0.5178) 
0.8 0.554 (0.553, 0.555) 0.540 (0.540, 0.541)  0.532 (0.5320, 0.5326) 

Treatment assignment imbalance tolerance level=3 
0.6 0.514 (0.513, 0.515) 0.510 (0.509, 0.510)  0.507 (0.5065, 0.5071) 
0.7 0.528 (0.528, 0.529) 0.522 (0.521, 0.522)  0.516 (0.5160, 0.5166) 
0.8 0.541 (0.540, 0.542) 0.534 (0.533, 0.535)  0.528 (0.5281, 0.5287) 

Treatment assignment imbalance tolerance level=4 
0.6 0.512 (0.511, 0.513) 0.509 (0.508, 0.510)  0.507 (0.5063, 0.5069) 
0.7 0.523 (0.522, 0.524) 0.520 (0.519, 0.521)  0.515 (0.5152, 0.5158) 
0.8 0.532 (0.531, 0.533) 0.529 (0.529, 0.530)  0.525 (0.5249, 0.5255) 

The mean treatment allocation predictability rates based on the predictive method 2 

(based upon knowledge of all previous allocations to the clinical site) and the predictive method 

3 (based upon only the previous three allocations to the clinical site) are summarized in Table 

4.2.2 and Table 4.2.3, respectively.  The patterns seen for predictive methods 2 and 3 are similar 

to those seen for predictive method 1.  The maximum value of the mean treatment allocation 

predictability rates based on predictive methods 2 and 3 in the extreme situation of 0.8 bias-coin 

probability is 0.604 and 0.571, respectively.  Comparing the predictability rates from the three 

different predictive methods, the mean predictability rates are quite close for all three methods 

when clinical site is not included as one of the stratification factors and it was not possible to 

predict the next treatment allocation with any consistency or any real improvement over chance.  

When clinical site is included as a stratification factor, the predictability rates are higher than 
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when clinical site is not included and as expected, more sophisticated methods (method 2 and 

method 3) introduce higher predictability rate than method 1.  However, when dealing with the 

more reasonable situation of a biased-coin probability of 0.6 and treatment imbalance tolerance 

of 4, the predictability rates never exceed 0.526 which would still be a very small gain over a 

pure random guess.  
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Table 4.2.2a The mean predictability rates for each trial based on predictive method 2 
over 1,000 simulations when clinical site is not included as one of the stratification factors. 
Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

B-24 trial (n=1,801) B-28 trial (n=3,060) P-1 trial (n=13,388) 

Mean 95% CI Mean 95% CI Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 0.501 (0.501, 0.502)  0.501 (0.500, 0.502) 0.501 (0.5008, 0.5014) 
0.7 0.501 (0.500, 0.502)  0.501 (0.500, 0.502) 0.501 (0.5009, 0.5015) 
0.8 0.502 (0.501, 0.503)  0.501 (0.501, 0.502) 0.502 (0.5015, 0.5021) 

Treatment assignment imbalance tolerance level=3 
0.6 0.502 (0.501, 0.502)  0.501 (0.501, 0.502) 0.501 (0.5008, 0.5014) 
0.7 0.502 (0.501, 0.503)  0.501 (0.501, 0.502) 0.501 (0.5010, 0.5016) 
0.8 0.502 (0.501, 0.503)  0.501 (0.500, 0.501) 0.501 (0.5011, 0.5017) 

Treatment assignment imbalance tolerance level=4 
0.6 0.501 (0.500, 0.502)  0.501 (0.500, 0.501) 0.501 (0.5004, 0.5010) 
0.7 0.501 (0.500, 0.502)  0.501 (0.500, 0.502) 0.501 (0.5009, 0.5015) 
0.8 0.501 (0.500, 0.502)  0.501 (0.500, 0.502) 0.501 (0.5012, 0.5018) 

Table 4.2.2b The mean predictability rates for each trial based on predictive method 2 
over 1,000 simulations when clinical site is included as one of the stratification factors. 
Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

B-24 trial (n=1,801) B-28 trial (n=3,060) P-1 trial (n=13,388) 

Mean 95% CI Mean 95% CI Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 0.535 (0.534, 0.536) 0.523 (0.523, 0.524) 0.527 (0.5265, 0.5270) 
0.7 0.573 (0.572, 0.573) 0.559 (0.558, 0.559) 0.561 (0.5607, 0.5612) 
0.8 0.604 (0.603, 0.604) 0.593 (0.592, 0.593) 0.592 (0.5923, 0.5927) 

Treatment assignment imbalance tolerance level=3 
0.6 0.530 (0.529, 0.531) 0.523 (0.522, 0.523) 0.526 (0.5261, 0.5266) 
0.7 0.559 (0.558, 0.560) 0.553 (0.553, 0.554) 0.557 (0.5572, 0.5576) 
0.8 0.580 (0.580, 0.581) 0.580 (0.579, 0.581) 0.584 (0.5840, 0.5844) 

Treatment assignment imbalance tolerance level=4 
0.6 0.526 (0.525, 0.527) 0.521 (0.521, 0.522) 0.525 (0.5252, 0.5257) 
0.7 0.548 (0.548, 0.549) 0.548 (0.548, 0.549) 0.554 (0.5536, 0.5541) 
0.8 0.564 (0.563, 0.565) 0.570 (0.569, 0.570) 0.577 (0.5768, 0.5772) 
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Table 4.2.3a The mean predictability rates for each trial based on predictive method 3 
over 1,000 simulations when clinical site is not included as one of the stratification factors. 
Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

B-24 trial (n=1,801) B-28 trial (n=3,060) P-1 trial (n=13,388) 

Mean 95% CI Mean 95% CI Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 0.502 (0.501, 0.502) 0.501 (0.501, 0.502) 0.502 (0.5021, 0.5026) 
0.7 0.502 (0.501, 0.503) 0.502 (0.501, 0.502) 0.504 (0.5039, 0.5045) 
0.8 0.503 (0.502, 0.504) 0.502 (0.502, 0.503) 0.505 (0.5051, 0.5057) 

Treatment assignment imbalance tolerance level=3 
0.6 0.502 (0.501, 0.503) 0.502 (0.501, 0.502) 0.502 (0.5022, 0.5027) 
0.7 0.502 (0.501, 0.503) 0.502 (0.501, 0.502) 0.504 (0.5037, 0.5043) 
0.8 0.502 (0.501, 0.503) 0.502 (0.501, 0.502) 0.505 (0.5045, 0.5051) 

Treatment assignment imbalance tolerance level=4 
0.6 0.501 (0.500, 0.502) 0.501 (0.501, 0.502) 0.502 (0.5020, 0.5026) 
0.7 0.502 (0.501, 0.503) 0.502 (0.501, 0.502) 0.504 (0.5035, 0.5040) 
0.8 0.501 (0.500, 0.502) 0.502 (0.502, 0.503) 0.504 (0.5043, 0.5048) 

Table 4.2.3b The mean predictability rates for each trial based on predictive method 3 
over 1,000 simulations when clinical site is included as one of the stratification factors. 
Bias-Coin 
Probability 
Used for 
Treatment 
Allocation 

B-24 trial (n=1,801) B-28 trial (n=3,060) P-1 trial (n=13,388) 

Mean 95% CI Mean 95% CI Mean 95% CI 

Treatment assignment imbalance tolerance level=2 
0.6 0.522 (0.521, 0.523) 0.513 (0.512, 0.513) 0.508 (0.5082, 0.5088) 
0.7 0.547 (0.546, 0.548) 0.531 (0.531, 0.532) 0.522 (0.5219, 0.5225) 
0.8 0.571 (0.570, 0.572) 0.553 (0.552, 0.554) 0.540 (0.5401, 0.5406) 

Treatment assignment imbalance tolerance level=3 
0.6 0.519 (0.518, 0.520) 0.512 (0.511, 0.513) 0.508 (0.5082, 0.5087) 
0.7 0.538 (0.537, 0.539) 0.528 (0.528, 0.529) 0.520 (0.5202, 0.5207) 
0.8 0.554 (0.553, 0.555) 0.545 (0.544, 0.546) 0.535 (0.5349, 0.5355) 

Treatment assignment imbalance tolerance level=4 
0.6 0.516 (0.515, 0.517) 0.512 (0.511, 0.512) 0.508 (0.5078, 0.5083) 
0.7 0.531 (0.530, 0.532) 0.526 (0.525, 0.526) 0.519 (0.5187, 0.5193) 
0.8 0.542 (0.541, 0.543) 0.539 (0.538, 0.539) 0.531 (0.5309, 0.5315) 
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4.3 COMPARISON OF RESULTS FROM THE LOG-RANK TEST AND THE 

RANDOMIZATION TEST 

4.3.1 The Comparison of Results from the Log-rank Test and the Randomization Test for 

the Simulated Data Sets based on three NSABP Trials 

To evaluate the performances of the log-rank test and the randomization test for trials using 

biased-coin minimization, we first compared the proportions of the 1,000 simulations in which 

we obtain p-value <0.05 from these two statistical tests to determine the degree to which the 

nominal significance level (5%) is maintained by each test.  Subsequently, we assessed the 

agreement on the significance/ non-significance of p-value from two tests.  The results of 

comparing two tests for the simulated data sets based on three NSABP trials are summarized in 

Table 4.3.1. 

Table 4.3.1 The proportions of the 1,000 simulated data sets in which the p-value is <0.05  
and the inconsistent conclusions for hypothesis testing comparing p-values from the log-
rank test and the randomization test out of 1,000 simulations data sets based on B-24, B-28 
and P-1 trials 

1,000 
simulations 
data sets 

Proportion of 
p-values 

<0.05 from 
log-rank test 

Proportion of p-
values <0.05 from 

randomization 
test 

inconsistent conclusions for hypothesis testing 
from two tests 

Number of 
inconsistent 

(LRT, RT)* (Min, Max)** 

B-24 trial 86.60% 86.70% 12 (4, 8) (0.0044, 0.0161) 
B-28 trial 49.30% 49.30% 15 (7, 8) (0.0031, 0.0125) 
P-1 trial 100% 100% 0 - - 

* LRT value is the number of circumstances where the log rank test rejects but the randomization
test does not reject.  RT value is the number of circumstances where the log rank test does not 
reject but the randomization test does reject. 
** Min and Max are the minimum and the maximum of the difference in the inconsistent cases 
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The proportions of p-values <0.05 in the 1,000 simulated data sets based on the B-24 trial 

with hazard ratio of 0.8 from the log-rank test and the randomization test are 86.60% and 

86.70%, respectively.  In the 1,000 simulated data sets based on the B-24 trial, 988 of 1,000 have 

the agreement on the significance/ non-significance of the p-values from the two statistical tests.  

Within the 12 inconsistent cases, 4 are the circumstance where the p-value from the log-rank test 

is significant while the p-value from the randomization test is non-significant and 8 have the 

opposite circumstance.  The minimum of the difference and the maximum of the difference in 

the inconsistent cases of the simulations based on B-24 trial are 0.0044 and 0.0125, respectively. 

The proportions of p-values <0.05 in the 1,000 simulated data sets based on the B-28 trial 

with hazard ratio of 0.9 from the two statistical tests are both 49.30%.       Of 1000 simulations 

based on the B-28 trial, the p-values of 985 (98.5%) have consistent decision on the significance/ 

non-significance of the p-values from two tests and within the 15 inconsistent cases, 7 are the 

circumstance where the p-value from the log-rank test is significant while the p-value from the 

randomization test is non-significant and 8 have the opposite circumstance.  The magnitudes of 

the differences between the p-values from two tests in the inconsistent cases are minimal.  The 

minimum and maximum differences for the inconsistent cases from the B-28 simulations are 

0.0044 and 0.0161, respectively. 

All p-values of 1,000 simulated data sets based on P-1 trail with hazard ratio of 0.5 are 

less than 0.05 from two statistical tests. 
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4.3.2 The Influence of Effect Size on the Comparison of Results from the Log-rank Test 

and the Randomization Test 

To investigate the influence of effect size on the comparison of p-values from two tests, we 

conducted simulations using the stratification parameters from each trial considering 4 different 

scenarios of hazard ratios (i.e. 0.5, 0.6, 0.8, and 0.9) under statistical power of 0.8.  The sample 

sizes required for the simulations under different scenarios of hazard ratio are listed in Table 4.3.2.1.  

Table 4.3.2.1 The sample size required for the simulations using stratification parameters 
in B-24, B-28 and P-1 trials under different scenarios of hazard ratio  

Hazard 
Ratio 

Simulations using the 
stratification parameters 

in B-24 trial 

Simulations using the 
stratification 

parameters in B-28 trial 

Simulations using the 
stratification 

parameters in P-1 trial 

0.5 205 171 1,164 
0.6 353 295 1,975 
0.8 1,654 1,392 9,067 
0.9 7,094 5,987 38,474 

Table 4.3.2.2 shows the number of inconsistent conclusions from hypothesis testing using 

the two statistical tests out of 1,000 simulations based on the stratification parameters of three 

trials under the different scenarios of hazard ratios.  The proportions of inconsistent conclusions 

are less than 2% for each scenario.   Additionally, among the situations with inconsistent 

conclusions the differences between the p-values from two tests are very small.     
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Table 4.3.2.2 The number of inconsistent conclusions for hypothesis testing comparing p-
values from the log-rank test and the randomization test out of 1,000 simulations using 
stratification parameters in B-24, B-28 and P-1 trials  

* Total is the total number of circumstances where the p-value for the log rank test is < 0.05 and
the p-value for the randomization test is > 0.05; or p-value for the log rank test is > 0.05 and the 
p-value for the randomization test is < 0.05. LRT value is the number of circumstances where the 
log rank test rejects but the randomization test does not reject.  RT value is the number of 
circumstances where the log rank test does not reject but the randomization test does reject.   

Hazard 
Ratio 

Inconsistent conclusions for hypothesis testing from two tests 
Simulations using the 

stratification parameters 
in B-24 trial 

Simulations using the 
stratification parameters 

in B-28 trial 

Simulations using the 
stratification parameters 

in P-1 trial 
Total (LRT, RT)* Total (LRT, RT)* Total (LRT, RT)* 

0.5 18 (9, 9) 17 (11, 6) 10 (3, 7) 
0.6 21 (9, 12) 16 (7, 9) 13 (5, 8) 
0.8 13 (3, 10) 11 (6, 5) 10 (6, 4) 
0.9 9 (5, 4) 12 (6, 6) 14 (7, 7) 
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5.0 CONCLUSIONS  

From the results of the balancing properties of the bias-coin minimization we see that, compared 

to complete randomization, minimization indeed substantially decrease the treatment imbalance 

in terms of overall treatment imbalance, the treatment imbalance within stratification factors and 

the treatment imbalance within clinical site.  In this study, we conducted a series of simulations 

to evaluate the balancing properties under various scenarios and we observed that:  

(1) the biased-coin probability used in the minimization algorithm has a larger effect on the 

balancing properties than does the treatment imbalance tolerance level used; 

(2) when more stratification factors are included the overall treatment imbalance is decreased 

but the treatment imbalance within clinical site is increased;  

(3) the inclusion of clinical site as a stratification factor increases the treatment imbalance but 

the imbalance is still within the desired tolerance level; and 

(4) generally speaking, study design factors such as the biased-coin probability used, number of 

stratification variables included,  number of categories within the stratification variables, 

treatment assignment imbalance tolerance and the inclusion of clinical site influence the 

actual achievable level of balance only to a small degree, especially for the study with large 

sample size. 

Selection bias resulting from the foreknowledge of treatment assignment incurs concern 

only if the probability of making a correct prediction is sufficiently large to permit selective 

entry of patients into trial.  There is little potential bias if the prediction rate is only marginally 

greater than that obtained by random guesses.  Compared to a probability of 0.5 for completely 

due to chance, the method of minimization does provide the possibility of an enhanced ability to 

predict treatment allocation.  However, the enhancement is minimal.  The results here showed 
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that, in the most extreme scenarios of using minimization (treatment assignment probability of 

0.8 and treatment imbalance tolerance level of two, with clinical site included as a stratification 

factor) , the mean probability of predicting treatment allocation over 1,000 simulations is not 

greater than 0.6.  When using more reason scenarios of minimization (0.6 for the treatment 

assignment probability and treatment imbalance tolerance level of four), the inclusion of clinical 

site as a stratification factor slightly increases the mean probability of predicting treatment 

assignment to a level of about 0.53 from the probability of 0.503 when clinical site is not 

included as a stratification factor.  We also noticed that the magnitude of change of the 

probability to predict treatment allocation associated with the use of bias-coin minimization 

diminishes when the sample size of trial becomes larger. 

It is widely acknowledged in the statistical literature that the subsequent analysis should 

reflect the design of the study.  Accordingly, any randomization method should be associated 

with a test procedure that is valid under the randomization scheme.  However, when 

minimization is used for treatment allocation in randomized clinical trials, a common practice is 

still to perform hypothesis testing using the test procedures associated with complete 

randomization.  It arouses the concern that whether the Type I error of the test would be inflated 

because of using a different randomization scheme.  Some have suggested that the permutation 

test should be used instead when studies that allocate treatment employing minimization or other 

restricted allocation methods because the method by which treatments are allocated to subjects in 

an experimental design is mirrored in the analysis of that design.  The comparison of the results 

from the log-rank test and the randomization test in this study illustrated that the interpretation 

from two statistical tests are similar.  Out of 1,000 simulated data sets, two statistical tests have 
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over 98% agreement on the significance/ non-significance of the p-value and the magnitude of 

the difference between the p-values from tests in the inconsistent cases are minimal.      
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APPENDIX A 

THE CHARACTERISTICS OF PATIENTS BY TREATMENT GROUPS IN THREE 

NSABP TRIALS  

Table A1, A2 and A3 provide the distributions of some key demographic and tumor 

characteristics by treatment groups for each trial. 

Table A1. The Characteristics of Patients in NSABP B-24 Trial 

Characteristics XRT + Placebo XRT + Tamoxifen 
Number of Patients randomized on Study 902 902 

Age (years)* 

    ≤ 49 33.2 33.6 

    50 – 59 30.6 29.5 

    ≥ 60 36.2 36.9 

Race* 

    White 84.9 86.4 

    Black 7.6 6.3 

    Other 5.6 5.9 

    Unknown 2.0 1.3 

Tumor Size (cm)* 

    ≤ 1.0  82.6 85.1 

    1.1 – 2.0 11.6 9.2 

    ≥ 2.1 4.1 4.6 

    Unknown 1.8 1.1 

    Mean ± SD** 0.46 ± 0.75 0.46 ± 0.82 

Note: * values are percent of randomized patients; ** for patients with known tumor size 
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Table A2. The Characteristics of Patients in NSABP B-28 Trial 

Characteristics AC only AC + Taxol 
Number of Patients randomized on Study 1,529 1,531 
Age (years)* 
    ≤ 39 13.5 14.9 
    40 – 49 36.3 36.6 
    50 – 59 31.7 29.8 
    ≥ 60 18.5 18.7 
Race* 
    White 85.6 85.1 
    Black 7.7 8.1 
    Other 6.4 6.4 
    Unknown 0.3 0.4 
Clinical Tumor Size* 
    ≤ 2.0  50.2 46.1 
    2.1 – 4.0 39.6 40.6 
    ≥ 4.1 9.6 12.7 
    Unknown 0.6 0.6 
    Mean ± SD** 2.5 ± 1.8 2.6 ± 1.7 
No. of Postive Nodes* 
    1 – 3 69.8 69.8 
    4 – 9 26.2 25.8 
    10 + 3.9 4.2 
    Unknown 0.1 0.2 
    Mean ± SD** 3.1 ± 2.8 3.3 ± 3.5 
Type of Surgery* 
    Lumpectomy + AD 46.4 46.6 
    Modified Radical 53.6 53.4 
Estrogen Receptor* 
    Negative or Borderline 33.8 34.3 
    Positive 66.3 65.7 
Progesterone Receptor* 
    Negative or Borderline 37.9 39.5 
    Positive 62.1 60.6 

Note: * values are percent of randomized patients; ** for patients with known tumor size 
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Table A3. The Characteristics of Patients in NSABP P-1 Trial 

Characteristics Placebo Tamoxifen 
Number of Patients randomized on Study 6,599 6,576 
Age (years)* 
    35 – 39 2.8 2.4 
    40 – 49 36.5 36.8 
  50 – 59 30.6 30.9 

    60 – 69 24.1 23.9 
    ≥ 70 6.0 6.0 
Race* 
    White 96.4 96.5 
    Other 3.6 3.5 
Hysterectomy* 
    No 63.6 62.3 
    Yes 36.4 37.7 
History of Lobular Carcinoma in Situ* 
    No 93.8 93.7 
    Yes 6.2 6.3 
1st Degree Relatives with Breast Cancer* 
    0 24.2 23.4 
    1 56.5 57.1 
    2 16.5 16.3 
    ≥ 3 2.7 3.2 
History of Atypical Hyperplasia in the Breast* 
    No 90.7 91.2 
    Yes 9.3 8.8 
Five-Year Predicted Breast Cancer Risk* 
    ≤ 2 25.2 24.9 
    2.01 – 3.00 30.8 31.3 
    3.01 – 5.00 27.1 26.1 
   ≥ 5.01 16.9 17.8 

Note: * values are percent of randomized patients 
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APPENDIX B 

SAS PROGRAM FOR THE ASSESSMENT OF THE PERFORMANCE OF THE 

BIASED-COIN MINIMIZATION ALGORITHM 

The following SAS program was used to conduct 1,000 simulations of treatment allocations and 

the prediction of the next treatment allocation for B-24 trail under the scenario of not considering 

the clinical site as one of the stratification factor.  The SAS programs for other trials or other 

scenarios would be modified based on this program. 

SAS program 
proc sql nowarn noprint; 
select distinct 'site' || strip(put(site,8.)) into :sitearray 
separated by ' ' from b24.b24pt order by site; 
select distinct 'count_' || strip(put(site,8.)) into :countarray 
separated by ' ' from b24.b24pt order by site; 
select distinct 'first_trt_' || strip(put(site,8.)) into :firstsitrarray 
separated by ' ' from b24.b24pt order by site; 
select distinct 'sum_trt_' || strip(put(site,8.)) into :sumsitearray 
separated by ' ' from b24.b24pt order by site; 
select distinct 'prev1trt_' || strip(put(site,8.)) into :prev1array 
separated by ' ' from b24.b24pt order by site; 
select distinct 'prev2trt_' || strip(put(site,8.)) into :prev2array 
separated by ' ' from b24.b24pt order by site; 
select distinct 'prev3trt_' || strip(put(site,8.)) into :prev3array 
separated by ' ' from b24.b24pt order by site; 
select distinct 'sum_prev3trt_' || strip(put(site,8.)) into :sum3sitearray 
separated by ' ' from b24.b24pt order by site; 
select distinct 'balance_site' || strip(put(site,8.)) into :balancearray 
separated by ' ' from b24.b24pt order by site; 
select distinct 'preddenom_' || strip(put(site,8.)) into :preddenomarray 
separated by ' ' from b24.b24pt order by site; 
select distinct 'prednum1_' || strip(put(site,8.)) into :prednum1array 
separated by ' ' from b24.b24pt order by site; 
select distinct 'prednum2_' || strip(put(site,8.)) into :prednum2array 
separated by ' ' from b24.b24pt order by site; 
select distinct 'prednum3_' || strip(put(site,8.)) into :prednum3array 
separated by ' ' from b24.b24pt order by site; 
select distinct 'predict1_' || strip(put(site,8.)) into :predict1array 
separated by ' ' from b24.b24pt order by site; 
select distinct 'predict2_' || strip(put(site,8.)) into :predict2array 
separated by ' ' from b24.b24pt order by site; 
select distinct 'predict3_' || strip(put(site,8.)) into :predict3array 
separated by ' ' from b24.b24pt order by site; 
select count(distinct site) into :countsites from b24.b24pt; 
quit; 
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%let iter=1000;  *number of the simulations; 
*imtl: the pre-specified imbalance tolerance level, p: the biased-coin
assignment probability; 
%macro allocation (imtl, p);  
%do rep=1 %to &iter;    
data assign_S&rep; 
  set b24.b24pt end=lastpt; 
  array siteT[&countsites] &sitearray; 
   sitevar = cats('site',site); 
   do i = 1 to dim(siteT); 
       if vname(siteT[i]) = sitevar then siteT[i] = 1; 
       else siteT[i] = 0; 
   end; 
  array first[&countsites] &firstsitrarray; 
  array count[&countsites] &countarray; 
  array sum[&countsites] &sumsitearray; 
  array prev1[&countsites] &prev1array; 
  array prev2[&countsites] &prev2array; 
  array prev3[&countsites] &prev3array; 
  array sum3[&countsites] &sum3sitearray; 
  array balance[&countsites] &balancearray; 
  array preddenom[&countsites] &preddenomarray; 
  array prednum1[&countsites] &prednum1array; 
  array prednum2[&countsites] &prednum2array; 
  array prednum3[&countsites] &prednum3array; 
  array predict1[&countsites] &predict1array; 
  array predict2[&countsites] &predict2array; 
  array predict3[&countsites] &predict3array; 

  /*These variables will be retained from one observation to the next and be 
    initialized with a value of 0.*/ 
  /*Flag variables to denote processing of first observation for a site.*/ 
  retain first (&countsites*0); 
  /*Variables to hold the summed or accumulated count of number of patients 
    for each site.*/ 
  retain count (&countsites*0); 
  /*Variables to hold the summed or accumulated values for trt.*/ 
  retain sum (&countsites*0); 
  /*variable to hold the previous value of trt for each site*/ 
  retain prev1 (&countsites*0); 
  retain prev2 (&countsites*0); 
  retain prev3 (&countsites*0); 
  /*Variables to hold the summed or accumulated values for the most recent 
    previous 3 trt.*/ 
  retain sum3 (&countsites*0); 

  retain balance(&countsites*0) preddenom(&countsites*0) 
         prednum1(&countsites*0) prednum2(&countsites*0)  
         prednum3(&countsites*0) predict1(&countsites*0)  
         predict2(&countsites*0) predict3(&countsites*0); 

  retain first_all balance_all 0; 

  retain imsf1 - imsf2 treatment totimb 0; 
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   /*calculate the total imbalance of previous allocations based on the 
    characteristics of the new patinet to be assigned*/    
   totimb=sf1*imsf1+sf2*imsf2; 

   /*prediction of the treatment allocation fo the new patient*/ 
   do i=1 to dim(siteT); 
     if siteT[i]=1 then do; 
       /*Always increment count for site.*/ 
       count[i] + 1; 
       /*Are we on the first observation for each site?*/ 
       /*If so, first_trt_4 will have a value 0.*/ 
       if first[i] = 0 then do; 
         first[i] = 1; *change value from 0 to 1; 
         guesstrt1 = 2*rantbl(0,0.5,0.5)-3; 
         guesstrt2 = 2*rantbl(0,0.5,0.5)-3;    
         guesstrt3 = 2*rantbl(0,0.5,0.5)-3; 
       end; 
       /*Otherwise, must be on the second or subsequent observation for each 

site.*/ 
       else do; 

 /*prediction method 1- based upon knowledge of the previous treatment 
allocation, whereby the alternative treatment to that previously 
allocated to the center is predicted*/ 

if prev1[i]=1 then guesstrt1= -1; 
else guesstrt1=1; 

/*prediction method 2- based upon knowledge of all previous 
allocations to the center and the treatment group with the least 
number of patients is predicted*/  
if sum[i] > 0 then guesstrt2 = -1; 
else if sum[i] = 0 then guesstrt2 = 2*rantbl(0,0.5,0.5)-3; 
else guesstrt2 = 1;  *sum[i] must have been < 0; 

/*prediction method 3- based upon only the previous 3 allocations 
to the center and the treatment group with the least number of 
patients is predicted*/  
if sum3[i] > 0 then guesstrt3 = -1; 
else if sum3[i] = 0 then guesstrt3 = 2*rantbl(0,0.5,0.5)-3; 
else guesstrt3 = 1;  *sum3[i] must have been < 0; 

        end; 

 /*decide the allocation for the new patient*/ 
*Assign -1 or 1 with probability 0.5 if totimb<=&itl;

       if abs(totimb)<=&imtl then treatment=2*rantbl(0,0.5,0.5)-3; 
*Assign -1 (treatment B) with probability &p and 1 (treatment A) with

        probability 1-&p if number of patients in treatment A > number of  
        patients in treatment B, otherwise assign 1 with probability &p and 

–1 with probability 1-&p;
       else treatment=-sign(totimb)*(2*rantbl(0,1-&p,&p)-3); 

 /*prediction_each site*/ 
 if (prev1[i] ne 0 and sum[i]= 0) then do; balance[i]+1; end; 
 if ((prev1[i] ne 0) and (sum[i] ne 0)) then do; preddenom[i]+1; end; 

       if (((prev1[i] ne 0) and (sum[i] ne 0)) and (guesstrt1=treatment))  
then do; prednum1[i]+1; end; 

       if (((prev1[i] ne 0) and (sum[i] ne 0)) and (guesstrt2=treatment)) 
then do; prednum2[i]+1; end;  

       if (((prev1[i] ne 0) and (sum[i] ne 0)) and (guesstrt3=treatment)) 
then do; prednum3[i]+1; end; 
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 if preddenom[i]=0 then do; 
         predict1[i]=0; 
         predict2[i]=0; 
         predict3[i]=0; 

   end; 
       else do; 

predict1[i]=prednum1[i]/preddenom[i]; 
predict2[i]=prednum2[i]/preddenom[i]; 
predict3[i]=prednum3[i]/preddenom[i]; 

       end; 

 /*overall prediction*/ 
 if prev1[i] = 0 then do; first_all+1; end; 
 if (prev1[i] ne 0 and sum[i]= 0) then do; balance_all+1; end; 
 if ((prev1[i] ne 0) and (sum[i] ne 0)) then do; preddenom_all+1; end; 

       if (((prev1[i] ne 0) and (sum[i] ne 0)) and (guesstrt1=treatment))  
then do; prednum1_all+1; end; 

       if (((prev1[i] ne 0) and (sum[i] ne 0)) and (guesstrt2=treatment)) 
then do; prednum2_all+1; end;  

       if (((prev1[i] ne 0) and (sum[i] ne 0)) and (guesstrt3=treatment)) 
then do; prednum3_all+1; end; 

 if preddenom_all=0 then do; 
predict1_all=0; 

 predict2_all=0; 
 predict3_all=0; 

 end; 
       else do; 

 predict1_all=prednum1_all/preddenom_all; 
 predict2_all=prednum2_all/preddenom_all; 
 predict3_all=prednum3_all/preddenom_all; 

       end; 

 output; *EXPLICIT OUTPUT STATEMENT;

   /*Accumulate the values for trt for each site.*/ 
sum[i] + treatment; 

   /*Accumulate the values for previous 3 trt for site 4.*/ 
*=move the middle to the oldest; 
prev3[i] = prev2[i]; 

*=move the _previous_ most recent to the middle; 
prev2[i] = prev1[i]; 

*assign the current value as the most recent;
prev1[i] = treatment; 
sum3[i]= prev3[i]+prev2[i]+prev1[i]; 

      end; 
    end; 

 /*calculate the imbalance for each level of each stratification factor 
after the new patient is allocated*/  

       imsf1=imsf1+sf1*treatment; 
       imsf2=imsf2+sf2*treatment; 
drop i sitevar; 
run; 
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   proc sql; 
   create table overtrt_S&rep as  
   select sum(treatment=1) as trtA_count, sum(treatment=-1) as trtB_count 
   from assign_S&rep; 

 quit; 

   data sfim_S&rep(keep=imsf1 - imsf2); 
     set assign_S&rep end=lastseq; 
     if lastseq=1; 
   run; 

   proc sql; 
   create table trtbysite_S&rep as  
   select site, sum(treatment=1) as trtA_count, sum(treatment=-1) as  
   trtB_count 
   from assign_S&rep 
   group by site; 
   quit; 

   data siteg15im_S&rep; 
     set trtbysite_S&rep end=last; 
        abs_diff=abs(trtA_count - trtB_count); 

total_count=trtA_count + trtB_count; 
        if ( total_count>15 AND abs_diff>5) then numerator+1; 

 if total_count>15 then denominator+1; 
        if last then siteimg5p=numerator/denominator; 
      if last then output; 
      keep siteimg5p; 
   run; 

   data predict_site_S&rep; 
     set assign_S&rep end=last; 
       if last then output;  
     keep balance_site2 -- balance_site967 preddenom_2 -- preddenom_967 

prednum1_2 -- prednum1_967 prednum2_2 -- prednum2_967 prednum3_2 -- 
prednum3_967 predict1_2 -- predict1_967 predict2_2 -- predict2_967  
predict3_2 -- predict3_967; 

   run; 

   data predict_all_S&rep; 
     set assign_S&rep end=last; 

   if last then output;  
     keep first_all balance_all preddenom_all prednum1_all prednum2_all 

prednum3_all predict1_all predict2_all predict3_all; 
   run; 

%if &rep=1 %then %do; 
  data otrtall; 
    set overtrt_S&rep; 
    iterat=&rep; 
  run; 
  data sfimall; 
    set sfim_S&rep; 
    iterat=&rep; 
  run; 
  data siteimall; 
    set siteg15im_S&rep; 
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iterat=&rep; 
  run; 
  data predict_site_alliter; 
    set predict_site_S&rep; 

iterat=&rep; 
  run; 
  data predict_all_alliter; 
    set predict_all_S&rep; 

iterat=&rep; 
  run; 
%end; 
%else %do; 
  data otrtall; 
    set otrtall overtrt_S&rep(in=latest); 
    if latest then iterat=&rep; 
  run; 
  data sfimall; 
    set sfimall sfim_S&rep(in=latest); 
    if latest then iterat=&rep; 
  run; 
  data siteimall; 
    set siteimall siteg15im_S&rep(in=latest); 

if latest then iterat=&rep; 
  run; 
  data predict_site_alliter; 
    set predict_site_alliter predict_site_S&rep(in=latest); 

iterat=&rep; 
  run; 
  data predict_all_alliter; 
    set predict_all_alliter predict_all_S&rep(in=latest); 

iterat=&rep; 
  run; 
%end;  
%end; 
%mend allocation; 
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APPENDIX C 

SAS PROGRAM FOR THE COMPARISON OF RESULTS FROM THE LOG-RANK 

TEST AND THE RANDOMIZATION TEST 

The following SAS program was used to generate 1,000 simulated datasets based on B-24 trial 

and to execute the stratified log-rank test and the randomization with 1,000 replications for each 

simulated dataset.  The SAS programs for other trials or other scenarios would be modified based 

on this program. 

SAS program 
%let iter=1000; 
%let seed=0; 
%macro gendata;  *Macro of generating the simulated data; 
data genda&iter; 

  AccrualTime=3;  *Accrual time; 
  do ID = 1 to 1801; *Number of patients on study; 

*Generate age_cat based on the distribution of age_cat in B24 population;
    age_cat=rand('TABLE',0.33,0.67)-1;    

*Create two 0/1 incicators for each level of age
       (<50, >=50, respectively);  

if age_cat=0 then sf1=1; else sf1=0; 
if age_cat=1 then sf2=1; else sf2=0; 

*Generate Time from start of accrual to the patient Randomization;
    TimeToRand=rand('uniform')*AccrualTime; 
    output; 
  end; 
drop seed accrualTime; 
run; 
*Sort the simulated data in the order of the randomization sequence;
proc sort data=genda&iter; by TimeToRand; run;  
data trtassign&iter ; 
set genda&iter; 

*Assign treatment group by using the biased-coin minimization;
  /*imsf1 and imsf2 hold the imbalance for each level of age, trt hold the 
    treatment, totimb hold the total imbalance of previous allocations based 
    on the characteristics of the new patient to be assigned  
  /*These variables will be retained from one observation to the next and be 
    initialized with a value of 0 */ 
  retain imsf1 - imsf2 trt totimb 0; 
  /*Calculate the total imbalance of previous allocations based on the 
    characteristics of the new patient to be assigned*/    
  totimb=sf1*imsf1+sf2*imsf2; 
  /*Decide the allocation for the new patient*/ 

*Assign -1 or 1 with probability 0.5 if totimb<=2 (the pre-specified
    imbalance tolerance level); 
  if abs(totimb)<=2 then trt=2*rantbl(0,0.5,0.5)-3; 

*Assign -1 (treatment B) with probability 0.7 and 1 (treatment A) with
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    probability 0.3 if number of patients in treatment A > number of  
    patients in treatment B, otherwise assign 1 with probability p and -1 
    with probability 1-p; 
  else trt=-sign(totimb)*(2*rand('TABLE',1-0.7,0.7)-3); 
  /*Calculate the imbalance for each level of age after the new patient is 
    allocated*/  
  imsf1=imsf1+sf1*trt; 
  imsf2=imsf2+sf2*trt; 
run; 
%mend gendata; 

%macro permtiter;  *Macro of executing logrank test and randomization test;  
%do iter=1 %to &iter; 
%gendata;  *Call the macro of generating the simulated data; 
Data gendata.b24Simdata&iter (keep=id age_cat TimeToRand trt  

TimeToEventTheory TimeOnStudy   
TimeToEventObserved EventCensor); 

  set trtassign&iter; 
  CensorTime=16;  *The whole study time (i.e. the time from the start date of 

accural time to the last date of the follow-up; 
  ControlHazard=0.0374;  *Exponential parameter Lambda for failure rate on 

Control (events per person year); 
   HazardRatio=0.791;  *Ratio of Experimental Hazard Rate to Control Hazard 

Rate; 
  ExperimHazard=ControlHazard*HazardRatio; 

*Generate Time from trial start to Theoretical Event;
  if Trt=1 then 
      TimeToEventTheory=rand('EXPO')/ControlHazard; 

*Generate Time from trial start to Theoretical Event;
  else if Trt=-1 then 
      TimeToEventTheory=rand('EXPO')/ExperimHazard; 
  TimeOnStudy=CensorTime-TimeToRand;  *Time to last follow-up;
  TimeToEventObserved=Min(TimeToEventTheory,TimeOnStudy); 
  if TimeToEventTheory le TimeOnStudy then EventCensor=1;  *Event; 
  else  EventCensor=0;  *Censor; 
Output; 
run; 
   /*Get size of input dataset into macro variable &NUMRECS*/ 
   proc sql noprint; 
    select count(*) into :numrecs from gendata.b24Simdata&iter; 
   quit; 

  /*Generate 1,000 random numbers for each record, so records can be 
    randomly sorted within each replicate*/ 
  data __temp_1_&iter; 
    retain seed 0;  drop seed; 
    set gendata.b24Simdata&iter; 
    do replicate = 1 to 1000;  * ; 
      call ranuni(seed,rand_dep); 
      output; 
    end; 
  run; 

  proc sort data=__temp_1_&iter;  by replicate rand_dep;  run; 
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/* Append the new re-orderings to the original dataset.  
   Label the original as Replicate=0. 
   Then use the ordering of __counter within each replicate to write the   
   original values of &time and &cens, thus creating a randomization of these 
   variables in every replicate.*/ 
  data reps&iter; 
    array timelist{ &NUMRECS } _temporary_ ; 
    array censlist{ &NUMRECS } _temporary_; 
    set gendata.b24Simdata&iter(in=in_orig) __temp_1_&iter(drop=rand_dep); 
    if in_orig then do; 
      replicate=0; 
      timelist{_n_} = TimeToEventObserved ; 
      censlist{_n_} = EventCensor ; 
    end; 
    else do ; 
      TimeToEventObserved = timelist{ 1+mod(_n_,&NUMRECS) }; 
      EventCensor = censlist{ 1+mod(_n_,&NUMRECS) }; 
    end; 
  run; 

proc lifetest data=reps&iter outtest=outI&iter noprint; 
  time TimeToEventObserved*EventCensor(0); 
  strata age_cat/ test=(logrank); 
  test trt;  
  by replicate; 
run; 

data out2I&iter; 
  set outI&iter;  
  if _TYPE_ ='LOG RANK' and _NAME_ = "TimeToEventObserved" then output; 
data out3I&iter; set out2I&iter end = last; retain chisq; 
  if replicate = 0 then chisq = TimeToEventObserved; 
  else do; 
    if TimeToEventObserved + .00000001 ge chisq then num+1; 
  end; 
  if last then do;  
    pvalue = num/(_n_ - 1); 
    stderr = sqrt((pvalue*(1-pvalue))/(_n_ - 1)); 
    lowbound = max(pvalue - 1.96*stderr, 0); 
    upperbound = min(pvalue + 1.96*stderr, 1);  
    n = _n_ - 1; 
    output; 
  end; 
 label n = 'Number of Replicates'; 

  label pvalue = "Randomization Test Estimated P-Value (2-sided)"; 
  label lowbound = 'Lower 95 Pct Bound'; 
  label upperbound = 'Upper 95 Pct Bound'; 
run; 

data logrank_I&iter (drop=replicate); 
  set out2I&iter; 
  if replicate = 0; 
  p = 1 - probchi(TimeToEventObserved, 1); 
  label p = 'Asymptotic P-Value'; 
run; 
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%if &iter=1 %then %do; 
  data testout.permtall; 

set out3I&iter; 
iterat=&iter; 

  run; 
  data testout.logrankall; 
    set logrank_I&iter; 

iterat=&iter; 
  run; 
%end; 
%else %do; 
  data testout.permtall; 

set testout.permtall out3I&iter(in=latest); 
if latest then iterat=&iter; 

  run; 
  data testout.logrankall; 
    set testout.logrankall logrank_I&iter(in=latest); 

if latest then iterat=&iter; 
  run; 
%end;  
%end;  
%mend permtiter; 
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