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ABSTRACT 

Estimating cumulative event probabilities in time-to-event data can be complicated by 

competing events. Competing events occur when individuals can experience events other than 

the primary event of interest. These “other events” are often treated as censored observations. 

This thesis compares point estimates and relative differences between two cumulative 

event probability estimators, the Kaplan-Meier complement (KMC) and the cumulative 

incidence (CI), in the presence of competing events. The KMC does not allow for the possibility 

of experiencing competing events, whereas the CI does. Consequently, the KMC overestimates 

the CI in the presence of competing events. 

In this thesis, data were simulated with different combinations of primary event hazards, 

competing event hazards, random censoring hazards, and sample sizes. Cumulative event 

probabilities using the KMC and CI methods were calculated over a time period of 10 years. 

Several conclusions were drawn. High primary event hazards resulted in high KMC’s and 

CI’s and slightly narrowed the variability of the relative differences between the two estimates. 

High competing event hazards did not affect KMC’s but resulted in low CI’s, causing high 
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relative differences. High random censoring hazards did not affect KMC’s, CI’s, or relative 

differences. Large sample sizes did not affect the median relative differences but did narrow the 

variability of the relative differences. 

The public health relevance of this thesis is to help medical clinicians and researchers 

understand the advantages and disadvantages of different approaches of calculating cumulative 

event probabilities in situations where competing events occur. This is particularly important in 

the area of personalized medicine in diseases like cancer where clinicians attempt to predict their 

patients' mortality or recurrence probabilities over time given certain clinical, pathologic, or 

demographic characteristics. 
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1.0 INTRODUCTION 

Survival analysis involves a group of techniques in statistics used to analyze time-to-

event data, or data involving the time to an occurrence of some event. Events may be as varied as 

death, the development of a disease, recurrence of a disease, or cessation of a disease.9 In cases 

where an event may be experienced multiple times, one is often interested in the first occurrence 

of that event. The individual who experienced the event is then precluded from the risk set at the 

time of the first occurrence. Survival analysis has historically been applied to biomedical 

research, but it also has applications in computer science, engineering, business, economics, 

criminology, and other fields.9 

1.1 CENSORING AND COMPETING EVENTS 

Survival analysis is complicated by the issue of censoring. Censoring arises when an 

individual’s response or survival length is only known in a certain period of time. The two most 

common types of censoring are left censoring and right censoring. Left censoring occurs when 

the event of interest lies before a certain time, but it is unknown by how much.9 This is typically 

not a problem in prospective studies where the initiation of accrual is often fixed and the nature 

of the treatment does not change over calendar time. On the other hand, right censoring, which is 
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usually more problematic, occurs when the event of interest has not been observed at the last 

available time, and hence, it is unknown when or even if the event would have occurred.9 

Censored observations may not only be due to losses to follow-up or administrative 

cessation of the time period of consideration but can also be due to events not of interest. This 

situation is problematic if these “other events” preclude observation of the primary event under 

consideration. For example, in a study analyzing long-term survival rates of cancer patients, a 

distant metastasis might “censor” a locoregional recurrence in breast cancer patients.10 These 

secondary censoring events not due to loss of follow-up or administrative cessation are referred 

to as competing events.1–10 

The issue of how to deal with competing events is important in survival analysis. 

Experiencing a competing event acts as a right censor on the primary event. Because of this extra 

censoring, it is often useful to estimate and compare cumulative event probabilities of a specific 

event, rather than of all events as a whole. 

In this thesis, we propose to consider this problem by comparing the differences between 

two cumulative event probability estimators in the presence of a competing event using 

simulations. Section 1 introduces survival analysis and competing events. Section 2 defines the 

cumulative event probability estimators under consideration. Section 3 contains the methods. 

Section 4 presents the results. Section 5 discusses the results and contains suggestions to clinical 

researchers. 
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2.0 ESTIMATORS OF CUMULATIVE EVENT PROBABILITY 

2.1 KAPLAN-MEIER COMPLEMENT 

The first event-specific cumulative probability estimator under consideration is the 

Kaplan-Meier complement. For event times T1,…,Tj, the event-specific hazard for event i at time 

t, λi(t), is defined as the rate of event i within the next instant of time, t + Δt: 

𝜆𝑖(𝑡) =  lim
𝛥𝑡→ 0 

Pr{𝑡 ≤ 𝑇 < 𝑡 + 𝛥𝑡, 𝐼 = 𝑖 | 𝑇 ≥ 𝑡}
𝛥𝑡

, 𝑖 = 1, … ,𝑘                        ( 1 ) 

where I is the event type indicator and T = min(T1,…,Tj).3–5, 8, 9 The event-specific cumulative 

hazard for event i at time t, Λi(t), is defined as the sum of the event-specific hazards belonging to 

event i up to time t:5, 9 

𝛬𝑖(𝑡) = � 𝜆𝑖(𝑢)𝛥𝑢
𝑡

0
, 𝑖 = 1, … ,𝑘.                                                  ( 2 ) 

The Kaplan-Meier complement (KMC) of event i at time t is defined as the cumulative 

probability of experiencing event i before time t in the absence of competing events: 

𝐾𝑀𝐶𝑖(𝑡) = � 𝜆𝑖(𝑢)𝑆𝑖(𝑢)𝛥𝑢
𝑡

0
= 1 − 𝑆𝑖(𝑡) = 1 − exp�−𝛬𝑖(𝑡)� , 𝑖 = 1, … ,𝑘           ( 3 ) 

where the event-specific survival function for event i, Si(t), is defined as the probability that T ≥ t 

when I = i.4-6 Si(t) can be estimated by the Kaplan-Meier estimator: 
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𝑆𝑖(𝑡) = ��1 −
𝑑𝑖𝑗
𝑛𝑖𝑗−1

�
𝑠

𝑗=1

, 𝑖 = 1, … ,𝑘                                              ( 4 ) 

where s is the largest j such that tj < t, 𝑑𝑖𝑗 is the number of individuals who experience event i at 

time j, and 𝑛𝑖𝑗  is the number of individuals at risk for event i beyond time tj.5, 6, 9 

It is important to note that this estimator is interpretable only if events due to all other 

causes are removed. The probability of experiencing a competing event prior to time t is assumed 

to be zero when this does not actually reflect the true situation under competing events. Thus, the 

KMC cannot be considered the true probability of event i occurring before time t because 

competing events are treated as censored observations.2, 5, 6 A presumably more appropriate 

estimator of cumulative event probability, the cumulative incidence, correctly allows for the 

possibility of experiencing competing events. 

2.2 CUMULATIVE INCIDENCE 

The other event-specific cumulative probability estimator under consideration is the 

cumulative incidence. The cumulative incidence (CI) of event i at time t is defined as the 

cumulative probability of experiencing event i before time t in the presence of competing 

events:2–7, 9 

𝐶𝐼𝑖(𝑡) = � 𝜆𝑖(𝑢)𝑆(𝑢)𝛥𝑢
𝑡

0
, 𝑖 = 1, … , 𝑘                                             ( 5 ) 

where the overall survival function, S(t), is defined as the probability that T ≥ t:4, 5, 8, 9 

𝑆(𝑡) = exp�−�𝛬𝑖(𝑡)
𝑘

𝑖=1

� = �𝑆𝑖(𝑡)
𝑘

𝑖=1

, 𝑖 = 1, … ,𝑘.                                 ( 6 ) 
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The CI can alternatively be derived from the subdistribution hazard instead of the event-

specific hazard. The subdistribution hazard for event i represents the hazard function for an 

artificial time variable T’, defined as T’ = T if an event of type i occurred and T’ = ∞ if an event 

from a competing event occurred.3, 7 

CIi(t) can be estimated similarly to ( 4 ): 

𝐶𝐼𝑖(𝑡) = �
𝑑𝑖𝑗
𝑛𝑖𝑗−1

𝑆(𝑡𝑗)
𝑠

𝑗=1

, 𝑖 = 1, … ,𝑘                                               ( 7 ) 

where s is the largest j such that tj < t, 𝑑𝑖𝑗 is the number of individuals who experience event i at 

time j, and 𝑛𝑖𝑗  is the number of individuals at risk for event i beyond time tj.6 

The CI gives a more accurate representation of the cumulative event probability than the 

KMC in the presence of competing events because competing events are included in the risk set 

(the KMC is equivalent to the CI in the absence of competing events).5, 6 The CI does have one 

disadvantage, though. Unlike the KMC, individuals who experience a competing event before 

time t are still considered to be in the CI risk set for event i at time t.3 These individuals are not at 

risk at time t in reality. Because of this and other reasons to be discussed, clinicians and 

researchers examining cumulative event probabilities may want to use the KMC rather than the 

CI. 

The KMC always overestimates the CI in the presence of competing events because 

reducing the number of individuals in the risk set inflates the proportion of individuals at risk.5, 6 

Central to this thesis is analyzing the effects of changing various underlying parameters on the 

differences between these two estimators. 
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2.3 RELATIVE DIFFERENCE BETWEEN THE KAPLAN-MEIER COMPLEMENT 

AND THE CUMULATIVE INCIDENCE 

Because the KMC overestimates the CI, it is useful to devise a metric that conveys the 

difference between the two estimators clearly to investigators. The absolute difference, KMCi(t) 

– CIi(t), is the simplest metric to use, but it has several disadvantages. As time increases, the 

difference between KMC and CI monotonically increases. Because of this, it is hard to compare 

absolute differences between earlier and later time points. Also, the absolute difference between 

KMC and CI generally tends to be smaller when the CI is small and larger when the CI is large. 

A measure of relative difference (RD) between the two estimators nullifies the disparities in time 

and CI between different models: 

𝑅𝐷𝑖(𝑡) =
𝐾𝑀𝐶𝑖(𝑡) − 𝐶𝐼𝑖(𝑡)

𝐶𝐼𝑖(𝑡)
                                                     ( 8 ) 
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3.0 METHODS 

We conducted simulations in the statistical programming language R 2.13.111 to compare 

the estimates of and relative differences between the KMC and CI of a primary event when 

competing events could occur. The parameters were chosen based on results from a recent paper 

for which the authors predicted locoregional recurrence (LRR) probabilities in the presence of 

competing events in a population of stage II breast cancer patients after receiving neoadjuvant 

chemotherapy (NC).10 The parameters and their values tested are as follows: 

1) Primary event hazard (λ1): 0.015 and 0.03 

2) Competing event hazard (λ2): 0.015, 0.05, and 0.1 

3) Random censoring hazard (λC): 0.04 and 0.08 

4) Sample size (N): 250 and 1000 

There were 24 different parameter and sample size combinations in total. For each 

combination, 5,000 independent data sets were simulated and the KMC, CI, and RD estimates 

were calculated every year from years 1–10. Primary, competing, and random censoring event 

times were randomly generated for each data simulation according to a binomial algorithm 

developed by Beyersmann et al. (see Section 3.1).1 The event and random censoring times were 

assumed to follow the exponential distribution with cumulative distribution function:9 

𝐹𝜆(𝑥) = 1 − exp(−𝜆𝑥) , 𝑥 ≥ 0.                                                   ( 9 ) 
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For each simulation, a survival curve was fit to obtain the Kaplan-Meier survival 

estimates for the primary event (function ‘survfit’ in R). The KMC’s were calculated by 

subtracting the Kaplan-Meier estimates from 1. A Fine-Gray cumulative incidence model was 

also fit to obtain the cumulative incidence estimates for the primary event (function ‘cuminc’ in 

R).3 Finally, the RD’s were calculated from the KMC’s and CI’s. In the case that the KMC 

and/or CI was inestimable at later time points due to having no remaining individuals in the risk 

set, the maximum estimate was appended to those later time points. 

3.1 DATA SIMULATION ALGORITHM 

Simulations of competing events data are often conducted using some “latent event time” 

model, in which event times and types are associated with the minimum time of several possibly 

unobserved events. The latent event time model has been criticized for lack of plausibility in 

some settings, and further, non-identifiability of the dependence structure occurs among 

postulated latent event times.1 Therefore, we decided to adopt an algorithm developed by 

Beyersmann et al. (2009) to generate conditional primary and competing event times.1 Censoring 

times were assumed to be independent of primary and competing event times. The steps of the 

algorithm are as follows: 

1) The primary event hazard, λ1, and competing event hazard, λ2, are predefined (see 

Section 3.0). 

2) Event times are randomly generated from the exponential distribution ( 9 ) with rate 

λ1 + λ2. 
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3) For all event times, a binomial experiment decides with probability λ1 / (λ1 + λ2) on 

the primary event. All other events are designated as the competing event. 

4) Independent censoring times are randomly generated from the exponential 

distribution ( 9 ) with rate λC. 
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4.0 RESULTS 

 As was indicated in Section 3.0, we conducted 5,000 independent simulations for 24 

combinations of primary event hazard, competing event hazard, random censoring hazard, and 

sample size. Point estimates of the Kaplan-Meier complement (KMC) and cumulative incidence 

(CI) for the primary event at years 2, 5, and 10 are given in Tables 1 and 2 respectively. Their 

relative differences (RD) are given in Table 3, and the proportions of censored individuals are 

given in Table 4. For each result cell in Tables 1–4, the bolded first number represents the 

median of the 5,000 simulations and the numbers in parentheses represent the 2.5%–97.5% range 

of the 5,000 simulations. For Figures 1–4, the middle line represents the median estimates, the 

lower line represents the 2.5% estimates, and the upper line represents the 97.5% estimates. 
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Table 1. Kaplan-Meier Complement (KMC) estimates 

λ1 λ2 λC N Year 2 Year 5 Year 10 

0.015 0.015 0.04 250 0.029 (0.012-0.053) 0.072 (0.04-0.109) 0.139 (0.09-0.191) 

   1000 0.029 (0.019-0.041) 0.072 (0.056-0.09) 0.139 (0.115-0.164) 

  0.08 250 0.029 (0.009-0.053) 0.071 (0.037-0.111) 0.137 (0.086-0.198) 

   1000 0.03 (0.019-0.041) 0.072 (0.054-0.091) 0.139 (0.112-0.168) 

 0.05 0.04 250 0.03 (0.009-0.054) 0.071 (0.038-0.111) 0.137 (0.086-0.197) 

   1000 0.029 (0.019-0.041) 0.072 (0.055-0.09) 0.138 (0.112-0.167) 

  0.08 250 0.028 (0.009-0.054) 0.071 (0.036-0.113) 0.138 (0.082-0.203) 

   1000 0.029 (0.019-0.041) 0.072 (0.053-0.093) 0.139 (0.109-0.171) 

 0.1 0.04 250 0.028 (0.009-0.055) 0.071 (0.037-0.113) 0.138 (0.079-0.207) 

   1000 0.029 (0.019-0.041) 0.072 (0.053-0.092) 0.139 (0.107-0.171) 

  0.08 250 0.029 (0.009-0.055) 0.071 (0.034-0.116) 0.137 (0.071-0.215) 

   1000 0.029 (0.018-0.041) 0.072 (0.052-0.093) 0.139 (0.104-0.176) 

0.03 0.015 0.04 250 0.058 (0.029-0.089) 0.138 (0.094-0.188) 0.258 (0.196-0.323) 

   1000 0.058 (0.044-0.074) 0.139 (0.116-0.162) 0.259 (0.227-0.291) 

  0.08 250 0.057 (0.03-0.09) 0.137 (0.092-0.188) 0.256 (0.186-0.33) 

   1000 0.058 (0.044-0.074) 0.139 (0.115-0.164) 0.259 (0.225-0.295) 

 0.05 0.04 250 0.057 (0.03-0.09) 0.138 (0.093-0.19) 0.257 (0.19-0.33) 

   1000 0.058 (0.043-0.074) 0.139 (0.116-0.164) 0.259 (0.225-0.294) 

  0.08 250 0.058 (0.03-0.092) 0.138 (0.09-0.194) 0.258 (0.181-0.341) 

   1000 0.058 (0.043-0.074) 0.139 (0.115-0.165) 0.258 (0.22-0.299) 

 0.1 0.04 250 0.057 (0.029-0.092) 0.138 (0.088-0.194) 0.258 (0.179-0.341) 

   1000 0.058 (0.043-0.074) 0.139 (0.114-0.167) 0.259 (0.219-0.302) 

  0.08 250 0.057 (0.028-0.091) 0.138 (0.086-0.196) 0.255 (0.17-0.357) 

   1000 0.058 (0.043-0.074) 0.139 (0.111-0.166) 0.258 (0.213-0.306) 
  

 11 



Table 2. Cumulative Incidence (CI) estimates 

λ1 λ2 λC N Year 2 Year 5 Year 10 

0.015 0.015 0.04 250 0.029 (0.012-0.053) 0.069 (0.039-0.105) 0.129 (0.084-0.178) 

   1000 0.029 (0.019-0.04) 0.07 (0.054-0.087) 0.129 (0.107-0.152) 

  0.08 250 0.029 (0.009-0.052) 0.069 (0.036-0.108) 0.129 (0.08-0.185) 

   1000 0.029 (0.019-0.041) 0.07 (0.052-0.088) 0.13 (0.104-0.156) 

 0.05 0.04 250 0.029 (0.008-0.05) 0.064 (0.034-0.098) 0.11 (0.068-0.155) 

   1000 0.028 (0.018-0.039) 0.064 (0.049-0.08) 0.11 (0.089-0.132) 

  0.08 250 0.027 (0.009-0.052) 0.063 (0.033-0.1) 0.11 (0.066-0.159) 

   1000 0.028 (0.018-0.039) 0.064 (0.048-0.082) 0.11 (0.087-0.134) 

 0.1 0.04 250 0.025 (0.008-0.05) 0.056 (0.03-0.089) 0.088 (0.052-0.129) 

   1000 0.027 (0.017-0.037) 0.057 (0.043-0.072) 0.089 (0.07-0.108) 

  0.08 250 0.026 (0.008-0.049) 0.057 (0.028-0.09) 0.089 (0.049-0.134) 

   1000 0.027 (0.017-0.037) 0.057 (0.042-0.073) 0.089 (0.069-0.111) 

0.03 0.015 0.04 250 0.057 (0.029-0.088) 0.133 (0.091-0.182) 0.241 (0.183-0.302) 

   1000 0.057 (0.043-0.073) 0.134 (0.112-0.157) 0.241 (0.212-0.272) 

  0.08 250 0.056 (0.03-0.088) 0.133 (0.089-0.182) 0.24 (0.174-0.308) 

   1000 0.057 (0.043-0.073) 0.134 (0.111-0.158) 0.241 (0.21-0.274) 

 0.05 0.04 250 0.054 (0.029-0.086) 0.123 (0.083-0.169) 0.206 (0.152-0.263) 

   1000 0.055 (0.041-0.07) 0.124 (0.103-0.145) 0.207 (0.18-0.235) 

  0.08 250 0.055 (0.029-0.087) 0.123 (0.08-0.173) 0.206 (0.147-0.271) 

   1000 0.055 (0.041-0.07) 0.123 (0.102-0.146) 0.206 (0.177-0.237) 

 0.1 0.04 250 0.053 (0.025-0.083) 0.11 (0.07-0.153) 0.167 (0.119-0.22) 

   1000 0.053 (0.039-0.067) 0.11 (0.09-0.132) 0.168 (0.143-0.194) 

  0.08 250 0.052 (0.026-0.082) 0.11 (0.069-0.155) 0.167 (0.115-0.227) 

   1000 0.053 (0.039-0.067) 0.11 (0.089-0.132) 0.168 (0.141-0.196) 
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Table 3. Relative Difference (RD) estimates 

λ1 λ2 λC N Year 2 Year 5 Year 10 

0.015 0.015 0.04 250 0.012 (0.001-0.03) 0.034 (0.014-0.061) 0.071 (0.039-0.112) 

   1000 0.014 (0.008-0.022) 0.037 (0.025-0.05) 0.073 (0.056-0.094) 

  0.08 250 0.012 (0-0.031) 0.033 (0.013-0.062) 0.069 (0.036-0.114) 

   1000 0.014 (0.008-0.023) 0.037 (0.025-0.05) 0.074 (0.056-0.093) 

 0.05 0.04 250 0.047 (0.017-0.09) 0.124 (0.069-0.195) 0.257 (0.165-0.372) 

   1000 0.05 (0.034-0.068) 0.127 (0.1-0.159) 0.261 (0.212-0.316) 

  0.08 250 0.047 (0.016-0.088) 0.123 (0.068-0.191) 0.254 (0.156-0.384) 

   1000 0.05 (0.034-0.068) 0.127 (0.098-0.16) 0.26 (0.208-0.321) 

 0.1 0.04 250 0.098 (0.039-0.172) 0.261 (0.152-0.405) 0.547 (0.331-0.823) 

   1000 0.101 (0.072-0.134) 0.265 (0.208-0.329) 0.559 (0.443-0.69) 

  0.08 250 0.098 (0.036-0.175) 0.256 (0.141-0.4) 0.538 (0.301-0.858) 

   1000 0.101 (0.073-0.136) 0.265 (0.205-0.334) 0.557 (0.434-0.703) 

0.03 0.015 0.04 250 0.012 (0.001-0.029) 0.034 (0.015-0.06) 0.07 (0.04-0.107) 

   1000 0.014 (0.008-0.022) 0.036 (0.026-0.048) 0.072 (0.056-0.09) 

  0.08 250 0.012 (0.001-0.03) 0.033 (0.014-0.06) 0.068 (0.036-0.109) 

   1000 0.014 (0.008-0.022) 0.036 (0.025-0.049) 0.072 (0.055-0.091) 

 0.05 0.04 250 0.047 (0.023-0.081) 0.122 (0.076-0.182) 0.248 (0.171-0.346) 

   1000 0.049 (0.036-0.065) 0.125 (0.102-0.152) 0.253 (0.213-0.298) 

  0.08 250 0.047 (0.022-0.08) 0.122 (0.075-0.181) 0.247 (0.166-0.356) 

   1000 0.049 (0.036-0.065) 0.125 (0.1-0.154) 0.253 (0.209-0.303) 

 0.1 0.04 250 0.099 (0.055-0.156) 0.257 (0.173-0.366) 0.533 (0.361-0.75) 

   1000 0.102 (0.079-0.129) 0.262 (0.217-0.313) 0.542 (0.453-0.645) 

  0.08 250 0.098 (0.051-0.158) 0.255 (0.166-0.366) 0.526 (0.344-0.767) 

   1000 0.101 (0.077-0.13) 0.26 (0.212-0.315) 0.539 (0.441-0.653) 
  

 13 



Table 4. Censoring proportions 

λ1 λ2 λC N Censoring Proportion 

0.015 0.015 0.04 250 0.572 (0.508-0.632) 

   1000 0.571 (0.541-0.602) 

  0.08 250 0.728 (0.672-0.78) 

   1000 0.727 (0.7-0.754) 

 0.05 0.04 250 0.38 (0.324-0.44) 

   1000 0.381 (0.351-0.411) 

  0.08 250 0.552 (0.488-0.612) 

   1000 0.551 (0.521-0.581) 

 0.1 0.04 250 0.256 (0.204-0.312) 

   1000 0.258 (0.232-0.286) 

  0.08 250 0.412 (0.348-0.472) 

   1000 0.41 (0.378-0.44) 

0.03 0.015 0.04 250 0.472 (0.412-0.532) 

   1000 0.47 (0.439-0.502) 

  0.08 250 0.64 (0.584-0.7) 

   1000 0.64 (0.611-0.669) 

 0.05 0.04 250 0.332 (0.276-0.392) 

   1000 0.333 (0.304-0.363) 

  0.08 250 0.5 (0.436-0.56) 

   1000 0.5 (0.469-0.531) 

 0.1 0.04 250 0.236 (0.184-0.288) 

   1000 0.235 (0.209-0.262) 

  0.08 250 0.38 (0.32-0.444) 

   1000 0.381 (0.351-0.412) 
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4.1 PRIMARY EVENT HAZARD 

Two different primary event hazards were tested: λ1 = 0.015 and 0.03. Both the KMC and 

CI estimates at year 10 were much higher when λ1 = 0.03 compared to λ1 = 0.015. For example, 

at year 10 when λ2 = 0.05, λC = 0.08, and N = 1000, the median KMC = 0.139 when λ1 = 0.015 

while the median KMC = 0.258 when λ1 = 0.03. For the same parameter combination at year 10, 

the median CI = 0.11 when λ1 = 0.015 while the median CI = 0.206 when λ1 = 0.03. It was 

expected that both cumulative event probability estimates of the primary event would change 

along with their hazard, so this result is not surprising. 

 Although the KMC and CI estimates were greatly affected by changes in λ1, the relative 

differences between the two were not affected quite as much. For nearly all combinations, the 

median RD decreased slightly but remained virtually the same. For example, using the same 

parameter combination as above at year 10, the median RD = 0.26 when λ1 = 0.015 while the 

median RD = 0.253 when λ1 = 0.03. While the median RD’s were hardly affected, the variability 

of the RD’s narrowed slightly. For the same parameter combination at year 10, the RD 2.5%–

97.5% range was (0.208–0.321) when λ1 = 0.015 while the range narrowed to (0.209–0.303) 

when λ1 = 0.03. 
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Figure 1. Relative differences between λ1 = 0.15 and 0.03 (λ2 = 0.05, λC = 0.08, N = 1000) 

4.2 COMPETING EVENT HAZARD 

Three different competing event hazards were tested: λ2 = 0.015, 0.05, and 0.1. Higher 

competing event hazards did not change the KMC estimates. For example, at year 10 when λ1 = 

0.015, λC = 0.08, and N = 1000, the median KMC = 0.139 when λ2 = 0.015 while the median 

KMC = 0.139 when λ2 = 0.1. This result was expected, as the calculation of KMC treats 

competing events as censored observations. Higher competing event hazards did result in 

reduced CI estimates, however. For the same parameter combination at year 10, the median CI = 

0.13 when λ2 = 0.015 while the median CI = 0.089 when λ2 = 0.1. This was also expected, as 

higher rates of competing events reduce the overall survival function ( 6 ). 

Because the KMC estimates did not change with higher competing hazards but the CI 

estimates decreased, the RD’s dramatically increased. For example, using the same parameter 
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combination as above at year 10, the median RD = 0.074 when λ2 = 0.015 while the median RD 

= 0.557 when λ2 = 0.1. The variability of the RD’s also greatly increased as competing event 

hazards increased.  

 

 

Figure 2. Relative differences between λ2 = 0.015, 0.05, and 0.1 (λ1 = 0.015, λC = 0.08, N = 1000) 

4.3 RANDOM CENSORING HAZARD 

Two different random censoring hazards were tested: λC = 0.04 and 0.08. As shown in 

Table 4, median censoring proportions ranged from 0.235 to 0.728. Raising the random 

censoring hazard from λC = 0.04 to λC = 0.08 resulted in an increase in the censoring proportion 

of anywhere from 0.144 to 0.172. Although the censoring proportions increased when the 

random censoring hazard increased, the KMC and CI estimates did not change. For example, at 

year 10 when λ1 = 0.015, λ2 = 0.05, and N = 1000, the median KMC = 0.138 when λC = 0.04 
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while the median KMC = 0.139 when λC = 0.08. For the same parameter combination at year 10, 

the median CI = 0.11 when λC = 0.04 while the median CI = 0.11 when λC = 0.08. Because the 

KMC and CI estimates did not change, the RD’s also did not change. For the same parameter 

combination at year 10, the median RD = 0.261 when λC = 0.04 while the median RD = 0.26 

when λC = 0.08. The variability of the RD’s slightly widened, but the effect was so small as to 

not make any significant difference. 

 

 

Figure 3. Relative differences between λC = 0.04 and 0.08 (λ1 = 0.015, λ2 = 0.05, N = 1000) 

4.4 SAMPLE SIZE 

Two different sample sizes were tested: N = 250 and 1000. Increasing the sample size 

from 250 to 1000 did not change the median KMC and CI estimates, but it did narrow the 

variability of those estimates as expected. For example, at year 10 when λ1 = 0.015, λ2 = 0.05, 
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and λC = 0.08, the median KMC = 0.138 when N = 250 while the median KMC = 0.139 when N 

= 1000. The KMC 2.5%–97.5% range narrowed from (0.082–0.203) when N = 250 to (0.109–

0.171) when N = 1000. Also, for the same parameter combination at year 10, the median CI = 

0.11 when N = 250 while the median CI = 0.11 when N = 1000. The CI 2.5%–97.5% range 

narrowed from (0.066–0.159) when N = 250 to (0.087–0.134) when N = 1000. 

 Because the variability of the KMC and CI estimates narrowed, the variability of the 

RD’s also greatly narrowed. For the same parameter combination as above at year 10, the RD 

2.5%–97.5% range narrowed from (0.156–0.384) when N = 250 to (0.208–0.321) when N = 

1000. The median RD’s actually slightly increased as sample size increased in most parameter 

combinations, but the increases were so small as to not make any significant difference (the 

increases in median RD ranged from only 0.002 to 0.019). 

 

 

Figure 4. Relative differences between N = 250 and 1000 (λ1 = 0.015, λ2 = 0.05, λC = 0.08) 
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5.0 DISCUSSION 

 The issue of whether to use the KMC or the CI as an estimator of cumulative event 

probability is important in biomedical research. Gooley et al. (1999) unequivocally believe that 

the CI should always be used as an estimator of cumulative event probability when competing 

events are present: “Determining whether to use [KMC] or CI is unambiguous and CI should 

always be used if an estimate of the probability of failure of a specific type is desired.”6 While 

they are correct that the CI properly takes competing events into account, there still might be 

reasons for clinicians to want to use the KMC instead. 

As an example of KMC’s potential clinical advantages, suppose that a woman who has 

been diagnosed with stage II breast cancer is due to receive a more aggressive treatment if, based 

on her characteristics, her cumulative event probability is predicted to be above a certain 

threshold. If her cumulative event probability is predicted to be below that value, she will receive 

a less aggressive treatment. Suppose also that her KMC estimate lies above this threshold, 

whereas her CI estimate lies below this threshold. In this case, her clinician may decide to 

exercise caution and use the KMC, giving the more aggressive treatment and presumably having 

a greater chance of treating her cancer. Of course, there may also be instances where clinicians 

would want to avoid overtreatment when the treatments (e.g., certain chemotherapies, radiation 

therapies, and surgeries used in cancer treatment) have potentially harmful side-effects of their 

own. In those cases, using the CI may be desired instead. The problem for clinicians becomes 
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whether they want greater predictive accuracy or to exercise caution in cases where the benefits 

of overtreatment are perceived to be greater than the risks. 

While high primary event hazards resulted in high KMC and CI estimates and vice versa, 

the RD’s were only slightly affected with a small narrowing of their variabilities. The decision to 

use KMC or CI may not be as much of an issue for clinicians in the case of high primary event 

hazards, as both the KMC and CI estimates are high. In contrast, high competing event hazards 

resulted in low CI estimates, leading to dramatically higher RD’s. Clinicians who want to err on 

the side of caution may be compelled to do so if competing event hazards are high. High random 

censoring hazards were shown to barely affect KMC, CI, or RD estimates, so clinicians should 

not be concerned about censoring proportions in their studies as long as the censoring is “truly” 

random and independent of all other events. Finally, as expected, high sample sizes resulted in 

only a slight change in the median KMC’s, CI’s, and RD’s but a great narrowing of their 

variabilities. Therefore, clinicians can expect more precise KMC and CI estimates from studies 

with higher sample sizes. 
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APPENDIX A 

PROGRAM CODE 

 The program code in Appendices A.1 and A.2 were written and run in R 2.13.1.11 The 

program code in Appendix A.1 first generates the survival data. Then it calculates the CI 

estimates, KMC estimates, and censoring proportions. Finally, it stores the estimates and 

censoring proportions in a text file for later use. 

The program code in Appendix A.2 first retrieves the estimates from the files generated 

by the program code in Appendix A.1. Then it calculates the RD’s. Finally, it outputs the KMC, 

CI, and RD at the median, 2.5%, and 97.5%. Optionally, the RD’s can be graphed from years 1–

10. 

 The sample code in Appendices A.1 and A.2 is used to test the parameter combination of 

λ1 = 0.015, λ2 = 0.015, λC = 0.04, and N = 250. 
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A.1 CUMULATIVE EVENT PROBABILITY ESTIMATION AND STORAGE 

library(survival) 

library(cmprsk) 

 

setwd("C:\\Users\\Jeff\\Desktop\\Thesis\\Simulation Results") 

getwd() 

 

# Constants 

nsim<-5000      # Number of models 

est.times<-1:10      # Estimation times (Years 1-10) 

ntimes<-length(est.times) 

 

# Output matrix 

output<-matrix(NA,nrow=nsim,ncol=2*ntimes+1) # Cols. 1-10: CI; Cols. 11-20: KMC; Col. 21: Censor props. 

 

# Model parameters 

############################################################################################# 

haz1<-0.015      # Primary event hazard 

haz2<-0.015      # Competing event hazard 

cens<-0.04      # Random censoring hazard 

n<-250       # Overall sample size 

############################################################################################# 

 

for(j in 1:nsim){      # Begin simulation loop 

  

 ftime<-rep(NA,n)     # Time vector 

 event<-rep(NA,n)     # Event vector 

  

 ftime<-rexp(n,haz1+haz2)    # Generate dependent exponential event times 

 for(i in 1:n){     # Generate event types 

  rand<-runif(1) 

  event[i]<-ifelse(rand<=haz1/(haz1+haz2),1,2) 

 } 

 ctime<-rexp(n,cens)    # Generate independent exponential censoring times 

 event<-ifelse(ctime<ftime,0,event) 

 Time<-apply(cbind(ftime,ctime),1,min) 

  

 if(!is.na(table(event)[3])){   # If at least 1 primary event 

  fit.cuminc<-cuminc(Time,event)  # Cumulative incidence model 
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  fit.coxph<-coxph(Surv(Time,(event==1))~1) # Cox PH model for primary event 

 

  cuminc.all<-timepoints(fit.cuminc,est.times) 

  cuminc.est<-cuminc.all$est["1 1",]  # Estimate CI for primary event 

 

  info.coxph<-summary(survfit(fit.coxph),time=est.times) 

  coxph.est<-1-info.coxph$surv  # Estimate KMC for primary event 

   

  # Append max. estimates to CI and KMC if value is NA 

  cuminc.max<-timepoints(fit.cuminc,max(Time[event==1]))$est["1 1",] 

  cuminc.est[which(is.na(cuminc.est))]<-cuminc.max 

  coxph.max<-1-summary(survfit(fit.coxph),time=max(Time[event==1]))$surv  

  coxph.est<-c(coxph.est,rep(coxph.max,ntimes-length(coxph.est))) 

 } else{      # Otherwise all KMC and CI estimates are 0 

  cuminc.est<-rep(0,ntimes) 

  coxph.est<-rep(0,ntimes) 

 } 

  

 output[j,1:ntimes]<-cuminc.est   # Store CI estimates 

 output[j,(1+ntimes):(2*ntimes)]<-coxph.est  # Store KMC estimates 

 output[j,(2*ntimes+1)]<-table(event)[1]/n  # Store censoring proportions 

}       # End simulation loop 

 

# Write output matrix to file 

write(t(output),file=sprintf('haz1=%s, haz2=%s, cens=%s, n=%s.txt',haz1,haz2,cens,n),ncol=2*ntimes+1)  
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A.2 RELATIVE DIFFERENCE CALCULATION AND GRAPHING 

library(survival) 

library(cmprsk) 

 

setwd("C:\\Users\\Jeff\\Desktop\\Thesis\\Simulation Results") 

getwd() 

 

# Constants 

nsim<-5000      # Number of models 

est.times<-1:10      # Estimation times (Years 1-10) 

ntimes<-length(est.times) 

 

rd<-matrix(NA,nrow=nsim,ncol=ntimes)   # Relative difference matrix 

 

ci.low<-rep(NA,ntimes)     # CI, KMC, and relative diff. vectors 

ci.med<-rep(NA,ntimes) 

ci.hi<-rep(NA,ntimes) 

kmc.low<-rep(NA,ntimes) 

kmc.med<-rep(NA,ntimes) 

kmc.hi<-rep(NA,ntimes) 

rd.low<-rep(NA,ntimes) 

rd.med<-rep(NA,ntimes) 

rd.hi<-rep(NA,ntimes) 

 

# Model parameters 

############################################################################################# 

haz1<-0.015      # Primary event hazard 

haz2<-0.015      # Competing event hazard 

cens<-0.04      # Random censoring hazard 

n<-250       # Overall sample size 

############################################################################################# 

 

# Read output from file 

output<-read.table(file=sprintf('haz1=%s, haz2=%s, cens=%s, n=%s.txt',haz1,haz2,cens,n)) 

 

for(i in 1:nsim){      # Calculate relative differences 

 for(j in 1:ntimes){ 

  rd[i,j]<-(output[i,j+ntimes]-output[i,j])/output[i,j] 

  if(is.nan(rd[i,j])) rd[i,j]<-0  # If CI = 0, RD = 0 
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 } 

} 

 

for(i in 1:ntimes){     # Low, medium, and high estimates 

 ci.low[i]<-quantile(output[,i],0.025) 

 ci.med[i]<-quantile(output[,i],0.5) 

 ci.hi[i]<-quantile(output[,i],0.975) 

 kmc.low[i]<-quantile(output[,i+ntimes],0.025) 

 kmc.med[i]<-quantile(output[,i+ntimes],0.5) 

 kmc.hi[i]<-quantile(output[,i+ntimes],0.975) 

 rd.low[i]<-quantile(rd[,i],0.025) 

 rd.med[i]<-quantile(rd[,i],0.5) 

 rd.hi[i]<-quantile(rd[,i],0.975) 

} 

censor.low<-quantile(output[,2*ntimes+1],0.025) 

censor.med<-quantile(output[,2*ntimes+1],0.5) 

censor.hi<-quantile(output[,2*ntimes+1],0.975) 

 

 

# Output CI, KMC, and RD for year 2: Median (2.5%-97.5%) 

sprintf('%s (%s-%s)',round(ci.med[.2*ntimes],3),round(ci.low[.2*ntimes],3),round(ci.hi[.2*ntimes],3)) 

sprintf('%s (%s-%s)',round(kmc.med[.2*ntimes],3),round(kmc.low[.2*ntimes],3),round(kmc.hi[.2*ntimes],3)) 

sprintf('%s (%s-%s)',round(rd.med[.2*ntimes],3),round(rd.low[.2*ntimes],3),round(rd.hi[.2*ntimes],3)) 

 

# Output CI, KMC, and RD for year 5: Median (2.5%-97.5%) 

sprintf('%s (%s-%s)',round(ci.med[.5*ntimes],3),round(ci.low[.5*ntimes],3),round(ci.hi[.5*ntimes],3)) 

sprintf('%s (%s-%s)',round(kmc.med[.5*ntimes],3),round(kmc.low[.5*ntimes],3),round(kmc.hi[.5*ntimes],3)) 

sprintf('%s (%s-%s)',round(rd.med[.5*ntimes],3),round(rd.low[.5*ntimes],3),round(rd.hi[.5*ntimes],3)) 

 

# Output CI, KMC, and RD for year 10: Median (2.5%-97.5%) 

sprintf('%s (%s-%s)',round(ci.med[ntimes],3),round(ci.low[ntimes],3),round(ci.hi[ntimes],3)) 

sprintf('%s (%s-%s)',round(kmc.med[ntimes],3),round(kmc.low[ntimes],3),round(kmc.hi[ntimes],3)) 

sprintf('%s (%s-%s)',round(rd.med[ntimes],3),round(rd.low[ntimes],3),round(rd.hi[ntimes],3)) 

 

# Censoring proportion: Median (2.5%-97.5%) 

sprintf('%s (%s-%s)',censor.med,censor.low,censor.hi) 

 

############################################################################################# 

 

# Graph relative differences 

plot(est.times,rd.med,type="b",xlim=c(0,10),ylim=c(0,0.15),xlab="Years", 
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ylab="Relative difference (RD) between KMC and CI estimates") 

title(paste("Relative Differences: 

Primary event hazard =",haz1,"and Competing event hazard =",haz2," 

Censoring hazard =",cens,"and Sample size =",n)) 

lines(est.times,rd.low) 

lines(est.times,rd.hi) 
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