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ABSTRACT 

Proteomics has led to the discovery of several biomarkers within an individual’s bloodstream 

that can be used in the diagnostic process for disease. Identification of novel biomarkers have a 

significant impact in the area of public health, with the potential to replace existing diagnostic 

methods that are complicated, costly, and that pose considerable risk to the patient. Cardiac 

catheterization, the current diagnostic method for coronary artery disease, is such an invasive 

procedure. An over-abundance of negative test results leads to the inquiry whether exposing all 

symptomatic patients to the procedure is in a physician’s best interest.  

A statistical analysis involving multivariate logistic regression and evaluation of 

predictive models identified a panel of biomarkers that can be used to classify patient with 

coronary artery disease and those with “normal” coronary arteries. This panel was used in 

conjunction with common clinical risk factors for heart disease to examine the added predictive 

power of the multi-marker panel when combined with clinical characteristics.  

A four-marker panel consisting of OPN, IL1β, Apo-B100, and Fibrinogen were found to 

be statistically significant predictors of coronary artery disease in a predictive logistic model 

adjusting for clinical risk factors, diabetes status and smoking status. The ability to identify 
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patients that did not have clinically relevant coronary disease based on currently used clinical 

risk factors increased greatly, from zero to approximately thirty percent of the patients, with the 

inclusion of the biomarker panel. 

The use of a blood screening test for the diagnosis of coronary artery disease among 

symptomatic patients can limit the number of unnecessary cardiac catheterizations, reducing 

healthcare costs and patient risks associated with the invasive nature of the procedure. However, 

with such a test, there may be some discrimination error present, and the cost of misdiagnosing a 

patient with clinically relevant coronary artery disease needs to be weighed against the benefits 

of the test. 
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1.0  INTRODUCTION 

Biological markers, more commonly referred to as “biomarkers,” refer to observable 

measurements derived from a patient that can be used to describe certain biological 

developments, including disease status, risk, or prognosis for that patient. According to an NIH 

working group, the definition of a biomarker is standardized to be “a characteristic that is 

objectively measured and evaluated as an indicator of normal biological processes, pathogenic 

processes, or pharmacologic responses to a therapeutic intervention [1]. These biomarkers can be 

classified into separate categories based on their clinical properties. For the purpose of this paper, 

the term biomarkers will be used to denote biological components that indicate disease status of 

an individual; they are disease biomarkers consisting of diagnostic properties. More specifically, 

this paper is interested in circulating biomarkers ascertained from advanced proteomics methods.  

Previously, biomarkers were commonly found to be simple physiological measurements, 

such as one’s blood pressure or heart rate, but have now evolved into complex imaging 

techniques and multi-marker genomic/proteomic panels [2]. This revolution allows researchers 

to interrogate blood and serum samples for potential markers that may not correspond with a 

patient’s sense of well-being, but are evidently affecting the disease status of an individual. This 

method of diagnosis is especially attractive in areas where the incidence of disease is high and 

current diagnostic methods are both costly and invasive in nature.  
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Novel discoveries in biomarker research have a significant impact in the area of public 

health, providing alternative diagnostic methods for currently used invasive procedures, thus 

reducing the existing medical complications and economic burden of such procedures. 

1.1 CORONARY ARTERY DISEASE 

The application of biomarker research related to coronary artery disease (CAD) is the primary 

focus of this thesis. In the United States, CAD is the leading cause of mortality, accounting for 

about one of every six deaths. In 2009, 386,324 deaths due to CAD were recorded [3]. The 

disease occurs when the coronary arteries harden and narrow, due to atherosclerosis, preventing 

oxygen from reaching the heart. The most common symptom of coronary artery disease is 

angina, or chest pain, but a patient may also experience fatigue, light-headedness, or shortness of 

breath. However, sometimes an individual will experience myocardial infarction (a heart attack) 

or immediate death without having any of the previous symptoms. The use of screening 

procedures allows for early detection of the disease so successful interventions can be performed 

to reduce chances of infarct or death.  

The current diagnostic method for CAD involves invasive coronary angiography, where 

medical imaging is used to detect a dye injected into the arteries by way of cardiac 

catheterization. This involves the insertion of a catheter, a thin and flexible tube, through a 

brachial or femoral artery and up to the aorta and chamber of the heart, where the dye is then 

released into the bloodstream [4]. Coronary angiography has been a highly efficient screening 

procedure for the detection of coronary stenosis and is regarded as the current gold standard for 

determining clinically significant CAD among symptomatic patients, but complications arising 
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from the procedure have been criticized [5]. Several common complications include arrhythmias 

(mostly attributed to anxiety about the procedure), bleeding and hematoma around the femoral 

artery region, allergic reactions to the injected dye, and anesthetic complications [6, 7]. 

Furthermore, a patient undergoing the catheterization procedure is exposed to localized x-ray 

radiation for an extended period of time, increasing the risk of cancer and other genetic effects 

[8].  

The alarming rate of CAD has led to an increase in the number of cardiac catheterizations 

performed in hospitals, thus increasing the incidence of these complications. Almost half of the 

patients referred for catheterizations are found to have insignificant coronary lesions, and are 

unnecessarily exposed to procedural complications [9]. One alternative to the invasive procedure 

would include the identification of biomarkers existing in a patient’s bloodstream. Biomarker 

discovery regarding CAD would reveal a safer, more pragmatic diagnostic procedure than 

coronary angiography with cardiac catheterization.   

1.1.1 Symptomatic Patients 

Patients referred for catheterization come in to the emergency room (ER) or heart clinic showing 

symptoms of CAD.  This cohort of patients excludes those that have experienced a cardiac event, 

such as myocardial infarction, who skip the ER and are immediately sent for percutaneous 

intervention. For the patients received in the ER or heart clinic, an assessment of the individual is 

performed to determine the pretest probability of having CAD [10]. This may include looking at 

a patient’s medical history and existing clinical characteristics (obesity, smoking, age, etc.). If 

the pretest probability for CAD is low to intermediate, a non-invasive stress test and/or  
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Figure 1. Patient experience during the diagnostic process of coronary artery disease 

 

electrocardiogram (EKG) may also be taken into consideration to determine the likelihood of 

disease. Following the conclusion of an insignificant pretest probability, the patient may be 
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treated for his or her symptoms and sent home, being reassured there is insignificant evidence of 

disease. If the pretest probability and likelihood for CAD is high, a patient will be sent for 

catheterization to view any blockages in the arteries and determine the significance of CAD. 

Figure 1 demonstrates the patient flow from experiencing symptoms to diagnosis. 

1.1.2 Biomarkers and Coronary Artery Disease 

Cardiovascular disease is often accompanied with sources of inflammation and plaque 

instability, followed by thrombosis within the arterial regions of the heart. Resulting ischemia 

may be followed by remodeling of the heart’s ventricles. Investigation into the biological 

pathways for atherosclerosis involving inflammation, plaque instability, thrombosis, and 

remodeling of the extracellular matrix, has identified several biomarkers associated with acute 

coronary syndromes [11]. An up-regulation of proteins responding to these biological processes 

can provide useful diagnostic information for cardiac complications. For example, troponin is 

widely one of the most popular biomarkers for heart disease, where elevated levels of this protein 

points to the extent of injury to the heart during myocardial infarction [12]. However, there has 

been less success in regards to the clinical application of biomarkers to determine the degree of 

coronary artery disease among symptomatic patients. One suggestion is that a combination of 

protein changes in serum can address the severity of disease better than previous attempts that 

have focused on single markers [13-15]. Previous research has supported moderate improvement 

in risk models of coronary disease by implementing multiple biomarkers among other 

populations [16]. Adaptation of this multi-marker approach may point to a specific set of 

markers that would improve risk assessment among symptomatic patients, as defined by this 

paper. 
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Identifying biomarkers in serum of symptomatic patients could lead to the development 

of a clinical assay to use as a diagnostic method for those patients with a high pretest probability 

and likelihood for CAD. Instead of referring patients for catheterization based on a clinical 

assessment, stress test, and/or EKG, a less costly blood assay can be performed to filter out 

symptomatic patients that would otherwise be diagnosed negative for CAD. Data from a clinical 

study is analyzed later in this paper to demonstrate the effectiveness of using serum protein 

profiles and clinical characteristics as biomarkers for clinically relevant CAD. 
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2.0  LITERATURE REVIEW 

Several methods for assessing biomarkers are currently used, and there is some debate in the best 

way to measure the predictive power of new biomarkers. Logistic regression is a common 

classification technique that is generally employed for problems involving biomarkers, while 

receiver operating characteristic (ROC) curves have been used to evaluate the predictive ability 

of these new biomarkers. In this literature review, these common statistical methods for 

classification of disease and the evaluation of biomarkers are covered. 

2.1 STATISTICAL METHODS FOR PREDICTION 

2.1.1 Odds ratios 

Before delving into any of the more advanced statistical methods, it is important to grasp the 

concept of the odds ratio and how it used in clinical interpretation. In biomarker experiments, it 

is often desired to know the probability of an event, or the probability a patient is diagnosed with 

disease. Odds can then be defined as the ratio of the probability the event will occur versus the 

probability the event cannot occur [17].  In terms of patients who are symptomatic for coronary 

artery disease: 
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If p then equals the probability of disease for a patient, 1-p would equal the probability 

the patient does not have disease and the above equation can be reformulated as 

      
 

   
 

For example, if a clinical test using biomarkers determined a patient to have a 60% risk 

of CAD, the odds this patient actually has the disease would be 60% / 40%, or 1.5. This means 

the patient is 50% more likely to be diagnosed with disease than disease-free by a gold standard 

assessment, i.e. coronary angiography. If the odds of disease equal 1, this means the patient has 

the same chance of being diagnosed positive or negative, and odds less than 1 means the patient 

has a lesser chance to be diagnosed with disease according to the angiographic test. 

The odds ratio compares the odds of an event occurring between two patients:  

            

  

    
  

    

⁄  

If the odds of CAD for patient one was 1.5, and the odds of disease for patient two was 

1.2, the odds ratio would then be 1.5 / 1.2, or 1.25. This means patient 1 has a 25% higher chance 

of having a positive result from coronary angiography than patient 2. This concept of odds ratios 

is carried over for logistic regression, and it will be shown how predicted probabilities of disease 

for patients can be derived from odds ratios. 
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2.1.2 Binary Logistic Regression 

Binary logistic regression is a common statistical method for predicting the classification of 

subjects according to a dichotomous outcome. Many times, in health sciences, the goal is to 

differentiate those with and without a specific disease. Logistic regression has the ability to 

model the probability of disease, or any categorical outcome, and how the addition or subtraction 

of predictor variables affects that probability [18]. As opposed to linear regression methods, the 

logistic regression model estimates a linear function based on the log-odds of disease. This is 

because the relationship between the probability of the outcome and its predictors is usually 

nonlinear [19]. A unit increase in the predictor will have less of an impact when the probability 

of disease is close to 0 or 1, forming a logistic function, demonstrated by figure 2. Where  ̂ 

equals the probability of disease and β0 and β represent numerical coefficients, the analytical 

form of this logit function is 

 ̂  
            

              
 

.  The regression model can then be written out as 

  (
 ̂

   ̂
)           

Notice that the left side of the equation is the natural log of odds equation specified in 

section 2.1.1. Exponentiation both sides of the regression model then gives odds ratio estimates 

for the β’s. With some simple algebra, the regression model can then be remodeled to match the 

logit function to calculate the estimated probability of disease. 

Coefficients for main effects in the logistic regression model are generated through 

maximum likelihood estimators (MLE). Simply put, the MLE is an estimate for a parameter that 
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maximizes the probability of the outcome, or maximizing the agreement between observed data 

and expected values from the model [19]. Therefore, coefficients in a logistic regression model 

for coronary artery disease would be derived so that the most probable set of predictions can be 

made for the observed data. Statistical software can be used to easily compute these values when 

fitting a predictive model. 

How well a model fits the data is determined by the deviance of the model. A simple way 

to describe deviance is the difference between the observed values and the expected values from 

the logistic model. The general idea would be to fit a model with a set of predictors that produces 

the lowest deviance, indicating a closer fit to the model [19]. 

 

Figure 2. Graphical form of a logit function  

A unit increase in x has little impact on the probability of disease when the probability is close to 0 or 

1. 
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When combining several markers for prediction, which is becoming more and more 

popular with proteomic and genomic technologies, logistic regression serves as a useful tool for 

finding the best set of markers to use as a diagnostic tool [20]. However, using multiple signature 

of biomarkers for diagnostic tests leads to more difficulties in selecting the most predictive set of 

markers from a large list of candidates [21]. A simple approach to the variable selection process 

to obtain the most parsimonious model is forward stepwise selection, where variables are entered 

into the final model based on statistically significant relationships with the outcome. This differs 

from standard forward selection because variables that have entered the model in the stepwise 

method will also have potential to exit the model, based on the statistical significance of their 

relationship with the outcome once new predictors are added. 

As previously discussed, the main assumption of logistic regression is that predictors 

within the model hold a linear relationship with the log-odds of the outcome. This is usually 

straightforward when dealing with categorical or ordinal predictors, but presents some 

difficulties when predictors are in a continuous form. 

2.1.3 Continuous and Categorical Predictors 

Protein biomarkers are usually reported on a continuous scale to reflect the concentration of the 

protein in a subject’s serum. While the assumption of normality does not necessarily need to hold 

for variables used in logistic regression, if a predictor is normally distributed for both levels of 

the outcome, the logistic regression model will be better at describing a linear relationship 

between the predictor and the outcome [19]. However, most biomarkers have heavily skewed 

distributions and do not meet the assumptions of normality. For these variables, a log 

transformation to the data generally approximates a normal distribution [20]. More importantly, 
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proteins measured on the log-scale will produce more interpretable odds ratios than if they were 

left in their original scale. Figure 3 shows histograms of the frequency distributions of 

osteopontin (OPN) concentrations among 239 patients enrolled in a cohort study. It is seen that a 

natural logarithm transformation applied to the data (right), gives a much better approximation to 

the normal curve than the regular, skewed data (left).  

 

Figure 3. Histograms of the distribution of OPN and ln(OPN) 

OPN on the original scale (left) has a heavily skewed right distribution. A natural  

logarithmic transformation to the variable more closely approximates a normal curve  

(right). 
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 If the log-linear assumption of logistic regression is violated, the predictive model will 

produce inaccurate estimates for the odds-ratios. Dichotomization or categorization of 

continuous predictors is commonly used in exploratory stages to fit logistic regression models 

when the linear relationship is questionable [22].  

 Categorization of variables into two or more categories is often done in medical research 

as a way to simplify the interpretation of odds ratios, creating regression models with step 

functions. Factoring by tertiles, quartiles, or quintiles is commonly seen in proteomic analysis 

when clinically relevant thresholds are not available [20]. This crude approach to categorization 

can be used to identify a log-linear relationship between the outcome and its predictor.  

Moving forward with the factored continuous variables may present complications for 

clinical interpretation. First, the cutpoints used to factor continuous variables need to be 

explicitly defined when translating results into other research. Second, categorization of these 

variables discards information that may be relevant to the analysis. It is improbable that a 

subject’s risk for disease will suddenly increase when one of the thresholds is crossed. If a linear 

assumption is validated, continuous variables will provide more powerful statistical results than 

their factored counterparts. Therefore, categorization of continuous variables is valid in an 

exploratory process, but final analysis should be conducted on the continuous form of the data. If 

the data is truly expected to be non-linear with respect to the log-odds of the outcome, some 

more advanced modeling techniques can be used to address the situations.  

2.1.3.1 Fractional Polynomials 

The idea of fractional polynomials in regression is discussed in detail by Royston and Altman 

[23]. Fractional polynomials are used to transform continuous data to investigate improvements 

in model fit, compared to the straight line model        , or in other words, the model without 
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a transformation applied to the covariate x [24]. Transformations are usually applied to 

continuous covariates in the event there is a nonlinear relationship with the dependent variable, 

in order to obtain better estimates for model coefficients. In regular polynomial regression, the 

independent variable, x, is taken to an nth power (i.e. x
2
, x

3
, x

4
, etc.) to describe a nonlinear 

relationship it may have with the dependent variable (in the case of logistic regression, this 

would be the log-odds). The fractional polynomial method extends the current theory of 

polynomial regression by including negative and fractional powers for the covariates, usually 

from the set -2, -1, -0.5, 0, 0.5, 1, 2, 3 [22]. In this sequence of powers, 0 refers to a natural log 

transformation. Deviance of the model with the nonlinear transformation is compared to the 

deviance of the model without the transformation, and this difference is formally tested to 

determine whether or not the transformation should be used [23]. Using one of these fractional 

polynomial transformations can be referred to as first-degree polynomials. 

 Fitting a main effect with first-degree polynomials may not provide enough flexibility to 

fit a model, and in such cases, second-degree polynomials can be explored [24]. If p is a first-

degree fractional polynomial, a regression model with the nonlinear transformation can be 

written:       
 . Where q is a second-degree fractional polynomial, the equation featuring the 

transformations would be written:       
     

 . Both p and q are chosen from the same set 

of values, -2, -1, -0.5, 0, 0.5, 1, 2, 3 and all possible combinations of first and second degree 

polynomials are explored to provide the model fit. 

 Fractional polynomials provide a flexible and more practical approach to modeling 

continuous covariates in an appropriate functional form, as opposed to categorization of these 

covariates which may present several disadvantages and statistically significant loss of 

information. Provided a nonlinear relationship exists between the dependent and independent 
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variables, fitting a logistic regression model with fractional polynomials will produce more 

accurate odds-ratios for covariates within the model.  

2.2 EVALUATION OF BIOMARKERS 

One of the main uses of biomarkers is to make a diagnosis more reliable, more rapidly, and 

inexpensive compared to existing methods [25]. However, proper evaluation of a biomarker 

needs to be assessed before it can be determined useful. Clinicians looking to implement 

biomarkers into their clinical practice are most concerned with diagnostic accuracy. Diagnostic 

accuracy refers to the ability of a biomarker to classify subjects into clinically relevant groups 

and is the general purpose of biomarker analyses [26]. That is, can a biomarker accurately 

distinguish between those patients that truly do have a disease and those that in fact do not have 

the disease? Several statistical tools can be used to measure diagnostic accuracy to determine if it 

should be used in clinical practice. 

2.2.1 Multiple Comparisons 

Valid biomarkers should have a greater presence in the affected individuals than the unaffected 

individuals. [27]. Statistical comparative tests such as the Student’s t-test or Wilcoxon rank-sum 

test are commonly used to detect statistically significant differences in biomarker concentrations 

among disease categories. In most research studies, multiple biomarkers are assessed from a 

sample, creating inflation in type I errors. The Bonferroni adjustment for p-values is a common 

method to use for multiple comparisons, but when the number of comparisons is large, this 
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method can be too conservative. Letting k equal the number of comparisons and α equal the 

selected type I error rate, the Bonferroni method adjusts the error rate by α/k. For large values of 

k, the adjustment becomes radically small, reducing the chance that any hypothesis be rejected. 

Controlling for the false discovery rate (FDR) using a method proposed by Benjamini 

and Hochberg [28] is more practical for proteomic or genomic experiments comparing several 

potential biomarkers among patients [29, 30]. In this method, unadjusted p-values are first 

ordered from smallest to largest, and the rank is recorded. The adjustment to the error rate is 

calculated as α*m/k for each p-value, where α is the error rate, m is the rank, and k is the total 

number of comparisons made. The adjusted p-value is referred to as the Q-value in the 

Benjamini-Hochberg approach. This correction is more suitable for experiments with large k as it 

is less likely to overlook statistically significant results that may be masked by more conservative 

approaches.   

2.2.2 Sensitivity and Specificity 

Sensitivity and specificity are common statistical measures used to assess the diagnostic 

accuracy of a biomarker [25]. Sensitivity refers to the probability of identifying a disease when it 

is actually present in the individual, whereas specificity refers to the probability of correctly 

dismissing individuals without the disease. Results for sensitivity and specificity can be 

classified as true positives (sensitivity), false positives (1-specificity), true negatives 

(specificity), and false negatives (1-sensitivity). Figure 4 illustrates these measures.  



17 

 

Figure 4. Sensitivity and specificity calculations for a diagnostic test 

 

 In most cases, it is desired to find a certain threshold that will maximize both sensitivity 

and sensitivity. For diagnostic tests, this will provide the most accurate results for discrimination 

between patients with and without disease. Sometimes, it is more convenient to control for 

higher levels of sensitivity if the benefit of identifying true positives highly outweighs the cost of 

false positives. This is such the case in biomarker analysis for CAD. The cost of misdiagnosing 

patients with clinically relevant CAD is too great, while misdiagnosing a symptomatic patient 

without CAD will only expose them to a cardiac catheterization procedure. Valid diagnostic tests 

should maintain very high levels of sensitivity. In order to characterize measures of sensitivity 

and specificity, receiver operating characteristic curves are usually generated.  
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2.2.3 Receiver Operating Characteristic Curves 

The Receiver Operating Characteristic (ROC) curve is a way to visualize and gauge the 

performance of a set of classifiers [31]. ROC analysis is the principal method for evaluating 

sensitivity and specificity of a classifier and proves to be a useful tool in the evaluation of 

biomarkers [26]. In general, a measurement of the area under the ROC curve (AUC) is reported 

to compare the intrinsic accuracy of different tests [32]. The ROC curve is generated by plotting 

a set of thresholds according to their corresponding true-positive and false positive rates, or 

sensitivity and 1-specificity.  

 When generating ROC curves for logistic models with several predictors, retrospective 

calculations of the ROC curve tend to give inflated assessments of score performance [33]. A 

predictive model will almost always fit better to the data it was constructed around than when 

applied to future data. This is because the ROC curve is generated by a process of resubstitution, 

where the model is constructed using the available data, and then validated on the same data 

[34]. Some more advanced techniques for handling the upward bias of the ROC curve have been 

discussed [35], but among the simplest and most common methods are k-fold cross validation 

and external validation. 

K-fold cross-validation is an internal validation method for estimating the prediction 

error. In this process, the data is split into k number of blocks. A predictive model is generated 

based on the K-1 partitions and used to score the Kth block (figure 5). This process is repeated 

until predicted probabilities have been generated for all the observations. 5-fold and 10-fold 

cross-validation are the most common forms of K-fold cross validation, using 80% of the data to 

score the other 20%, or 90% of the data to score the other 10%, respectively [36].   
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External validation is one of the best ways to determine how well a logistic model can 

perform in clinical applications [37]. The data made available to the researchers or the 

statistician is used as a training set, where the predictive model is generated. The test set comes 

from additional experiments where the data has not been seen prior to developing the model. 

This can sometimes be emulated in an internal validation process where the data set is split into a 

training set and validation set prior to analysis. The validation data is then scored using the 

predictive model from the training set. In order to use this technique to estimate the prediction 

error of a model, the data set needs to be sizable enough to split into two separate data sets (ex. 

2/3 data for the training set, 1/3 data for the validation set) [36].  

 

Figure 5. Example of 5-fold cross-validation  

Four blocks are used as the training set and the model is validated on the fifth block of data. This 

process is repeated until cross-validated probabilities are calculated for all the blocks of data. 

 

The ROC curve has been widely used to illustrate the sensitivity-specificity trade of in 

medical diagnostic testing, but newer methods are currently being applied to analyses to increase 

the clinical usefulness of statistics reporting on the added predictive ability of new biomarkers. 
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3.0  CLINICAL APPLICATION 

The data set examined in this thesis originates from a study by LaFramboise et al., focusing on 

the identification of circulating proteins for the diagnosis of coronary artery disease [14]. This 

single-center study interrogated 359 serum samples for proteins from symptomatic patients 

referred for cardiac catheterizations from an emergency room or heart clinic. The proteins chosen 

for research have been previously identified as potential biomarkers for cardiac conditions or 

pathways involved with these conditions. The hypothesis of the study suggests that a 

combination of proteins known to be involved with multiple pathways of atherosclerosis can be 

used to develop a non-invasive alternative to coronary angiography for detection of CAD. This 

study is unique, in that it applies to the specific population of symptomatic patients that are 

referred for cardiac catheterization. 

The proteomics analysis was conducted in two stages. In stage one, 239 samples (138 

with CAD and 101 with normal coronary arteries) were assayed for 24 proteins. A scoring 

algorithm was generated off these 239 samples to measure the predictive ability of the proteins. 

This scoring algorithm was developed with a Monte Carlo optimization technique using a 

Metropolis algorithm [38] to derive the numerical coefficients, rather than the maximum 

likelihood approach used in logistic regression. 5-fold cross validation was used to estimate the 

bias in the ROC curve and to generate relevant sensitivity and specificity measurements. In the 
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following analysis, this process is duplicated using logistic regression rather than methods used 

to generate the previous scoring algorithm. 

In stage 2, assays were run on 120 additional samples (71 with CAD and 49 with normal 

coronary arteries) for validation of the algorithm, but for economic reasons, the researchers 

excluded assaying for proteins the scoring algorithm found to be poor predictors for disease. 

Therefore, patient samples in this stage were only assayed for 11 of the proteins in the study. The 

addition of the 120 samples in stage 2 of the study was intended to externally validate the 

predictive ability of the scoring algorithm, comparable to the external validation process 

mentioned in section 2. Through statistical processes, it was determined the 11 proteins in the 

stage 2 data set were sufficient for this analysis. 

Clinical characteristics for these subjects were obtained retrospectively, so there are some 

missing data encountered where clinical information could not be determined for the patient. No 

clinical characteristics were made available for the validation data set. Figure 6 shows a 

summary of the data that was available for this project [14]. 

 

Figure 6. Data set components in stage 1 and stage 2 of the original study 

Stage 1 
239 observations 

Data available for all 24 
proteins 

Clinical characteristics 
available for 224 patients 

Predictive model is contructed 
using this data 

Stage 2 
120 observations 

Data only available for 11 
proteins 

No clinical characteristics 
available 

Predictive model is validated 
using this external data set 
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The goal of the following analysis was to suggest a multi-marker panel, derived from the 

statistical methods covered in section 2, to be considered, in addition to previous results, for 

future studies. The analysis expands upon the original study by incorporating clinical 

characteristics and measuring the added effect of a multi-marker panel to these characteristics in 

the prediction of CAD.  

A secondary analysis was included, following discovery of biomarkers with high 

predictive power, to measure whether or not a serum protein profile could be used on its own as 

a diagnostic tool, or if adding clinical characteristics to the algorithm could enhance predictive 

measures.  

To sum up, the analysis will answer three questions: 

1. Can a combination of circulating proteins in a symptomatic patient’s serum 

predict coronary artery disease? 

2. Can the predictive power of currently used clinical risk factors for heart disease 

be enhanced by protein biomarkers? 

3. If a predictive model is generated based only on proteomic factors, can this model 

be enhanced by clinical risk factors for heart disease? 

3.1 STATISTICAL METHODS 

A preliminary analysis was conducted to emulate the objective of the original study by 

LaFramboise et al – to derive a statistically significant multi-marker panel for that can accurately 

discriminate between patients with and without coronary artery disease. The rest of the analysis 
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addresses the added predictive ability of multiple biomarkers to clinical characteristics that are 

commonly used to assess risk of coronary disease. Logistic regression and ROC curves are the 

primary statistical methods used for the analysis. 

3.1.1 Preliminary analysis: evaluation of proteomic biomarkers 

Before analysis was conducted, one-third of the data (120 samples in stage 2) were set aside to 

use as a validation set. The remaining 239 samples were used as a training data set.  

Descriptive analysis of proteins 

Descriptive analysis was performed on the proteins of the 239 samples (stage 1) in the training 

data set, and values of the proteins were compared across the disease groups to identify which 

proteins projected higher concentrations in patients with CAD. Imputation of 3 missing values 

was performed for MPO, Fibrinogen, and Leptin by replacing the missing value with the average 

level of the protein, conditional on the disease group. The Wilcoxon rank sum test was used 

under the null hypothesis that there were no statistically significant differences in protein 

concentrations among the groups. P-values were adjusted by the Benjamini-Hochberg (B-H) 

method [28] to control for multiple comparisons. The false discovery rate (FDR) was set at .05 

and resulting Q-values less than this value were determined to be statistically significant. Results 

from the statistical tests identified proteins that would serve as useful biomarkers due to more or 

less of a presence in patients with disease.  

Histograms of proteomic factors were generated to identify the distributions of the 

protein concentrations among the patients in the study. Heavily skewed concentrations were 

normalized by a natural logarithmic transformation to the data.  
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Descriptive statistics were also generated for the external data set of 120 patients (stage 

2) for comparison to the cohort tested in the training data. Differences between the validation set 

and the training set may be a cause of variability in the technical procedures during the assay 

process. 

Multivariate logistic regression of protein biomarkers 

Protein concentrations, recorded on the original-scale or log-scale, were first factored by 

quartiles to categorize variables into low, medium, high, and very high intensities. The 

categorization of the variables was used to identify the pattern of association during univariate 

analyses. Univariate logistic regressions performed on the quartiled predictors produced odds 

ratios for quartiles 2-4, using the first quartile as the reference category, and a trend test was used 

to formally test whether or not there is an uniform increase (or decrease) in odds ratios across the 

quartiles. A multivariate logistic regression model was constructed based on a stepwise variable 

selection process with these factored covariates to assess the probability that patients with higher 

levels of a given set of proteins have CAD. This was followed up by analysis on the continuous 

form of the variables to produce more clinically relevant results. 

For variables that appeared to follow a trend with the log-odds of disease, the functional 

form of the continuous covariate was investigated using first and second degree fractional 

polynomials. Fractional polynomial transformations that produced statistically significant 

improvements to the fit of the model were used for each covariate. Once the functional form of 

the variable was determined, a subsequent univariate analysis was carried out on the continuous 

form of the covariates. OPN unquestionably held the most statistically significant relationship 

with CAD from the univariate tests. Since the purpose of the analysis was to identify an effective 

multi-marker panel for discrimination among patients with and without CAD, logistic 
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regressions were run on the main effects once again, adjusting for OPN. Associations were tested 

at the .05 significance level. 

 After appropriate functional forms were found, a forward stepwise variable selection 

process was conducted on remaining variables using a probability of entry into the model of 0.05 

and probability of removal from the model to be 0.1. All variables were entered into the model 

building process using their functional form as determined by the univariate analyses.  

ROC analysis of the protein biomarker model 

A naïve estimator of the area under the ROC curve (AUC) using the resubstitution method was 

recorded for comparison to the cross-validation methods. K-fold cross-validation was performed 

on the data set to estimate the error from the overly optimistic curve generated by resubstitution. 

5-fold cross-validation was performed first to mimic the methods of the original study and 

compare the predictive model presented in this thesis with panels of markers identified by the 

original scoring algorithm. This was followed up by 10-fold cross-validation to detect any bias-

variance tradeoff in the selection of k for this sample. 

 A validation procedure, using an additional 120 samples from a similar cohort, was 

conducted to measure the predictive model’s ability to discriminate among “unseen” data. These 

samples were scored according to the final model derived from the first 239 samples, and 

statistics from an ROC analysis were compared to the cross-validated estimates.  

3.1.2 Addition of proteomic biomarkers to clinical characteristics 

The main focus of this work was to reveal how the proteomic biomarkers discovered in the 

preliminary analysis contributed to the predictive power of common clinical risk factors for heart 
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disease. This extended the hypothesis of the original study to include clinical variables in the 

discriminatory process. Age, smoking status (never, former, current), diabetes status (yes/no), 

and BMI calculations were studied to identify whether or not the factors had associations with 

coronary artery disease. BMI calculations were split into categories according to the Center for 

Disease Control (CDC), listed in table 1. This analysis was restricted to 224 observations, 

omitting patients whose clinical characteristics were unavailable.  

Table 1. BMI Categories outlined by the Center for Disease Control 

BMI (kg/m
2
) Weight Status 

Below 18.5 Underweight 

18.5 – 24.9 Normal 

25.0 – 29.9 Overweight 

30.0 and above Obese 

 

Descriptive analysis and logistic regression for protein biomarkers and clinical 

characteristics 

Descriptive analyses were carried out on each of the clinical variables to determine any 

differences between the CAD and Normal groups. A Student’s t-test was used to test the 

continuous variable age, and Chi-Square tests were used to test the other categorical variables in 

order to determine statistically significant associations with the disease group.  

 Univariate logistic regressions were carried out for each clinical variable to identify 

statistically significant linear relationships with CAD. Factors showing strong associations with 

disease were entered into a multivariate predictive model for CAD. The predictive model was 

then enhanced by adding proteomic biomarkers to the modeling process, both as quartiles and in 
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the continuous form in separate analyses. A final model that represented both a multi-marker 

panel from the preliminary proteomics analysis and important clinical risk factors was evaluated 

for predictive accuracy. 

ROC analysis of the multivariate model 

An ROC curve was generated for the predictive model consisting of clinical characteristics to use 

as a baseline measurement for comparison when new biomarkers are added to the model. For this 

part of the analysis, an external validation set was not available; the data set only provided 

clinical characteristics for 224 samples. Therefore, evaluation methods for the predictive models 

were restricted to k-fold cross validation – specifically, 10-fold cross validation, using 90% of 

the data as the training set and 10% as the validation set. 

Biomarkers from the multi-marker panel identified in the proteomics analysis were added 

sequentially to the model consisting of clinical characteristics to measure the added predictive 

ability of the biomarkers. Improvement was determined by differences in the specificity at high 

sensitivities.  

Unless otherwise stated, all statistical tests were conducted at a 0.05 significance level. 

The B-H method for multiple comparisons was restricted to comparative tests across the disease 

groups, as the conservative nature of the method did not affect the variable selection process in 

logistic regression. 

Software 

The analysis was performed mainly using SAS 9.3 statistical software. Fractional polynomials 

were analyzed using the fracpoly command in Stata 12. Graphics were generated by Stata 12. 
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3.2 RESULTS 

3.2.1 Preliminary Results: Evaluation of proteomic biomarkers 

3.2.1.1 Descriptive Analysis of Proteins 

Tables 2-4 include descriptive statistics – the 24 proteins across 239 patient samples. Proteins 

were grouped by the scale they were measured on (μg/mL, ng/mL, pg/mL). The “CAD” column 

represents patients with clinically relevant coronary artery disease, and the “Normal” column 

represents patients with normal coronary arteries, or clinically irrelevant coronary disease. The 

Q-values are the Benjamini-Hochberg equivalent of the p-value. Fourteen proteins were found to 

have statistically significant differences in patients with significant CAD versus those with 

normal coronary arteries, controlling for a false discovery rate (FDR) of 0.05. All significant 

findings were found to be elevated in the CAD group, except for Apo-A1, which appeared to be 

of lesser quantities in the CAD group. These 14 proteins were carried over for further analysis. 

Distributions of the 14 proteins up-regulated/down-regulated during times of coronary 

artery disease were examined. Apo-B100 and MPO appeared to follow a normal distribution in 

the CAD and Normal groups. All other proteins had heavily skewed-right distributions in both 

disease groups. A natural logarithmic transformation was applied to this data to fix the skew. 

Descriptive statistics for the stage 2 data can be found in Appendix A.
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Table 2. Stage 1 Protein Descriptive Statistics (nanograms/mL)  

 

 Combined  CAD  Normal   

Proteins N  N AVE STD 
25 

PCT 

50 

PCT 

75 

PCT 
 N AVE STD 

25 

PCT 

50 

PCT 

75 

PCT 
P-Value Q-Value 

OPN (ng) 239  138 49.6 41.6 13.8 28.6 55.7  101 15.8 15.9 6.7 10.9 21.6 <.0001 <.0001 

VCAM (ng) 239  138 1175.1 500.9 940.0 1152.1 1538.8  101 856.7 365.2 683.8 903.6 1193.5 <.0001 <.0001 

IL6 (ng) 239  138 0.9 1.2 0.04 0.3 1.3  101 0.6 1.1 0.02 0.04 0.6 <.0001 .0001 

MPO (ng) 239  138 619.8 370.1 380.7 586.4 915.2  101 451.2 267.3 297.2 441.0 700.3 .0003 .0006 

MMP7 (ng) 239  138 5.4 2.4 3.7 4.8 6.1  101 4.8 3 3.0 4.2 5.3 .0006 .0013 

Resistin (ng) 239  138 104.6 70.6 52.8 90.1 139.7  101 81.9 62.8 47.0 71.8 110.8 .0020 .0038 

MMP1 (ng) 239  138 5.3 2.4 3.7 5.0 6.6  101 4.8 2.2 3.1 4.4 6.0 .0452 .0723 

Leptin (ng) 239  138 10.6 15.5 3.1 5.0 13.8  101 13.9 17.6 3.1 5.9 16.8 .2625 .3210 

TIMP1 (ng) 239  138 329.3 87.9 269.3 323.4 370.9  101 320.1 112.2 238.9 310.5 372.1 .2675 .3210 

TM (ng) 239  138 1.4 0.4 1.1 1.3 1.5  101 1.4 0.9 1.0 1.3 1.6 .3341 .3739 

Pecam-1 

(ng) 
239  138 35 25.3 26.6 26.6 41.8  101 32.1 29 18.1 26.6 40.4 .3437 .3739 

MCP1 (ng) 239  138 3.3 3.4 1.2 2.4 4.5  101 3.1 3.5 1.3 2.1 3.6 .3583 .3739 

E-Selectin 

(ng) 
239  138 34.3 16.5 21.2 34.2 44.3  101 33.9 19.1 22.5 31.7 44.7 .5686 .5686 

 

Number of observations, average, standard deviation and interquartile range for CAD and Normal groups. The Q-value is the B-H analog of the P-

value. 
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Table 3. Stage 1 Protein Descriptive Statistics (micrograms/mL) 

 

 Combined  CAD  Normal   

Proteins N  N AVE STD 
25 

PCT 

50 

PCT 

75 

PCT 
 N AVE STD 

25 

PCT 

50 

PCT 

75 

PCT 
P-Value Q-Value 

Fibrinogen (μg) 239  138 19 59.2 3.4 6.0 12.6  101 4.1 6.3 1.8 3.2 5.6 <.0001 <.0001 

Apo-A1 (μg) 239  138 154.2 134.8 57.8 117.0 195.6  101 300.6 258.8 114.0 223.2 385.7 <.0001 <.0001 

Apo-B100 (μg) 239  138 339.1 80.6 233.5 299.9 370.9  101 295.6 80.6 206.8 265.5 328.9 .0001 .0003 

CRP (μg) 239  138 0.8 1.5 0.1 0.5 1.4  101 0.3 0.6 0.1 0.3 0.8 .0038 .0065 

L-Selectin (μg) 239  138 1.1 0.3 0.9 1.1 1.3  101 1.1 0.3 1.0 1.1 1.3 .1482 .2760 

Acrp30 (μg) 239  138 4.8 3.5 2.7 4.1 6.2  101 5.3 3.8 3.0 4.8 7.7 .2650 .3210 

 

Number of observations, average, standard deviation and interquartile range for CAD and Normal groups. The Q-value is the B-H analog of the P-

value. 
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Table 4. Stage 1 Protein Descriptive Statistics (picograms/mL) 

 

 Combined  CAD  Normal   

Proteins N  N AVE STD 
25 

PCT 

50 

PCT 

75 

PCT 
 N AVE STD 

25 

PCT 

50 

PCT 

75 

PCT 
P-Value Q-Value 

IL10 (pg) 239  138 7.5 18.2 2.6 3.65 5.9  101 3.2 3.6 1.2 2.1 3.5 <.0001 <.0001 

IL1β (pg) 239  138 113.7 168.2 4 23.2 152.3  101 48.9 120.1 1.9 7.0 38.0 <.0001 <.0001 

NT-pBNP (pg) 239  138 101.7 202.5 12.3 31.8 93.9  101 41.1 111.6 7.8 15.8 32.6 <.0001 .0001 

IFNγ (pg) 239  138 4.2 7.7 0.5 2.1 4.6  101 4 12.9 0.2 1.4 2.9 .0010 .0020 

TNFα (pg) 239  138 15 19.4 3.1 8.7 17.8  101 22.4 73.7 0.0 5.4 16.9 .0998 .1497 

 

Number of observations, average, standard deviation and interquartile range for CAD and Normal groups. The Q-value is the B-H analog of the P-

value. 
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3.2.1.2 Logistic Regression Modeling of Proteins 

Univariate regressions for the 14 up-regulated/down-regulated proteins (identified by the 

previous comparative tests) uncovered statistically significant relationships with disease status. 

For proteins entered as categorical variables into a univariate logistic regression model, higher 

quartiles produced higher odds ratios with disease compared to concentrations in the first 

quartile. Trend tests on the quartiles of the continuous covariates identified increasing odds ratios 

among all variables (table 5). Graphs of the odds ratios for the quartiles of variables can be found 

in Appendix A. 

Univariate regressions on the continuous form of the 14 proteins also produced 

statistically significant relationships with CAD. While categorization had resulted in increasing 

odds ratios for most all of the proteins, nonlinearity in the proteins’ continuous form was still 

assessed. Fitting each univariate regression (using the continuous form of the variables) with 

fractional polynomials identified a nonlinear function for IL1β that produced a better fit for the 

model. A cubic transformation was applied to capture the functional form of this variable. 

Analysis of second degree fractional polynomial transformations produced statistically non-

significant results for all main effects. 

Table 6 shows the results of both the unadjusted logistic regressions and regressions 

adjusted for OPN. Apo-A1 and NT-pBNP produced statistically non-significant relationships 

with disease when adjusted for OPN. Odds ratios in this table are calculated according to unit 

increases in the standard deviation of each protein. 
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Table 5. Odds ratios and trend tests for univariate regressions of factored protein concentrations  

 

 
Proteins are factored by quartile, and the first quartile is used as the reference category. 

 

 

 

 

 

Variable 

(quartiles) Odds-ratio P-Value 

Trend 

Test  

Variable 

(quartiles) Odds-ratio P-Value 

Trend 

Test 

OPN 

2 

3 

4 

2.32 

5.72 

55.73 

.0322 

<.0001 

<.0001 

<.0001 

 

NT-pBNP 

2 

3 

4 

1.16 

2.07 

5.28 

.6863 

.0538 

<.0001 

.0009 

Fibrinogen 

2 

3 

4 

2.250 

4.211 

8.421 

.0075 

.0002 

<.0001 

<.0001 

 

IL-6 

2 

3 

4 

0.96 

2.23 

2.53 

.9185 

.0012 

.0256 

.0006 

VCAM 

2 

3 

4 

2.21 

4.00 

7.23 

.0355 

.0003 

<.0001 

<.0001 

 

Apo-B100 

2 

3 

4 

1.347 

3.214 

3.897 

.5466 

.0157 

.0045 

.0016 

IL-10 

2 

3 

4 

1.45 

8.11 

4.93 

.3350 

<.0001 

<.0001 

<.0001 

 

CRP 

2 

3 

4 

1.71 

1.22 

3.07 

.1445 

.5840 

.0041 

.0224 

Apo-A1 

2 

3 

4 

.551 

0.273 

0.118 

.1619 

.0017 

<.0001 

<.0001 

 

MMP7 

2 

3 

4 

2.042 

2.585 

3.070 

.0554 

.0115 

.0035 

.0151 

IL1β 

2 

3 

4 

2.259 

2.519 

6.245 

.0292 

.0142 

<.0001 

.0004 

 

Resistin 

2 

3 

4 

1.31 

1.66 

3.48 

.4636 

.1711 

.0017 

.0116 

MPO 

2 

3 

4 

2.66 

1.97 

5.74 

.0061 

.0574 

.0001 

.0004 

 

IFNγ 

2 

3 

4 

1.52 

1.73 

2.96 

.2634 

.1217 

.0031 

.0275 
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Table 6. Univariate regressions for the continuous form of the protein concentrations 

  Unadjusted  Adjusted for OPN 

Variable STD Odds-ratio P-Value  Odds-ratio P-Value 

OPN* 1.05 4.06 <.0001  - - 

VCAM* 0.44 2.34 <.0001  1.39 .0835 

Apo-A1* 1.00 0.43 <.0001  0.77 .1530 

IL-10* 3.16 3.24 <.0001  2.18 .0104 

Fibrinogen* 1.12 2.53 <.0001  1.96 .0012 

IL1β* 2.92 1.92 <.0001  2.73 <.0001 

NT-pBNP* 1.83 1.92 .0002  1.11 .5979 

Apo-B100 83.26 2.29 .0003  1.79 .0014 

MPO 340.32 1.97 .0009  2.77 <.0001 

IL-6* 2.17 1.76 .0011  2.04 <.0001 

CRP* 1.51 1.57 .0019  1.43 .0315 

MMP7* 0.46 1.54 .0034  1.34 .0825 

Resistin* 0.74 1.57 .0034  2.93 <.0001 

IFNγ* 5.54 1.70 .0054  1.78 .0004 

  *log-transformed variable 

A forward stepwise selection process of the predictors to determine a final model resulted 

in a panel of 4 distinct markers – OPN, IL1β, Apo_B100, and Fibrinogen. The resulting model 

was fit using both categorical (quartiles) and continuous forms of the variables. 

The multivariate model containing the quartiles of the covariates (table 7) indicate that 

the odds of disease are elevated for higher quartiles compared to the lowest quartile. The 

increasing trend of the factored covariates provided justification for using proteins in their 

continuous form. 
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Table 7. Multivariate logistic regression model for proteins factored by quartile 

Variable 
Coefficient 

(β) 

Standard 

Error 
P-Value 

Odds 

Ratio 
95% CI 

Intercept -4.76 0.92 <.0001 -- -- 

OPN      

2 1.15 0.49 0.0187 3.15 1.21 to 8.18 

3 2.19 0.51 <.0001 8.95 3.32 to 24.09 

4 4.35 0.76 <.0001 77.54 17.66 to 340.60 

IL1β      

2 0.95 0.51 0.0634 2.58 0.95 to 7.01 

3 1.75 0.53 0.001 5.75 2.03 to 16.27 

4 2.71 0.57 <.0001 15.01 4.94 to 45.61 

Fibrinogen      

2 0.84 0.49 0.0868 2.31 0.89 to 6.04 

3 1.26 0.52 0.0152 3.54 1.28 to 9.82 

4 1.45 0.55 0.0081 4.26 1.46 to 12.46 

Apo-B100      

2 0.41 0.76 0.5922 1.51 0.34 to 6.73 

3 1.74 0.77 0.0239 5.68 1.26 to 25.66 

4 1.85 0.75 0.0135 6.34 1.46 to 27.44 

 

For the model featuring continuous covariates (table 8), Apo_B100 was recorded on the 

original scale while the other 3 markers were measured on the natural logarithmic scale. IL1β 

entered the model in its functional form as determined by the fractional polynomial 

transformation. All first-order interactions among the covariates were determined to be not 

statistically significant during the modeling process.   

 

Table 8. Multivariate logistic regression model for continuous covariates 

Variable 
Coefficient 

(β) 

Standard 

Error 
P-Value 

Odds 

Ratio 
95% CI Min Max 

Intercept -7.31 1.16 <.0001 -- -- -- -- 

OPN* 1.43 0.22 <.0001 4.18 2.70 to 6.47 0.13 5.32 

IL1β** 0.52 0.11 <.0001 1.68 1.35 to 2.09 -4.38 4.07 

Apo_B100 0.008 0.002 0.0015 1.01 1.00 to 1.01 0.36 529.21 

Fibrinogen* 0.53 0.19 0.0065 1.70 1.16 to 2.48 -0.63 6.10 
*natural logarithmic scale  **functional form: ln(IL1β)

3 
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All coefficients for main effects in this final model were statistically significant (all p ≤ 

0.006), suggesting that removal of one of the variables would significantly reduce the fit of the 

model. Interpretations of coefficients can be made in respect to the log odds of CAD, taking into 

account the functional form of the main effects within the model, while adjusting for other 

covariates. For example, the log odds of CAD would increase at a rate of 1.43 for every unit 

increase in the natural log of OPN. It may make more sense to report these numbers as odds 

ratios though. The odds of a patient having CAD are approximately 4 times greater for every unit 

increase in the natural log of OPN. Odds of disease increase at a rate of 68% for every unit 

increase in the cubic function of the natural log of IL1β, 0.8% for every unit increase in Apo-

B100, and 70% for every unit increase in the natural log of Fibrinogen.  

An ROC analysis was conducted for this final model including continuous covariates in 

the next steps. 

3.2.1.3 ROC Analysis of Protein Model 

The optimistic estimator for the AUC was .8816. 5-fold and 10-fold cross-validation was 

performed 10 times each, and results were averaged to obtain a correction for the predicted 

probabilities and the ROC curve. The AUC estimates from 5-fold and 10-fold cross-validation 

were 0.8611 and 0.8632, respectively, which are lower than the original estimate, but only by a 

small amount. 5-fold cross-validation did not appear to introduce much bias to the prediction 

error, as the results obtained by both 5-fold and 10-fold cross-validation were similar. Table 9 

shows the AUC estimate for each method, the exact sensitivity (SN) of ~95%, and specificities, 

the ability to identify true negatives, at 90%, 95%, and 98% sensitivities (SP90, SP95, and S98). 

Where an exact sensitivity of 90, 95, or 98 was attainable, the closest level of sensitivity to each 
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value was used. Controlling for 95% sensitivity, 38% specificity was attained using the 

predictive model to classify patients within the sample of 239. 

Validation on the external data set, the 120 patients of “stage 2,” saw lower 

discrimination among the patients, but with an AUC statistic at .7077, an impressive level for a 

predictive model. Performance for validation usually declines because the predictive model was 

built without “seeing” this data. Maintaining 95% sensitivity, the predictive model generated on 

the 239 patients had a specificity of 10% when applied to external data. This may have 

implications for instability in the predictive model in clinical practice, or that patients in the 

additional cohort displayed significantly different characteristics than the first cohort. Further 

mention of this variability can be found in the discussion. 

 

Table 9. AUC, Sensitivity, and Specificity from Cross-Validated Results for the protein-only model  

 

Method AUC SN SP90 [95% CI] SP95 [95% CI] SP98 [95% CI] 

Resubstitution .8816 94.9 .505 [.404, .605] .436 [.338, .538] .307 [.221, .408] 

5-Fold Cross Validation .8611 94.9 .515 [.414, .615] .376 [.283, .479] .356 [.265, .459] 

10-Fold Cross 

Validation 
.8632 94.9 .515 [.414, .615] .386 [.292, .489] .347 [.256, .448] 

External Validation .7077 95.7 .225 [.122, .370] .102 [.038, .230] .061 [.016, .179] 

 

Column SN is the closest rounded estimate for 95% sensitivity. The last 3 columns represent corresponding 

specificities at 90, 95, and 98 percent fixed sensitivities with 95 percent confidence intervals. 



38 

 

Figure 7. Validation methods for the ROC curve  

In 5-fold and 10-fold cross-validation (top) the lighter line represents the cross-validated probabilities and the darker line is the curve 

generated by the resubstitution method.
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3.2.2 Added effect of biomarkers to clinical characteristics 

The results in this section demonstrate the added predictive ability of a multi-marker panel for 

CAD among symptomatic patients. As clinical characteristics were scarce, only gender, diabetes, 

BMI, hypertension, smoking, and age factors were analyzed. 

3.2.2.1 Descriptive Analysis of Clinical Characteristics 

For the full data set, 138 symptomatic patients were diagnosed with CAD and 101 patients were 

considered to have insignificant disease according to catheterization results. Fifteen of these 

patients were removed from the analysis due to the absence of clinical information for those 

subjects, leaving 123 samples in the CAD group and 101 samples in the Normal group. Of the 

clinical variables examined, only age, diabetes status, and smoking status were significantly 

different among the CAD and Normal groups. Patients in the CAD group were, on average, older 

than the Normal group (p = .0096), and positive associations with CAD were confirmed for 

patients with diabetes (p = .0087) and smokers (p = .0071), according to the Student’s t-test for 

continuous variables and the chi-square test for categorical variables. BMI categories, 

hypertension status, and gender were determined to have statistically non-significant associations 

with CAD (all p ≥ .40). 

Univariate regressions on the clinical variables produced significant linear relationships 

with the log-odds of significant CAD for age, diabetes status, and a current smoking status. All 

other clinical variables that showed insignificant associations with disease status from the 

descriptive analysis did not produce significant results from the univariate analyses (all p ≥ .40). 
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Table 10. Descriptive statistics of clinical characteristics 

 Combined  CAD  NORMAL  

Clinical Characteristics N  N AVE STD  N AVE STD P-Value 

AGE (years) 224  123 62.3 12.1  101 58.1 11.6 .0096 

      

 Combined  CAD NORMAL  

Categorical Variables N  Frequency Frequency P-Value 

Gender 

-Male 

-Female 

114 

110  

62 

61 

52 

49 

.8723 

BMI Category 

-Normal 

-Overweight 

-Obese 

34 

88 

101  

19 

48 

56 

15 

40 

45 

.9881 

Diabetes Status 

-Yes 

-No 

59 

165  

41 

82 

18 

83 

.0087 

Hypertension Status (HTN) 

-Yes 

-No 

135 

89  

77 

46 

58 

43 

.4309 

Smoking Status (SMO) 

-Never 

-Former 

-Current 

75 

110 

39  

35 

58 

30 

40 

52 

9 

.0071 
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Table 11. Univariate regressions on clinical characteristics 

Variable Odds-Ratio P-Value 

SMO 

-Former 

-Current 

1.274 

3.810 

.5190 

.0034 

Diabetes 2.306 .0097 

Age 1.030 .0107 

HTN 1.241 .4311 

Gender .9578 .8723 

BMI 

  -overweight 

  -obese 

.9474 

.9825 

.8821 

.9372 

3.2.2.2 Multivariate model building involving proteins and clinical characteristics 

A full multivariable regression process was carried out on proteins and clinical characteristics in 

the data set (categorical form of covariates can be found in Appendix A). The final multivariate 

model (table 12) produced the same 4-marker panel derived from the preliminary analysis, along 

with indicator variables for diabetes and current smokers. According to the model, these clinical 

factors accounted for a 3-fold increase in odds of disease for smoking patients or diabetics. Age 

dropped out of the final model due to lack of a statistically significant relationship with disease 

status once adjusted for additional predictors. The estimates for the four protein biomarkers in 

the final model remained statistically significant even with the addition of further clinical risk 

factors (age, BMI, and HTN), proving the validity of these predictors. 

The final model including both clinical characteristics and proteomic biomarkers had a 

high level of discrimination among patients (AUC = .8805), and there was improved ability to 

detect true negative results while controlling for high levels of sensitivity (see table 13). 
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Table 12. Multivariate model containing proteins and clinical characteristics 

Variable 
Coefficient 

(β) 
Standard Error P Value Odds Ratio 95% CI Min Max 

Intercept -8.412 1.339 <.0001 -- -- -- -- 

Smoking Status 1.210 .5270 .0217 3.353 1.194 to 9.420 -- -- 

Diabetes 1.083 .4373 .0133 2.952 1.253 to 6.569 -- -- 

OPN* 1.462 .2367 <.0001 4.313 2.712 to 6.860 .130 5.32 

IL1β** .5015 .1229 <.0001 1.651 1.298 to 2.101 -4.38 4.07 

Apo_B100 .0091 .0028 .0010 1.009 1.004 to 1.015 .363 529.21 

Fibrinogen* .5942 .2168 .0061 1.812 1.812 to 2.771 -.628 6.10 

Method AUC SP90 [95% CI] SP95 [95% CI] SP98 [95% CI] 

Resubstitution .9006 .6536 [.552, .744] .4753 [.376, .577] .3861 [.292, .489] 

10-Fold  

Cross Validation 
.8805 .5941 [.482, .680] .3861 [.292, .489] .3366 [.248, .438] 

*natural logarithmic scale  **functional form: ln(IL1β)
3
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Table 13. AUC, Sensitivity, and Specificity from Cross-Validated Results for the protein-only model 

Model AUC SP90 SP95 SP98 

Current Smoker, 

Diabetes 
.5787 .0396 0 0 

Additional marker 

(Adjusted for Current 

Smoker and Diabetes) 

AUC 

(difference) 

SP90 [95% CI] 

(difference) 

SP95 [95% CI] SP98 [95% CI] 

OPN 
.8340 

(+.2553) 

.4951 [.395, .596] 

(+.4555) 
.3564 [.265, .459] .1683 [.104, .259] 

IL1b 
.6883 

(+.1096) 

.2574 [.169, .345] 

(+.2178) 
.0693 [.031, .142] .0198 [.003, .077] 

Fibrinogen 
.7315 

(+.1528) 

.3861 [.292, .489] 

(+.3465) 
.2574 [.178, .356] .0891 [.044, .167] 

Apo-B100 
.6725 

(+.0938) 

.2970 [.212, .397] 

(+.2574) 
.2277 [.152, .324] .0396 [.012, .104] 

OPN, IL1b, Fibrinogen, 

Apo-B100 

.8805 

(+.3018) 

.5941 [.482, .680] 

(+.2574) 
.3861 [.292, .489] .3366 [.248, .438] 
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4.0 DISCUSSION 

Preliminary analysis: proteomic biomarkers 

The final multi-marker panel, consisting of OPN, IL1β, Apo-B100, and Fibrinogen, differed 

from any of the multi-marker panels in the original study. Each individual marker appeared in at 

least one of the proposed panels in the original study, however there were no 4-marker panels 

identical to the one derived from the logistic regression process. Differences in results between 

this analysis and the original study may be attributed to the methods used in generating a 

predictive model or scoring function. The maximum likelihood approach used in this analysis for 

estimating the model’s coefficients provided a statistical advantage to developing a multi-marker 

panel with the best diagnostic ability. The 4-marker panel performed less well when applied to 

external data from an additional cohort, but this was done without first calibrating the model. 

Smoothing parameters were not used in this analysis, but may be used in a future analysis or 

study to improve prediction on external data. There may have also some variability in the protein 

measurements during the proteomics phase of the experiment due to the validation samples being 

run on a separate lot of plates and reagents than the samples used for the training data. 

Compared with the multi-marker panels suggested by LaFramboise et al, the 4-marker 

panel derived from the logistic regression process was similar. The best 4-marker panels derived 

by the study’s scoring algorithm had AUC measurements ranging from .82-.84 and specificities 
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of 43% - 58% at 95% sensitivity, while the predictive model generated here produced an AUC of 

.86 and 38% specificity achieved at 95% sensitivity.  

 Concentrations of OPN produced the strongest relationship of any protein, which is a 

significant result of this analysis in itself, as OPN has been linked to heart disease through recent 

studies [39]. In regards to its relationship with coronary disease, OPN is a glycoprotein/cytokine 

of the extracellular matrix that has shown implications of roles in cardiac remodeling and fibrosis 

[40]. Other studies suggest that OPN is associated with calcification in coronary arteries [41, 42]. 

However, up-regulation of this protein has been linked to many other pathologies as well, 

including myeloma, multiple sclerosis, bone destruction, and cancer, preventing a direct 

association with heart disease to be made [43]. This makes it difficult to draw conclusions on the 

clinical usefulness of OPN as a biomarker for CAD without further understanding of the 

protein’s precise function. 

IL1β is a cytokine of the interleukin family known to be involved in inflammatory 

response. The inflammatory process has been discussed as a significant mediator in the 

development of atherosclerosis, and the gene encoding the IL1β protein has been linked to 

coronary artery disease in Brazilian populations [44]. Apo-B100 is a lipid binding protein that is 

responsible for carrying low density lipoproteins (LDL, aka “bad cholesterol”) to tissues. Apo-

B100 has been declared as a more reliable indicator of risk of heart disease than LDL and a 

standardized assay for the protein can be used clinically [45]. Fibrinogen is known to play a role 

in blood clot formation and concentration levels have been notably increased in patients with 

cardiovascular disease. Thrombosis, the formation of blood clots, has been recognized as the 

basis for many cardiac cases involving myocardial infarction, ischemic death, and unstable 

angina pectoris [46].  
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Proteomic biomarkers add predictive value to clinical characteristics 

The addition of a proteomic multi-marker panel to common clinical risk factors of heart disease 

greatly improved discrimination among symptomatic patients. For the sample of symptomatic 

patients studied, the data resembled the current status quo, where the use of clinical 

characteristics provides zero ability to detect a patient who does not need to undergo 

catheterization. None of the clinical characteristics had adequate discriminatory power before the 

inclusion of proteins. The added discriminatory power of OPN, alone, accounted for most of the 

increase in predictive power, but the ability to classify patients with normal coronary arteries 

while maintaining a high sensitivity was the best when Fibrinogen, IL1β, and Apo-B100 were all 

present. The analysis demonstrated that the use of protein biomarkers for coronary artery disease 

can identify approximately thirty percent of patients for whom cardiac catheterization would be 

unnecessary. 

Lastly, the analysis involving clinical characteristics was very limited. It would have been 

beneficial to incorporate patient cholesterol profiles and family history among other risk factors 

into the analysis. Ideally, it would be of interest to measure the impact biomarkers have on 

currently used scoring systems for pretest probability or likelihood of CAD. Additional studies 

should measure all risk factors of a patient that are currently used in practice to diagnose the risk 

of heart disease and the effect new biomarkers will have in determining a patient’s pretest 

probability or likelihood of disease. This alludes to a chief argument against biomarker studies – 

that efforts should rather be focused on improving current diagnostic methods. While one 

obvious approach to this argument would be to improve medical imaging techniques for 
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coronary angiography, one could also argue to improve current diagnostic methods by adding 

new biomarkers to the current set of clinical risk factors used by professionals.    
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5.0  CONCLUSION 

Throughout this thesis, evaluation of diagnostic biomarkers has been discussed in regards to 

coronary artery disease, where the current diagnostic method is starting to become costly. 

Common statistical methodologies regarding biomarker experiments, including logistic 

regression and ROC curves, were demonstrated on a clinical study intending to identify multiple 

proteins that can accurately diagnose cardiac patients that are normally referred for coronary 

angiography. The statistical analysis confirmed the predictive ability of protein biomarkers that 

was discovered in the previous study, but also added further insight into the public health matter 

by incorporating clinical characteristics. The primary focus of the analysis resulted in the 

following conclusion: A multi-marker panel featuring OPN, IL1β, Apo-B100, and Fibrinogen, 

based on the serum protein profiles of symptomatic patients, can be used in conjunction with 

clinical risk factors of heart disease (specifically diabetes and smoking status) to improve 

discrimination between those with clinically significant coronary artery disease and those with 

“normal” coronary arteries that do not require cardiac catheterization.  

Screening symptomatic patients prior to cardiac catheterization with a blood assay can be 

advantageous if the goal is to reduce the number of patients exposed to unnecessary operations. 

In order to prevent a high number of patients that actually do have coronary artery disease from 

being misclassified, only a small number of patients that do not require angiographic testing 

could be identified. This may seem like a poor outcome, but the current status quo identifies zero 
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percent of these patients. Therefore, even identifying one of these symptomatic patients with 

clinically insignificant coronary artery disease can be labeled a success.  

The main issue to consider before implementing a blood test as a new diagnostic 

procedure would be whether or not it is worth the risk of dismissing a single patient that has 

clinically significant coronary artery disease. While a multi-marker panel has proven ability to 

classify patients into disease and non-disease groups, there is still a chance of error with this type 

of test, and it is still uncertain whether or not the benefits outweigh the costs when used in 

clinical practice. However it is also undeniable that the future landscape of healthcare in the 

United States, particularly with the inclusion of the Affordable Care Act, will find these types of 

screening procedures more and more attractive, especially for procedures such as cardiac 

catheterization, where the costs are increasing into the tens of thousands of dollars. 
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APPENDIX 
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1. DESCRIPTIVE STATISTICS OF THE STAGE 2 (VALIDATION) DATA SET 

Table 14. Stage 2 Protein Descriptive Statistics (nanograms/mL) 

 Combined  CAD  Normal 

Proteins N  N AVE STD 
25 

PCT 

50 

PCT 

75 

PCT 
 N AVE STD 

25 

PCT 

50 

PCT 

75 

PCT 

VCAM (ng) 120  71 1425.6 435.1 1073.3 1415.7 1658.0  49 1250.6 602.9 906.7 1106.8 1388.0 

MPO (ng) 120  71 950.2 710.7 397.4 816.8 1155.3  49 676.7 420.5 390.1 629.3 838.5 

OPN (ng) 120  71 23.0 20.3 9.4 17.3 29.1  49 17.6 14.1 7.3 13.6 23.5 

Resistin (ng) 120  71 123.3 87.7 55.3 97.7 167.7  49 102.8 62.6 64.3 82.3 127.8 

MMP7 (ng) 120  71 4.9 2.3 3.1 4.6 6.0  49 4.8 3.7 3.3 4.3 4.8 

 

Table 15. Stage 2 Protein Descriptive Statistics (micrograms/mL) 

 Combined  CAD  Normal 

Proteins N  N AVE STD 
25 

PCT 

50 

PCT 

75 

PCT 
 N AVE STD 

25 

PCT 

50 

PCT 

75 

PCT 

Fibrinogen (μg) 120  71 37.7 111.6 6.3 9.4 20.0  101 4.1 6.3 1.8 3.2 5.6 

Acrp30 (μg) 120  71 5.9 4.8 3.3 4.5 6.6  101 5.3 3.8 3.0 4.8 7.7 

CRP (μg) 120  71 3.6 7.2 0.6 1.1 3.0  101 0.3 0.6 0.1 0.3 0.8 

Apo-B100 (μg) 120  71 229.0 68.2 172.9 217.4 273.4  101 295.6 80.6 206.8 265.5 328.9 
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Table 16. Stage 1 Protein Descriptive Statistics (picograms/mL) 

 Combined  CAD  Normal 

Proteins N  N AVE STD 
25 

PCT 

50 

PCT 

75 

PCT 
 N AVE STD 

25 

PCT 

50 

PCT 

75 

PCT 

IFNγ (pg) 120  71 5.6 13.2 0.95 3.0 4.7  49 2.8 3.2 0.8 2.0 3.9 

IL10 (pg) 120  71 103.6 157.0 2.42 22.13 148.8  49 71.4 130.9 1.8 14.6 54.0 
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2. GRAPHS OF ODDS RATIOS BY QUARTILE FROM UNIVARIATE LOGISTIC 

REGRESSION 

 

Figure 8. Graphs of odds ratios from univiariate regression for OPN, Fibrinogen, VCAM, and IL10 
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Figure 9. Graphs of odds ratios from univiariate regression for Apo-A1, IL1b, MPO, NT-pBNP, IL6, 

and Apo-B100 
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Figure 10. Graphs of odds ratios from univiariate regression for CRP, MMP7, Resistin, and IFNg 
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3. MULTIVARIATE LOGISTIC REGRESSION MODEL INVOLVING CLINICAL 

CHARACTERISTICS AND FACTORIED PROTEINS (BY QUARTILE) 

Table 17: Multivariate model with proteins categorized by quartile 

Variable 
Coefficient 

(β) 

Standard 

Error 
P-Value 

Odds 

Ratio 
95% CI 

Intercept -5.39 1.01 <.0001 -- -- 

OPN      

2 1.29 0.54 0.0167 3.62 1.26 to 10.41 

3 1.98 0.55 0.0003 7.24 2.45 to 21.41 

4 4.83 0.83 <.0001 125.39 24.71 to 636.16 

IL1β      

2 0.80 0.56 0.156 2.22 0.74 to 6.74 

3 1.60 0.57 0.0053 4.95 1.61 to 15.21 

4 2.58 0.63 <.0001 13.24 3.82 to 45.22 

Fibrinogen      

2 0.86 0.53 0.1058 2.37 0.83 to 6.77 

3 1.52 0.58 0.0082 4.59 1.48 to 14.23 

4 1.40 0.60 0.0199 4.07 1.25 to 13.26 

Apo-B100      

2 0.11 0.80 0.8931 1.11 0.23 to 5.37 

3 1.66 0.82 0.0413 5.28 1.07 to 26.09 

4 1.91 0.79 0.0151 6.75 1.45 to 31.46 

Diabetes 1.24 0.46 0.0072 3.46 1.40 to 8.57 

Smoking Status 1.49 0.54 0.0055 4.46 1.55 to 12.81 
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