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SPEED SCALING FOR ENERGY AWARE PROCESSOR SCHEDULING:

ALGORITHMS AND ANALYSIS

Daniel Cole, PhD

University of Pittsburgh, 2013

We present theoretical algorithmic research of processor scheduling in an energy aware envi-

ronment using the mechanism of speed scaling. We have two main goals in mind. The first is

the development of algorithms that allow more energy efficient utilization of resources. The

second goal is to further our ability to reason abstractly about energy in computing devices

by developing and understanding algorithmic models of energy management. In order to

achieve these goals, we investigate three classic process scheduling problems in the setting

of a speed scalable processor.

Integer stretch is one of the most obvious classical scheduling objectives that has yet to

be considered in the speed scaling setting. For the objective of integer stretch plus energy,

we give an online scheduling algorithm that, for any input, produces a schedule with integer

stretch plus energy that is competitive with the integer stretch plus energy of any schedule

that finishes all jobs.

Second, we consider the problem of finding the schedule, S, that minimizes some quality

of service objective Q plus β times the energy used by the processor. This schedule, S, is the

optimal energy trade-off schedule in the sense that: no schedule can have better quality of

service given the current investment of energy used by S, and, an additional investment of

one unit of energy is insufficient to improve the quality of service by more than β. When Q

is fractional weighted flow, we show that the optimal energy trade-off schedule is unique and

has a simple structure, thus making it easy to check the optimality of a schedule. We further

show that the optimal energy trade-off schedule can be computed with a natural homotopic
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optimization algorithm.

Lastly, we consider the speed scaling problem where the quality of service objective is

deadline feasibility and the power objective is temperature. In the case of batched jobs, we

give a simple algorithm to compute the optimal schedule. For general instances, we give a

new online algorithm and show that it has a competitive ratio that is an order of magnitude

better than the best previously known for this problem.
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1.0 INTRODUCTION

The development of new power aware technologies and the increased concern about the en-

ergy usage of computing devices presents new algorithmic challenges. New hardware mech-

anisms have been developed to allow more energy efficient hardware control, and whether

the motivation is to prevent damage to hardware or the desire to limit the absolute energy

usage, these new mechanisms require new algorithms in order to be as effective as possible.

One of these new mechanisms is speed scaling technology. Speed scaling technology, which

is now present in most desktop and laptop computers, allows a processor to run at different

speeds, where each speed corresponds to a different power level. With the introduction of

speed scaling, when an operating system schedules a process to run, in addition to having

to choose which process to run, the operating system must, now, also decide at what speed

to run the process. Should these two decisions (which process to run, and at what speed

to run the process) be completely coupled, completely decoupled, or some balance of the

two? Research into algorithmic power management seeks to answer these questions within

a theoretical framework.

1.1 THE ALGORITHMIC PROBLEM CREATED BY SPEED SCALING

Speed scaling technology allows a processor to run at different speeds, where each speed

corresponds to a different operating power. Although such a mechanism sounds simple

enough, it is important to understand that speed scaling really only affects one component

of the power of a processor, specifically, what is called the dynamic power of the processor.

The power of a processor is, generally, divided up into two components, static power
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and dynamic power. The static power represents the rate at which the processor consumes

energy because of the fact that the processor is in the “on” state, i.e. the rate of energy

consumption when the processor is idle (on but not executing instructions). When the

processor is executing instructions, the processor uses energy at a rate over and above the

energy consumption rate of the processor when idle. This extra rate of energy usage is

called the dynamic power. Because the mechanism of speed scaling deals with the speed

of the processor, and thus the processor’s power that is over and above the idle power,

speed scaling affects only the dynamic power of the processor. Thus, in this work, when we

refer to the power of a processor, unless explicitly stated, we mean the processor’s dynamic

power. As an example, if we say that a processor has 0 power, what we mean, specifically,

is that the processor has 0 dynamic power. This is not to say that static power is not an

important consideration with respect to the total energy usage of a processor; static power

is an important consideration. However, because we are concerned with the mechanism of

speed scaling, which deals with dynamic power, considering static power is outside of our

scope.

Speed scaling technology presents so many new challenges in scheduling, not because the

processor can now run at different speeds per se, but rather because, in general, running

at a higher speed is less energy efficient. Thus, although running the processor at a higher

speed will generally get jobs finished faster and thus improve quality of service, running the

processor at a higher speed will also use more total energy.

A traditional estimate of the speed to power relationship of a processor is that the speed

of a processor is proportional to the cube root of the dynamic power [13]. In general, the

speed to power relation of a processor is increasing and strictly convex. It is this increasing

and strictly convex property that gives rise to situations such as the one show in figure 1.1.

One motivation for speed scaling is to have a mechanism to help conserve energy, thus

one of our goals is to use speed scaling to conserve or minimize energy. On the other hand,

the point in considering scheduling algorithms at all is to enhance quality of service, thus

our second goal is to maximize quality of service. But, as we have seen, in the speed scaling

environment, we are faced with a situation where minimizing energy usage requires the

slowest possible speed (and thus worst quality of service) and maximizing our quality of
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Figure 1: The x-axis is the constant speed used to run a fixed sized job. The red curve shows

the delay of the job (time from release until completion) as we increase the speed and the

blue curve shows the corresponding energy used to complete the job.

service requires the fastest possible speed (and thus largest amount of energy). Thus, our

objectives are pushing against each other, they’re in opposition to one another, and this

is why speed scaling has introduced so many new algorithmic problems. We can’t ignore

either objective otherwise, as in figure 1.1, the objective we ignore can potentially reach

unacceptable levels (i.e. very large energy usage or very poor quality of service). Instead,

our goal is to determine how to schedule jobs such that the quality of service is good (fast

speed) but the energy is also small (slow speed). However, what constitutes good quality

of service or low energy usage is dependent on the situation and thus there is not a single

right balance of the two objectives. Because of this, we need scheduling algorithms that,

conceptually, have a dial adjustment. Turning the dial one way, causes the scheduler to favor

quality of service more, and energy less, and turning the dial in the other direction causes

the scheduler to favor energy more, and quality of service less. Thus the right balance, for

any situation, can be achieved.
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1.2 THE GOALS OF ALGORITHMIC ENERGY MANAGEMENT

RESEARCH

There are two main goals in algorithmic research into energy management. The first is the

development of algorithms that allow more efficient utilization of resources. For example,

by developing a scheduling algorithm that minimizes the maximum temperature reached by

a processor, more work can be done without having to increase cooling costs. By taking a

mathematical approach, we can develop algorithms that are not necessarily intuitive or may

not be found via trial and error.

The second main goal is to build our understanding of energy usage in computer sys-

tems in order to help us reason abstractly about energy and temperature. Toward this end,

algorithmic research develops models that separate a mechanism from a particular device.

For example, consider wireless network nodes that use a type of speed scaling in transmis-

sions [19]. By modeling the speed scaling mechanism as an abstraction that holds for both

types of devices, we can develop algorithms that work on both processors and wireless net-

work links, even though the implementation of the mechanism varies between the devices.

In this way, algorithmic energy management research aims to develop models that allow us

to reason about energy and temperature in abstract computing devices in the same way we

currently reason about space and time in abstract computing devices. Much in the same

way that students are taught sorting algorithms without needing to reference whether the

algorithm will run on a PC or a cell phone, we would like to be able to understand how to

manage power with as little necessary hardware context as possible. However, power and

energy, unlike space and time, do not appear to be inherent characteristics of computation

as computation is reversible [12], and thus there appears to be no physical lower bound on

the energy required to take one computational step (e.g. flipping a logical bit). In spite of

this, it is important to pursue algorithmic research into power management as even a mod-

erate level of abstraction can allow us to develop algorithms that apply to a large number of

computing devices.

It is with these goals in mind that we seek to extend the theoretical understanding

of algorithmic problems arising from the desire to directly limit or conserve energy usage
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in computer systems. Specifically, we seek to extend current algorithmic understanding of

how to use the new speed scaling hardware mechanism in the setting of classical process

scheduling.

1.3 ALGORITHMIC MODELS FOR SPEED SCALABLE PROCESSORS

As previously mentioned, speed scaling requires the CPU scheduler to not only decide which

job to run, but also how fast to run the job (whether to shut the processor off, and thus

reduce or eliminate static power, is outside of our scope). Further, the speed at which a job

runs need not be static, that is, the scheduler may change the running job’s speed over time.

However before we can develop new algorithms to make these decisions, we must first decide

how to mathematically model a speed scalable processor. Modeling the processor requires

that we define the set of allowable speeds as well as the set of possible power functions. We

start by outlining the three standard speed models used in algorithmic speed scaling.

The first way to model the processor’s speeds is with a discrete speed model. In this type

of model the processor has a set speed values, each value specifying a single speed at which

the processor can run. The second way to model the processor’s speeds is with a continuous

speed model. In the continuous speed model, the processor can run at a speed equal to any

non-negative real value in some range, typically with a lower end of 0, i.e. idle. The upper

end of the range may either be ∞, in which case there is, essentially, no upper limit on the

speed, or some finite number, which means that there is a fixed upper limit on the speed.

The last way to model the processor’s speeds is with an arbitrary speed model which is a

generalization of both the discrete and continuous speed models. The arbitrary speed model

combines the discrete and continuous speed models by allowing the set of allowable speeds to

be a set such that each item in the set is either a single discrete speed, or a single continuous

interval. Thus each item in the set specifies a single speed at which the processor can run or

an interval such that the processor may run at any speed in the interval. For each interval

in the set, we assume that both ends of the interval are closed, the one exception being that

there can be a single interval that is open on the upper end of ∞.
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Turning to processor’s power function, we also have three types of models. The first

way to model power is with a discrete power model where the processor’s possible powers

are some discrete set of values. Specifically, this power model corresponds to the discrete

speed model. When the discrete speed and power models are combined, the processor is

described by a set of speed power pairs, such that, for each pair, the processor set to the

given speed runs at the corresponding power. When designing an algorithm in this discrete

speed/discrete power model, all we can assume is that the allowable speeds are a discrete

set and that the speed to power relation is strictly convex and increasing. The appeal of

the discrete model is that a processor model consisting of a finite set of speed/power pairs

closely matches the operation of speed scalable processors, which typically may only be run

at a finite set of speeds.

The second way to model a processor’s power is with a continuous power model. In the

continuous power model, the set of powers at which a processor can run is described by

some continuous function, or some family of continuous functions. The functions are usually

continuous on the interval [0,∞), and thus can be combined with the continuous speed model

regardless of whether or not there is an upper bound on the possible speeds. An example of

a power function in the continuous power model would be P (s) = s3, meaning the power of

the processor at speed s is s cubed. Because there is often no advantage, mathematically,

to using s3 versus, for example, s4, the continuous power model is almost always generalized

to say that, for example, the power function is of the form sα for some α > 1. In such a

case, the algorithm designer does not know the specific value of α for some instance of the

problem, however, when an algorithm is running it may have access to the value of α. Thus,

in designing an algorithm we may incorporate α into the algorithm under the assumption

that the scheduling algorithm will know the specific value of α at run time. The appeal of

using a continuous power model is that continuous functions, such as sα or 2s, are usually

easier to work with mathematically than a set of discrete power values.

The last way to model the processor’s power is with an arbitrary power model which is

allows the power function to be, essentially, anything. Specifically, there is some well defined

function P such that the processor will run at power P (s) when running at speed s. Similar

to the continuous power model, the arbitrary power model is used such that the algorithm
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designer does not know the specific P for an instance of the problem, but the algorithm,

when running on the instance, will know P . Thus, the function P can be incorporated into

the scheduling algorithm. The attraction of using the arbitrary power model is that it is the

most general, but this fact is also what makes the arbitrary power model the most difficult

to deal with when designing algorithms. Although, in general, we will be able to assume,

without loss of generality, that P is increasing and strictly convex, P is still difficult to work

with because we don’t have any other properties of P or even a generalized closed form for

P (we have a generalized closed form description for the power function in the continuous

power model, e.g. sα, εs). And, in fact, for some particular instance of a problem, P may not

even have a closed form description. Further, for some problems, the best results that can

be obtained are dependent on P and thus the arbitrary power model may only give results

that are not meaningful and/or difficult to obtain because so few of the properties of P are

known by the algorithm designer.

We now turn to extending the processor model to account for temperature. Note that

when we consider the speed or power of a processor, while these values are measurable, more

importantly, they are characteristics of a processor that we control directly. In other words,

speed and power are both determined directly by configuration of the processor. When con-

sidering scheduling problems involving temperature, the model becomes more complicated

because, while we can measure the instantaneous temperature of the processor, the tem-

perature of a processor is not characteristic that we can set directly. The temperature of a

processor is, rather, an indirect result of the configuration of the processor up to the current

time. Thus, what we really need to model is, how does a processor’s temperature behave as a

function of its configuration (i.e. its power). One standard method to model the processor’s

change in temperature is by applying Newton’s Law of Cooling.

A processor’s change in temperature is dependent on how fast the processor releases, as

heat, the energy it uses, as well as the rate at which it uses energy (i.e. the power). The rate at

which the processor releases heat, i.e. how fast the processor cools, is dependent, not only on

static characteristics of the processor itself (shape, etc.), but also the processor’s environment

and state (e.g. the temperature of the environment, the temperature of the processor, etc.).

Cooling is, thus, a complex phenomenon that is difficult to model accurately. [10] suggested
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assuming that all heat is lost via conduction, and that the ambient temperature is constant.

This is not a completely unrealistic assumption, as the purpose of fans within computers is

to remove heat via conduction, and the purpose of air conditioning is to maintain a constant

ambient temperature. Newton’s law of cooling states that the rate of cooling is proportional

to the difference in temperature between the device and the ambient environment. This

gives rise to the following differential equation describing the temperature T of a device as

a function of time t:
dT (t)

dt
= P (t)− bT (t)

That is, the rate of increase in temperature is proportional to the power P (t) used by the

device at time t (i.e. the rate at which energy is added to the processor), and the rate of

decrease in temperature due to cooling is proportional to the temperature, or, more exactly,

the difference in temperature between the processor and the environment. Because we assume

the environment is at a constant temperature, we can translate the temperature scale so that

the ambient temperature is 0. b is a device specific constant, called the cooling parameter,

which describes how easily the device loses heat through conduction. For example, all else

being equal, the cooling parameter would be higher for devices with high surface area than

for devices with low surface area. Also note that this temperature model works regardless

of the speed to power model of the processor.

1.4 MEASURING THE QUALITY OF ALGORITHMS

A schedule is defined as specifying, at all times, the job to be run at that time (including

not running a job) and the speed at which to run the processor. We call a schedule feasible

if the schedule does not violate any of the problem constraints (so feasibility is problem

specific). For example, a feasible schedule will never specify that the processor be run at a

speed that is not in the set of allowable speeds. Unless we are emphasizing the feasibility

(or infeasibility) property of a schedule, when we talk about a schedule we mean a feasible

schedule.

Once we have chosen a model for our speed scalable processor we need to be able to
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measure the quality of a schedule when the schedule is run on the processor model. Clas-

sically, schedules have been measured by metrics such as the sum of the waiting time of all

jobs (flow) and the number of jobs that meet their deadlines (throughput), as well as many

others. We call these quality of service objectives. With a speed scalable processor, we still

care about the quality of service of a schedule, but, now, we also care about some energy

related objective, such as the total energy or maximum temperature. Having two objectives

creates a new difficulty because our two objectives, high quality of service and low energy

usage, are in conflict with one another. We could, of course, ignore, either quality of service

or energy, and while this may be appropriate in some settings, it is clearly not acceptable

in the extreme because it leads to either not running any jobs (ignore quality of service and

minimize energy used) or using infinite energy or releasing more heat than the CPU can

handle (ignore energy and optimize quality of service). Instead we would like to consider

both energy and quality of service. We use two main methods to handle the conflict between

energy and quality of services objectives.

The first method used to reconcile the opposing objectives of energy and quality of service

is to combine energy and quality of service into a single objective function. Specifically,

minimizing a linear combination αS+βE of a scheduling objective S and energy consumption

E (for example, S could be total flow (wait time) and E could be total energy). α and β,

then, allow the user to specify the relative importance of the scheduling objective and energy

because the optimal schedule for the objective αS + βE is one that invests energy in such a

way as to give the best resulting decrease in the scheduling objective S until the investment of

an additional unit of energy cannot result in a schedule that reduces the scheduling objective

by more than β
α

. A good schedule for a combined objective function must balance the two

objectives (according to α and β which, by rescaling the units, we can assume are both 1).

If the two objectives aren’t balanced, then either energy cost or quality of service dominate

the combined objective and, thus, very likely the total cost will be very large. Figure 1.4

illustrates this point by showing the objective of flow (wait time) plus energy for a single job

as a function of the (fixed) speed at which the job is run.

The second method used is to fix either of the objectives at some predetermined level,

and then focus on optimizing the other, non-fixed, objective. A problem where each job has
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Figure 2: The x-axis is the fixed speed at which a job, of size 1, is run and the y-axis is the

flow plus energy when power is speed cubed. At either extreme, only one of the objectives

(either energy or flow) dominates the objective cost, but at the minimum, the costs are

almost equal. Note that this curve is very similar to the sum of the two curves in figure 1.1.

a fixed deadline and we optimize the total energy used is an example of fixing one of the

objectives and optimizing the other. This method is most often used for problems where

there is some (known) fixed bound on one of the objectives that absolutely must not be

violated.

If a schedule has the best objective value of any possible schedule, we say the schedule is

optimal. Likewise, if an algorithm produces an optimal schedule for every possible input, we

say the algorithm is optimal. However, very often, we will be considering online problems.

In online problems, the scheduler does not become aware of a job until it is submitted to

the system. In other words, the scheduler only knows the past and present, but not the

future. Thus, in the online case, the scheduler must decide what job to run, and at what

speed, at the current time without having complete information. This lack of complete

information often means that no online scheduler can produce the optimal schedule for all

possible inputs. In order to be able to measure the quality of an online scheduling algorithm,

and the schedules the algorithm produces, we use worst case relative error. Worst case

relative error is a guarantee of the quality of an algorithm for the case of the algorithm’s

worst input relative to any other algorithm. For online scheduling algorithms, a worst case
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relative error guarantee states that, for any input, the schedule produced by the algorithm

has an objective value that is no more than C times worse than the objective value of all

possible schedules for that input (including the best possible schedule). When C is constant,

i.e., not a function of the input size, we say that such an algorithm is ”‘competitive.”’ The

appeal of a competitive online algorithm A, is that, for any input I, if A’s schedule for I has

high cost, then the optimal schedule for I also has high cost. In other words, if A’s schedule

has high cost, then the cost to schedule I is inherently high, that is, there is no schedule

that makes the cost to schedule I low. On the other hand, if A’s schedule for I has a low

cost, then we’re happy with the schedule because it has low cost.

1.5 INTEGRAL STRETCH PLUS ENERGY

Within the line of algorithmic speed scaling research that considers the objective of minimiz-

ing a linear combination αS + βE of a scheduling objective S and energy consumption, one

natural question, for either clairvoyant or non-clairvoyant schedulers, is, “For what schedul-

ing objectives S is there a speed scaling algorithm that is competitive for S + E when the

power function is arbitrary?”. A competitive algorithm is achievable for some scheduling

objectives. For example, for the scheduling objective of integer flow, there is a clairvoyant

speed scaling algorithm that is constant competitive for an arbitrary power function [8].

This algorithm uses Shortest Remaining Processing Time (SRPT) for job selection and, at

each time, chooses the processor speed that results in power consumption equal to the num-

ber of unfinished jobs. For the scheduling objective of fractional weighted flow, there is a

clairvoyant speed scaling algorithm that has constant competitiveness for an arbitrary power

function [8]. This algorithm uses Highest Density First (HDF) for job selection and, at each

time, sets the processor speed so that the power consumption equals the total fractional

weight of the unfinished jobs. Both of these speed scaling algorithms use the “natural”

speed scaling algorithm that balances the rate of increase of the scheduling objective with

the rate of increase of the energy objective by setting the instantaneous increase of the power

consumption equal to the instantaneous increase of the scheduling objective S.
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For other scheduling objectives, constant competitiveness is only achievable when restric-

tions are placed on the growth rate of the power function P . For example, in [14], Chan

et al. showed that non-clairvoyant speed scaling algorithms cannot achieve constant com-

petitiveness for the objective of integer flow plus energy if the power function is too steep,

although constant competitiveness is achievable if P is assumed to be bounded by a poly-

nomial with a constant degree. They extended the previous work in [29] that showed there

is no non-clairvoyant algorithm with constant competitiveness for the objective of integer

flow time on a fixed speed processor. Given the evidence to date, in chapter 2, we make the

following conjecture:

Conjecture. There exists an online scheduling algorithm that is competitive on a fixed speed

processor for the scheduling objective S if and only if there exists an online scheduling algo-

rithm that is competitive for the scheduling objective S+E when an arbitrary power function

is considered.

Unfortunately, it seems hard to imagine that the conjecture can be formally proven.

A difficulty in showing the conjecture is that it does not seem possible to use the fact

that competitiveness is achievable by an algorithm A for the scheduling objective S in the

fixed speed setting as a black box to deduce anything about A in the speed scaling setting.

Indeed, all previous analysis of algorithms in the speed scaling setting must know why A

was competitive in the fixed speed setting. Therefore, to gain confidence of the truth of

this conjecture perhaps one must settle for showing that the conjecture holds for particular

natural scheduling objectives. One of the most obvious classical scheduling objectives that

has yet to be considered in the speed scaling setting is integer stretch.

Integral flow time measures the time a job is delayed in the system, i.e. the time from the

job’s release until completion. The integral stretch of a job is the job’s flow time divided by

the size of the job. The integral stretch of the schedule is then the sum of all jobs’ integral

stretch. Another way to think of stretch is as a special case of the weighted flow metric

(a job’s weighted flow is the job’s flow times the job’s, input assigned, weight), specifically,

where the weight of each job is the inverse of the job’s size. The stretch metric measures

how much the completion of a job was delayed relative to the completion time of the job
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when running on a dedicated processor. Integer stretch may be a better quality of service

metric when there are both small and large jobs as we expect the large jobs to take longer

than the small jobs.

In the fixed speed setting, it is known that SRPT is competitive, but not optimal,

for integer stretch [30], and in chapter 2, we extend this work by showing that there is a

competitive algorithm for integer stretch in the speed scaling setting. In order to extend

integer stretch to the speed scaling setting, we consider the classical scheduling input of a

set of jobs with release times and sizes with the objective of minimizing the stretch plus

energy of the schedule. We consider this problem when the processor can have an arbitrary

speed to power function and give an algorithm, A, that is a competitive in the online model,

that is, when the scheduler does not know either the existence or size of a job until the job’s

release time.

Our algorithm, A, uses a job selection algorithm that is a variation of Highest Density

First, and a speed scaling algorithm that is a variation of the natural algorithm. Highest

Density First schedules at time t the unfinished job with the largest weight divided by

size (recall that the stretch of a job is equal to the weighted flow of a job when the job’s

weight is the inverse of its size). The “natural” speed scaling algorithm runs the processor

at the speed that balances the current rate of increase of the scheduling objective with

the current rate of increase of the energy objective by setting the instantaneous increase of

the energy consumption equal to the instantaneous increase of the scheduling objective S.

One difficulty in analyzing the competitiveness of this algorithm is that there is no optimal

online scheduling algorithm for the objective of integer stretch in the setting of a fixed speed

processor [30]. The analysis in [8] of speed scaling algorithms for arbitrary power functions

critically uses the fact that the scheduling algorithms considered (SRPT for the scheduling

objective of integer flow and HDF for the scheduling objective of fractional weighted flow)

are not only optimal, but have the additional property that they do not fall any further

behind an arbitrary algorithm when starting from arbitrary configurations. Since we can

not use the optimality of the scheduling algorithm in the fixed speed setting, our analysis

is necessarily very different from the amortized local competitiveness analysis in [8]. By

contrast, our analysis bounds the integer stretch of the algorithm A by its fractional stretch
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and the aggregate integer stretch accumulated from jobs during times they are processed

by A. We then bound these two quantities separately. For the scheduling objective of

fractional weighted flow (a generalization of fractional stretch) plus energy, HDF is known

to be competitive.The remaining cost of A, the integer stretch of the currently running job,

we bound on a per job basis. Specifically, we bound a job’s running integer stretch in A by

the job’s integer stretch in the optimal schedule and the energy the optimal schedule uses

while running the job.

As an ancillary consequence of our analysis, we also show in chapter 2, that on a fixed

speed processor, the integer stretch for SRPT is at most 3 times the fractional stretch of

SRPT. This observation was the inspiration for our analysis of the speed scaling algorithm

in chapter 2. It seems plausible that this, perhaps, mildly surprising relationship (this

relationship doesn’t hold for the flow objective, for example) between integer stretch and

fractional stretch could prove useful in future research.

1.6 WEIGHTED FRACTIONAL FLOW PLUS ENERGY

Recall that the schedule, S, that minimizesQ+βE , is the optimal energy trade-off schedule in

the sense that, S minimizes Q subject to using total energy E , and trading an additional unit

of energy (increasing E by 1) cannot improve the quality of service by more than β (decrease

Q by more than β). From this optimal trade-off point of view, some natural questions arise.

Are there simple properties that characterize all optimal trade-off schedules? Are there

multiple (fundamentally different) ways to optimally trade-off energy and quality of service?

How does the optimal trade-off change as a function of β? In chapter 3, we seek to answer

some of these types of questions.

Chapter 3 extends the work done in [31] where an efficient algorithm was given for the

special case of unit jobs when the quality of service measure is total integer flow. The

algorithm given in [31] can be thought of as a homotopic optimization algorithm. The

setting for homotopic optimization is a collection of optimization problems with identical

feasible regions, but with different objectives. If we have two objective functions Q and
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E , assume that when the objective is Q, the optimization problem is easy to solve, but

when the objective is Q + E , the optimization is not easy to solve. This is the case in the

speed scaling setting because if energy is not part of the objective, the processor should

always be run at maximum speed. Intuitively the homotopic optimization method solves the

optimization problem, with objective Q + E , by maintaining the optimal solution with the

objective Q+ βE as β continuously increases from 0 to 1. A highly desirable, if not strictly

necessary condition, to develop a homotopic algorithm is that in some sense the optimal

solution should change continuously as a function of β so that the knowledge of the optimal

solution for a particular β is useful to obtain the optimal solution for β+ ε for small ε. Thus

a natural way to think about a homotopic optimization algorithm is to imagine the optimal

solution being controlled by a slider that specifies β. As the slider is moved, β changes and

thus the optimal solution evolves continuously with the slider.

[31] showed that if the quality of service measure is total flow, and jobs have arbitrary

sizes, then the optimal energy trade-off schedule can change radically in response to a small

change in β. Thus there is seemingly no hope of extending the work in [31] when the

quality of service objective is total delay and jobs have arbitrary sizes. Because of this, we

instead consider fractional flow, or more generally weighted fractional flow, and thus seek to

characterize the schedule that minimize the total weighted fractional flow plus β times the

energy used by the processor, i.e. the optimal trade-off schedule for fractional flow plus β

times energy.

Recall that integral flow measures the time the job is delayed in the system, i.e. release

to completion. Fractional flow weights this delay by the fraction of the job that is unfinished.

For example, if a job is 60% done at a particular time, then the fractional flow of the job is

increasing at a rate of 2/5 whereas the job’s integral flow would still be increasing at a rate

of 1. If each job is assigned a relative importance, i.e. a weight, the weighted fractional flow

of a job is this weight times the job’s fractional flow, thus the weighted fractional flow of a

schedule is the sum of all jobs’ weighted fractional flow. Fractional flow may be a preferred

quality of service metric when the benefit of completing a fraction of a job is proportional

to the fraction of the job that is completed. The input to the problem is a set of jobs where

each job has a release time, a size, and a weight. We consider such inputs under the arbitrary

15



power function model.

Although we change the quality of service objective, we extend the general setting con-

sidered in [31] in three ways. First, we assume that jobs can have arbitrary sizes, as one

would expect to be the case on a general purpose computational device. Second, we assume

that each task has an associated importance, the previously mentioned weight of a job, de-

rived from either some higher level application or from the user. Third, we assume that the

allowable speeds, and the relationship between the speed and the power, of the processor are

essentially arbitrary.

We first model the problem as a convex program and then apply the KKT conditions to

derive necessary and sufficient conditions for the optimality of a schedule. We find that a

feasible schedule is optimal if and only if three conditions hold:

• There is a linearly decreasing hypopower function associated with each job that maps a

time to a hypopower, where the slope of the hypopower function is proportional to the

density of the job, and inversely proportional to β. We coin the term hypopower to refer

to the rate of change (derivative) of power with respect to speed as we are not aware of

any standard name for this quantity.

• At all times, the job that is run is the job whose hypopower function is largest at that

time.

• If a job is run, it is run at the hypopower specified by the hypopower function.

These conditions for optimal energy trade-off are very structurally different from the

conditions for optimal energy trade-off when the quality of service objective is total flow.

When the quality of service objective is total flow and all jobs have unit size, [31], showed

that for any job i, if i doesn’t delay other jobs then i is run as if alone, and if i does delay

other jobs then i runs at a power equal to the power at which i would run if alone times the

number of jobs i is delaying. While this is a slight simplification of the optimality conditions,

we do see that the conditions of optimality are linear in power, while in our case, when the

quality of service objective is fractional flow and jobs have arbitrary sizes, the conditions of

optimality are linear in hypopower.

We then use these necessary and sufficient conditions to show additional facts about the
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the optimal energy trade-off schedule. First, we show that any schedule may be checked

for these conditions, and thus for optimality, in O(n2) time. Second, we show that as

a consequence of these conditions, the optimal schedule is unique and that to specify an

optimal schedule, it is sufficient to specify the value of each hypopower function at the

release time of the corresponding job. Third, we show that a job’s hypopower at release

changes continuously as a function of β. Showing that a job’s hypopower at release changes

continuously is important because the time at which a particular bit of work is done does not

change continuously as a function of β, as in [31]. Further, the fact that a job’s hypopower

at release changes continuously as a function of β allows us to develop an efficient homotopic

algorithm for a modest number of jobs. The algorithm, which has a goal of finding the

optimal energy trade-off schedule for a fixed β > 0, begins by creating the optimal energy

trade-off schedule when β = 0 (which is trivial) and then maintains the optimal energy

trade-off schedule as β increases to the desired value.

A trade-off objective that is commonly used outside of the theoretical speed scaling

literature is to minimize the product of the quality of service and energy objectives. Thus,

in chapter 3, we also consider the objective Qσ × E , where Q is fractional flow, E is energy,

and σ is a parameter representing the relative importance of the scheduling objective and

energy. We show the following:

• Perhaps counter-intuitively, we show that if the static power is zero, then the optimal

solution is to either always go as fast as possible or to always go as slow as possible.

• We show that locally optimal product trade-off schedules have a nice structure similar

to globally optimal sum trade-off schedules, but local optimality does not imply global

optimality.

• We show that, for a fixed instance, the set of schedules that are optimal for the product

objective (for any σ) are (a generally strict) subset of the schedules that are optimal for

the sum objective (for any β).

• We show that the optimal product trade-off schedule may be a discontinuous function

of σ. Thus there is unlikely to be a homotopic algorithm to compute optimal product

trade-off schedules.
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We therefore conclude that for the purposes of reasoning theoretically about optimal energy

trade-off schedules, the sum trade-off objective is probably preferable to the product trade-off

objective, as it has many more mathematically desirable properties.

1.7 MINIMIZING MAXIMUM TEMPERATURE UNDER DEADLINES

Recall that the other method to handle the conflicting objectives of energy and quality of

service (as opposed to a linear combination of energy and quality of service) is to fix one of

the objectives and optimize the other. We take this approach in chapter 4 by considering

the classical deadline scheduling problem, that is the scheduling problem where each job has

a deadline by which it must be completed. The problem has been extended to the speed

scaling setting, by [33], by keeping the same input model (jobs have release times, sizes, and

deadlines), and using the continuous speed model with power functions sα for any speed

s ≥ 0. Note that in such a model, unlike the classical, non-speed scaling, setting, all inputs

have feasible schedules because the processor can always run fast enough to get all jobs

done by their deadlines. In chapter 4 we use this deadline model with an energy objective

of minimizing the maximum temperature. With a power function of sα, Newton’s law of

cooling gives the following differential equation to describe temperature:

dT (t)

dt
= s(t)α − bT (t)

Where T (t) is the temperature at time t, s(t) is the speed at time t, and b is the processor

specific cooling parameter.

A common online scheduling heuristic is to partition jobs into batches as they arrive.

While a batch of jobs is being run, any jobs that arrive are collected in a new batch. When

all jobs in the current batch are completed, a schedule for the new batched is computed and

executed. We first consider the offline case of how to schedule jobs in this special batch case

where all release times are zero.

For the offline case, we start with the feasibility problem for the batch case. The feasibility

problem is to determine if the input has a feasible schedule (no deadlines violated) that
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never exceeds a thermal threshold Tmax, which is also given as part of the input. We give a

relatively simple O(n2) time algorithm. Our algorithm maintains the invariant that after the

ith iteration, it has computed a schedule Si that completes the most work possible subject to

the constraints that the first i deadlines are met and the temperature never exceeds Tmax. The

main insight is that when extending Si to Si+1, one need only consider n possibilities, where

each possibility corresponds to increasing the speed from immediately after one deadline

before di until di in a particular way.

We then use the insights gained from solving the feasibility problem to solve the opti-

mization problem, i.e., the problem of finding a deadline feasible schedule that minimizes

the maximum temperature Tmax attained. One obvious way to obtain an algorithm for this

optimization problem would be to use the feasibility algorithm as a black box, and binary

search over the possible maximum temperatures. This would result in an algorithm with

running time O(n2 log Tmax). Instead we give an O(n2) time algorithm that in some sense

mimics one run of the feasibility algorithm, raising Tmax throughout so that it is always the

minimum temperature necessary to maintain feasibility.

We then move on to dealing with the general online setting. Noting that it is perfectly

reasonable that an operating system would have knowledge of the thermal threshold of the

device on which it is scheduling tasks, we assume that the online algorithm knows the thermal

threshold, Tmax, of the device. We then give an online algorithm, A, that runs at a constant

speed (a constant function of Tmax) until an emergency arises, that is, it is determined that

some job is in danger of missing its deadline. The speed in the non-emergency time is set so

that in the limit the temperature of the device is at most a constant fraction of the thermal

threshold. When an emergency is detected, the online algorithm A switches to using the OA

speed scaling algorithm, which is guaranteed to finish all jobs by their deadline. When no

unfinished jobs are in danger of missing a deadline, the speed scaling algorithm A switches

from OA back to the non-emergency constant speed policy. We show that A is competitive

for maximum temperature. The insight that allowed us to prove the competitiveness of A

was that it is only necessary to run faster than A’s constant speed for brief periods of time.

In other words, any single emergency interval (when A is running OA) is short, specifically,

the length of the emergency interval is bounded by a constant value that is proportional to
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the inverse of the cooling parameter. We can then analyze the emergency and non-emergency

periods separately.
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2.0 SPEED SCALING FOR STRETCH PLUS ENERGY

In this chapter, we consider speed scaling problems where the objective is to minimize a

linear combination of a scheduling objective S and the energy E used by the processor.

These types of problems constitute a major line of algorithmic speed scaling research [3, 4,

7, 8, 11, 14, 15, 21, 22, 25, 26, 27]. A natural conjecture is that for any objective S there

is an O(1)-competitive algorithm for S on a fixed speed processor if and only if there is an

O(1)-competitive algorithm for S + E on a processor with an arbitrary power function. We

give evidence to support this conjecture by providing an O(1)-competitive algorithm for the

objective of integer stretch plus energy. As an ancillary observation of this investigation, we

show that on a fixed speed processor, the integer stretch for SRPT is at most 3 times the

fractional stretch of SRPT.

2.1 RELATED WORK

[31] considered the problem of minimizing integer flow subject to an energy constraint, and

gave an efficient offline algorithm for the case of unit size jobs. The problem of minimizing

integer flow time plus energy was first proposed in [3]. They considered the unbounded

speed scaling model with power function P (s) = sα, and gave an O(1)-competitive algorithm

for the case of unit jobs. This was improved upon in [11] which showed that the natural

speed scaling algorithm is 4-competitive for integer flow time plus energy for unit jobs.

[11] further considered the objective of fractional weighted flow plus energy and gave an

O(α/ log(α))-competitive algorithm which, using standard resource augmentation, implies

an O((α/ log(α))2)-competitive algorithm for integer weighted flow plus energy. [26] gave an
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O(α/ log(α))-competitive algorithm for integer flow plus energy for arbitrary sized jobs. In

the case that there is an upper bound on the speed of the processor, [7] gave an O(α/ log(α))-

competitive algorithm for fractional weighted flow time plus energy for arbitrary sized jobs.

Speed scaling with arbitrary power functions was first considered in [8]. [8] shows that

the speed scaling algorithm that runs at a power equal to 1 plus the number of active jobs,

and that uses SRPT for job selection is a 3-competitive algorithm for the objective of integer

flow plus energy. [8] also shows that the speed scaling algorithm that runs at power equal

to the fractional weighted flow of all unfinished jobs, and that uses HDF for job selection is

2-competitive algorithm for the objective of fractional weighted flow plus energy. [4] shows

that one could modify the analysis in [8] to show that the speed scaling algorithms that runs

at a power equal to the number of unfinished jobs, and that uses SRPT for job selection

is 2-competitive for the objective of integer flow plus energy. [4] further showed that no

“natural” online speed scaling algorithm can be better than 2-competitive. [4] also showed

that, for P (s) = sα power functions, the natural speed scaling algorithm with processor

sharing (PS) for job selection is max{4α− 2, 2(2− 1/α)α}-competitive. [21, 22] show how

to extend the analysis in [8] to a setting of power heterogeneous multiprocessors.

2.2 PRELIMINARIES

An instance I consists of n jobs that arrive over time. Job i has release (arrival) time ri,

work/size pi, and possibly a weight wi. The density of a job is its weight divided by total

size, that is wi/pi. A clairvoyant online scheduler is not aware of job i until time ri, at which

time it learns pi and wi. A non-clairvoyant scheduler does not learn pi at time ri. At each

time the scheduler specifies a job to process and a speed for the processor. Preemption is

allowed; that is, a job may be suspended and later restarted from the point of suspension.

A job i is completed once pi units of work have been processed on i. The speed is the rate

at which work is processed. If job i of work pi is run at a constant speed s until completion

then job i will complete pi/s time units after being started.

For a fixed schedule σ, we let Cσ
i denote job i’s completion time. The flow (time)
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F σ
i = Cσ

i − ri of job i is the time that elapses after the job arrives until being completed.

When the considered schedule σ is clear in the context, we may omit the superscript σ. Job

i’s integer stretch is Fi/pi, and its integer weighted flow is wiFi. The integer stretch of a job

can be viewed as a special case of integer weighted flow where the weight is the reciprocal

of the job’s size. The integer flow of a schedule is
∑n

i=1 Fi. The integer stretch of a schedule

is
∑n

i=1 Fi/pi, and the integer weighted flow is
∑n

i=1wiFi. If the unfinished work of job i at

time t is pi(t) then the fractional size of job i at time t is pi(t)/pi and the fractional weight

of job i at time t is wi(pi(t)/pi). The fractional flow of job i is defined to be
∫∞
ri
pi(t)/pi dt

and the fractional weighted flow of job i is
∫∞
ri
wi(pi(t)/pi) dt. The fractional flow time and

fractional weighted flow time of a schedule are the sum over all jobs of the fractional flow

time or fractional weighted flow time respectively. The fractional stretch of a schedule is the

same as the fractional weighted flow time where the weight of job i is set to 1/pi.

We adopt the speed scaling model originally proposed in [8] that essentially allows the

power function to be arbitrary. In particular the power function may have a maximum

power consumption rate, and hence maximum speed. The only real restriction on the power

function is that it is piecewise continuous, differentiable, and integrable. It is shown in [8] that

without loss of generality, we can assume that the power function P : [0, smax]→ [0, Pmax] is

continuous, differentiable, and convex, such that P (0) = 0 and P (smax) = Pmax. Here smax

(Pmax) denote the maximum possible speed (power). By definition Pmax = P (smax). The

energy (consumption) of a schedule is the power usage integrated over time.

We use W̃F, S, S̃, and E to denote the objectives of fractional weighted flow, integer

stretch, fractional stretch, and energy, respectively. We use W̃F⊕E and S⊕E to denote the

objective of fractional weighted flow plus energy and integer stretch plus energy, respectively.

For an algorithm A we denote the schedule output by A on input I by A(I). We use

OPT (I) to denote the optimal schedule for the objective under consideration. For example,

W̃F⊕E〈A(I)〉 denotes the fractional weighted flow plus energy for the schedule output by

algorithm A on input I, and S⊕E〈OPT (I)〉 denotes the optimal integer stretch plus energy

for input I.
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2.3 AN ALGORITHM FOR STRETCH PLUS ENERGY WITH BOUNDED

COMPETITIVENESS

In this section we give a clairvoyant speed scaling algorithm algorithm A, and show that A

is O(1) competitive for the objective of integer stretch plus energy on a processor with an

arbitrary power function. We start by giving a definition of the online algorithm from [8],

which we call BCP. BCP takes as input an online sequence of jobs with release times, sizes,

and weights.

Definition of Online Algorithm BCP: At any time t, BCP always runs the unfinished

job with the highest density at power

Pb(t) = min {wb(t), Pmax}

where Pmax is the maximum power and wb(t) is the sum of the fractional weights of all

unfinished jobs for BCP at time t.

We will assume that in case of equal density jobs, BCP breaks ties in favor of earlier

released jobs. One of the two main theorems in [8] is Theorem 1, that BCP is 2-competitive

for the objective of fractional weighted flow plus energy.

Theorem 1. [8] For all inputs I, W̃F⊕E〈BCP (I)〉 ≤ 2·W̃F⊕E〈OPT (I)〉.

At a high level, A is the same as BCP with two important differences. The first difference

is that A rounds the weight of each job up so that the density is an integer power of some

constant f > 1, so that the following inequality holds

1

pj
≤ wj <

f

pj

This is to prevent the algorithm A from preempting between jobs of similar densities. The

second difference is that A never lets the power fall below one over the work of the active job.

Let I be an arbitrary instance of jobs with release times and sizes. Let I ′ be the corresponding

instance where additionally all jobs j have weights wj, where wj is the minimal real number,

not less than 1/pj, such that wj/pj is an integer power of f . The algorithm A can either
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be thought of as running on an unweighted instance, where the algorithm instantiates the

weights, or on a weighted instance in which weights are provided as part of the input.

Definition of Online Algorithm A: When considering an unweighted instant I, A assigns

jobs the weights that they would have in instance I ′. At any time t, A runs the highest density

job, breaking ties in favor of earlier released jobs, at power

Pa(t) = min

{
max

{
wa(t),

1

pa(t)

}
, Pmax

}
where a(t) is the job being processed at time t, pa(t) is the size of a(t), and wa(t) is the sum

of the fractional weights of all unfinished jobs at time t.

We show that, by picking f ≈ 2.015, A is approximately 9.414-competitive for the

objective of integer stretch plus energy. Our analysis can be summarized as the following

sequence of bounding steps:

S⊕ E〈A(I)〉 ≤ W̃F⊕ E〈A(I ′)〉+

(
1 +

√
f√

f − 1

)∫
t

1

pa(t)
(Lemma 2)

≤ W̃F⊕ E〈A(I ′)〉+

(
1 +

√
f√

f − 1

)
S⊕ E〈OPT (I)〉 (Lemma 3)

≤ (2f + 1) · S⊕ E〈OPT (I)〉+

(
1 +

√
f√

f − 1

)
S⊕ E〈OPT (I)〉 (Lemma 4)

=

(
2f + 2 +

√
f√

f − 1

)
S⊕ E〈OPT (I)〉

≈ 9.414 · S⊕ E〈OPT (I)〉

Before proving each of the lemmas used above, we give some intuitive explanation of the

lemmas. Lemma 2 shows that the integer stretch of A is bounded by the fractional weighted

flow of A plus the aggregate integer stretch accumulated from jobs while they are run by

A. The proof relies on the fact that densities of the preempted jobs in A’s schedule form

a geometric sequence. Lemma 3 shows via a charging scheme that the aggregate integer

stretch accumulated from jobs while they are run by A is at most the optimal integer stretch

plus energy. Intuitively, this lemma can be explained as follows. For each job j, consider

the times that j is processed by A and OPT . If OPT processes j faster than A by using

more power, j’s integer stretch can be charged to OPT ’s power usage. Otherwise, job j, as
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an active job, contributes to A’s integer stretch less than OPT ’s integer stretch. Lemma 4

relates the fractional weighted flow plus energy for A to the optimal integer stretch plus

energy. Recall that A uses the same speed scheduling policy as BCP except that it runs at

power at least 1/pa(t) at any time t. Let us call the time periods that A uses power exactly

1/pa(t) as minimum power periods and the other time periods as normal time periods. By

mimicking the analysis of BCP, we can bound the fractional flow for A, plus the energy

used by A during normal time periods. We separately bound the energy used by A during

minimum power periods by the integer stretch of the active jobs. Before preceding to these

lemmas, in Lemma 1 we make an intuitive observation that the optimal fractional weighted

flow for instance I ′ is at most f times the optimal integer stretch plus energy for instance I.

Lemma 1. W̃F⊕E〈OPT (I ′)〉 ≤ f · S⊕ E 〈OPT (I)〉.

Proof. First note that

W̃F⊕ E 〈OPT (I ′)〉 ≤ f · S̃⊕ E 〈OPT (I)〉

since each weight wj in I ′ is at most f/pj. Further it follows that

S̃⊕ E 〈OPT (I)〉 ≤ S⊕ E 〈OPT (I)〉

since the fractional stretch of any schedule is no more than the integer stretch of that

schedule.

Lemma 2. S⊕ E〈A(I)〉 ≤ W̃F⊕ E〈A(I ′)〉+
(

1 +
√
f√
f−1

) ∫
t

1
pa(t)

.

Proof. Throughout this lemma we will implicitly use the fact thatA creates the same schedule

for the instance I and the instance I ′ by definition of A. To show the lemma, we focus on

showing the stronger statement that

S 〈A(I)〉 ≤ W̃F 〈A(I ′)〉+

(
1 +

√
f√

f − 1

)∫
t

1

pa(t)

Notice that this is strictly a stronger statement because the energy used by A is the same

for I ′ and I. Fix a time t. We partition the unfinished jobs in A’s schedule at time t into

three sets: the running job, a(t), the set Au(t) of jobs that have not been processed by A,
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and the set Ap(t) of jobs that have been partially processed by A, excluding the running job

a(t). It is sufficient to establish the following invariant:

∑
i∈Au(t)

1

pi
+
∑

i∈Ap(t)

1

pi
+

1

pa(t)
≤
∑

i∈Au(t)

wi
pi(t)

pi
+

(
1 +

√
f√

f − 1

)
1

pa(t)
.

Proving this invariant is sufficient to prove the lemma because the left hand side of the

inequality is the instantaneous increase in the stretch objective for A’s schedule at time t

and ∑
i∈Au(t)

wi
pi(t)

pi

is the instantaneous increase in the fractional weighted flow time of A’s schedule at time t.

Thus, if this inequality can be shown for all times t, then by integrating over time the lemma

follows.

By definition pi(t)/pi = 1 for unprocessed jobs. Also, wi ≥ 1/pi by the definition of I ′.

Knowing this, we have ∑
i∈Au(t)

1

pi
≤
∑

i∈Au(t)

wi
pi(t)

pi
.

Thus to establish our invariant, it is sufficient to show that

∑
i∈Ap(t)

1

pi
≤

√
f√

f − 1

1

pa(t)
.

Consider the jobs d(0), . . . d(m) in Ap(t) by increasing order of arrival time where m =

|Ap(t)|. By the definition of I ′, any two jobs either have equal densities or their densities

differ by at least a factor of f . Knowing that all jobs in Ap(t) have been partially processed

by A and that A breaks ties in favor of jobs with earlier release dates, it must be the case

that

f
wd(i)
pd(i)

≤
wd(i+1)

pd(i+1)

for 0 ≤ i ≤ m− 1 and

f
wd(m)

pd(m)

≤
wa(t)
pa(t)

Hence we have
wd(i)
pd(i)

≤ 1

fm−i+1

wa(t)
pa(t)
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For any job j, by definition of wj,
1
pj
≤ wj <

f
pj

. Knowing this, we have that

1

(pd(i))2
≤
wd(i)
pd(i)

≤ 1

fm−i+1

wa(t)
pa(t)

≤ 1

(pa(t))2

Thus we have,

∑
i∈Ap(t)

1

pi
=

m∑
i=0

1

pd(i)

≤
m∑
i=0

1

(
√
f)m−i

1

pa(t)

≤ 1

pa(t)

∞∑
i=0

1

(
√
f)i

=

√
f√

f − 1

1

pa(t)

Lemma 3.
∫
t

1
pa(t)
≤ S⊕E〈OPT (I)〉.

Proof. Consider any arbitrary job j with total work pj, and an arbitrary infinitesimal portion

of that work dpj. Let dtA be the amount of time that A spends actively working on pj

to complete the dpj portion of pj’s work, and let dtO be the amount of time that OPT

spends actively working on pj to complete the dpj portion of pj’s work. We call dtA/pj the

contribution of dpj to
∫
t

1
pa(t)

. Our goal is to bound the contribution of dpj by the optimal

solution’s cost when the optimal solution processes the dpj portion of pj’s work. Once this is

shown, by integrating over all portion’s of pj’s work and summing over all jobs, the lemma

follows. We consider two cases depending on the relationship of dtA and dtO.

First consider the case where dtA ≤ dtO. In this case, we can charge the contribution of

dpj, to the the integer stretch penalty OPT incurs while processing the dpj portion of pj.

Indeed, the integer stretch penalty OPT incurs for job j is dtO/pj during this time. Now

consider the other case where dtA > dtO. In this case, the convexity of the power function
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implies that A uses no more energy than OPT while processing the dpj portion of pj. In

particular, A’s energy usage is strictly smaller Pmax. Thus, by definition of A, A runs the

processor using power at least 1/pj the entire time the dpj portion of pj is being processed.

This implies that the energy used by A to complete the work dpj is at least the integer

stretch penalty dpj/pj incurred by A. Hence we can charge dpj/pj to the energy that OPT

uses to process dpj.

Lemma 4. W̃F⊕ E〈A(I ′)〉 ≤ (2f + 1) · S⊕ E〈OPT(I)〉.

Proof. For instances where densities are integer powers of f , the only difference between the

algorithm A and the algorithm BCP is that on some configurations A would run faster than

BCP. In particular, at times when wa(t) < 1/pa(t) ≤ Pmax, A will run at power 1/pa(t) while

BCP would only run at power wa(t). Recall that these times are called the minimum power

periods for A.

The analysis of BCP in [8] uses an amortized local competitiveness argument. That is,

it gives a potential function Φ(t) so that the following invariant holds at all times t:

wa(t) + Pa(t) +
dΦ(t)

dt
≤ 2(wo(t) + Po(t))

where P (t) is the power used by A, wo(t) is the unfinished fractional weight for the optimal

schedule and Po(t) is the power used in the optimal schedule. This invariant establishes that

for BCP,

W̃F⊕ E〈BCP(I ′)〉 ≤ 2 ·WF⊕ E〈OPT (I ′)〉

Hence by Lemma 1,

W̃F⊕ E〈BCP(I ′)〉 ≤ 2f · S⊕ E 〈OPT (I)〉

If we attempted to repeat this analysis with the algorithm A, the only problem is that during

the minimum power periods, A might run faster than BCP, meaning that this analysis would

not account for all the energy used by A during the minimum power periods. Therefore, the

only task left is to bound the total power used by A during the minimum power periods.

Note that any time t that is a minimum power period, A uses power 1/pa(t). Therefore,

the total energy consumption by A during all the minimum power periods is bounded by
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∫
t
1/pa(t). By Lemma 3, it is at most S ⊕ E 〈OPT (I)〉. Combining this quantity with the

upper bound obtained following the BCP analysis completes the proof.

2.4 INTEGRAL STRETCH OF SRPT

In this section, we show that the integer stretch of SRPT is at most 3 times the fractional

stretch of SRPT under constant speed curves.

Lemma 5. S〈SRPT (I)〉 ≤ 3 · S̃〈SRPT (I)〉 for fixed speed processors.

Proof. Without loss of generality we can assume the speed of the processor is 1 by rescaling

the units of time. Let c > 1 be any constant, which will be fixed soon. Define C+(t) as the

set of unfinished jobs at time t, excluding the running job, that have at least a 1/c fraction

of their work processed by SRPT at time t. Let C−(t) be the set of unfinished jobs at time

t, excluding the running job a(t), have at most a 1/c fraction of their work processed by

SRPT at time t. Formally,

C+(t) := {j ∈ Au(t) ∪ Ap(t) |
pj(t)

pj
≤ c− 1

c
}

and

C−(t) := Au(t) ∪ Ap(t) \ C+(t)

We first show that the total accumulated stretch for the active jobs is at most twice their

total accumulated fractional stretch:∫
t

1

pa(t)
≤ 2

∫
t

pa(t)(t)

pa(t)

1

pa(t)
(2.1)

We will also show the following invariants hold at all times:

∑
i∈C+(t)

1

pi
≤ (c− 1)

1

pa(t)
(2.2)

and ∑
i∈C−(t)

1

pi
≤ c

c− 1

∑
i∈C−(t)

pi(t)

pi

1

pi
(2.3)
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By definition of the fractional stretch objective, the stretch objective, equation (2.1) and

equation (2.2), we have that∫
t

∑
i∈C+(t)∪{a(t)}

1

pi
≤
∫
t

(c− 1)
1

pa(t)
+ 2

∫
t

pa(t)(t)

pa(t)

1

pa(t)
(2.4)

≤ (2(c− 1) + 2)

∫
t

pa(t)(t)

pa(t)

1

pa(t)

= 2c

∫
t

pa(t)(t)

pa(t)

1

pa(t)

Combining inequality (2.3) and inequality (2.4), we can conclude that

S〈SRPT (I)〉 ≤ max

{
2c,

c

c− 1

}
· S̃〈SRPT (I)〉

The tightest bound is achieved when c = 3/2, which gives the desired bound that

S〈SRPT (I)〉 ≤ 3 · S̃〈SRPT (I)〉

We now prove equation (2.1). It is sufficient to show that the integer stretch incurred

for a job i, while i is running, is at most twice the fractional stretch incurred during the

times that i is running. Since we only care about the times when i is running, without loss

of generality we can simply consider these times as one contiguous period of time of length

pi. The integer stretch incurred is, ∫ pi

0

1

pi
dt = 1

and the fractional stretch is exactly half of this, namely∫ pi

0

(
pi − t
pi

)
1

pi
dt =

1

2

We now prove equation (2.2). Consider the jobs in C+(t) ∪ {a(t)}, indexed from d(0)

to d(m) = a(t) increasing order of release time. Recall that jobs in C+(t) have at least a 1
c

fraction of the processing time completed. Since SRPT processed job d(i) over d(i− 1) with

remaining work at most (
1− 1

c

)
pd(i−1)

it must be the case that (
1− 1

c

)
pd(i−1) ≥ pd(i)
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for 1 ≤ i ≤ m. By expanding this recurrence we obtain that

1

pi
≤
(
c− 1

c

)m−i
1

pa(t)

, for 0 ≤ i ≤ m. Thus we have

∑
i∈C+(t)

1

pi
=

m−1∑
i=0

1

pd(i)

≤ 1

pa(t)

m−1∑
i=0

(
c− 1

c

)m−i
=

1

pa(t)

m∑
i=1

(
c− 1

c

)i
≤ 1

pa(t)

∞∑
i=1

(
c− 1

c

)i
=
c− 1

pa(t)

We finish the proof by noting that equation (2.3) follows immediately from the fact that

pi(t)

pi
≥ c− 1

c

for all jobs in C−(t).

It might be interesting to determine if one can obtain a tight bound on the worst case

ratio between the integer stretch and the fractional stretch for SRPT. One can construct

instances where the ratio is strictly greater than two.
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3.0 OPTIMAL ENERGY TRADE-OFF SCHEDULES

In this section, we consider scheduling tasks that arrive over time on a speed scalable proces-

sor. At each time a schedule specifies a job to be run and the speed at which the processor

is run. We seek to understand the structure of schedules that optimally trade-off the en-

ergy used by the processor with a common scheduling quality of service measure, fractional

weighted delay. We assume that there is some user defined parameter β specifying the user’s

desired additive trade-off between energy efficiency and quality of service. We prove that

the optimal energy trade-off schedule is essentially unique, and has a simple structure. Thus

it is easy to check the optimality of a schedule. We further prove that the optimal energy

trade-off schedule changes continuously as a function of the parameter β. Thus it is possible

to compute the optimal energy trade-off schedule using a natural homotopic optimization

algorithm. We further show that multiplicative trade-off schedules have fewer desirable

properties.

3.1 RELATED WORK

The work in [31], as presented, assume an objective of total delay subject to a constraint on

the total energy used, although it is straight-forward to see that the same approach works

when the objective is a linear combination of total delay and energy. [3] introduced the idea

of considering an objective that is a linear combination of energy and a scheduling quality

of service objective into the literature. [3] gave a dynamic programming based algorithm

to compute the optimal energy trade-off schedule for unit work jobs. To the best of our

knowledge there is no other algorithmic work directly related to the work in this paper.
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[8] showed that a natural online algorithm is 2-competitive for the objective of a linear

combination of energy and weighted fractional delay. [8, 5] showed that a natural online

algorithm is 2-competitive for the objective of a linear combination of energy and total

(unweighted) (integer) delay. Previously, [3, 11, 26, 14, 17, 18, 16] gave online algorithms

with competitive analysis in the case that the power function was of the form sα.

[23] first introduced the energy-delay product as a metric, and its use has been prevalent

since then.

3.2 PRELIMINARIES

The input consists of n jobs, where job i has release time ri, work pi, and a weight wi > 0.

The density of a job is its weight divided by work, that is wi/pi. A schedule is defined

by specifying, for each time, a job to be run and a speed at which to run the processor.

Preemption is allowed, that is, a job may be suspended and later restarted from the point

of suspension. A schedule may only specify a job i to be run at time t if i has been released

by t, i.e., t ≥ ri. Job i is completed once pi units of work have been performed on i. Speed

is the rate at which work is completed, thus if job i, of work pi, is run at constant speed

s until completion, job i will complete pi/s time units after being started. Without loss of

generality, we assume that no two jobs are released at the same time. If this is not the case,

then we can create a new input that spaces out the releases of jobs released at the same time

by ε > 0, where jobs are then released in order of non-increasing wi/pi. An optimal schedule

for this new input is optimal for the original input as the optimal schedule for the original

input works on each job for at least time ε and prioritizes jobs by non-increasing wi/pi.

For job i, the delay (also called flow), Fi, is i’s completion time minus its release time

and the weighted delay is wiFi. The delay of a schedule is
∑n

i=1 Fi and the weighted delay

is
∑n

i=1wiFi. If pi(t) work is performed on job i at time t then a pi(t)/pi fraction of job i

was delayed t− ri time units before being completed, thus the total fractional delay of job i

is
∫∞
ri
pi(t)(t− ri)/pi dt and the fractional weighted delay of job i is

∫∞
ri
wipi(t)(t− ri)/pi dt.

The fractional delay and fractional weighted delay of a schedule are the sum, over all jobs,
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of the fractional delay and fractional weighted delay respectively. The objective we consider

is the energy used by the schedule plus the fractional weighted delay of the schedule.

We adopt the speed scaling model, originally proposed in [8], that essentially allows

the speed to power function to be arbitrary. In particular the power function may have a

maximum power, and hence maximum speed. For our setting, [8] showed that results that

hold for power functions that are continuous, differentiable, and convex from speed/power

0 to the maximum speed/power, will hold for any power function meeting the less strict

constraints of being piecewise continuous, differentiable, and integrable. Thus, without loss

of generality, we may assume the power function is continuous, differentiable, and convex

from speed/power 0 to the maximum speed/power. We define the power function as P (S),

where S is a speed. Energy is power integrated over time,
∫
t
P (S)dt. The static power is

equal to P (0), which is the power used by the processor even if it is idling.

We use the term hypopower to refer to the derivative of power with respect to speed.

A particular hypopower function that will be important to our discussions is the derivative

of the processor’s power function, P (S), with respect to speed, which will be denoted as

P ′(S). The functional inverse of P ′(S) will be denoted as P ∗ (x), where x is a hypopower

and P ∗ (x) is speed. It’s important to keep in mind that the definition of hypopower is

completely unrelated to the function P ′(S) in the same way that the definition of power is

completely unrelated to the function P (S).

In the context of schedules we will need to specify how speed, power, and hypopower

change over time, thus we define S(t, A), P (t, A), and P ′(t, A), as the speed, power, and hy-

popower respectively, of schedule A at time t, such that P (t, A) = P (S(t, A)) and P ′(t, A) =

P ′(S(t, A)). If A is understood, then we drop A. Further, we denote the speed, power, and

hypopower experienced by a job i run at a time t in a schedule A as Si(t, A), Pi(t, A), and

P ′i (t, A) respectively, such that Pi(t, A) = P (Si(t, A)) and P ′i (t, A) = P ′(Si(t, A)). Again, we

drop A if A is understood.
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3.3 CHARACTERIZING THE OPTIMAL SCHEDULE

In this section we characterize the optimal schedule for the objective of fractional flow plus

energy. We start, in section 3.3.1, by giving a time-indexed convex programming formulation

of the problem and then in section 3.3.2 we use the well known KKT conditions to derive

properties that are necessary and sufficient for optimality. In section 3.3.3 we show that these

properties imply that there is only a single optimal schedule. Finally, in section 3.3.4, we

give a simple algorithm that uses the necessary and sufficient properties to decide whether

or not a schedule is optimal in O(n2) time.

3.3.1 Convex Programming Formulation

We now give a convex programming formulation of the problem. Let T be some sufficiently

large time bound such that all jobs finish by time T in the optimal schedule. Define the

variable S(t) as the speed of the schedule at time t and the variable pj(t) to be the work

performed on job j at time t ≥ rj. The problem of minimizing a linear combination of

fractional weighted flow plus energy for a set of jobs with release times and arbitrary work

requirements can thus be expressed as the following convex program:

min
n∑
j=1

T∑
t≥rj

wjpj(t)

pj
(t− rj) + β

T∑
t=1

P (S(t))

Subject to

T∑
t=rj

pj(t) = pj j ∈ [1, n] [dual αj] (3.1)

∑
j:rj≤t

pj(t) = S(t) t ∈ [1, T ] [dual δ(t)] (3.2)

pj(t) ≥ 0 t ≥ rj, j ∈ [1, n] [dual γj(t)] (3.3)

The convexity of the program follows from the fact that, with the exception of
∑
P (S(t)),

the objective and constraints are linear functions of variables.
∑
P (S(t)) is the non-negative

sum of convex functions and thus is convex.
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The objective has two terms, the right term is β times the energy used by the schedule.

The left term is the sum over all jobs of the fractional weighted flow of the job. Con-

straint (3.1) ensures that every job is finished, constraint (3.2) ensures that the speed at

each time is equal to the work performed at that time, and constraint (3.3) ensures that the

work variables are non-negative. Constraints (3.2) and (3.3) ensure that the variables for

speed are non-negative. To apply the KKT conditions in the next section, we associate the

dual variables αj, δ(t), and γj(t) with constraints, (3.1), (3.2), and (3.3) respectively.

3.3.2 KKT Conditions

The Karush-Kuhn-Tucker (KKT) conditions provide necessary and sufficient conditions to

establish the optimality of feasible solutions to certain convex programs. We now describe

the KKT conditions in general. Consider the following convex program,

min f0(x)

Subject to

fi(x) ≤ 0 i = 1, . . . , n (λi)

gj(x) = 0 j = 1, . . . ,m (αj)

Assume that all fi and gj are differentiable and that there exists a feasible solution to this

program. The variable γi is the dual (Lagrangian multiplier) associated with the function

fi(x) and similarly for αj with gj(x). Given that all constraints are differentiable linear

functions and that the objective is differentiable and convex, the KKT conditions state that

necessary and sufficient conditions for optimality are

fi(x) ≤ 0 i = 1, . . . , n (3.4)

λi ≥ 0 i = 1, . . . , n (3.5)

λifi(x) = 0 i = 1, . . . , n (3.6)

gj(x) = 0 j = 1, . . . ,m (3.7)
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∇f0(x) +
n∑
i=1

λi∇fi(x) +
m∑
j=1

αj∇gj(x) = 0 (3.8)

Here ∇fi(x) and ∇gj(x) are the gradients of fi(x) and gj(x) respectively. Condition 3.6 is

called complementary slackness.

Before applying the KKT conditions, we define the hypopower function of job i in schedule

A as,

Qi(t, A) = qi(A)− wi
βpi

(t− ri) (3.9)

where qi(A) is any constant such that Qi(t, A) satisfies the condition that at all times t such

that i is run in A, the hypopower at which i is run is Qi(t, A). If there is no such function

(no qi(A)) satisfying this condition, then i does not have an associated hypopower function

in schedule A. Note that regardless of the speed to power function, P (S), if the function

Qi(t, A) exists (it may not), then the hypopower function of i is a linearly decreasing function

of time with slope −wi
βpi

. We refer to the constant qi(A) as i’s initial hypopower. We drop A

if the schedule is understood.

Because the hypopower function of i gives the hypopower of i, the hypopower function

implies a speed function and a power function for i, specifically, Si(t, A) = P ∗ (Qi(t, A))

and Pi(t, A) = P (P ∗ (Qi(t, A))). Figure 3.3.2 gives a visual representation of the hypopower

functions for the optimal schedule when P (S) = S3 for an instance consisting of three jobs:

with release times 0, 60, and 200, sizes 45, 35, and 25 and weights 0.1875, 0.25, and 0.125

respectively. Figure 3.3.2 shows the speed functions that correspond to the three hypopower

functions of figure 3.3.2.

Lemma 6 states that a feasible schedule is optimal if and only if

• The hypopower of all jobs are defined by the hypopower function given in equation 3.9.

• At all times, the job that is run is the job whose hypopower function is largest at that

time.

• If a job is run, it is run at the hypopower specified by the hypopower function.
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Figure 3: A three job instance viewed as speed functions.

Figure 4: A three job instance viewed as hypopower functions.
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Before we prove lemma 6, consider a couple of implications of these conditions.

First, an optimal schedule can be thought of as the upper envelope of the hypopower

functions of all jobs. The set of times when the upper envelope is i’s hypopower function

are exactly the times during which i is run. Further, because the value of t that satisfies

Qi(t) = Qj(t), for any jobs i and j, is equal to the value of t that satisfies Si(t) = Sj(t), the

upper envelope of the speed functions also defines an optimal schedule. The integral of the

upper envelope of the speed functions equals the total work of all jobs and the integral of

i’s speed function, over the times when i’s speed function defines the upper envelope, equals

exactly i’s total work. See figures 3.3.2 and 3.3.2 as examples of schedules defined by speed

and hypopower functions respectively.

Second, because i’s speed function is on the upper envelope of the speed functions if and

only if i’s hypopower function is on the upper envelope of the hypopower functions, the area

under i’s speed function, while i’s speed function is on the upper envelope, can increase (or

decrease) if and only if the area under i’s hypopower function, while i’s hypopower function

is on the upper envelope, increases (or decreases). Thus, unless we need to calculate the

specific work done on a job, it is generally easier to work with the hypopower functions of

jobs rather than the speed functions of jobs because a job’s hypopower functions is linear in

time, while the speed function generally is not. Thus, unless explicitly stated otherwise, we

will think of any schedule as n hypopower functions or equivalently as n initial hypopower

values. Note that such a representation does not guarantee optimality, but does allow full

description of any optimal schedule.

Lemma 6. A primal feasible solution to the convex program is optimal if and only if, at

all times t, for all jobs j, if pj(t) > 0, then P ′(S(t)) = Qj(t), and if pj(t) = 0 then

P ′(S(t)) ≥ Qj(t).

Proof. We prove the lemma by showing that the KKT conditions are exactly the three

conditions of the lemma: feasibility, the hypopower of A is Qj(t, A) whenever j is run, and

Qj(t, A) is a lower bound on the hypopower of the schedule if j is not run.

First note that equations 3.4 and 3.7 of the KKT conditions are simply constraining all

optimal solutions to be feasible, thus we need only show that the remaining two properties
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are exactly equations 3.5, 3.6, and 3.8.

Because qj = P ′(S(t∗))+
wj
βpj

(t∗−rj) for any time t∗ such that j is run at t∗, it is sufficient

to show the rest of the lemma for P ′(t) = P ′(t∗)− wj
βpj

(t−t∗) as this is equivalent to Qj(t). We

start by computing the gradient of equation 3.8 of the KKT conditions. We then consider

two cases for any job j: when j is running and when j is not running.

First consider equation 3.8 of the KKT conditions by first taking the partial derivative

with respect to S(t):

βP ′(S(t))− δ(t) = 0 or equivalently δ(t) = βP ′(t) (3.10)

and pj(t):

αj − γj(t) + δ(t) + (t− rj)
wj
pj

= 0

or equivalently,

αj = γj(t)− δ(t)− (t− rj)
wj
pj

(3.11)

We can then plug equation 3.10 into equation 3.11 to get

αj = γj(t)− βP ′(t)− (t− rj)
wj
pj

(3.12)

Thus, whatever the value of αj, it is constant for job j at all times t ≥ rj.

For the first case, consider any job j, and time, t∗, when j is run. Call the speed of the

schedule at t∗, S(t∗). By equation 3.12,

αj = γj(t
∗)− βP ′(t∗)− (t∗ − rj)

wj
pj

(3.13)

Now consider any other time t during which j is run. Again by equation 3.12 we have,

αj = γj(t)− βP ′(t)− (t− rj)
wj
pj

(3.14)

Equating equations 3.13 and 3.14 for αj and solving for βP ′(t) gives us,

βP ′(t) = −γj(t∗) + γj(t) + βP ′(t∗)− (t− t∗) wj
pj

(3.15)
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However, applying complementary slackness (3.6) to constraint 3.3 of our convex program,

we get that γj(t)(−pj(t)) = 0 and γj(t
∗)(−pj(t∗)) = 0. However, because we know that at

both t∗ and t, job j is run, both pj(t) > 0 and pj(t
∗) > 0, thus it must be that γj(t) = 0 and

γj(t
∗) = 0, thus equation 3.15 becomes,

βP ′(t) = βP ′(t∗)− (t− t∗) wj
pj

or equivalently,

P ′(t) = P ′(t∗)− wj
βpj

(t− t∗)

Thus we have the second condition of our lemma. Lastly, note that equation 3.5 of the

KKT conditions is satisfied by γj(t) = 0, and it must be that γj(t) = 0 in order to satisfy

complementary slackness (3.6) in the case that job j is run at time t.

For the second case, consider any time, t′, such that job j is not run. We apply equa-

tion 3.12 to get

αj = γj(t
′)− βP ′(t′)− (t′ − rj)

wj
pj

Because αj is constant whether j is run or not, we then set this equal to equation 3.13 and

solve for P ′(t′) to get,

P ′(t′) = −γj(t
∗)

β
+
γj(t

′)

β
+ P ′(t∗)− (t′ − t∗) wj

βpj

=
γj(t

′)

β
+ P ′(t∗)− (t′ − t∗) wj

βpj

≥ P ′(t∗)− (t′ − t∗) wj
βpj

The equality follows from the fact that γj(t
∗) = 0 and the inequality follows by the fact that

β ≥ 0 and by equation 3.5 of the KKT conditions which requires that γj(t
′) ≥ 0. Thus we

have the third condition of our lemma. Lastly, note that because pj(t
′) = 0 when job j is

not run at t′, complementary slackness (3.6) is thus always satisfied in this case.
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The job selection policy highest density first (HDF), schedules, at time t, the unfinished

job i, with the largest density, which is defined to be wi/pi. By using a standard exchange

argument one can show that HDF is the optimal job selection policy for weighted fractional

delay. Thus we expect that any feasible schedule meeting the conditions of Lemma 6 sched-

ules jobs in HDF order. To see why this is indeed true, consider that the slope of Qi(t) is

dependent only on β and i’s density. Thus when Qi(t) and Qj(t) intersect, the less dense

job will have a larger hypopower at all times after the intersection. Lemma 6 then implies

that, in the optimal schedule, the denser of i and j must have been completed prior to the

intersection of Qi(t) and Qj(t). Because this holds for all jobs, if Qi(t) is on the upper

envelope at time t, then because Qi(t) ≤ Qj(t) for all j released by t, all released jobs with

density larger than i’s density must have been completed by t. However, this is the definition

of HDF, thus the conditions of Lemma 6 imply HDF job selection.

3.3.3 The Optimal Schedule is Unique

In this section, we show that the optimal schedule is unique. We do this by examining the

upper envelope of the hypopower functions for two purportedly optimal schedules, A and B,

and consider the set of jobs H such that i is in H if the initial hypopower of i in A is strictly

smaller than the initial hypopower of i in B. We show that area under the hypopower upper

envelope, over all times a schedule is running any job in H, is larger for schedule B than

schedule A. This implies the same for the speed functions, that is, the total work done on

jobs in H is different in A and B, a contradiction to both schedules being optimal.

Lemma 7. The optimal schedule is unique.

Proof. We will prove this lemma by contradiction. Specifically, assume there are two optimal

schedules, A, and B. We will convert A into B by changing the jobs one at a time. If the

set H consists of all jobs i such that qi(A) < qi(B), then we show that every time we change

a job in H, the total work done on jobs in H either goes up or stays the same. And every

time we change a job not in H the total work done on jobs in H either goes up or stays the

same. Finally, we show that the work done on jobs in H goes up at least once, thus A does

less work on jobs in H than B, a contradiction to both schedules being optimal. Instead
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of looking at work directly we will look at area under the hypopower curves. Proving this

quantity increases implies the same for the area under the corresponding speed functions,

thus completing the contradiction.

Assume A and B are each represented by n qi values, thus schedule A can be thought of as

Q(t, A) = maxi {Qi(t, A)} and B as Q(t, B) = maxi {Qi(t, B)}. For any set of jobs S, define

Q(t, S ∈ A) as 0 if maxi {Qi(t, A)} > maxi∈S {Qi(t, A)} and maxi∈S {Qi(t, A)} otherwise.

We can similarly define Q(t, S ∈ B). In other words, these functions are the subset of the

upper envelope where some job in S is the running job. Without loss of generality, assume

A has at least one job, j, such that qj(A) < qj(B). Call the set H, all jobs, i, such that

qi(A) < qi(B) and the set L, all jobs, i, such that qi(A) > qi(B). We can convert A into B

by setting, one at a time, qk(A) to qk(B), for each job k. Consider what happens when we

do this for job arbitrary job k:

If k ∈ H, then qk(A) < qk(B). Thus Qk(t, A) increases at all times t, but Qj(t, A), for

all j 6= k and time t, does not decrease. These facts imply that the area under Q(t,H ∈ A)

either increases or stays the same. Further, if prior to increasing qk(A), it is the case that

Qk(t, A) = Q(t,H ∈ A) for any t, then the area under Q(t,H ∈ A) strictly increases.

If k ∈ L, then qk(A) > qk(B). Thus Qk(t, A) decreases at all times t, but Qj(t, A), for all

j 6= k and time t, does not decrease. These facts also imply that the area under Q(t,H ∈ A)

either increases or stays the same.

We still need at least a single increase in the area under Q(t,H ∈ A). However, recall

that we are guaranteed to have some job j such that such that qj(A) < qj(B). Thus if we

convert A to B by starting with j, it must be that Qj(t, A) = Q(t,H ∈ A) for at least one

time t, else A does no work on j, a contradiction to the optimality of A.

3.3.4 Checking a Schedule for Optimality

We conclude section 3.3 by giving an algorithm to check the optimality of a schedule in

time O(n2). The algorithm takes as input the initial hypopower for each job j. If the input

schedule is not in this form, then qi = P ′i (t
∗) + (wi/βpi)(t

∗− ri) for any time t∗ when j is run

in the input schedule. If the resulting hypopower functions are not optimal then the input
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schedule is not optimal. If the resulting hypopower functions are optimal, then determining

if the input schedule is optimal reduces to the problem of deciding if the input schedule

is identical to the schedule produced by the upper envelope of the resulting hypopower

functions.

Because the hypopower functions are linear, when two hypopower functions intersect,

the function defined by a job of lower density will be strictly larger at all times after the

intersection. Thus any hypopower function is involved in at most 1 crossing on the upper

envelope with a lower density job, specifically the earliest crossing with a lower density job.

Thus there are most n such crossings, and it is not too hard to see that for each hypopower

function, Qi(t), we can find, in linear time, the earliest time, if it exists, that Qi(t) crosses

some Qj(t) such that wi/pi > wj/pj and the crossing time is at least max {ri, rj}. Thus one

can, in O(n2) time, compute the upper envelope of the hypopower functions.

3.4 APPLYING THE HOMOTOPIC APPROACH

The main idea of the homotopic approach is to start with a schedule we can easily compute

for some β′ and slowly change β′, calculating the new optimal schedule each time we do so,

until β′ = β. This seemingly requires that the optimal schedules for infinitesimally different

β’s must be closely related, so to find the new optimal schedule, when we change β′ to

β′+ ε, we only have to examine schedules that are close to the previously computed optimal

schedule for β′. In section 3.4.1 we discuss how to easily find an initial optimal schedule that

can be used as the starting point for a homotopic algorithm. In section 3.4.2 we prove that

the initial hypopowers change continuously as a function of β. (Although, perhaps somewhat

counter-intuitively, the initial hypopowers are not monotone in β.) This then allows us to

obtain an efficient homotopic algorithm for computing the optimal energy trade-off schedule

for a small number of jobs by simply searching over schedules with nearly identical initial

hypopowers.
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3.4.1 Finding an Initial Optimal Schedule

If the processor has a maximum speed, then initially β = 0, and the optimal schedule always

runs at the maximum speed if there are unfinished jobs, and uses HDF to determine which

job to run. If the processor does not have a maximum speed, we choose β small enough

such that every job is completed before any other jobs are released. For each job j, we can

calculate a βj such that it completes before any other job is released, and then take β to be

the minimum over all βj.

3.4.2 The Optimal Schedule Changes Continuously

In this section we show that the initial hypopowers are a continuous function of β. To this

end, we first define the initial hypopower of job j, as a function of β, as qj(β) and likewise

the hypopower function for j, as a function of β, as Qj(t, β).

We show in Lemma 8 that the optimal schedule changes continuously as a function of

β. By Lemma 6, the optimal schedule can be described as set of n initial hypopowers, thus

we show Lemma 8 by showing that these initial hypopowers are continuous functions of β.

We do this by showing that if there is some non-empty set of jobs whose initial hypopowers

are increasing discontinuously at β, then for some small increase in β, the total work done

by the optimal schedule on this set of jobs increases. However, this is a contradiction to

optimality. If the initial hypopowers are decreasing continuously, then the same method can

be used for a small decrease in β.

Lemma 8. The initial hypopowers are a continuous function of β.

Proof. We show the lemma by showing that, in the optimal schedule, for all jobs j, the value

qj(β) is a continuous function of β. That is, assume that there is at least one qj(β) value

that is not continuous in β. More precisely, qj(β) is discontinuously increasing at β > 0 if

there exists constants c1, c2 > 0 such that for all ε ∈ (0, c2), qj(β + ε) ≥ qj(β) + c1. Likewise,

qj(β) is discontinuously decreasing at β > 0 if there exists constants c1, c2 > 0 such that for

all ε ∈ (0, c2), qj(β − ε) ≥ qj(β) + c1.

We start by assuming the following claim:

46



Claim 1. For any job j with discontinuously increasing qj(β), there exists some ε′ ∈ (0, c2)

such that the following two properties hold:

1. For all times t, Qj(t, β
′) > Qj(t, β) for all β′ ∈ (β, β + ε′]

2. For all jobs i such that qi(β) is not discontinuously increasing at β, define tc as the

solution of Qj(tc, β) = Qi(tc, β) and t′c as the solution of Qj(t
′
c, β
′) = Qi(t

′
c, β
′), then for

all β′ ∈ (β, β + ε′]:

• If wi/pi > wj/pj then tc > t′c else

• If wi/pi < wj/pj then tc < t′c

Likewise if qj(β) is discontinuously decreasing, then the same facts hold except β′ ∈ [β−ε′, β).

The proof of the lemma is now the same as for Lemma 7: we convert from one schedule

into another by changing jobs one at a time and show that there is some set of jobs such

that the total work increases. For the sake of contradiction, assume that there is at least

one job such that the job’s q(β) is discontinuous at some value of β. There are two cases, if

q(β) is discontinuously increasing and if q(β) is discontinuously decreasing.

If there is at least one discontinuously increasing q(β) function, consider the smallest

β = β1 such that there are some set of jobs, H with q(β) functions that are discontinuously

increasing at β1. By Claim 1, there exists some ε′ > 0, such that the properties of Claim 1

hold for all jobs in H. We now convert the optimal schedule at β1 to the optimal schedule at

any β′ ∈ (β1, β1 + ε′] following the proof of Lemma 7 with the main difference being that for

some jobs i /∈ H, it may be that qi increases, however Claim 1 ensures that changing them

does not decrease the work done on any job in H.

If there is at least one discontinuously decreasing q(β) function, we follow the same

method except we start from the largest such β1.

All that remains is to show Claim 1.

First note that if we find an ε′1 satisfying the first property and an ε′2 satisfying the second

property, then ε′ = min {ε′1, ε′2} will satisfy both properties. Thus we can find an ε′ value

separately for each property.

We start by showing that if qj(β) is discontinuously increasing at β, the first property

holds. In other words, we want to find an ε′ such that the following holds for any β′ ∈
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(β, β + ε′]:

qj(β)− wj
pjβ

(t− rj) < qj(β
′)− wj

pjβ′
(t− rj)

As ε′ is constrained to be less than c2 and by definition of the discontinuity of qj(β), we

have that,

qj(β) + c1 −
wj
pjβ′

(t− rj) < qj(β
′)− wj

pjβ′
(t− rj)

Thus it is sufficient to show

qj(β)− wj
pjβ

(t− rj) < qj(β) + c1 −
wj
pjβ′

(t− rj)

Or equivalently,

− wj
pjβ

(t− rj) < c1 −
wj
pjβ′

(t− rj) (3.16)

However, this is clearly true for all β′ > β as c1 > 0, thus any ε′ ∈ (0, c2) will satisfy the

inequality. If instead qj(β) discontinuously increasing, and we require β′ ∈ [β − ε′, β), we

can re-arrange inequality 3.16 to get

wj
pj

(t− rj)
(

1

β′
− 1

β

)
< c1 (3.17)

Because (wj/pj)(t − rj) (1/β′ − 1/β) is a decreasing function of β′, if we can find a single

β′ = β − ε′ such that 3.17 holds then we are done. However, consider that for ε′ = 0,

wj
pj

(t− rj)
(

1

β − ε′
− 1

β

)
< c1

holds. Thus, because (wj/pj)(t− rj) (1/(β − ε′)− 1/β) is continuous in ε′ and c1 > 0, there

must be some ε′ > 0 for which this holds.

Now we show that if qj(β) is discontinuously increasing at β, then the second property

holds. First we give the explicit definition of tc and t′c:

tc =
(qj(β)− qi(β))β +

wjrj
pj
− wiri

pi
wj
pj
− wi

pi

(3.18)
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Likewise, solving for t′c gives

t′c =
(qj(β

′)− qi(β′))β′ + wjrj
pj
− wiri

pi
wj
pj
− wi

pi

(3.19)

Now we would like to show that tc > t′c if wi/pi > wj/pj and tc < t′c if wi/pi < wj/pj.

Equivalently, t′c − tc < 0 and t′c − tc > 0 respectively. Solving directly for t′c − tc using

equations 3.18 and 3.19 we get

t′c − tc =
(qj(β

′)− qi(β′))β′ − (qj(β)− qi(β))β
wj
pj
− wi

pi

Note that if wi/pi > wj/pj, then wj/pj−wi/pi < 0 and if wi/pi < wj/pj then wj/pj−wi/pi >

0, thus for both cases it is sufficient to show that

(qj(β
′)− qi(β′))β′ − (qj(β)− qi(β))β > 0

By definition of job j and the valid range of β′, qj(β
′) ≥ qj(β) + c1, thus giving us

(qj(β
′)− qi(β′))β′ − (qj(β)− qi(β))β ≥

(qj(β) + c1 − qi(β′))β′ − (qj(β)− qi(β))β

Or equivalently,

(qj(β
′)− qi(β′))β′ − (qj(β)− qi(β))β ≥

c1β
′ + qj(β)(β′ − β) + qi(β)β − qi(β′)β′ (3.20)

In the case that qj(β) is discontinuously increasing, we have that β′ > β, which implies that

qj(β)(β′ − β) > 0 and c1β
′ > c1β. Thus it is sufficient to show

c1β + qi(β)β − qi(β′)β′ > 0 (3.21)

If qi(β) is continuous at β, the limit of qi(β)β − qi(β′)β′ as β′ goes to β is 0. If qi(β)β −

qi(β
′)β′ goes to 0 from larger than 0, then inequality 3.21 holds. Because c1β is strictly larger

than 0, if qi(β)β − qi(β′)β′ goes to 0 from less than 0, then we can make qi(β)β − qi(β′)β′

arbitrarily close to 0, in a continuous manner, as we decrease β′. Thus, there must be some

ε′ > 0 such that − (qi(β)β − qi(β + ε′′)) < c1β for all ε′′ < ε′.

49



If however qi(β) is discontinuously decreasing at β, then by the first property, there is

some small ε1 such that for β1 ∈ (β, β + ε1], Qi(t, β1) < Qi(t, β) for all t. This implies that

qi(β)β − qi(β′)β′ > 0 for β′ ∈ (β, β + ε1], thus inequality 3.21 holds for any ε′ < ε1.

Finally consider the case that qi(β) is discontinuously decreasing at β and thus we want

β′ ∈ [β− ε, β). The only difference is that c1β
′ ≥ c1(β− ε′) = c1β− ε′c1 and qj(β)(β′− β) ≥

−qj(β)ε′. Applying these to equation 3.20, we need to show the following for all β′,

c1β + qi(β)β − qi(β′)β′ − ε′c1 − qj(β)ε′ > 0 (3.22)

However, consider that both −ε′c1 and −qj(β)ε′ are continuous and go to 0 as ε′ goes to

0. In the case that qi(β) is continuous, qi(β)β − qi(β′)β′ − ε′c1 − qj(β)ε′ is thus continuous,

has a limit of 0 at ε′ = 0, and we can therefore use the same reasoning as in the previous

continuous case. If qi(β) is discontinuous, it must be discontinuously increasing in β or in

other words, discontinuously decreasing as we lower β. Thus there exists some ε1 such that

for all β′ ∈ [β − ε1, β), qi(β)β − qi(β′)β′ ≥ c3 > 0, but this just makes the left hand side of

inequality 3.22 larger than if qi(β) was continuous.

3.5 PRODUCT OBJECTIVES

In this section we consider objectives of the form Qσ×E , where Q is a scheduling objective,

E is energy, and σ is a parameter representing the relative importance of the scheduling

objective versus energy. In Lemma 9, we show that (perhaps counter-intuitively) this product

objective is not particularly interesting from a theoretical perspective if the static power is

zero. We do this by showing that if the power function is of the form P (s) = sα, then the

optimal solution is to either always go as fast as possible or to always go as slow as possible.

When the scheduling objectiveQ is integer flow, we are unable to characterize the optimal

scheduling for the objective Qσ × E for the same reasons that we are unable to characterize

the optimal schedules for the additive objective with integral flow. We therefore only consider

fractional flow. The next issue that arises is during what time period does one count the

static power’s contribution to energy. Perhaps the most natural assumption might be to only
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count static power when the processor is running jobs. But this has various mathematical

issues, such as it then becomes difficult to write a reasonable mathematical program. Thus

we assume that there is a specified time period T , add a constraint that all jobs much be

finished by time T , and assume that static power accumulates during exactly the period T .

So the energy arising from static power is P (0)T . We characterize the optimal schedule in

Lemma 10. In Lemma 11 and Lemma 12 we show that, for a fixed instance, the schedules

that are optimal for the product objective Qσ ×E (for any σ) are a (generally strict) subset

of the schedules that are optimal for the sum objective Q+βE (for any β). We then show in

Lemma 13 that it is unlikely that one will be able to compute an optimal schedule for Qσ×E

using a homotopic approach as the optimal schedule may be a discontinuous function of σ.

Lemma 9. Assume that the power function is P (s) = sα and the scheduling objective Q is

either fractional flow or integral flow. Then for every instance, the optimal schedule for the

objective Qσ × E either always runs the processor as slowly as possible, or always runs the

processor as fast as possible.

Proof. We give the proof for integral flow; the proof for fractional flow is similar. Consider

an instance with a single job with work 1. When running at constant speed s, the time to

finish the job is 1/s and the energy used is sα/s = sα−1, which yields an objective value of

sα−1

sσ
= sα−σ−1. Thus, if α− σ− 1 > 0, the objective is minimized at 0 by running as slow as

possible, while if α− σ − 1 < 0, the objective is minimized again at 0 by running as fast as

possible. Finally, if α−σ−1 = 0, any schedule that runs the job at constant speed is optimal

so running either as fast or as slow as possible is optimal. In any unweighted, unit work n

job instance, if α− σ− 1 ≤ 0, the schedule that runs jobs as fast as possible is still optimal,

and if α − σ − 1 > 0 the schedule that runs jobs as slow as possible is also still optimal,

since the increased flow at every time only increases the objective by a factor of O(n2σ). It

is straightforward to see that this to extends when jobs have weights and arbitrary work

requirements since in this case the objective would, at worst, be multiplied by an additional

value dependent on the input, but not the schedule.

The problem of minimizing Qσ×E over a time period T can be expressed as the following

mathematical program:
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min

 n∑
j=1

T∑
t≥rj

wjpj(t)

pj
(t− rj)

σ(
T∑
t=1

P (S(t))

)

Subject to:

T∑
t=rj

pj(t) = pj j ∈ [1, n] [dual αj] (3.23)

∑
j:rj≤t

pj(t) = S(t) t ∈ [1, T ] [dual δ(t)] (3.24)

pj(t) ≥ 0 t ≥ rj, j ∈ [1, n] [dual γj(t)] (3.25)

Note that these constraints are the same as (3.1), (3.2), and (3.3) from section 3.3.1.

Unlike there, however, this mathematical program is not convex, and so the KKT conditions

(section 3.3.2) provide only necessary conditions for optimality.

Before applying the KKT conditions, we define a new hypopower function of job i in

schedule A as,

Q̃i(t, A) = q̃i(A)− E(A)

Q(A)

σwi
pi

(t− ri) (3.26)

where E(A) is the total energy used by schedule A, Q(A) is the total fractional flow incurred

by schedule A, and q̃i(A) is any constant such that Q̃i(t, A) satisfies the condition that at all

times t such that i is run in A, the hypopower at which i is run is Q̃i(t, A). Note that (3.26) is

very similar to the hypopower function defined by equation (3.9), and the same qualifications

apply. The only difference is that the slope is now E(A)
Q(A)

σwi
pi

, which is a function of σ as well

as the total energy and total flow used by the entire schedule.

Lemma 10 states that if a feasible schedule is optimal, the following must be true:

• The hypopower of all jobs are defined by the hypopower function given in equation 3.26.

• At all times, the job that is run is the job whose hypopower function is largest at that

time.

• If a job is run, it is run at the hypopower specified by the hypopower function.
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Lemma 10. If a solution to the mathematical program is optimal then at all times t, for all

jobs j, if pj(t) > 0, then P ′(S(t)) = Q̃j(t), and if pj(t) = 0 then P ′(S(t)) ≥ Q̃j(t).

Proof. This proof is almost identical to the proof of lemma 6, so only the differences are

highlighted, with the main difference being the difference in objective functions. In regards

to the different objective, first note that minimizing the objective Qσ × E is equivalent to

minimizing σ log(Q)+log(E). Thus, when we take the partial derivative with respect to S(t)

we obtain

P ′(S(t))∑T
t′=0 P (S(t′))

− δ(t) = 0

or equivalently,

δ(t) =
P ′(S(t))

E
(3.27)

and pj(t):

αj − γj(t) + δ(t) +
σ (t− rj) wj

pj∑n
j′=1

∑T
t′≥rj′

wj′pj′ (t
′)

p′j
(t′ − rj′)

= 0

or equivalently,

αj = γj(t)− δ(t)−
σ (t− rj)wj
Q pj

(3.28)

Observe that (3.27) and (3.28) are almost identical to (3.10) and (3.11) from lemma 6,

the only differences being the coefficients on some of the terms. The rest of the proof of this

lemma follows exactly as the proof of lemma 6, only requiring the additional observation at

one point that E ≥ 0.

Lemma 11. For any instance, the set of all optimal schedules for the product objective (for

any σ) is a subset of the set of all optimal schedules for the sum objective (for any β).
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Figure 5: β vs σ for schedules satisfying the KKT conditions in a two job instance.

Proof. Fix an arbitrary σ. In the optimal schedule for that σ, if it exists, each job has a

linearly decreasing hypopower function with slope σ EQ times its density. If we set 1/β = σ EQ ,

then we have a set of identical hypopower functions for the sum objective for that β. Thus

if the schedule is optimal for that σ in the product objective, it must also be optimal for β

in the sum objective. Thus the optimal schedule for any σ in the product objective has a

corresponding optimal schedule for some β in the sum objective.

Lemma 12. There are instances where there are schedules that are optimal for the sum

objective but are not optimal for the product objective for any σ.

Proof. Consider a two job instance where the jobs have release time 0 and 60, work 11 and

7, and weight 0.15 and 1.5, respectively. The power function is P (s) = s3 + .01/T , where T

is sufficiently big so that finishing before T is not a tight constraint. Thus the total static

energy used is 0.01. As an example, see Figure 3.5 with σ = 1.79 and Figure 3.5. For each

β, Figure 3.5 shows the value of σ for which the optimal sum schedule is a locally optimum

schedule for the produce objective. Simple calculations show that different local optimums

have different objective values in the product objective.

Lemma 13. The optimal schedule for the product objective is not necessarily a continuous

function of σ.
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Figure 6: β vs (the log of) Qσ × E for σ = 1.79 in the same instance as Figure 3.5. The β

values that give σ = 1.79 in in Figure 3.5 are approximately 10, 26, and 128. Note how they

yield locally optimal solutions here.

Proof. To see this, consider the example in Figure 3.5. Here, for all σ less than σ1 ≈ 1.785 or

greater than σ2 ≈ 1.80 there is only one β that maps to it, but there are multiple β that map

to all σ ∈ [σ1, σ2]. Further, in this case, for any σ, only one of the up to three β’s that provide

KKT condition satisfying schedules for that σ minimize the objective. This implies that the

function mapping a σ to the β that shares its optimal schedule is not continuous since it

is an inverse function of a continuous function that is not one-to-one. This further implies

the optimal schedule does not change continuously from σ1 to σ2, since a discontinuous

increase (or decrease) in β implies a discontinuous decrease (or increase) in the slopes of all

hypopower functions, so if the initial hypopowers did not also change discontinuously, the

resulting schedule after the discontinuity would do too little (or too much) work, and thus

not be feasible (or optimal).

3.6 OPEN QUESTIONS

Our investigations have revealed some natural open questions, which we list below. We

believe that it is quite plausible that the introduction of these problems into the literature
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might be the most lasting contribution of this paper.

Question 1: Given the configuration of the optimal energy trade-off schedule (when the

quality of service measure is weighted fractional flow), can the optimal schedule be computed

in polynomial time? In this context, a configuration is the sequence of jobs run on the

processor as well as whether a job completes before, at, or after the release of the next job

to be run (which is not necessarily the next job that was released). This seems to be the

natural definition of a configuration, as the configuration and β uniquely defines a set of

equations for which the initial hypopowers of the optimal schedule for that configuration

are the sole (real) solution. [31] was able to use binary search to solve these equations.

We were unable to compute the optimal schedule even knowing the optimal configuration.

The main difficulty is that even when the power function is sα the configuration equations

yield a series of α-degree polynomial equations (in the variables hypopower, or speed, or

interval length). We know of no technique to acquire a general algebraic solution to these

equations. Another natural alternative approach is to create a mathematical program from

the equations, and solve them using some standard optimization algorithm. However, any

formulation we examined had equations relating to work that were not convex (again, in

variables hypopower, or speed, or interval length). More precisely, let pj(~x) be the amount

of work done on job j for some variable assignment ~x. Then for variable assignments ~x and

~y, where pj(~x) = pj(~y) = pj, there exist some situations where pj((~x+ ~y)/2) > pj and other

situations where pj((~x+ ~y)/2) < pj. Thus one can not seemingly use convex optimization.

Question 2: Is there an efficient algorithm to compute the optimal energy trade-off schedule

(when the quality of service measure is weighted fractional flow) for β + ε given the optimal

trade-off schedule for β? As we know how to detect when the optimal configuration changes

and how to find the new optimal configuration, this is closely related to the previous open

question.

Question 3: As a function of the number of jobs n, how many times can the optimal config-

uration change as β changes? [31] shows that for unit jobs and when the quality of service

measure is total delay, the number of configuration changes is O(n2). We would be quite

surprised if the number of configurations changes in our setting was not also polynomially
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bounded, although we do not know how to prove any upper bound that is a function of n.

The problem is because the initial hypopowers are not monotone in β, we do not even know

how to show that a particular configuration will be optimal for a contiguous collection of

β’s.

Question 4: Is there a polynomial time algorithm to verify the optimality of schedule for

the objective of total (integer) delay plus energy? Using insights from [31], one can design

a polynomial time algorithm that given a schedule S and a configuration C, can verify the

optimality of S among schedules in configuration C. But we do not know how to verify that

a schedule is in the optimal configuration.

Question 5: For what quality of service measures can homotopic optimization be used to

compute optimal energy trade-off schedules? It is not completely implausible that one can

characterize the natural quality of service measures where this is possible.
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4.0 SPEED SCALING TO MANAGE TEMPERATURE

In this section, we consider the speed scaling problem where the quality of service objective

is deadline feasibility and the power objective is temperature. In the case of batched jobs, we

give a simple algorithm to compute the optimal schedule. For general instances, we give a

new online algorithm, and obtain an upper bound on the competitive ratio of this algorithm

that is an order of magnitude better than the best previously known bound upper bound

on the competitive ratio for this problem. We also show that by using our analysis, we can

improve the temperature analysis of the energy optimal offline algorithm, YDS.

4.1 RELATED WORK

[33] showed that there is a greedy offline algorithm YDS to compute the energy optimal

schedule. A naive YDS implementation runs in time O(n3), which is improved in [28] to

O(n2 log n). [33] suggested two online algorithms OA and AVR. OA runs at the optimal

speed assuming no more jobs arrive in the future (or alternately plans to run in the future

according to the YDS schedule). AVR runs each job at an even rate between its release

time and deadline. In a complicated analysis, [33] showed that AVR is at most 2α−1αα-

competitive with respect to energy. A simpler competitive analysis of AVR, with the same

bound, as well as a nearly matching lower bound on the competitive ratio for AVR can be

found in [6]. [10] shows that OA is αα-competitive with respect to energy. [10] showed how

potential functions can be used to give relatively simple analysis of the energy used by an

online algorithm. [9] introduces an online algorithm qOA, which runs at a constant factor

q faster than OA, and shows that qOA is at most 4α/(2
√
eα)-competitive with respect to
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energy. When the cube root rule holds, qOA has the best known competitive ratio with

respect to energy, namely 6.7. [9] also gives the best known general lower bound on the

competitive ratio, for energy, of deterministic algorithms, namely eα−1/α.

Turning to temperature, [10] showed that a temperature optimal schedule could be com-

puted in polynomial time using the Ellipsoid algorithm. Note that this is much more com-

plicated than the simple greedy algorithm, YDS, for computing an energy optimal schedule.

[10] introduces an online algorithm, BKP, that is simultaneously O(1)-competitive for both

total energy and maximum temperature. An algorithm that is c-competitive with respect to

temperature has the property that if the thermal threshold Tmax of the device is exceeded,

then it is not possible to feasibly schedule the jobs on a device with thermal threshold Tmax/c.

[10] also showed that the online algorithms OA and AVR, both O(1)-competitive with respect

to energy, are not O(1)-competitive for the objective of minimizing the maximum temper-

ature. In contrast, [10] showed that the energy optimal YDS schedule is O(1)-competitive

for maximum temperature.

Besides [10], the only other theoretical speed scaling for temperature management papers

that we are aware of are [20] and [32]. In [20] it is assumed that the speed scaling policy is

fixed to be: if a particular thermal threshold is exceeded then the speed of the processor is

scaled down by a constant factor. Presumably chips would have such a policy implemented

in hardware for reasons of self-preservation. The paper then considers the problem of how

to schedule unit work tasks, that generate varying amounts of heat, so as to maximize

throughput. [20] shows that the offline problem is NP-hard even if all jobs are released

at time 0, and gives a 2-competitive online algorithm. [32] provides an optimal algorithm

for a batched release problem similar to ours but with a different objective, minimizing the

makespan, and a fundamentally different thermal model.

Surveys on speed scaling can be found in [1], [2], and [24].
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4.2 PRELIMINARIES

We assume that a processor running at a speed s consumes power P (s) = sα, where α > 1 is

some constant. We assume that the processor can run at any non-negative real speed (using

techniques in the literature, similar results could be obtained if one assumed a bounded speed

processor or a finite number of speeds). The job environment consists of a collection of tasks,

where each task i has an associated release time ri, amount of work pi, and a deadline di. A

online scheduler does not learn about task i until time ri, at which point it also learns the

associated pi and di. A schedule specifies for each time, a job to run, and a speed for the

processor. The processor will complete s units of work in each time step when running at

speed s. Preemption is allowed, which means that the processor is able to switch which job

it is working on at any point without penalty. The deadline feasibility constraints are that

all of the work on a job must be completed after its release time and before its deadline.

Our model for temperature, following [10], is Newton’s law of cooling. With a power

function of sα, Newton’s law of cooling gives the following differential equation to describe

temperature:
dT (t)

dt
= s(t)α − bT (t)

Where T (t) is the temperature at time t, s(t) is the speed at time t, and b is the processor

specific cooling parameter.

Using the aforementioned models for the processor and for temperature, we will consider

the online and offline problems of minimizing the maximum temperature, subject to deadline

feasibility constraints.

4.3 BATCHED RELEASE

In this section, we consider the special case of the problem where all jobs are released at

time 0. Instead of considering the input as consisting of individual jobs, each with a unique

deadline and work, we consider the input as a series of deadlines, each with a cumulative

work requirement equal to the sum of the work of all jobs due at or before that deadline.
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Formally, the input consists of n deadlines, and for each deadline di, there is a cumulative

work requirement, wi =
∑i

j=1 pj, that must be completed by time di. With this definition,

we then consider testing the feasibility of some schedule S with constraints of the from

W (S, di) ≥ wi where W (S, di) is the total work of S by time di. We call these the work

constraints. We also have the temperature constraint that the temperature in S must never

exceed Tmax. Without loss of generality, we assume that the scheduling policy is to always

run the unfinished job with the earliest deadline. Thus, to specify a schedule, it is sufficient

to specify the processor speed at each point in time. Alternatively, one can specify a schedule

by specifying the cumulative work processed at each point of time (since the speed is the

rate of change of cumulative work processed), or one could specify a schedule by giving the

temperature at this point of time (since the speed can be determined from the temperature

using Newton’s law and the power function).

Before beginning with our analysis it is necessary to briefly summarize the equations

describing the maximum work possible over an interval of time, subject to fixed starting

and ending temperatures. First we define the function UMaxW (0, t1, T0, T1)(t) to be the

maximum cumulative work, up to any time t, achievable for any schedule starting at time 0

with temperature exactly T0 and ending at time t1 with temperature exactly T1. In [10] it

is shown that:

UMaxW (0, t1, T0, T1)(t) =(
1
a

) 1
α

(
T1−T0e−bt1

e−bt1−e
−bt1α
α−1

) 1
α (

b
α−1

) 1
α
−1
(

1− e
−bt
α−1

) (4.1)

The definition of the functionMaxW (0, t1, T0, T1)(t) is identical to the definition of UMaxW ,

with the additional constraint that the temperature may never exceed Tmax. Adding this

additional constraint implies that MaxW (0, t1, T0, T1)(t) ≤ UMaxW (0, t1, T0, T1)(t), with

equality holding if and only if the temperature never exceeds Tmax in the schedule for

UMaxW (0, t1, T0, T1)(t). A schedule or curve is said to be a UMaxW curve if it is equal

to UMaxW (0, t1, T0, T1)(t) for some choice of parameters. A MaxW curve/schedule is sim-

ilarly defined. We are only concerned with MaxW curves that are either UMaxW curves

that don’t exceed Tmax or MaxW curves that end at temperature Tmax. It is shown in [10]
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that these type of MaxW curves have the form:

MaxW (0, t1, T0, Tmax)(t) =

 UMaxW (0, γ, T0, Tmax)(t) : t ∈ [0, γ)

UMaxW (0, γ, T0, Tmax)(γ) + (bTmax)
1
α (t− γ) : t ∈ (γ, t1]

(4.2)

Here γ is the largest value of t1 for which the curve UMaxW (0, t1, T0, Tmax)(t) does not

exceed temperature Tmax. It is show in [10] that γ is implicitly defined by the following

equation:
1

α− 1
T0e

−bγα
α−1 + Tmax −

α

α− 1
Tmaxe

−bγ
α−1 = 0 (4.3)

4.3.1 Known Maximum Temperature

In this subsection we assume the thermal threshold of the device Tmax is known to the

algorithm, and consider batched jobs. If there is a feasible schedule, our algorithm iteratively

constructs schedules Si satisfying the following invariant:

Definition 1. Max-Work Invariant: Si completes the maximum work possible subject

to:

• For all times t ∈ [0, dn], the temperature of Si does not exceed Tmax

• W (Si, dj) ≥ wj for all 1 ≤ j ≤ i

By definition, the schedule S0 is defined by MaxW (0, dn, 0, Tmax)(t). The intermediate

schedules Si may be infeasible because they may miss deadlines after di, but Sn is a fea-

sible schedule and for any feasible input an Si exists for all i. The only reason why the

schedule Si−1 cannot be used for Si is that Si−1 may violate the ith work constraint, that is

W (Si−1, di) < wi. Consider the constraints such that for any j < i, W (Si−1, dj) = wj. We

call these tight constraints in Si−1. Now consider the set of possible schedules Si,j, such that

j is a tight constraint in Si−1, where intuitively during the time period [dj, di], Si,j speeds

up to finish enough work so that the ith work constraint is satisfied and the temperature at

time di is minimized. Defining the temperature of any schedule Si−1 at deadline dj as T i−1j ,

we formally define Si,j:
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Definition 2. For tight constraint j < i in Si−1,

Si,j =


Si−1 : t ∈ [0, dj)

UMaxW (0, di − dj, T i−1j , T i,ji )(t) : t ∈ (dj, di)

MaxW (0, (dn − di), T i,ji , Tmax)(t) : t ∈ (dj, dn]

where T i,ji is the solution of

UMaxW (0, di − dj, T i−1j , T i,ji )(di − dj) = (wi − wj)

We show that if Si exists, then it is one of the Si,j schedules. In particular, Si will

be equal to the first schedule Si,j (ordered by increasing j) that satisfies the first i work

constraints and the temperature constraint.

Algorithm Description: At a high level the algorithm is two nested loops, where the outer

loop iterates over i, and preserves the max-work invariant. If the ith work constraint is not

violated in Si−1, then Si is set to Si−1. Otherwise, for all tight constraints j in Si−1, Si is set

to the first Si,j that satisfies the first i work constraints and the temperature constraint. If

such a Si,j doesn’t exist, then the instance is declared to be infeasible. The following lemma

establishes the correctness of this algorithm.

Lemma 14. Assume a feasible schedule exists for the instance in question. If Si−1 is infea-

sible for constraint i, then Si is equal to Si,j, where j is minimized subject to the constraint

that Si,j satisfies the first i work constraints and the temperature constraint.

Proof. Without loss of generality, we assume Tmax is the minimum possible maximum tem-

perature for any schedule satisfying the first i work constraints. It is thus sufficient to show

that Si implies the existence of a feasible Si,j, that is, an Si,j feasible for the first i work

constraints and the temperature constraint. We show the existence of such an Si,j by con-

tradiction, with two cases, either there is no deadline feasible Si,j or there is no Tmax feasible

Si,j.

If there is no deadline feasible Si,j, pick the Si,j with the largest j but make no assumption

of temperature feasibility. We claim that this Si,j must be deadline feasible. Note that Si,j is

identical to Si−1 on the interval [0, dj) and that on (di, dn] no constraints need to be satisfied,
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thus Si,j must violate a constraint on (dj, di). However both Si−1 and Si,j are UMaxW curves

on (dj, di). Si,j is by construction, and Si−1 is because if not, it reaches a constant speed

before di and thus reaches Tmax by di. This implies Tmax is not sufficient to satisfy constraint

i, a contradiction to Si.

As both Si,j and Si−1 are UMaxW curves with the same starting temperature (T i−1j ) on

this interval of length d = di − dj, it is sufficient to show that Si,j has completed more work

than Si−1 at all times on the interval. In other words that,

UMaxW (0, d, T i−1j , T i,ji )(t) > UMaxW (0, d, T i−1j , T i−1i )(t) (4.4)

It must be the case that T i,ji > T i−1i as Si,j satisfies constraint i but Si−1 does not.

However, if we consider equation (4.1), we can see that UMaxW is a strictly increasing

function of the final temperature for all times t. Thus inequality (4.4) must hold implying

that Si,j is deadline feasible.

Because there is always a deadline feasible Si,j, if there is no Tmax feasible Si,j, we consider

the smallest j such that Si,j is deadline feasible. Because Si must finish exactly work wi by

di, it must be that Si has a lower temperature than Si,j at time di.

Consider the cumulative work accomplished by Si and Si,j at all times prior to di and pick

the latest time, call it dv, at which the two schedules had the exact same cumulative work.

We have two cases, either dv occurs before or after dj. Note that if there is no constraint

with deadline dv we can simply add a constraint requiring that by time dv any feasible

schedule must perform work equivalent to the cumulative work of Si and both schedules

remain unchanged.

If dv < dj, then either Si follows a single UMaxW on (dv, di) or some other work curve.

If Si does follow a UMaxW curve then Si must violate a constraint because dj is the earliest

constraint such that a single UMaxW curve is feasible. If Si is not a single UMaxW

curve, then consider that Sv, the invariant maintaining schedule for all constraints up to and

including constraint v, must be infeasible for some constraint, call it k, between dv and di,

and thus Si is tight on k. However because Si,j satisfies all constraints up to and including

i and dv is the latest point in time at which Si,j and Si differ, if Si is tight on k, either Si,j

is tight on k, violating the definition of dv or Si,j misses a deadline, also a contradiction.
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If dv > dj, then T ij ≥ T i,jj but Si,j has the smallest possible temperature increase on

(dj, di) by definition, thus Si can’t have a lower temperature by di and so Si must violate

Tmax, a contradiction.

4.3.2 Unknown Maximum Temperature

In this section we again consider batched jobs, and consider the objective of minimizing the

maximum temperature ever reached in a feasible schedule. Let Opt be the optimal schedule,

and Tmax be the optimum objective value. We know from the previous section that the

optimum schedule can be described by the concatenation of UMaxW curves C1, . . . , Ck−1,

possibly with a single MaxW curve, Ck, concatenated after Ck−1. Each Ci begins at the

time of the (i−1)st tight work constraint and end at the time of the ith tight work constraint.

Our algorithm will iteratively compute Ci. That is, on the ith iteration, Ci will be computed

from the input instance and C1, . . . , Ci−1. In fact, it is sufficient to describe how to compute

C1, as the remaining Ci can be computed recursively. Alternatively, it is sufficient to show

how to compute the first tight work constraint in Opt.

To compute C1, we need to classify work constraints. We say that the ith work con-

straint is a UMaxW constraint if the single cumulative work curve that exactly satisfies the

constraint with the smallest maximum temperature possible corresponds to equation (4.1).

Alternatively, we say that the ith work constraint is a MaxW constraint if the single cumula-

tive work curve that exactly satisfies the constraint with the smallest maximum temperature

possible corresponds to equation (4.2). We know from the last section that every work con-

straint must either be a MaxW constraint or a UMaxW constraint. In Lemma 15 we show

that it can be determined in O(1) time whether a particular work constraint is a UMaxU

constraint or a MaxW constraint. In Lemma 16 we show how to narrow the candidates for

UMaxW constraints that give rise to C1 down to one. The remaining constraint is referred

to as the UMaxW-winner. In Lemma 18 we show how to determine if the UMaxW -winner

candidate is a better option for C1 than any of the MaxW candidates. If this is not the

case, we show in Lemma 19 how to compute the best MaxW candidate.

Lemma 15. Given a work constraint W (S, di) ≥ wi, it can be determined in O(1) time
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whether it is a UMaxW constraint or a MaxW constraint.

Proof. For initial temperature T0, we solve UMaxW (0, di, T0, Ti)(di) = wi for Ti as in the

known Tmax case. Now we consider equation (4.3) for γ with Tmax = Ti:

1

α− 1
T0e

−bγα
α−1 + Ti −

α

α− 1
Tie

−bγ
α−1 = 0

If we plug in di for γ and the left side is larger than 0, then γ < di and the curve

UMaxW (0, di, T0, Ti)(t) exceeds Ti during some time t < di, thus we have a MaxW con-

straint. If the left side is smaller than 0, then γ > di and the curve UMaxW (0, di, T0, Ti)(t)

never exceeds Ti, implying that the constraint is a UMaxW constraint.

Lemma 16. All of the UMaxW constraints, but one, can be disqualified as a candidate for

C1 in time O(n).

Proof. Consider any two UMaxW constraints, i and j with i < j. We want to show that

the two work curves exactly satisfying constraints i and j must be non-intersecting, except

at time 0, and that we can determine which work curve is larger in constant time. This

together with Lemma 15 would imply we can get rid of all UMaxW constraints but one in

time O(n) for n constraints. For initial temperature T0, can we can fully specify the two

curves by solving UMaxW (0, di, T0, Ti)(di) = wi and UMaxW (0, dj, T0, Tj)(dj) = wj for Ti

and Tj respectively. We can then compare them at all times prior to di using equation (4.1),

i.e., UMaxW (0, di, T0, Ti)(t) and UMaxW (0, dj, T0, Tj)(t).

Note that for any two UMaxW curves defined by equation (4.1), a comparison results

in the time dependent terms (t-dependent) canceling and thus one curve is greater than the

other at all points in time up to di. Regardless of whether the larger work curve corresponds

to constraint i or j, clearly the smaller work curve cannot correspond to the first tight

constraint as the larger work curve implies a more efficient way to satisfy both constraints.

To actually determine which curve is greater, we can simply plug in the values for the

equations and check the values of the non-time dependent terms. The larger term must

correspond to the dominating work curve.
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In order to compare the UMaxW -winner’s curve to the MaxW curves, we may need

to extend the UMaxW -winner’s curve into what we call a UMaxW -extended curve. A

UMaxW -extended curve is a MaxW curve, describable by equation (4.2), that runs identical

to the UMaxW constraint’s curve on the UMaxW interval, and is defined on the interval

[0, dn]. We now show how to find this MaxW curve for any UMaxW constraint.

Lemma 17. Any UMaxW constraint’s UMaxW-Extended curve can be described by equation

(4.2) and can be computed in O(1) time.

Proof. For any UMaxW curve satisfying a UMaxW constraint, the corresponding speed

function is defined for all times t ≥ 0 as follows:

S(t) =
b

(α− 1)

1
α

(
Ti − T0e−bdi

e−bdi − e
−bdiα
α−1

) 1
α

e
−bt
α−1

Thus we can continue running according to this speed curve after di. As the speed is a

constantly decreasing function of time, eventually the temperature will stop increasing at

some specific point in time. This is essentially the definition of γ and for any fixed γ there

exists a Tmax satisfying it which can be found by solving for Tmax in the γ equation. To

actually find the time when the temperature stops increasing, we can binary search over the

possible values of γ, namely the interval (di,
α−1
b

ln α
α−1 ]. For each time we can directly solve

for the maximum temperature using the γ equation and thus the entire UMaxW curve is

defined. We then check the total work accomplished at di. If the total work is less than

wi, then γ is too small, if larger, then γ is too large. Our binary search is over a constant-

sized interval and each curve construction and work comparison takes constant time, thus

the entire process takes O(1) time. Once we have γ and the maximum temperature, call it

Tγ, we can define the entire extended curve as UMaxW (0, γ, T0, Tγ)(t) for 0 ≤ t < γ and

(bTγ)
1/αt for t ≥ γ, in other words, MaxW (0,∞, T0, Tγ)(t) with Tmax = Tγ.

Lemma 18. Any MaxW constraint satisfied by a UMaxW-Extended curve can’t correspond

to C1. If any MaxW constraint is not satisfied by a UMaxW-Extended curve then the UMaxW

constraint can’t correspond to C1.
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Proof. To satisfy the winning UMaxW constraint exactly, we run according to the UMaxW -

extended curve corresponding to the UMaxW constraint’s exact work curve. Thus if a

MaxW constraint is satisfied by the entire extended curve, then to satisfy the UMaxW

constraint and satisfy the MaxW constraint it is most temperature efficient to first exactly

satisfy the UMaxW constraint then the MaxW constraint (if it is not already satisfied). On

the other hand, if some MaxW constraint is not satisfied then it is more efficient to exactly

satisfy that constraint, necessarily satisfying the UMaxW constraint as well.

Lemma 19. If all UMaxW constraints have been ruled out for C1, then C1, and the entire

schedule, can be determined in time O(n).

Proof. To find the first tight constraint, we can simply create the MaxW curves exactly

satisfying each constraint. For each constraint, we can essentially use the the same method

as in Lemma 17 for extending the UMaxW winner to create theMaxW curve. The difference

here is that we must also add the work of the constant speed portion to the work of the

UMaxW portion to check the total work at the constraint’s deadline. However this does

not increase the construction time, hence each curve still takes O(1) time per constraint.

Once we have constructed the curves, we can then compare any two at the deadline of

the earlier constraint. The last remaining work curve identifies the first tight constraint

and because we have the MaxW curve that exactly satisfies it, we have specified the entire

optimal scheduling, including the minimum Tmax possible for any feasible schedule. As we

can have at most n MaxW constraints and construction and comparison take constant time,

our total time is O(n).

Theorem 2. The optimal schedule can be constructed in time O(n2) when Tmax is not known.

Proof. The theorem follows from using Lemma 16 which allows us to produce a valid MaxW

curve by Lemma 17. We then apply Lemma 18 by comparing the UMaxW -winner’s work

at each MaxW constraint. If all MaxW constraints are disqualified, we’ve found the first

tight constraint, else we apply Lemma 19 to specify the entire schedule. In either case, we’ve

defined the schedule up to at least one constraint in O(n) time.
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4.4 ONLINE ALGORITHM

Our goal in this section is to describe an online algorithm A, and analyze its competitiveness.

Algorithm Description: A runs at a constant speed of (`bTmax)
1/α until it determines that

some job will miss its deadline, where ` = (2− (α− 1) ln(α/(α− 1)))α ≤ 2. At this point A

immediately switches to running according to the online algorithm OA. When enough work

is finished such that running at constant speed (`bTmax)
1/α will not cause any job to miss its

deadline, A switches back to running at the constant speed.

Before beginning, we briefly note some characteristics of the energy optimal algorithm,

YDS, as well as some characteristics of the online algorithm OA. We require one main

property from YDS, a slight variation on Claim 2.3 in [10]:

Claim 2. For any speed s, consider any interval, [t1, t2] of maximal time such that YDS

runs at speed strictly greater than s. YDS schedules within [t1, t2], exactly those jobs that are

released no earlier than t1 and due no later than t2.

We also need that YDS is energy optimal within these maximal intervals. This is a

direct consequence of the total energy optimality of YDS. Lastly note that YDS schedules

jobs according to EDF. For more on YDS, see [33] and [10]. The remaining details of YDS

are not necessary for our analysis, we refer the reader to [33] and [10] for more in depth

details.

For the online algorithm OA, we need only that it always runs, at any time t, at the

minimum feasible constant speed for the amount of unfinished work at time t and that it

has a competitive ratio of αα for total energy [10].

We will first bound the maximum amount of work that the optimal temperature algo-

rithm can perform during intervals longer than the inverse of the cooling parameter b. This

is the basis for showing that the constant speed of A is sufficient for all but intervals of

smaller than 1/b.

Lemma 20. For any interval of length t > 1/b, the optimal temperature algorithm completes

strictly less than (`bTmax)
1/α · (t) work.
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Proof. First, note that the value of γ from equation (4.3) is at most 1/b, thus the maxi-

mum work possible, in an interval of length t1 > 1/b, while not violating Tmax, is given by

equation (4.2) when T0 = 0. Thus at time t = 1/b, the optimal will be running at speed

(bTmax)
1/α which is strictly slower than (`bTmax)

1/α therefore to prove our lemma, it is suffi-

cient to show that (`bTmax)
1/α · (1/b) ≥ MaxW (0, 1/b, 0, Tmax)(1/b). When T0 = 0, we can

write our desired inequality using equation (4.2) as,

(`bTmax)
1
α · (1/b) ≥ UMaxW (0, γ, 0, Tmax)(γ) +

(
bTmax

a

) 1
α
(

1

b
− γ
)

(4.5)

First, consider just the UMaxW portion. By equation (4.3), when T0 = 0, the value of

γ = ((α− 1)/b) ln (α/(α− 1)), and by the fact that e−bγ = ((α− 1)/α)α−1 in this case, using

the definition of a UMaxW curve from equation (4.1), we get

UMaxW (0, γ, 0, Tmax)(γ) =

(
Tmax

α−1
α

α−1 − α−1
α

α

) 1
α (

α− 1

b

)α−1
α
(

1− α− 1

α

)

= (Tmax)
1
α

((
α− 1

α

)α−1(
1− α− 1

α

))− 1
α (

α− 1

b

)α−1
α
(

1

α

)

=

(
1

b

)α−1
α

(Tmax)
1
α

(
α− 1

α

)−(α−1
α )

(α− 1)
α−1
α

(
1

α

)α−1
α

=

(
1

b

)α−1
α

(Tmax)
1
α (4.6)

Now we can plug equation (4.6) back into equation (4.5) to get,

(`bTmax)
1
α · (1/b) ≥

(
1

b

)α−1
α

(Tmax)
1
α +

(
bTmax

a

) 1
α
(

1

b
− γ
)

`
1
α · (1/b) ≥ 1

b
+

(
1

b
+ γ

)
` ≥ (2− bγ)α (4.7)

However, because γ = α−1
b

ln
(

α
α−1

)
, the b constants cancel and we are left with ` ≥ `.

Show that the b constants cancel out.
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We now know that if all jobs have a lifetime of at least 1/b, A will always run at a

constant speed and be feasible, thus we have essentially handled the competitiveness of A in

non-emergency periods. Now we need to consider A’s competitiveness during the emergency

periods, i.e., when running at speed (`bTmax)
1/α would cause A to miss a deadline. To do

this, we will show that these emergency periods are contained within periods of time where

YDS runs faster than A’s constant speed and that during these larger periods we can directly

compare A to YDS via OA. We start by bounding the maximal length of time in which YDS

can run faster than A’s constant speed.

Lemma 21. Any maximal time period where YDS runs at a speed strictly greater than

(`bTmax)
1/α has length < 1/b.

Proof. By definition, in any of these maximal periods of length t, the YDS schedule will

complete strictly more than (`bTmax)
1/α · t work. By Claim 2, YDS only works on jobs both

released and due in this period thus any feasible algorithm must complete strictly more than

(`bTmax)
1/α · t work in this period in order to be feasible. However, by Lemma 20 we know

that if the optimal temperature algorithm is to complete strictly more than (`bTmax)
1/α · t

work then t < 1/b. This implies that any maximal interval during which the YDS schedule

runs at a speed strictly greater than (`bTmax)
1/α is shorter than 1/b in length.

We call these maximal periods in YDS fast periods as they are characterized by the fact

that YDS is running strictly faster than (`bTmax)
1/α. Now we show that A will never be

behind YDS on any individual job outside of fast periods. This then allows us to describe

A during fast periods.

Lemma 22. At the beginning and ending of every fast period, A has completed as much

work as the YDS schedule on each individual job.

Proof. First note that A is feasible and that both YDS and OA use the same job selection

policy. Because A runs at speed at least (`bTmax)
1/α, it runs at least as fast as YDS between

fast periods. Thus the lemma holds at the beginning of any fast period if it held at the end

of the last fast period. By Claim 2, during any maximal fast period, YDS only works on

jobs released and due during the fast period thus YDS can’t complete more work than A on
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any job due after the fast period. Thus the lemma must hold at the end of a fast period if

it held at the beginning. From time 0 until the first fast period, A runs at least as fast as

YDS, thus A has completed as much work as YDS on each individual job by the start of the

first fast period. Thus the lemma holds at all times outside of fast periods.

Lemma 23. A switches to OA only during fast periods.

Proof. By Lemma 22, we know that A cannot be behind YDS on work outside of a fast

period. As YDS is feasible, A cannot have feasibility problems outside of these periods as

it is always running at least as fast as YDS. The lemma follows from the fact that A only

switches to OA when there are feasibility problems.

We are now ready to upper bound the energy usage of A, first in a fast period, and then

in an interval of length 1/b. We then use this energy bound to upper bound the temperature

of A. We use a variation on Theorem 2.2 in [10] to relate energy to temperature. We denote

the maximum energy used by an algorithm, ALG, in any interval of length 1/b, on input I,

as C[ALG(I)] or simply C[ALG] when I is implicit. Note that this is a different interval

size than used in [10]. We denote the maximum temperature of ALG on input I, similarly

as T [ALG(I)] or T [ALG].

Lemma 24. For any schedule S, and for any cooling parameter b ≥ 0,

aC[S]

e
≤ T [S] ≤ e

e− 1
aC[S]

Proof. The proof follows exactly from [10] except c = 1/b instead of ln(2)/b.

Lemma 25. A is αα-competitive for energy in any single maximal fast period.

Proof. By Claim 2, a fast period starts with a release and YDS will start working on the

released job immediately. Because both YDS and A use EDF and because A is not behind

YDS on any job by Lemma 22, A will immediately start working on the same job as YDS.

Because YDS works at a speed strictly greater than (`bTmax)
1/α in the fast period, A will

never be ahead of YDS for jobs in the fast period and thus A will work on the exact same

jobs as YDS in the fast period. Thus we can consider the fast period as a separate input
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instance and compare the energy usage of OA, YDS, and A in the fast period. A is identical

to OA with a lower bound on speed and because the starting speed of YDS, the energy

optimal, is above that of A which is above that of OA, A must have no worse energy usage

than OA over the entire period by the convexity of the problem.

On any instance OA uses at worst αα times the energy of YDS [10], and because A is

at least as good as OA, A uses at most αα times the minimum energy possible in any fast

period.

Lemma 26. A uses at most (`+ 3eαα)Tmax energy in an interval of size 1/b.

Proof. We can upper bound the energy used by A in a 1/b interval by charging it the energy

used by running at (`bTmax)
1/α for the entire 1/b interval, plus the energy used whenever A

switches to OA. From Lemma 23 we know that A only switches to OA during fast periods

and by Lemma 25 A uses at most αα times the minimum energy possible in these fast

periods. As all fast periods strictly contained in a 1/b interval contain jobs that must be

started and completed within an interval of length 1/b, C[OPT ] must be at least as large as

the minimum energy consumption possible for all of these periods together. Thus A uses as

most ααC[OPT ] for these fast periods. By Lemma 21, all fast periods are smaller than 1/b

in length, thus at most two fast periods can intersect any 1/b interval but not be contained

in it. As each of the periods are shorter than 1/b, C[OPT ] must be at least as large as

the minimum energy consumption of either of these fast periods, thus A uses no more than

2ααC[OPT ] energy for both of these fast periods. Thus the total energy usage of A for fast

periods in a 1/b interval is no more than 3ααC[OPT ].

Running at speed (`bTmax)
1/α for 1/b uses `Tmax units of energy thus the total energy

usage of A in an interval of 1/b is no more than (`Tmax + 3ααC[OPT ]). By Lemma 24 we

have that 3ααC[OPT ] ≤ 3eααTmax, which gives a total energy usage of (`+ 3eαα)Tmax.

Theorem 3. A is ( e
e−1(`+ 3eαα))-competitive for temperature.

Proof. Using the fact that T [S] ≤ e
e−1aC[S] for any schedule from Lemma 24, we get that

T [A] ≤ e
e−1(`+ 3eαα)Tmax.
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4.5 IMPROVED TEMPERATURE ANALYSIS OF YDS

Using the technique from the previous section, we can improve the temperature analysis of

the energy optimal offline algorithm, YDS.

Theorem 4. YDS is e
e−1(` + 3e)-competitive for temperature, where 15.5 < e

e−1(` + 3e) <

16.1.

Proof. By definition of the fast periods, we know that YDS is running no faster than A

outside of the fast periods. The energy usage of YDS in the fast periods follows from the

exact same reasoning as that used for A, but here of course, YDS is energy optimal for those

periods.
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5.0 CONCLUSION

With the introduction of speed scaling technology, operating system’s scheduler now has an

additional decision to make, namely, at what speed to run the processor. The fact that,

in general, speed scaling technology has the property that running at a higher speed is less

energy efficient, means that, a priori, it is not clear how the scheduler should decide at what

speed to run the processor. If the speed is very high, a large amount of energy will be used,

but if the speed is very low, then the quality of service will be very low. Thus, determining

how to balance these opposing objectives of low energy usage and high quality of service has

led to the re-examining of many classic scheduling problems in the context of speed scaling.

The goal in these investigations is twofold. First, there is a desire to use the mechanism

of speed scaling to help decrease the total energy consumption of a processor. The second

goal is to build our understanding of energy usage in computer systems in order to help

us reason abstractly about energy and temperature. By taking a mathematical approach,

we can detach the speed scaling mechanism from the device and thus develop algorithms

that apply to a range of devices, for instance, both processors and wireless network links.

Reasoning about speed scaling as a mechanism, rather than a device, helps us to understand

speed scaling devices in the same manner in which we currently understand space and time

in abstract computing devices. With the goal of furthering these two objectives, this work

has consider various classical scheduling problems in the speed scaling setting.

In chapter 2 we observed that all algorithmic speed scaling research to date has suggested

that for any classical scheduling objective, Q, with a competitive algorithm in the fixed speed

setting, there is a competitive algorithm in the speed scaling setting for the objective of Q

plus total energy. Because it seems hard to imagine that such a statement could ever be

formally proven, we sought to gain confidence in the conjecture by considering one of the
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most obvious classical scheduling objectives that had yet to be considered in the speed

scaling setting, integer stretch. Thus we gave an algorithm, A, that was competitive for the

objective of total integer stretch plus energy under a processor model which was allowed

to have, essentially, an arbitrary set of possible speeds and an arbitrary set of possible

corresponding powers.

In chapter 3 we considered the character of the optimal schedule, S for the objective

Q + βE for scheduling objective Q and total energy E . We viewed S as the optimal trade-

off schedule in the sense that, given the energy usage of S, no schedule can have better

quality of service Q, and that trading an additional unit of energy (increasing E by 1)

cannot improve the quality of service of S by more than β (decrease Q by more than β).

For the particular quality of service objective of fractional flow, we sought to answer some

of the natural questions one might have about these optimal trade-off schedules. Our efforts

allowed us to, first, define a small set of conditions that were both necessary and sufficient

for the optimality of S:

• There is a linearly decreasing hypopower function associated with each job that maps a

time to a hypopower, where the slope of the hypopower function is proportional to the

density of the job, and inversely proportional to β.

• At all times, the job that is run is the job whose hypopower function is largest at that

time.

• If a job is run, it is run at the hypopower specified by the hypopower function.

We then used these necessary and sufficient conditions to show that the optimal energy

trade-off schedule had the following properties:

• Any schedule may be checked for these conditions, and thus for optimality, in O(n2)

time.

• The optimal schedule is unique and to specify an optimal schedule, it is sufficient to

specify the value of each hypopower function at the release time of the corresponding

job.

• If we consider the optimal schedule as a function of β, a job’s hypopower at release

changes continuously as a function of β.
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Using these properties we were able to develop an efficient homotopic algorithm, to compute

the optimal schedule, for a modest number of jobs, by taking advantage of the facts that the

optimal schedule changed continuously in β and that computing the optimal schedule for β

very close to 0 was very straightforward.

We concluded chapter 3 by considering the trade-off objective of minimizing Qσ×E , the

product of quality of service and energy, which is commonly used outside of the theoretical

speed scaling literature. When Q was fractional flow, we showed the following:

• Perhaps counter-intuitively, we show that if the static power is zero, then the optimal

solution is to either always go as fast as possible or to always go as slow as possible.

• We show that locally optimal product trade-off schedules have a nice structure similar

to globally optimal sum trade-off schedules.

• We show that, for a fixed instance, the set of schedules that are optimal for the product

objective (for any σ) are (a generally strict) subset of the schedules that are optimal for

the sum objective (for any β).

• We show that the optimal product trade-off schedule may be a discontinuous function

of σ. Thus there is unlikely to be a homotopic algorithm to compute optimal product

trade-off schedules.

Based on these properties, we concluded that for the purposes of reasoning theoretically

about optimal energy trade-off schedules, the sum trade-off objective is probably preferable to

the product trade-off objective, as the sum trade-off objective has many more mathematically

desirable properties.

Finally, in chapter 4, rather than combining energy and quality of service into a single

objective, we considered the other method to handle the conflicting objectives of energy and

quality of service, fixing one objective and optimizing the other. Specifically, we considered

the classical deadline scheduling problem in the speed scaling setting for the objective of

maximum temperature. Using Newton’s Law of Cooling to model temperature, to consider

a special case of the offline problem, the batch release case, i.e. when all jobs are released at

the same time. Starting with the feasibility problem (i.e. we were given the max temperature,

Tmax) for the batch case, we gave a simple O(n2) algorithm. We then used the insight gained
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from developing the feasibility algorithm to then develop an algorithm, for the batch case,

when Tmax is not known. We concluded chapter 4 by considering the general online problem.

For the general online problem, we gave a simple competitive algorithm, A, which ran at a

constant speed most of the time. The analysis of A also allowed us to improve the analysis

of the energy optimal algorithm, YDS, for maximum temperature.

5.1 OPEN QUESTIONS AND FUTURE WORK

The work herein presented leaves open a number of questions and suggestions for future

work. We now highlight some of these areas.

In chapter 2, we strengthened our confidence in the conjecture that states that the

set of classic scheduling objectives with competitive algorithms is the same as the set of

classic scheduling objectives with competitive algorithms, in the speed scaling setting, for

the objective plus the total energy, under arbitrary power functions. The obvious next

question is what other classic scheduling objectives, with known competitive algorithms,

also have competitive algorithms in the speed scaling setting?

Chapter 3 presented a plethora of open questions, which we now enumerate.

Question 1: Given the configuration of the optimal energy trade-off schedule (when the

quality of service measure is weighted fractional flow), can the optimal schedule be computed

in polynomial time? In this context, a configuration is the sequence of jobs run on the

processor as well as whether a job completes before, at, or after the release of the next job

to be run (which is not necessarily the next job that was released). This seems to be the

natural definition of a configuration, as the configuration and β uniquely defines a set of

equations for which the initial hypopowers of the optimal schedule for that configuration

are the sole (real) solution. [31] was able to use binary search to solve these equations.

We were unable to compute the optimal schedule even knowing the optimal configuration.

The main difficulty is that even when the power function is sα the configuration equations

yield a series of α-degree polynomial equations (in the variables hypopower, or speed, or

interval length). We know of no technique to acquire a general algebraic solution to these
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equations. Another natural alternative approach is to create a mathematical program from

the equations, and solve them using some standard optimization algorithm. However, any

formulation we examined had equations relating to work that were not convex (again, in

variables hypopower, or speed, or interval length).

Question 2: Is there an efficient algorithm to compute the optimal energy trade-off schedule

(when the quality of service measure is weighted fractional flow) for β + ε given the optimal

trade-off schedule for β? As we know how to detect when the optimal configuration changes

and how to find the new optimal configuration, this is closely related to the previous open

question.

Question 3: As a function of the number of jobs n, how many times can the optimal config-

uration change as β changes? [31] shows that for unit jobs and when the quality of service

measure is total delay, the number of configuration changes is O(n2). We would be quite

surprised if the number of configurations changes in our setting was not also polynomially

bounded, although we do not know how to prove any upper bound that is a function of n.

The problem is because the initial hypopowers are not monotone in β, we do not even know

how to show that a particular configuration will be optimal for a contiguous collection of

β’s.

Question 4: Is there a polynomial time algorithm to verify the optimality of schedule for

the objective of total (integer) delay plus energy? Using insights from [31], one can design

a polynomial time algorithm that, given a schedule S and a configuration C, can verify the

optimality of S among schedules in configuration C. But we do not know how to verify that

a schedule is in the optimal configuration.

Question 5: For what quality of service measures can homotopic optimization be used to

compute optimal energy trade-off schedules? It is not completely implausible that one can

characterize the natural quality of service measures where this is possible.

Finally, in chapter 4, although we made progress toward reasoning about temperature

directly in the speed scaling setting, how to most effectively reason about temperature re-

mains an open question. Reasoning directly about the optimal is difficult because the speed

at which the optimal runs (as well as the optimal’s temperature as a function of time) is a
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complicated function, for even a single job, which has no closed form expression.
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