
PLEXC: A POLICY LANGUAGE FOR EXPOSURE

CONTROL

by

Yann Le Gall

B.S.E. Princeton University, 2008

Submitted to the Graduate Faculty of

the Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2013

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/12215034?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF PITTSBURGH

DEPARTMENT OF COMPUTER SCIENCE

This thesis was presented

by

Yann Le Gall

It was defended on

March 25th 2013

and approved by

Adam J. Lee, Department of Computer Science

Daniel Mossé, Department of Computer Science

Jack Lange, Department of Computer Science

Thesis Advisor: Adam J. Lee, Department of Computer Science

ii

Copyright c© by Yann Le Gall

2013

iii

PLEXC: A POLICY LANGUAGE FOR EXPOSURE CONTROL

Yann Le Gall, M.S.

University of Pittsburgh, 2013

With the widespread use of online social networks and mobile devices, it is not uncommon

for people to continuously broadcast contextual information such as their current location or

activity. These technologies present both new opportunities for social engagement and new

risks to privacy, and traditional static ‘write once’ disclosure policies are not well suited for

controlling aggregate exposure risks in the current technological landscape.

Therefore, we present PlexC , a new policy language designed for exposure control. We

take advantage of several recent user studies to identify a set of language requirements and

features, providing the expressive power to accommodate information sharing in dynamic

environments. In our evaluation we show that PlexC can concisely express common pol-

icy idioms drawn from survey responses, in addition to more complex information sharing

scenarios.

iv

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

2.0 BACKGROUND AND REQUIREMENTS 4

2.1 The exposure problem . 4

2.2 Recent Studies . 6

2.3 Language Requirements . 8

3.0 RELATED WORK . 12

3.1 Traditional Access Control . 12

3.2 Logic and Trust Management . 13

3.3 Deployed Location Sharing Systems . 14

3.4 Discussion . 15

4.0 PLEXC: SYSTEM AND SYNTAX . 17

4.1 Motivation for Declarative Logic Programming 17

4.2 PlexC . 19

4.3 Rule Evaluation . 24

5.0 IMPLEMENTATION . 26

5.1 Tools and Technology . 26

5.2 System Design . 27

5.3 Language Features . 29

6.0 EVALUATION . 32

6.1 Coverage of Language Requirements . 32

6.2 Encoding Free-form Policies . 33

6.3 Preliminary Performance Evaluation . 35

v

7.0 DISCUSSION AND FUTURE WORK . 43

7.1 Benchmark Results . 43

7.2 Validation of User Studies . 44

7.3 Future Work . 44

8.0 SUMMARY . 46

9.0 BIBLIOGRAPHY . 47

vi

LIST OF TABLES

1 Comparison of language features. 16

vii

LIST OF FIGURES

1 The exposure control problem. 5

2 The exposure control loop. 6

3 The integrated system model. 27

4 PlexC system components. 28

5 a) Evaluation time for local chaining policies. b) Evaluation time for local

branching policies. 39

6 Evaluation time as a function of the number of terms. 39

7 a) Evaluation time for remote chaining policies. b) Evaluation time for remote

branching policies. 41

8 a) Evaluation time for aggregate queries. b) Audit log query time trace. . . . 42

viii

1.0 INTRODUCTION

The popularity of online social networks has contributed to an unprecedented amount of

personal information sharing. Moreover, the widespread use of mobile devices encourages

the broadcast of contextual information from any location. For example, smart phone users

can send their current location to social networks such as Facebook Places 1, Google+ 2, and

Foursquare 3. Furthermore, technologies such as CenceMe [19] can infer the current activity

(e.g., running or dancing) from a smart phone’s on-board sensors. Sharing location informa-

tion through social networks has even led to burglaries and other crimes, as reported by Nick

Bilton in an online New York Times article [6]. With so many ways to share personal con-

textual information, the task of protecting individual privacy is becoming more challenging.

One important challenge is to maintain the utility of information sharing without sacrificing

personal privacy. To achieve this equilibrium individuals need to do more than simply define

a static disclosure policy once and for all. They must be able to specify flexible and adaptive

policies that can manage the disclosure of personal information in the face of both typical

and atypical access patterns. We refer to such policies as exposure-aware.

Motivation. Over the years, a large body of research literature has explored a variety of

access control mechanisms and their policy language encodings. Existing policy languages

have incorporated powerful features to group principals into functional roles (e.g. [27],

[17], and [15]) delegate authorization decisions across security domains (e.g. [2], [4]) and

even manage state changes during policy evaluation (e.g. [3], [21]). However, few sharing

systems or policy languages have drawn upon large user studies to inform their design. As a

1www.facebook.com/places/
2plus.google.com
3foursquare.com

1

consequence, the resulting languages and systems offer a variety of interesting features, yet

may not provide users with the functionality needed to address their real-world exposure

concerns. By contrast, we carefully consider findings from several recent user studies within

the exposure space [5, 24, 28] and leverage a variety of findings from these studies to provide

insight into exposure perception and control.

For example, Schlegel et al. highlighted the importance of exposure feedback through

an intuitive interface [28]. Additionally, Patil et al. discovered that certain factors, like

the frequency with which location requests occur, are more important to users than other

common factors, like the current time of the location request [24]. This is quite interesting, as

few existing systems allow for controlling the frequency of requests, while several (e.g [18, 26,

29]) provide policy constructs for controlling disclosures based upon the day of week or time

of day. Another important outcome of this study was the identification of several common

concerns and policy idioms that are not typically associated with social engagement purposes,

such as only sharing location during emergencies or with law enforcement personnel.

Our Contributions. Findings from these recent user studies reveal several ways to address

shortcomings in current information sharing systems and their respective policy languages.

To summarize a few, location sharing systems and their disclosure policy languages must

be flexible enough to support users with diverse privacy concerns [5]. Furthermore, it is

important to provide unobtrusive, ambient feedback about how users’ data are being shared

without necessarily revealing the identity of the requester [28]. Finally, policies should pro-

vide the ability to manage disclosure based on more than just common factors, such as the

identity of the requester, but more complex policies may not be easily expressed [24]. To

address these concerns we propose a new policy language PlexC whose functionality is based

in large part on the needs voiced by the human subjects who participated in these studies.

In doing so we make the following contributions:

1. We survey the recent research literature for human subjects’ data regarding contextual

information sharing and exposure control. Based on these findings we develop policy

language and system requirements necessary for servicing the exposure control needs of

users;

2

2. We develop a general system model for contextual information sharing systems that rep-

resents the features of existing logically centralized systems and is capable of modeling

more user-centric systems that may appear;

3. We design a novel policy language, PlexC , that addresses the limitations identified in

recent user studies and specify its syntax and semantics. We further discuss the query

resolution procedure used by PlexC ;

4. To evaluate the utility of PlexC we demonstrate that it is both capable of expressing a

range of common policy idioms and can encode interesting real-world information sharing

constraints specified by the subjects of several survey studies.

5. We design and build a prototype implementation of PlexC that integrates with relational

databases and leverages the tuProlog Prolog interpreter.

6. We conduct a preliminary evaluation of the prototype implementation using a set of mi-

crobenchmarks designed to characterize the system’s performance and scalability against

increasing numbers of queries.

Outline. We start by defining the exposure problem and by identifying a set of language

requirements that are motivated by recent user studies in §2. Next we discuss related work

in §3. The syntax of PlexC is described in §4, and a prototype implementation is presented

in §5. In §6 we evaluate the expressivity of our policy language against real user policies,

interpret the findings, and discuss future work in §7. Finally, we conclude in §8.

3

2.0 BACKGROUND AND REQUIREMENTS

In this section, we first define the concept of exposure and introduce the relevant research

challenges. Next we highlight the results of several recent user studies that explore aspects

of the exposure-control problem space. We conclude this section by enumerating a set of

exposure-control policy language features the need for which is highlighted by these studies

and other works in the research literature.

2.1 THE EXPOSURE PROBLEM

Before describing our system model and how it addresses the exposure problem, we first

explain what we mean by “exposure”. Intuitively, a user’s ideal policy for controlling access

to their personal data is a moving target that is, at best, approximated by the policies and

controls that the user puts in place to protect their information. To paraphrase an example

by Schlegel et al. [28], a user may initially set a policy allowing her co-workers to access her

location during normal work hours to facilitate in-person meetings. However, if she later

discovers that her boss is accessing her location every 5 minutes to ensure that she remains

in the office, she may become uncomfortable. This disconnect between the employee’s model

of appropriate sharing and the level of sharing allowed by the protections that she put in

place leave her more exposed to external queries and analysis than she had anticipated.

The problem of exposure control is non-trivial, as exposure can be viewed as a function

over a multi-dimensional space expressing a human sentiment. Some of these inputs may be

unknown a priori as many contextual factors may influence a user’s perception of exposure.

For example, someone’s notion of exposure may be influenced by the time of day, their

4

U

P*
P

E

Over-exposure

Acceptable exposure

Potential
over-exposure

Figure 1: The exposure control problem.

current location, whom they are with, how many requests they have received, and so on. We

propose that trying to control such a complex and dynamic property requires an adaptive

process in which disclosure policies are continuously specified, enforced, and revised.

A semi-formal view of the exposure problem is captured in Figure 1. In this depiction U

represents the universe of all access traces to a user’s personal data. These traces describe

sequences of queries to a user’s data, which may be dependent on system and user context

(location, activity, etc.), as well as other past queries. P ? represents the user’s ideal model of

data sharing—which is unlikely to be captured correctly due to the complexities of managing

the myriad contextual facets of the exposure control problem—while P represents the access

traces permitted by the user’s deployed policies. E represents the access traces that have

actually been made to the user’s data and represents the user’s exposure. E ∩ P ? represents

the user’s acceptable exposure, whereas E ∩ P \ P ? represents the user’s over-exposure. P \

P ? \ E represents the user’s potential over-exposure.

The goal of the exposure control loop is to ensure that E is confined to P ?. In practice

it may not be possible to achieve perfect exposure control, and thus the goal of the exposure

control loop is to minimize the overlap between . As such, exposure can be represented as

the set of traces P \ P ?.

5

!"#$%&$'()*+ ,*-).$#/#*0+ 123%0+

Figure 2: The exposure control loop.

The complexities of properly capturing P ? lead us to envision an exposure control loop

in which a policy is specified and deployed, and feedback on the allowed access traces is

periodically provided to the user. This process is depicted in Figure 2. This exposure

feedback can then be used by the user to revise their policy over time, resulting in a sequence

of policies allowing trace sets P1, P2, . . . , Pn that aim to minimize potential over exposure and

avoid further over-exposure and ideally converge to P ?. In the following sections we describe

the design of the PlexC system and how it accommodates and encourages the exposure

control loop.

2.2 RECENT STUDIES

Our work is grounded in a series of recent user studies relating to exposure control. Here

we describe each study in more detail and explain how our findings are relevant to exposure

control. The results of these studies contribute to many of the requirements discussed in

Section 2.3.

When Privacy and Utility are in Harmony: Towards Better Design of Presence

Technologies. In this study, Biehl et al. [5] explored user sentiment about presence data

collection and sharing with an emphasis on workplace settings. Another goal was to explore

the utility of receiving various types of presence information. They conducted a survey of

32 participants representing a wide range of ages, professions, and geographic regions across

the US.

This study is relevant to exposure control because it measured how comfortable partici-

6

pants felt as a function of many variables, including the type of data collected (e.g., location,

activity), the recipient of the data (e.g., boss, coworker, friend), the setting in which the data

collection occurred (e.g., office, work event, home), and the format, owner, and location of the

data collected. Also, the authors measured how comfort levels changed based on perceived

utility for the recipient.

One important finding of this study was that comfort levels across different sensing

technologies were bimodal. In other words there was no one-size-fits-all privacy policy

that addressed all users’ privacy needs. Thus, information sharing systems must be flex-

ible enough to accommodate a wide range of user preferences. Another interesting finding

was the strong correlation between how comfortable users were sharing information at a

certain frequency/fidelity and their perceived utility of receiving information from others

at that frequency/fidelity. Participants indicated that they felt more comfortable sharing

their personal information at a rate that they imagined would be useful for the recipient.

This suggests that negotiation and establishing mutual trust may be important factors in

location sharing systems. Other important findings were that storing raw sensor data raises

more concern that storing interpreted data or aggregated data. In general, there was a high

concern associated with the location and ownership of stored personal information.

Eyeing Your Exposure: Quantifying and Controlling Information Sharing for

Improved Privacy. Schlegel et al. [28] address the problem of location exposure feedback

and control in a game-based simulated lab study. They develop and compare two differ-

ent smart-phone interfaces: (i) a so-called “detailed information interface” that shows the

number of requests in the last hour from different categories of people (e.g., friends, family,

strangers), and (ii) a so-called “eyes interface” that shows the user a number of cartoon eyes

on the main screen of the app in which each eye represents location requests from a single

person, and the size of the eye grows depending on the number of requests and the social

relationship.

This study is relevant because it quantifies the role of frequency in exposure control and

embraces the notion that informative feedback is an important part of controlling exposure.

However, feedback that has too much information might reveal the identity of the querier.

Likewise, if feedback is too frequent or obtrusive, then it may annoy the user. The findings

7

of this study suggest that it is possible to benefit from feedback without sacrificing querier

anonymity or usability.

My Privacy Policy: Exploring End-User Specification of Free-Form Location

Access Rules. Patil et al. [24] used an online study to ask over a hundred participants

to write location-sharing policy rules using everyday English. In addition participants were

asked to rate and rank the importance of a number of factors that might influence location

sharing, such as the identity of the person requesting the location, the current location,

the frequency of requests, and the like. The research questions addressed in this work are

also very pertinent to the domain of exposure control. The notion of exposure varies across

individuals and across many other dimensions. This study measured the preferences of a

large sample of individuals and allowed them to freely identify factors that contribute to

over-exposure. Furthermore, the ratings and rankings give evidence about which location

factors should be prioritized in location sharing systems.

There were a number of interesting findings. Participants indicated that the “time of

day” and the “day of the week” of location requests were less important than the “frequency

of receiving requests”. This was unexpected because many modern location sharing appli-

cations provide time-based rules but do not provide frequency-based rules (e.g. [29], 1).

Furthermore, in general people had difficulty expressing coherent policies that controlled for

all of the factors that they rated as being important. Finally, the authors identified several

common themes in the free-form policies. Some of these include complete manual mediation

of requests, temporary blocking, and sharing only in case of emergencies.

2.3 LANGUAGE REQUIREMENTS

Here we describe a series of language features that are important for the efficient and accurate

expression of exposure control policies. These requirements are motivated by past work as

well as the recent user studies previously described.

1www.google.com/latitude

8

Disclosure Negotiation. In open distributed systems it is impossible to specify the

trust relationship between all pairs of individuals a priori. Negotiation allows strangers to

build trust by exchanging credentials, information, etc. Negotiation has been identified as

an important feature and used in several policy languages, such as RT [17], Cassandra [4],

Binder [13], and ATN [16]. Negotiation is also important for understanding the reasons for

which a request was made, and individuals are more likely to feel comfortable sharing their

location if they believe it will be useful to the requester [5]. An example of this type of

policy idiom is given below: Share my city-level location with anonymous requesters, but if

the requester is willing to reveal his identity then also share my street-level location.

Polymorphism. Here we use polymorphism to describe a policy whose requirements

change based on the user’s degree of over-exposure. Schlegel et al. explore ways of estimating

and representing this metric [28]. The following policy illustrates the utility of exposure

polymorphism: Share my exact location with family only when my current over-exposure

level is low; Otherwise if my over-exposure is high, only share my city-level location.

Side Effects. Side effects appear in policy rules and specify transactions that modify the

authorization state of the system when the rule is satisfied. Olson et al. [21] argue that

side effects are appropriate in large dynamic systems where maintaining ACLs is inefficient.

Furthermore, role-based policy languages typically require updates to the authorization state

as users activate roles. However, most modern authorization languages do not explicitly

provide constructs to express state changes, so management of state changes must be hard-

coded into system resource guards [3]. An example of a policy that would be more easily

expressed with side-effects might be: The first 3 location requests from an individual require

my explicit approval, but subsequent requests do not.

Aggregate Operations. Aggregate operators can provide users with summary infor-

mation about the set of accesses to their personal information (the region labeled “E” in

Figure 1) [20], which often includes operations such as SUM, COUNT, or MAX, over sets

and multisets of tuples. Frequency-based policies rely on the ability to aggregate records

in the audit log, and Patil et al. [24] showed that individuals believe that the frequency of

requests is an important factor to consider when creating location sharing policies. Further-

9

more, it is demonstrated by Dell’Armi et al. [12] that aggregate operators can increase the

modeling power of disjunctive logic programming languages and provide concise knowledge

representation. A typical use of this feature would be the use of aggregation to limit the

frequency of location disclosures, e.g.: Do not share my location more than 10 times per day.

Querier Privacy. “Querier privacy” often refers to anonymous access of resources, but, in

general, it is not limited to protecting the identity of the requester. Querier privacy has been

identified as an important feature in large online social networks (OSNs), especially those

that have been used to organize protests and share sensitive documents [1]. Interestingly,

Tsai et al. [29] showed that users of the location-sharing technology Locyoution felt more

comfortable sharing their location when they were given feedback about who requested their

location. The ability to provide users with exposure feedback might seem to be incompatible

with querier anonymity, but Schlegel et al. [28] demonstrated intuitive feedback interfaces

that accomplish this.

Delegation. Delegation allows disclosure decisions to be passed on to a trusted authority.

The utility of this feature is apparent in the following policy rule: Share my location with the

same people with whom my friends share their location. Delegation is an important feature

of many authorization languages, some of which include RT [17], CTM [15], Secpal [2],

Cassandra [4], Ponder [11], and Binder [13]. In large decentralized systems preexisting trust

relationships often do not exist between authorizer and requester. Thus, delegation allows

the authorizer to make decisions based on trusted third parties. Delegation also simplifies

policies in hierarchical systems.

Groups and Roles. In role-based access control (RBAC), subjects are assigned to one

or more roles (or groups), and permissions are assigned based on their roles, e.g.: Family

members can always see my exact location, but colleagues can view my location only during

work hours. RBAC greatly simplifies permissions management, is well suited for large or-

ganizations in the commercial and government sectors [27]. Recent studies have also shown

that users consider groups and roles to be important factors when sharing their location

[5, 24]. Furthermore, a recent study by Patil et al. reported that disclosing location with

an unintended audience was one of the most popular causes of regret in users of location

10

sharing systems [25].

Time and Location-based Rules. Time-based rules control disclosure based on the

current time. Similarly, location-based rules control disclosure based on the current location

of the policy owner or the requester. As an example of a location-based rule, the owner

might define a number of “named regions” as a coordinate pair and a radius, and associate

regions with a sharing policy: Share my location with family only if I am at the hospital.

Time intervals and named regions are natural ways to specify policies that accommodate

daily schedules and routines, and previous work has demonstrated that users of OSN’s are

comfortable expressing policies using these features [29]. Furthermore the current time and

location of an individual influence the type of information that she is willing to share [5],

e.g.: Share my location only between 9am and 5pm. As previously shown, policy rules that

are based on the frequency of requests can also be implemented by combining features that

allow access to the current time and audit log. Patil et al. observed that frequency-based

rules may have a greater importance than time-based rules [24].

Disclosure Levels. In a policy language that supports multiple disclosure levels, the

policy owner can specify the degree of information to disclose. For example, in response to

a location request, the policy owner might choose to disclose only the name of the current

city. This feature would accommodate many of the challenges identified by Biehl et al. [5].

They found people were more comfortable sharing detailed location information at work and

less detailed information outside of work. Therefore, comfort with different disclosure levels

is highly influenced by current location.

11

3.0 RELATED WORK

In previous sections, we looked at several user studies that shed light on some the desirable

features and criteria for information sharing systems. We also talked about the challenges

of meeting these criteria without endangering the privacy of users. In this section, we

survey both well established policy schemes as well as several recent and feature rich policy

schemes and illustrate that none of these schemes supports the full set of features outlined

in Section 2.3 (Table 1 summarizes the features of these schemes). The body of literature

describing access control policy languages and policy idioms is extensive and diverse: many

languages draw their syntax or semantics from Datalog and are designed for distributed

environments, [4, 13], while others are based on XML [30] or object-oriented paradigms [11].

Here we organize our review into the following categories: traditional access control models,

logic-based and trust management approaches, and deployed location sharing systems.

3.1 TRADITIONAL ACCESS CONTROL

Researchers have developed role-based abstractions, (e.g. [17, 30]) to simplify the manage-

ment of user rights. Damianou et al. introduced Ponder, an access control language for a

variety of applications such as firewalls, operating systems, and databases [11]. In addition

to traditional features such as roles and delegation, Ponder supports policies that require

actions to be taken after being triggered by a certain event. Unlike many other authorization

languages, Ponder is described as a declarative, strongly typed, object-oriented language.

Park and Sandhu introduced UCONABC , a family of models for usage control (UCON) [22,

23]. UCON is a conceptual framework that provides a comprehensive approach to managing

12

access control, Digital Rights Management (DRM), and trust management. It can express

a wide variety of policies by applying different combinations of authorizations, obligations,

and conditions to digital objects. For example, basic RBAC can be expressed using autho-

rization rules alone, whereas DRM can be expressed using a combination of authorization

rules, conditions, and obligations. UCON also explores the complexities that arise when

data consumers become data producers, if, for example, a client’s personal information is

logged during transactions.

3.2 LOGIC AND TRUST MANAGEMENT

In addition to policy languages that have evolved from the access control approach, we ex-

amine languages inspired by trust management approaches, such as [7, 8], which combine the

management of policies and trust relationships, as well as distributed logic-based approaches

(e.g. [4, 13]), which can concisely and compactly manage very complex policies. While some

of these approaches have a logical syntax and semantics, others are based on XML [30] or

object-oriented paradigms [11].

Li et al. introduced the RT framework, which consists of a family of related languages for

specifying distributed authorization policies [17]: RT is a role-based trust management lan-

guage in which policies are constructed using four simple rule types that assign users to roles,

represent delegations, and structure roles into hierarchical relationships; RT1 extends this

basic framework with support for parameterized roles; RT T provides syntax for specifying

policies that require thresholding and separation of duty; and RTD introduces constructs for

constrained delegation. RT has both a set-based semantics and a Datalog-based semantics,

and policies can be efficiently evaluated via translation into a Datalog program.

DeTreville presents Binder, a security language for distributed systems, which is based

on Datalog [13]. However, unlike basic Datalog, Binder programs can securely communicate

with other Binder programs across distributed environments using signed certificates.

Becker et al. developed Cassandra, which is built upon Datalog with constraints (DatalogC [4]).

Cassandra provides role-based trust management in distributed domains with credential re-

13

trieval, separation of duty, and role activation/deactivation. Additionally, Cassandra rules

may contain a constraint c drawn from a constraint domain C that can be tuned to provide

different tradeoffs between computational complexity and expressivity. Becker et al. then

build upon the extensibility of Cassandra in SecPal [2]. SecPal has a high-level natural syn-

tax and its design features include delegation, constraints, and negation in queries. SecPal

policies can also be compiled into DatalogC programs.

The State Modifying Policies framework [3] can be used to extend policy languages based

on distributed logics with concepts from Transactional Datalog [9]. This provides support

for the use of policies that are capable of adding/retracting facts to/from the policy’s logic

program at runtime. This is useful, e.g., for supporting policies that can augment and

examine their own audit logs.

Recently, Gunter et al. described an idiom called “Experience-Based Access Control”

(EBAM) [14]. Briefly, EBAM is a set of models, tools, and techniques to reconcile the

differences between ideal policies and the operational policies enforced by the underlying

system. A typical approach for realizing EBAM may include maintaining and analyzing an

access log to suggest ways to update and improve existing rules. This iterative process is

similar to the exposure feedback loop discussed previously; however, PlexC focuses on the

human perception of exposure.

3.3 DEPLOYED LOCATION SHARING SYSTEMS

There are a number of location sharing systems that have been deployed as part of research

projects, commercial ventures, and social networks. These systems are currently being used,

yet they still lack all of the important features that we discussed in previous sections.

Facebook Places1 is a location sharing system that has been integrated into Facebook,

and it allows users to share their location with existing Facebook friends. It leverages the

existing Facebook privacy controls, which is limited to access control based on groups and

roles.

1www.facebook.com/about/location

14

FourSquare2 is a location sharing system that allows users to check-in to at various

locations. Users are encouraged to share their location with the chance to earn points,

badges, and discounts at retailers. FourSquare provides a limited role-based access control

model in which friends can view each other’s recent location history.

Loccacino3 is a location sharing system that originated from a research project at Carnegie

Mellon University. Relative to other deployed systems, it provides a rich set of privacy fea-

tures that determine if a location request will be permitted. Loccacino supports time-based

rules and fine-grained role-based access control, allowing users to share their location with

different groups, such as family members or coworkers4 Locaccino also supports an innovative

feature for location-based rules: users can draw a region on a map in which their location

will be visible to others. Finally, users must request to see each other’s location, and users

can review a list of everyone who has made location requests.

3.4 DISCUSSION

In Table 1 we present a summary of features supported by different mainstream policy

languages and sharing systems. Collectively, these policy languages introduce an impressive

assortment of paradigms, idioms, and features for expressing security policies in different

contexts. However, no single policy language provides support for all of the features identified

in Section 2.3 as being important to the management of end-user exposure.

Note that popular social networks, such as Google+, Facebook, and Foursquare have very

limited features. Their privacy settings are typically limited to one or more categories of

friends (i.e. groups). It is possible that these systems intentionally decided to support a lim-

ited set of sharing features in hopes of offering a less complex user-experience. Furthermore,

advertisers often provide incentives to generate and share content instead of encouraging

privacy.

On the other hand, policy languages and systems from the research literature tend to

2www.foursqaure.com
3locaccino.org
4http://locaccino.org/laptop instructions

15

Table 1: Comparison of language features.

negotiation exposure side effects aggregation tunable querier roles & time location tunable disclosure

polymorphism privacy delegation rules rules∗ granularity

Google+ no no no no no yes no no no

Facebook no no no no no yes no no no

Foursquare no no no no no yes no no no

RT no no no no no yes no no yes

Cassandra yes no no yes no yes yes no yes

SecPal no no no yes no yes yes no yes

SMP no yes yes no no yes no no no

Ponder no no yes no no yes yes no yes

Binder no no no no no yes no no yes

UCON yes no yes no no roles yes yes no

Locaccino no no no no no yes yes yes yes

PlexC yes yes yes yes yes yes yes yes yes

∗While other languages were not designed with location sharing in mind, they may be able to
support location via minor extensions.

be more feature-rich. While some of the features that we list are not directly supported in

other systems, it is possible that they could be included as language extensions or supporting

libraries. This is not surprising, as exposure management was not a primary goal during the

development of this prior work. However, post-hoc language extensions can risk complicating

the performance and usability of systems relative to their original design.

Despite the fact that research based policy languages are more expressive than deployed

systems, there are still many unsupported features. For example, few existing languages and

systems include direct support for aggregation. This is a crucial ability without which it is

not possible to limit the rate of sharing. Furthermore, for the systems that provide some

form of feedback to the policy author, the identity of the querier is not protected.

In the next section, we describe PlexC , a policy language for exposure control that was

designed not only to meet all of the needs identified in Section 2.3, but also to take into

account the findings of recent user studies in the domain of exposure control.

16

4.0 PLEXC: SYSTEM AND SYNTAX

In the previous section we showed that existing policy languages and systems do not support

an expressive set of privacy features that were identified as important for location sharing

in recent user studies. We therefore develop the PlexC exposure control language, which is

based on a subset of Prolog and includes a rich set of extensions. In Section 6, we provide

further evidence demonstrating that PlexC is capable of meeting all of the requirements

identified in the previous section. In this section, we now describe the PlexC ’s system model

including its components, interfaces, and assumptions.

4.1 MOTIVATION FOR DECLARATIVE LOGIC PROGRAMMING

Prolog is a logic based language with well-defined declarative semantics and efficient query

evaluation algorithms. It provides a nice environment within which to express authorization

policies. Indeed, many policy languages—including PlexC —are based on Datalog or can be

translated into Datalog programs (e.g., [2, 3, 4, 13, 17]). PlexC uses an embedded Prolog

interpreter to evaluate user privacy policies. However, PlexC only relies on a small subset

of Prolog that more closely resembles Datalog, which is a logic programming language for

deductive databases. We now provide a brief review of the terminology, syntax, and semantics

of Datalog to familiarize the reader with the underlying programming model upon which

PlexC is built.

Datalog is a syntactic subset of Prolog, and programs are composed of facts and rules.

A rule is a statement of the form q :− p1, p2, ..., pn, where q and each pi for 1 ≤ i ≤ n are

literals. Intuitively, this rule can be read as “p1 and p2 and ... and pn imply q”. q is referred

17

to as the head of the rule, and the body is composed of each pi. A fact is a rule that contains

only a head and no body.

A literal has the form P (x1, x2, ..., xm) where P is a predicate name followed by a tuple

with arity m, and each xi for 1 ≤ i ≤ m is a variable or constant.

Consider the following example that demonstrates a simple Datalog program:

friend(alice,bob).

friend(carol,alice).

connected(X,Y) :- friend(X,Y).

connected(X,Z) :- connected(X,Y),connected(Y,Z).

?-connected(X,bob).

This example demonstrates the simple inductive semantics of Datalog. New facts are

derived from the head of a rule if existing facts can satisfy all predicates in the body of the

rule. The first two statements are ground facts. These are sometimes stored in a physically

separate database called the Extensional Database or EDB. The next two statements are

rules, which are stored in the Intensional Database or IDB. The EDB and IDB contain

disjoint sets of predicates; as such, predicates defined in the EDB may only appear in the

body of rules, and may not appear in the head of any rule. The last statement above is a

query that seeks to find all bindings of X such that X is an ancestor of bob. In the above

program, the tuples friend(alice,bob) and friend(carol,bob) satisfy this query.

Pure Datalog does not allow negation, which can threaten the evaluation safety of a Dat-

alog program. Typically, negation is handled using stratification or closed world assumption

(CWA). Stratification imposes an evaluation order on rules where negated body predicates

must be evaluated before predicates in the rule head. CWA allows the inference of negative

ground facts if they do not appear in the EDB [10]. We use the CWA strategy for negation

in PlexC .

18

4.2 PLEXC

We now describe the set of extensions distinguishing PlexC from Prolog. First, we discuss the

interface across which external applications communicate with our system. We then explain

how transactional updates to the system state can be expressed and how policy authors

can both create rules that are based on changes in the system audit log and rules that are

sensitive to user feedback. Finally, we list additional built-in predicates and functions.

External Interface. External applications, such as location- or presence-sharing appli-

cations, communicate with the PlexC system to determine if a certain resource of a user

should be disclosed to the requester. This communication occurs through an external inter-

face exposed to these types of applications that is composed of a set of predicates described

below:

Built-in Predicates and Functors:.

• location(User) is a system defined functor that returns the current location of User.

The location is represented as a coordinate pair and a radius.

• location() is a system defined functor that returns the current location of the current

policy author.

• canAccess(User, Requester) canAccess is a system predicate that is invoked when a

location request from Requester is received by User. Evaluation of this request inserts a

record into the audit log.

• remote(User1, User2, Term) This predicate determines if User1 is permitted to query

the specified term, Term, belonging to User2’s KB.

• accessCount(Duration) This is a functor that provides users with a way to count the

number of times that her location has been revealed within the specified duration. This

functor takes a single argument, duration, which is a string specifying the time interval

to consider. For example, accessCount("2 days") will return the number of successful

access attempts in the past 2 days.

• accessCount(Requester, Duration) This functor is similar to the accessCount functor

which takes only one argument. However, it also accepts another argument which is the

19

username of the requester. Instead of counting all access requests within the specified time

interval, this functor only counts successful access attempts from the specified user.

• insertState(Target, Term) This predicate inserts the specified term, Term, associated

with the specified target user, Target, into the user’s local KB. This predicate always

returns true.

• getState(Target) This functor retrieves the specified term, Term, associated with the

specified target user, Target, from the local user’s authorization state.

• removeState(Target, Term) This predicate removes the Term associated with the Target

from the local user’s authorization state. This predicate always returns true.

• testState(Target, Term) This predicate determines if the specified term, Term, is asso-

ciated with the specified target user, Target, in the local user’s authorization state. This

predicate always returns true.

• hour() This functor returns the current hour of the day as an integer in the range 0 to

24.

• hourBetween(t1, t2) This predicate is true if the current hour is within the interval

specified by t1 and t2.

• day() This functor returns the current day of the week as a string.

• weekday() This predicate is true if the current day is not Saturday or Sunday.

• now() This functor returns the current unix timestamp in milliseconds;

• today() This functor returns a term representing the current date.

By creating a set of policy rules, the policy author is free to define the conditions satisfying

the predicates in the external interface.

When personal information is disclosed via the canAccess predicate, a transaction occurs

in which a record of the access is inserted into the system audit log. The record contains

information about the requester, the resource disclosed, the time of disclosure, and the level of

detail (granularity) of the disclosure. Prior research has explored incorporating transactions

into Datalog. Transaction Datalog (TD) is an extension to Datalog for executing transactions

that modify the database as rules are evaluated. TD supports the classical ACID properties

as well as other properties like transaction hierarchies, concurrency, and cooperation [9].

20

PlexC also supports the notion of state effects as introduced by Becker and Nanz [3].

Transactional Datalog composes effects using the sequential transaction operator “⊗” [9].

This feature allows users to express policies that require role activation, separation of duty,

or other state-dependent operations. For example, the following rule allows requesters to

access an individual’s location only once:

Example 4.2.1

canAccess(X) :- not testState(X,seen), insertState(X,seen).

Note that instead of the “⊗” operator, PlexC simply places effects at the end of rules

to achieve the same result. This works because any predicate that cannot be satisfied will

cause evaluation of the rule to end before remaining predicates are evaluated.

Built-in Constants. PlexC also includes a number of constants that refer to resources

that the user is not responsible for defining:

• LOCATION is a constant used to identify location resources;

• CITY is a constant used to specify the city-level of granularity for location resources;

• ANYONE is a placeholder that matches any user when scanning the audit log;

• true represents the positive truth value.

• false represents the negative truth value.

User Policies. Users can define facts and rules to control disclosure. As with basic Datalog

this allows the easy creation of groups and roles. Example 4.2.2 demonstrates a set of basic

facts and rules that a user might create.

Example 4.2.2

canAccess(bob).

canAccess(X) :- isMember(X, friend).

The first statement is a fact that explicitly gives Bob access to Alice’s location informa-

tion. In the next statement, Alice also allows her friends to view her location. Thus we see

that with basic Datalog syntax we can easily implement a simple, static role-based access

control model.

21

Remote predicates. Users can also specify remote predicates by providing an identifier

as a prefix before the predicate name. With this feature we can encode policies that require

delegation. In the following example, Alice delegates disclosure decisions to Bob:

Example 4.2.3

canAccess(X) :- remote(alice,bob,canAccess(X)).

Similarly, with these features we can express basic forms of disclosure negotiation and

other rules that are quid pro quo. In the following example, Alice only allows another user

to access her location if she can access his location:
Example 4.2.4

canAccess(X) :- remote(alice, X, canAccess(alice)).

Additionally, PlexC allows policy authors to constrain the information in the KB that

is visible to other users. This is achieved with the built-in predicate, canQuery(U,P), which

allows another user U to query the predicate, P . For example, the registrar at a university

might allow a teacher, T , to query for any student S enrolled in a course C that she teaches.

Example 4.2.5

canQuery(T, enrolled(S, C)) :- teaches(T, C), enrolled(S, C).

Handling Exposure. Users have the ability to write policies that depend on the current

exposure conditions. As noted by Schlegel et al. [28], aggregation is an important prerequisite

for achieving this behavior. Mumick et al. [20] investigate extending Datalog with aggregate

operators. They show that Datalog can be efficiently extended with aggregate operators

using magic sets and semi-naive evaluation algorithms, which provide good heuristics over

the naive, bottom-up approach. In order to ensure the termination of Datalog programs,

aggregate operators are subject to restrictions such as stratification [12]. In our case, we

provide special built-in predicates that are restricted to aggregating over a logically separated

set of facts and predicates. This restriction is sufficient for our purposes, as it allows PlexC

policies to aggregate over the audit log, for example. The following demonstrates how

aggregation over the audit log can be used to limit the frequency of location sharing to

no more than 5 times per day:

Example 4.2.6

canAccess(X) :- accessCount(X,"1 day") <= 5.

22

Here, accessCount(X,"1 day") invokes a search of the audit log for the number of

accesses by requester X within the past 24 hours. Other acceptable arguments for time

interval parameter include “min”, “minute(s)”, “hr”, “hour(s)”, and “week(s).”

In addition to aggregation over the audit log, users can write rules that depend on

their current exposure. Prior research suggests that several factors contribute highly to an

individual’s notion of exposure, such as the social relation of the requester [28], the frequency

of requests [24], and the surroundings at the time of request [5]. PlexC provides the access

to this information through built-in functions, predicates, and language features, making it

easy to define custom exposure functions. For example, a user might define exposure levels

to be HIGH if the number of requests by strangers in the audit log exceeds a certain threshold.

Example 4.2.7

canAccess(X) :- exposure("MEDIUM").

canAccess(X,CITY) :- exposure("HIGH").

Keeping the User in the Loop. In the study by Patil et al. [24], many participants

expressed the desire to mediate all requests for their personal information. To this end we

introduce a built-in function prompt(X,R) that prompts the current user to give requester

X permission to access resource R. Other participants simply wanted to be notified for each

request, so we define a similar function notify(X,R), which notifies the user that requester

X has accessed resource R.

Additional Features. There have been a number of extensions to pure Datalog, some of

which PlexC incorporates. These include built-in predicates, functions, and negation [10].

PlexC includes support for basic equality, comparison, and arithmetic operators. These can

be viewed as infix predicates except that the operands correspond to terms, and the result

of the atom is evaluated by the underlying implementation and does not depend on facts in

the local KB. The following rule demonstrates both a built-in function to test if the current

day is a weekday, as well as the built-in greater-than operator, and stipulates that location

requests are only permitted on weekdays between 9am–5pm:

Example 4.2.8

canAccess(X) :- weekday(), hourBetween(9,17).

23

PlexC also supports several predicates to create named regions, which are essentially

locations on a map with an associated radius. The region(NAME,LAT,LON,R) predicate de-

fines a region NAME centered at the coordinate (LAT ,LON) with radius R. The predicate

inRegion(L,NAME) tests if the location L is within the region, NAME. Example 4.2.9 only

allows members of a student group to access location when the user is on campus:

Example 4.2.9

region(’campus’, 40.2, -100.2, 1km);

canAccess(X) :- inRegion(location(), campus), member(X,student);

Furthermore, PlexC supports a limited form of negation. Pure Datalog does not allow

negation because it can threaten the evaluation safety of programs; however, negation can

be supported by adopting either stratification or the closed world assumption (CWA) [10].

Stratification imposes an evaluation order on rules where negated body predicates must be

evaluated before predicates in the rule head. CWA allows the inference of negative ground

facts if they do not appear in the EDB. PlexC uses the CWA to handle negation. Example

4.2.10 demonstrates a rule that uses negation to implement an exclusion policy:

Example 4.2.10

canAccess(X) :- not(member(X,enemies));

Finally, we support a set of built-in functional-symbols that may depend on the de-

ployment environment. For example, a location-sharing application might contain a set of

functional-symbols to perform distance calculations, e.g. within(L1,L2,D) would return

true if L1 and L2 are within distance D. Similarly, functions that provide reverse geocoding

would be useful, such as cityOf(L), which would return the city of the location coordinate

L.

4.3 RULE EVALUATION

In typical Datalog systems extensional facts are applied to rules in the intensional database

to generate new facts until no new facts can be generated (a fixed point). This bottom-up ap-

proach is straightforward and can occur before handling queries. However, more expressive

24

languages do not take this approach to evaluate queries. One of the reasons is that cer-

tain special predicates and function symbols cannot be computed prior to receiving queries.

For example, some predicates and constants depend on current time and location (e.g.,

accessCount, many types of rules defining the canAccess relation), while others require the

user’s interaction (e.g., prompt).

Therefore, instead of using bottom-up strategies, modern expressive policy languages em-

ploy memoized, top-down evaluation algorithms that combine the efficiency of goal-oriented

approaches while avoiding the non-termination issues of standard SLD resolution used in

Prolog [4]. This is the approach the PlexC takes. To illustrate this process, consider the

following example:

Example 4.3.1

canAccess(X) :- weekday(),

remote(alice, bob, friend(X)),

accessCount(X, "1 day") <= 5.

Access to the current user’s location is contingent upon several factors. First, the date is

obtained and tested as a parameter of weekday. Next, the second literal is a remote predicate

indicating that the requester needs to be a friend of Bob. A query is therefore sent to Bob’s

exported predicates interface, and if Bob allows the current user to query this predicate, and

the requester belongs to the friend role, then a positive result is returned. The accessCount

functor invokes a query on the audit log and returns the number of accesses by the requester

(in the current day), and the last item tests that N is no more than 5.

25

5.0 IMPLEMENTATION

5.1 TOOLS AND TECHNOLOGY

In this section we describe our prototype implementation of PlexC . We begin with a overview

of the tools and technologies that were used. PlexC relies on an embedded logic interpreter.

We chose to use version 2.5.0 of tuProlog1, which is a light-weight Prolog engine developed

by researchers at the University of Bologna. We chose to use tuProlog for a number of

reasons. First, it is written in Java and is advertised as being compatible with Android smart

phones, and one of our future goals is to implement PlexC as a distributed policy evaluation

system that is capable of at least partially running on mobile devices. Furthermore, tuProlog

provides a well documented framework for adding language extensions and low-level interface

into the evaluation engine. Finally, tuProlog is free and open-source software; tuProlog and

related packages are licensed under the GNU Lesser General Public License agreement.

There are many free and open-source alternatives to tuProlog . GNU Prolog2 and SWI

Prolog3 are well known Prolog engines. They are both written in C, and provides a native

C interface. However, they are not advertised as being compatible with mobile devices.

We found that GNU Prolog for Java did not provide the same quality of documentation as

tuProlog . We also examined IRIS, a Java-based implementation of Datalog, but we found

the top-down evaluation strategy of Prolog to be more appropriate for many of the language

features that PlexC includes.

1http://tuprolog.alice.unibo.it/
2http://www.gprolog.org/
3http://www.swi-prolog.org/

26

5.2 SYSTEM DESIGN

Figure 3: The integrated system model.

In this section we first describe the overall workflow and environment in which PlexC

operates. This is shown in Figure 3. In a typical workflow, a mobile device makes a request

to access to some resource, say, Alice’s location. The request is handled by a central web

server as an HTTP request, and is passes through the server interface to the PlexC engine,

which runs as a service. The engine determines if the requester should be granted access

to the resource. This decision might be based on information from several sources. In

addition to evaluating disclosure policies, the evaluation engine may examine audit logs and

the authorization state stored locally on the server. In a distributed architecture, scheduled

for future development, the evaluation engine may even request information from remote

PlexC systems. Finally, the disclosure decision is written to the system audit log, and the

feedback component may decide to notify Alice about this interaction, and the response is

relayed to the querier. After receiving feedback, Alice may wish to alter her policy using a

user-friendly rule editor, which compiles a web form into the PlexC syntax and updates her

policy, which is stored in the knowledge base.

The structure of the prototype implementation is illustrated in Figure 4. There are

several components that we discuss here. The central component is called PlexC Engine. At

a high level, it processes incoming requests and either makes changes to the system state or

27

Figure 4: PlexC system components.

responds to the request with the appropriate information. Requests are issued for several

purposes, including user registration, policy management, and requesting authorization. It

is also responsible for managing the storage and retrieval of user policies. Policies for each

user are stored as logically separate files on disk. The files are maintained as regular text files

because tuProlog provides a convenient interface to load knowledge bases from regular text

based representations. The engine loads a user’s policy from disk when a request is received,

given that the policy is not already cached in memory. The engine is also responsible for

synchronizing user policies to disk when a user updates her policy.

PlexC makes use of a relational database to store certain data quickly and efficiently.

These data include audit log records and transactional authorization state, and they are

stored separately from the user policies to decouple data that are modified directly by the

user from data that are generated programatically. Audit log records are highly structured

and inserted into the a database table for every access request, regardless of whether the user

policy permits it. Therefore, the user policy does not affect the retention of these records.

28

The audit log record contains the following attributes:

• timestamp: The time at which the request took place.

• issuer: The user initiating the request.

• target: The user receiving the request.

• lat: The latitude of the target user.

• lng: The longitude of the target user.

• success: A boolean flag indicating if the request was permitted.

PlexC also allows user policies to read and write authorization state that is not part of

the user’s intensional knowledge base. This state is written to a database table with support

for transactions and does not clutter the user’s privacy policy. This separation also ensures

that policy evaluation completes even when negation is supported, as discussed in Section

4.1.

The PlexC Library is a set of functions that are loaded into the tuProlog interpreter

at runtime. These functions implement the core features of PlexC that are not part of

the Prolog specification. When the interpreter encounters one of these extensions in a user

policy, it invokes the appropriate code in the PlexC Library. These features are described in

the following section.

5.3 LANGUAGE FEATURES

Here we discuss how the language features of PlexC have been implemented. PlexC builds

on top of tuProlog with a set of custom extensions to the core Prolog engine. This is

accomplished by implementing a library class, which is loaded at runtime. The set of methods

in the library provide the custom functionality. Methods with no return value are called

directives in Prolog. Methods that return a boolean value are predicates, and all other

methods correspond to functors.

Aggregation over the audit log. Aggregation over the audit log is an important feature

for determining the exposure of a user. The audit log maintains a record of all access requests

29

for a given user, in addition to the time, location, and result of the request. One important

metric by which exposure can be quantified is the frequency of access requests. The frequency

of requests can be estimated by sampling the number of requests that have occurred within

a certain time interval. PlexC provides a set of custom functors that scan the audit log and

return the number of access requests that have occurred within a specified time frame. The

function accessCount/1(duration) iterates over the audit log table, counting the number

of access requests that have happened within the given duration until the present time. For

example, accessCount(‘‘2 days’’) returns the total number of successful access requests

that have occurred in the past 48 hours up to the present time. This allows a users to create

policies that limit the rate of requests. The function accessCount/2(issuer, duration) is

similar, except it only considers access requests that have originated from the specified issuer.

This allows a user to create policies that limit the rate of requests from certain individuals.

Remote queries. PlexC provides a feature called remote queries, which allows rules from

one user’s policy to refer to the policy of another user. This behavior enables a number of

important idioms, such as delegation of authority, quid-pro-quo policies, and trust negoti-

ation. Remote queries are implemented with a user-defined predicate, remote/3(issuer,

target, term). Remote takes 3 arguments: the username of the current user, the username

of the remote user, and the remote term to query.

For example, Alices policy might allow access to any friend of Bob:

canAccess(X) :- remote(alice, bob, friend(X)).

When Charlie requests access to Alice’s information, the PlexC engine invokes the the

remote predicate with the following arguments:

remote(alice,bob,friend(charlie))

The remote predicate first triggers a remote query to Bob’s knowledge base to see if Bob

allows Alice to issue remote queries on his knowledge base. This intermediate query has the

following form:

30

canQuery(alice, friend(charlie).

If Bob’s knowledge base does not contain this fact, then the remote query fails. Other-

wise, the remote query continues, and if Bob’s policy contains the fact friend(charlie),

then the remote query succeeds, and charlie is granted access by Alice.

State modification. In addition to the audit log, PlexC provides a table that user policies

can read, write, and modify additional authorization state information. PlexC custom several

predicates for this purpose. insertState/2(target, data) allows the policy owner to store

arbitrary string data about a given specified user (target). testState/2(target, data)

returns true if a pairing between the specified target and data exists. Finally

removeState/2(target, data) allows the user to remove the state associated with the

specified target.

Request Notifications. PlexC provides a predicate called notify/1(requester) which

allows the policy owner to mandate the receipt of an email or text message notification

upon successful evaluation of the rule. The single argument specifies a username to include

in the notification message. For example, the rule canAccess(alice, X) :- friend(X),

notify(X). will give X access to Alice’s location if Alice says that X is a friend. Furthermore,

it will send Alice a notification (e.g. email, text message) that X has successfully received

access.

31

6.0 EVALUATION

In this section we give an informal evaluation of the expressiveness of PlexC . First, we show

how the language design of PlexC gives it the expressivity needed to satisfy the language

requirements outlined in Section 2.3. We then show how a variety of common policy idioms

can be represented in PlexC , and we use PlexC to encode some of the more interesting

policies gathered from free-response questions in the study conducted in [24]. Finally we

conduct a preliminary performance evaluation by running microbenchmarks on a prototype

implementation of PlexC .

6.1 COVERAGE OF LANGUAGE REQUIREMENTS

In Section 2.3 we enumerated several features of policy languages that are important for

location sharing systems. Here we list examples that demonstrate how PlexC is expressive

enough to support these requirements.

• Groups and Roles: Example 4.2.2 demonstrates how to define roles and limit access

based on group membership. Policy authors can create different roles and assign member-

ship relations using the natural Datalog syntax.

• Delegation: Example 4.2.3 shows how delegation is possible in PlexC . Delegation requires

the evaluation of a relation whose records are not contained in the local KB.

• Disclosure Negotiation: Example 4.2.4 relies upon the evaluation of remote predicates

to exchange information between the policy author and the requester until the conditions

for disclosure are satisfied.

32

• Side Effects: Example 4.2.1 shows how PlexC draws upon existing syntax [3, 9] to specify

changes to the authorization state during the evaluation of rules.

• Disclosure Levels: The amount of detail in a disclosure can be controlled by specifying

the appropriate resource identifier. For instance, Example 4.2.7 shows how the granularity

of information to be disclosed can be adjusted.

• Time and Location rules: Time-based rules can be expressed using the built-in con-

stants that represent the current time and day as shown in Example 4.2.8 and Example

4.2.9, respectively.

• Aggregate Operations: PlexC provides support for aggregation over the system audit

log via special predicates. This functionality can be seen in Example 4.2.6.

• Polymorphism: In Example 4.2.7 we encode a policy whose behavior is dependent on

the target user’s current level of over-exposure.

Some of these features are still under development and have not been included in the pro-

totype implementation of PlexC . These include disclosure-levels, and user-defined functions

for exposure polymorphism. We plan on developing these features in future implementations

of the PlexC system, but we do not expect them to have a large impact on the performance

characteristics of the system.

6.2 ENCODING FREE-FORM POLICIES

Here we further demonstrate the expressiveness and utility of PlexC by encoding some

interesting and complex policies taken from participant free responses gathered during the

study detailed by Patil et al. [24]. In this study, participants were first asked to rate and

rank the importance of different location sharing factors, such as the identity of the recipient,

the time of the day, and the current location. Next, participants were asked to write 5 to 10

location sharing policies using natural English language. We gave participants an example

policies from the medical domain to avoid priming them.

The general quality of these free-form policies was lower than expected. Many policies

were vague and consisted of incomplete sentences or single words, such as “FRIENDS”

33

and “BOSS.” Other policies were more detailed but difficult or impossible to enforce. For

instance, some participants wanted to prohibit disclosing their location to people with bad

intentions.

Nonetheless, we were able to extract a large amount of useful information from the

responses. Three independent coders reviewed the responses and classified the types of

factors that were present. For example, the single word responses mentioned above imply

that the identity or role of the recipient is important when sharing location. In addition

to identifying important location sharing factors, we discovered additional policy idioms

that were unexpectedly present in many responses. For example, a number of participants

expressed the desire for complete mediation of all requests for their location. For example,

one such policy was: Keep my location private and ask every time someone wants to know

my location. This policy would have the following implementation in PlexC :

Example 6.2.1

canAccess(X) :- prompt(X).

Another common response was that users wanted to be notified after every location dis-

closure, but did not necessarily need to know who had accessed their location. For example,

one user stated “Any time anyone views my location, I must get a notification.” This rule is

similar to the previous example, but does not require direct interaction from the user. One

interpretation of this policy is that access should be allowed to everyone as long as there is

a notification:
Example 6.2.2

canAccess(X) :- notify(X).

Another interpretation might be to modify any existing rules by adding a notification

upon success, in which case the notify() predicate can be appended to the existing rules:

Example 6.2.3

canAccess(X) :- coworker(X), notify(X).

Location-based rules were also among the more unique responses. For example, one

participant wrote, “Allow users to see when I am within a particular radius of them.” An

interesting implication of this is that the user wants to share her location only when it could

possibly be of use to the recipient. This would be implemented in the following way:

34

Example 6.2.4

canAccess(X) :- within(location(X), location, "1km").

It is interesting to note that, by contrast, the complement of the above rule—i.e., allow

access only when outside of a given radius—could be used to avoid stalkers or other unwanted

attention.

Many participants also indicated that they would not want to share their location for

social engagement purposes. However, many of these otherwise unwilling users of location-

based services indicated that they would share their location during emergency situations,

e.g.: I would only want someone to know my physical location in an emergency situation. This

introduces the difficult problem of determining when the user is experiencing an emergency.

However, one response provided some intuition: “only if I’m missing for 24+ hours”. This

policy could be approximated in the following way:

Example 6.2.5

canAccess(X) :- member(X, "emergency personnel"), accessCount("1 day") = 0.

By this encoding access is granted only if the requester belongs to the “emergency” role,

and the audit log shows that nobody has received the user’s location in the past 24 hours.

The members of the emergency role could be defined by the policy author, or that duty

could be delegated to some trusted agency.

6.3 PRELIMINARY PERFORMANCE EVALUATION

Real-world Policies:. Now that we have demonstrated that PlexC can encode policies

obtained from user studies, we examine the cost of evaluating these policies. It is important

to test the performance of evaluating policies that are typical for the average user. As

indicated by the user study responses, users will often have a set of small, diverse rules

for different social relations (e.g. family, friend, coworker) or different environments (e.g.

work, home, gym). To craft so called typical policies, we incorporate elements from the free

form responses of our user studies. For example, policies from the user study by Patil et

35

al. predominantly exhibited simple role-based rules for family and friends, in addition to

role and time-based rules for coworkers [24].

In Policy 1, we present a complex policy in which the author, Alice, has specified 3

rules. The first rule states that any family member may access have access to her location.

In addition to family members, Alice also allows any of Bob’s friends to see her location

no more than 5 times per day. This is captured in the second rule. Finally, in the third

rule, Alice allows any employee to view her location no more than 4 times per day and only

during weekdays between 9am to 5pm. Alice trusts her boss, Diana, to determine who is an

employee.

Policy 1: Alice’s Policy

family(sister).

canAccess(X) :- family(X).

canAccess(X) :- remote(alice,bob,friend(X)),

accessCount(X,"1 day") <= 5.

canAccess(X) :- remote(alice,diana,employee(X)),

weekday,

hourBetween(9,17),

accessCount(X, "1 day") < 5.

Policy 2 shows Bob’s complete policy. It states that Charlie is a friend and that Alice

may query for this fact.

Policy 2: Bob’s Policy

friend(charlie).

canQuery(alice,friend(charlie)).

Finally, Policy 3 shows the complete policy of Alice’s boss, Diana. It states that Eve and

Alice are employees and that Alice may query for Eve’s membership to the employee role.

The end result is that access to family members such as “sister” is restricted by a simple

role based policy, while access to friends is restricted by role membership as well as the

aggregate number of requests in the past day. Access to employees is governed by the most

36

Policy 3: Diana’s Policy

employee(alice).

employee(eve).

canQuery(alice,employee(eve)).

complex rule, which checks for role membership, the number of aggregate requests, as well

as the current time and day of the week. Therefore, this policy showcases some typical real

world policies that vary in complexity.

In Table 6.3 we present the average time to query this policy for each of the different

cases described above. The results show that the average query time is close to a millisecond.

sister 0.635 ms

charlie 1.630 ms

eve 2.087 ms

Table 2: real-world-test: Benchmark of real-world policy example.

In this section we describe the design of several microbenchmarks that demonstrate the

performance of PlexC as the user policies grow more complex along different dimensions.

Each of the microbenchmarks described below were executed on programatically generated

policies, and they showcase the time required to evaluate queries against these policies.

In each benchmark, we record summary statistics, including the mean, median, minimum,

maximum, standard deviation. Care is taken to exclude the initial run from each benchmark

due to warm-up costs. Benchmarks were performed on a commodity workstation running 32

bit GNU/Linux kernel version 2.6.38-13, with a 3.06GHz dual core processor with 4 gigabytes

of physical memory.

Local Chains:. First, we evaluate the performance of PlexC with respect to the number of

rules they contain. We refer to these policies as “local” because they do not contain reference

predicates defined by other users, and therefore evaluation of a policy can take place locally

within a single KB. Furthermore, these policies do not branch; their rules consist of chains

of delegation. We measure the time required to respond to a request after it has been

37

submitted. We expect a linear growth behavior, indicating that the the system scales well

with a growing policy size. This test was also useful because it provided a baseline against

which to compare remote query evaluation.

Figure 5(a) shows the results of the Local Chains benchmark. The number of rules in

the policy varies along the horizontal axis, and the vertical axis represents the evaluation

time in milliseconds. The figure shows the median of 1000 trials, and the error bars indicate

the location of the first and third quartiles. We observe that the time required to evaluate a

query grows linearly as the number of rules in the policy increase. In general, the query times

are limited to a few milliseconds, even with policies that have over a thousand rules, which

would not be representative for a typical user. This behavior is in line with our expectations.

The policies evaluated in this benchmark do not branch and they do not refer to rules in

remote KBs, therefore, there are no other sources of latency aside from the number of levels

of indirection that the tuProlog engine must evaluate.

Local Trees:. Next we examined the scalability of query evaluation with respect to local

policies whose rules contain more than one term in the body. Therefore, unlike the local

chains, these policies have a branching structure. We expect that the time required to

evaluate these policies grows exponentially with respect to the depth of policies, but we do

not expect to see these types of large branching rules in the access control policies of the

average user, as demonstrated by previous user studies [5, 24, 28].

Figure 5(b) shows the results of the Local Trees benchmark. Data was collected over

1000 runs. We tested policies with a branching factor of 2 and a maximum depth of 9, in

addition to policies with a branching factor of 3 and a maximum depth of 6. Note that a

binary tree of depth 9 has 256 leaves, and a ternary tree of depth 6 has 243 leaves. Both are

unrealistic for a typical user policy. The data points show the median value and the error

bars indicate the first and third quartiles. The figure demonstrates that the time required

to evaluate a query grows exponentially with the height of the tree. The query times of the

ternary tree grow more rapidly than those of the binary tree, as expected.

Figure 6 shows the evaluation time of queries with respect to the number of terms in the

policy. The line representing the binary branching policy is close to the line representing

the ternary branching policy. This is not surprising because the evaluation time primarily

38

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 200 400 600 800 1000 1200 1400 1600

E
v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

Chain Length

Evaluation Time (ms) vs Policy Chain Length

local chains

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7 8 9

E
v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

Tree Height

Evaluation Time (ms) vs Tree Height

binary
trinary

(b)

Figure 5: a) Evaluation time for local chaining policies. b) Evaluation time for local

branching policies.

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300

E
v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

Number of Terms

Evaluation Time (ms) vs Number of Terms

linear
binary
trinary

Figure 6: Evaluation time as a function of the number of terms.

39

depends on the number of terms that must be evaluated. However, the binary policy shows

a slower growth rate than the ternary policy, and the evaluation times for the linear chain

policy exhibit the slowest growth. This suggests that there may be a small performance

penalty for policies with large branching factors. A possible explanation for this observation

is that rules with more terms require more processing to combine the results of evaluating

each term.

Remote Chains:. Here we examine the scalability of evaluation with respect to the number

of remote queries in a policy. It is important to know the cost of remote queries because

they are likely to incur additional cost as a result of data transmission across networks,

organizations, or other physical or logical boundaries. In our benchmarks, these queries were

sent and received on the same machine, but they had to travel across the external system

API. To measure this, we record the time required to evaluate queries against policies that

contain remote predicates (which are references to another user’s policy). The expected

result is that remote queries should grow linearly, but it should be more expensive than local

chains.

Figure 7(a) shows the results of the Remote Chains benchmark, which was run for 1000

trials. The independent variable, on the horizontal axis, represents the length of policies

chains. The dependent variable, on the vertical axis, represents the evaluation time. Policies

lengths varied from 10 to 50. Again, the data points represent the median and the error bars

show the first and third quartiles.

Remote Trees. Like remote chains, we also examine the time complexity of policies that

both branch and make references to remote policies. The time requirements are expected to

grow exponentially with the policy size.

Figure 7(b) shows the results of the Remote Trees benchmark, which was run for 1000

trials. The policies in this test had a branching factor of 2, and their depth ranged from 1 to

4. The independent variable, on the horizontal axis, represents the depth of the tree. The

dependent variable, on the vertical axis, represents the evaluation time.

Aggregate Policies. It is important to understand the cost of policies that require

aggregation over a growing audit log. The audit log will grow over time as requests are

40

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5 10 15 20 25 30 35 40 45 50

E
v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

Chain Length

Evaluation Time (ms) vs Policy Chain Length

remote chains

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 0 0.5 1 1.5 2 2.5 3 3.5 4

E
v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

Tree Height

Evaluation Time (ms) vs Tree Height

remote trees

(b)

Figure 7: a) Evaluation time for remote chaining policies. b) Evaluation time for remote

branching policies.

received handled. In this microbenchmark, we measure the execution time of requests against

policies that are based on frequency limiting rules (rules that require iterating over the audit

log).

Figure 8(a) shows the results of the aggregate benchmark. This test was designed to

measure the time required to evaluate the scalability of the audit log, which grows as access

requests are processed. In this benchmark, the audit log is initially empty, and it is filled

as mock requests are issued. When the audit log size reaches a power of 2, 1000 time

measurement samples are taken. In this benchmark a query requires an entire scan of the all

records in the database. The process continues until the audit log reaches a maximum size of

220 records. The figure shows the average query time along side the median query time. The

average query time shows a slow linear growth curve, as expected. Yet, the median query

time shows a less pronounced growth rate, indicating that most of the queries are fast.

In Figure 8(b) we show the results of a performance profile of the audit log. We recorded

the query times of over 2 thousand consecutive aggregate queries. Each bar in the figure

represents the time for a single query. For the given table size, query times require less than

2 milliseconds. Like Figure 8(a), we notice a small increase in query times as the database

grows. However, this test also reveals several outliers that take between 4 to 8 milliseconds.

41

 0

 50

 100

 150

 200

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06

E
v
a
lu

a
ti

o
n
 t

im
e
 (

m
s)

Audit Log Records

Evaluation Time (ms) vs Number of Audit Log Records

median
avg

(a)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 500 1000 1500 2000 2500

Q
u
e
ry

 t
im

e
 (

m
s)

Audit Log Records

Query time (ms) vs Number of Audit Log Records

(b)

Figure 8: a) Evaluation time for aggregate queries. b) Audit log query time trace.

After these spikes, the query times temporarily decrease. One explanation for these outliers

would be the various garbage collection, and housekeeping operations underway in the Java

Virtual Machine and the database management system.

42

7.0 DISCUSSION AND FUTURE WORK

7.1 BENCHMARK RESULTS

Results of the microbenchmarks show that the time required to evaluate queries grows in

proportion to the number of terms that must be evaluated in policy rules. So, for non-

branching policies, the evaluation time is linear with respect to the number of rules. We

also measured the cost of evaluating queries against policies with more complex branching

rules, which contain more than one term to be satisfied in the body. In these tests, the

evaluation time grows exponentially with respect to the number of levels in the policy-tree.

This behavior is in line with our expectations.

These microbenchmarks are promising because they test the performance of PlexC against

policies that are expected to be significantly more complex than the policy of a typical user.

Even with policies that have over one thousand rules, we observe that query times are limited

to a few milliseconds. Furthermore, for branching policies, we observe that the query times

tend to ramp up after about 4 levels of delegation in the policy, whereas typical user policies

such as “allow friends of friends to see my location” only use one level of delegation.

Much like the local policy chains, Figure 7(a) demonstrates that the time required to

evaluate non-branching remote policy chains is still proportional to the number of links in

the chain. Yet, it also shows that there is an added cost due to remote procedure calls

that are required when traversing knowledge bases. A similar trend can be seen in Figure

7(b), but in both cases, the time required to evaluate these remote policies does not exceed

a few milliseconds. Furthermore these benchmarks are run against policies that are more

complex than we would expect a typical user to employ, based on the typical policies that

were collected in user studies [24].

43

The results of the aggregate evaluation shown in Figure 8(a) suggest that aggregate

queries scale well even for a large number of audit log records in the database. Finally, the

design and evaluation of a real-world policy shown in Table 6.3 support our expectations

that query time performance will not be a concern for users of PlexC .

7.2 VALIDATION OF USER STUDIES

The design of PlexC is motivated by the collection of recent user studies described in Sec-

tion 2.2. However, these studies share a common limitation: because these studies are based

on user surveys, they reveal only the perceived preferences and needs of participants in an

artificial environment. In other words, although the participants in these studies are likely

to have given truthful answers to the surveys, there is a chance that they would behave

differently in a real-world scenario. While it is not possible to completely account for all

sources of response bias in a lab setting, a field study of a fully functional system would

be able to mitigate these effects and support or challenge the findings upon which PlexC is

based.

7.3 FUTURE WORK

Implementation. We have developed a prototype implementation of PlexC , and we are

currently integrating it as part of a larger location-sharing application. We have already

implemented several major components of the system, including a mobile application to

track current location and view the locations of others, a web interface for managing policies

and carrying out more complex queries, and a server application to store data and manage

social relations. PlexC will be used as the fundamental access control component to manage

the information flow between the other system components. We plan to continue using this

testbed to better understand the utility of PlexC , as well as to explore the system design

trade-offs present in this space.

44

Other implementation tasks also deserve further investigation. For example, the study

conducted by Biehl et al [5]. revealed that participants were concerned with the storage, for-

mat, and and retention policy of their private information. To provide users with ownership

of their data, we envision PlexC as a component of a distributed network that is capable of

running on a user’s mobile device.

Usability of Policy Creation. PlexC allows users to create concise policies for expo-

sure management, and it inherits many desirable traits from Datalog (e.g., unambiguous

semantics and tractable evaluation). However, we do not expect the average user to write

rules in PlexC directly. PlexC was developed, instead, to represent a formal semantics for

exposure-aware policies. While it is possible to write PlexC policies directly, we envision

that most users will interact with their policies via some form of structured policy editor.

At the other end of the spectrum, the user study conducted by Patil et al. [24] demon-

strated that participants had difficulty expressing coherent policies in free-form text. While

expressing disclosure rules in natural language may certainly be easier for the average user,

a large number of policies were ambiguous and unenforceable. We believe that a form-based

rule editor would simplify the creation of PlexC rules that are easy for users to understand,

while still taking advantage of the power of PlexC . However, we predict that a user-friendly

rule editor might, as a consequence, restrict the flexibility and expressive power of the lan-

guage. Therefore, striking a good balance between usability and expressive power will be an

interesting research challenge.

45

8.0 SUMMARY

In this thesis we address the development of PlexC : a policy language for exposure control.

The concept of exposure denotes the extent to which an individual’s personal data is shared,

and addresses the individual’s resulting concern for privacy. Given the complexity of this

design space, we first articulate requirements for policy languages for exposure control by

analyzing the findings of several recent survey studies addressing various facets of the ex-

posure problem. Not surprisingly, existing access control policy languages are shown to be

insufficient for meeting the exposure control needs voiced by participants in these studies.

We present PlexC as a solution to meet the needs of these participants. After describing

the details of PlexC , we present a prototype implementation and perform an initial per-

formance evaluation. We show that it is both suitable for meeting the needs of users in

modern context-sharing systems, as well as capable of encoding a variety of historically use-

ful policy idioms. Although PlexC was derived by examining surveys of users’ perceived

exposure-control needs, further evaluation work is still required. In particular our team

plans to explore the development of usable policy-management interfaces and user studies

of PlexC -based contextual sharing systems.

Acknowledgments: This research was supported in part by the National Science Foun-

dation under awards CCF–0916015 and CNS–1017229.

46

9.0 BIBLIOGRAPHY

[1] Michael Backes, Matteo Maffei, and Kim Pecina. A security api for distributed social

networks. In NDSS, February 2011.

[2] Moritz Y. Becker, Cedric Fournet, and Andrew D. Gordon. SecPAL: Design and seman-

tics of a decentralized authorization language. Journal of Computer Security, 2009.

[3] Moritz Y. Becker and Sebastian Nanz. A Logic for State-Modifying Authorization

Policies. ACM TISSEC, 13:20:1–20:28, July 2010.

[4] Moritz Y. Becker and Peter Sewell. Cassandra: Distributed Access Control Policies with

Tunable Expressiveness. In POLICY, pages 159–168, June 2004.

[5] Jacob T. Biehl, Eleanor Rieffel, and Adam J. Lee. When Privacy and Utility are in

Harmony: Towards Better Design of Presence Technologies. Personal Ubiquitous Com-

puting, in press, February 2012.

[6] Nick Bilton. Burglars Said to Have Picked Houses Based on Facebook Up-

dates. http://bits.blogs.nytimes.com/2010/09/12/burglars-picked-houses-based-on-

facebook-updates/, 2010.

[7] Matt Blaze, Joan Feigenbaum, and Angelos D. Keromytis. KeyNote: Trust Management

for Public-Key Infrastructures. In Infrastructures (Position Paper). LNCS 1550, pages

59–63, 1998.

[8] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized Trust Management. In In

47

Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages 164–173, May

1996.

[9] Anthony J. Bonner. Transaction Datalog: a Compositional Language for Transaction

Programming. In In Proceedings of the International Workshop on Database Program-

ming Languages, 1997.

[10] S. Ceri, G. Gottlob, and L. Tanca. What you always wanted to know about datalog

(and never dared to ask). IEEE TKDE, 1:146–166, March 1989.

[11] Nicodemos Damianou, Naranker Dulay, Emil Lupu, and Morris Sloman. The ponder

policy specification language. In POLICY, pages 18–38, 2001.

[12] Tina Dell’Armi, Wolfgang Faber, Giuseppe Ielpa, Nicola Leone, and Gerald Pfeifer. Ag-

gregate functions in disjunctive logic programming: semantics, complexity, and imple-

mentation in dlv. In Proceedings of the 18th international joint conference on Artificial

intelligence, pages 847–852, 2003.

[13] John DeTreville. Binder, a logic-based security language. In Proceedings of the IEEE

Symposium on Security and Privacy, pages 105–113, May 2002.

[14] Carl A. Gunter, David M. Liebovitz, and Bradley Malin. Experience-based access man-

agement: A life-cycle framework for identity and access management systems. IEEE

Security & Privacy Magazine, 9(5), September/October 2011.

[15] Adam J. Lee, Ting Yu, and Yann Le Gall. Effective trust management through a hybrid

logical and relational approach. In ASIACCS, April 2010.

[16] Jiangtao Li, Ninghui Li, and William H. Winsborough. Automated trust negotiation

using cryptographic credentials. In Proceedings of the 12th ACM conference on Com-

puter and communications security, CCS ’05, pages 46–57, New York, NY, USA, 2005.

ACM.

[17] Ninghui Li and John C. Mitchell. RT: A role-based trust-management framework. In

48

Proceedings of the DARPA Information Survivability Conference and Exposition (DIS-

CEX III), pages 201–212, April 2003.

[18] Locaccino. http://locaccino.org/.

[19] Emiliano Miluzzo, Nicholas D. Lane, Kristóf Fodor, Ronald Peterson, Hong Lu, Mirco

Musolesi, Shane B. Eisenman, Xiao Zheng, and Andrew T. Campbell. Sensing meets

mobile social networks: the design, implementation and evaluation of the CenceMe

application. In SenSys, pages 337–350, 2008.

[20] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The magic of

duplicates and aggregates. In VLDB, pages 264–277, 1990.

[21] Lars E. Olson, Carl A. Gunter, and P. Madhusudan. A formal framework for reflective

database access control policies. In CCS, pages 289–298, 2008.

[22] Jaehong Park and Ravi Sandhu. Towards usage control models: beyond traditional

access control. In SACMAT, pages 57–64, 2002.

[23] Jaehong Park and Ravi Sandhu. The uconabc usage control model. ACM TISSEC,

7(1):128–174, February 2004.

[24] Sameer Patil, Yann Le Gall, Adam J. Lee, and Apu Kapadia. My Privacy Policy:

Exploring End-user Specification of Freeform Location Access Rules. In Proceedings of

the Workshop on Usable Security (USEC), March 2012.

[25] Sameer Patil, Greg Norcie, Apu Kapadia, and Adam J. Lee. Reasons, Rewards, Regrets:

Privacy Considerations in Location Sharing as an Interactive Practice. In SOUPS, July

2012.

[26] Norman Sadeh, Jason Hong, Lorrie Cranor, Ian Fette, Patrick Kelley, Madhu Prabaker,

and Jinghai Rao. Understanding and Capturing People’s Privacy Policies in a Mo-

bile Social Networking Application. Personal and Ubiquitous Computing, 13:401–412,

August 2009.

49

http://locaccino.org/

[27] Ravi Sandhu, Edward J. Coyne, Hal L. Feinstein, and Charles E. Youman. Role-based

access control models. IEEE Computer, 29(2):38–47, February 1996.

[28] Roman Schlegel, Apu Kapadia, and Adam J. Lee. Eyeing your Exposure: Quantifying

and Controlling Information Sharing for Improved Privacy. In SOUPS, July 2011.

[29] Janice Y. Tsai, Patrick Kelley, Paul Drielsma, Lorrie Faith Cranor, Jason Hong, and

Norman Sadeh. Who’s viewed you?: the impact of feedback in a mobile location-sharing

application. In ACM CHI, pages 2003–2012, 2009.

[30] Walt Yao, Ken Moody, and Jean Bacon. A Model of OASIS Role-Based Access Control

and its Support for Active Security. In SACMAT, pages 171–181, 2001.

50

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Comparison of language features.

	LIST OF FIGURES
	1. The exposure control problem.
	2. The exposure control loop.
	3. The integrated system model.
	4. PlexC system components.
	5. a) Evaluation time for local chaining policies. b) Evaluation time for local branching policies.
	(a).
	(b).
	6. Evaluation time as a function of the number of terms.
	7. a) Evaluation time for remote chaining policies. b) Evaluation time for remote branching policies.
	(a).
	(b).
	8. a) Evaluation time for aggregate queries. b) Audit log query time trace.
	(a).
	(b).

	1.0 INTRODUCTION
	2.0 BACKGROUND AND REQUIREMENTS
	2.1 The exposure problem
	2.2 Recent Studies
	2.3 Language Requirements

	3.0 RELATED WORK
	3.1 Traditional Access Control
	3.2 Logic and Trust Management
	3.3 Deployed Location Sharing Systems
	3.4 Discussion

	4.0 PLEXC: SYSTEM AND SYNTAX
	4.1 Motivation for Declarative Logic Programming
	4.2 PlexC
	4.3 Rule Evaluation

	5.0 IMPLEMENTATION
	5.1 Tools and Technology
	5.2 System Design
	5.3 Language Features

	6.0 EVALUATION
	6.1 Coverage of Language Requirements
	6.2 Encoding Free-form Policies
	6.3 Preliminary Performance Evaluation

	7.0 DISCUSSION AND FUTURE WORK
	7.1 Benchmark Results
	7.2 Validation of User Studies
	7.3 Future Work

	8.0 SUMMARY
	9.0 BIBLIOGRAPHY

