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One third of the world’s population is infected with Mycobacterium tuberculosis (Mtb). 

Although most infected people remain asymptomatic, they have a 10% lifetime risk of 

developing active tuberculosis (TB). Thus, the current challenge is to identify immune 

parameters that distinguish individuals with latent TB from those with active TB. Using human 

and experimental models of Mtb infection, we show that organized ectopic lymphoid structures 

containing CXCR5
+
 T cells are found in Mtb-infected lungs. In addition, we show that in 

experimental Mtb infection models, the presence of CXCR5
+
 T cells inside ectopic lymphoid 

structures are associated with immune control. Furthermore, in a mouse model of Mtb infection, 

we show that activated CD4
+
 CXCR5

+
 T cells accumulate in Mtb-infected lungs, and produce 

proinflammatory cytokines. Absence of CXCR5 in mice results in increased susceptibility to TB 

due to defective T cell localization within the lung parenchyma. We show that CXCR5 

expression on T cells mediates correct T cell localization within TB granulomas, efficient 

macrophage activation, promoting protection against Mtb infection and facilitating lymphoid 

follicle formation. These data show a novel role for CD4
+ 

CXCR5
+
 T cells in protective 

immunity against TB and highlight their potential use for future TB vaccine design and therapy. 
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1.0  INTRODUCTION 

1.1 MYCOBACTERIUM TUBERCULOSIS  

Twenty years ago, the World Health Organization declared TB a global health emergency. The 

disease, caused by the bacterium Mtb, most commonly affects the lungs. Transmission occurs 

from person to person through aerosol droplets generated through the cough of someone with an 

active respiratory Mtb infection. Even though a TB vaccine exists and an effective drug regimen 

is available, TB still ranks as the second leading cause of death from an infectious disease in the 

world, only behind Human Immunodeficiency Virus (HIV). The ever increasing global health 

burden of TB can be contributed by a number of factors including: 1) the emergence and growth 

of multi-drug resistant (MDR) and extensively drug resistant (XDR) strains of Mtb; 2) social 

inequality and widespread poverty; and 3) the increasing acquired immunodeficiency syndrome 

(AIDS) epidemic. Despite this dismal outlook, hope lies in the growing body of immunological 

knowledge and new scientific tools at our fingertips in providing novel breakthroughs in the 

treatment and prevention of TB. 

1.1.1 Disease Outcomes 

The clinical manifestation of TB is diverse and depends on a number of host factors and host-

microbe interactions 
2
. Following initial exposure to Mtb, several disease outcomes are possible: 
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active disease, latent disease, and reactivated disease (Figure 1) 
2
. Although active TB and 

reactivated TB place the largest strain on health care systems, only a small proportion of those 

infected actually develop symptoms. Approximately 5-10% of the population will develop a 

primary infection with clinical symptoms of active disease. Symptoms typically develop within 2 

years of the initial infection and most commonly include coughing, fatigue, fever, and chest pain 

3
. The disease primarily affects the lungs, the initial site of infection, but the infection can spread 

to other organs such as the spleen, lymph nodes, liver, joints, peritoneum, kidneys, and central 

nervous system causing widespread symptoms and damage. Patients with active disease are 

typically placed on a combination drug therapy including isoniazid, rifampin, pyrazinamide, and 

ethambutal for 6 months or longer 
4
. Incomplete drug treatment for active disease contributes to 

the growing MDR and XDR TB cases worldwide and has prompted the implementation of the 

Figure 1: The progression of Mtb infection in humans. 

Following aerosol exposure to Mtb, approximately 5% of individuals develop active disease within the first two years. 

Others develop latent infection, which 90% maintain for life. However, 5-10% of individuals reactivate TB. The 

immune conditions and cellular architecture required for maintaining immune control during latent infection require 

further investigation. Figure modified from previous work 
1
. 
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Directly Observed Therapy, Short Course (DOTS) regimen 
4
.  

Active TB may be the primary cause of TB hospitalizations, but latent TB is the largest 

reservoir of the tubercule bacilli. The majority of cases, approximately 90%, of individuals 

infected with Mtb are able to mount a protective cell-mediated immune response that inhibits the 

growth of the mycobacteria without complete eradication 
5
. This is referred to as a latent TB 

infection. These patients are characterized as having a positive skin reaction to tuberculin, but 

having no observable symptoms of pulmonary or extrapulmonary TB 
5
. In contrast to active  

disease, latent Mtb-infected individuals are not considered infectious. 

If latent TB were controlled throughout the life of the person, it would pose no eminent 

threat to the host or close contacts. However, 10% of latently infected individuals reactivate and 

develop post-primary active TB 
4
. Factors such as age, immune status, malnutrition, smoking and 

coexisting diseases are known to increase risk of reactivation, but detection methods to 

determine those that will and those who will not reactivate are ill defined 
4
. It is becoming clear 

that latency encompasses a wide range of conditions and by determining the molecular and 

cellular differences between active and latent TB, it may be possible to identify patients who are 

at risk for reactivation.  

1.1.2 The TB Granuloma 

The hallmark characteristic of TB is the granuloma where it is easily identified on chest x-rays in 

activated, latent, and reactivated infection. At the most rudimentary level, the granuloma is an 

organized immune cell aggregate composed of infected macrophages at the center surrounded by 

a dense leukocytic wall 
6
. The granuloma is thought to be a protective defense to concentrate the 

immune response for effective bacterial killing and to prevent mycobacterial spreading 
7
. 
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However, the observation that granulomas develop in both latent and active infection suggests 

that formation is inadequate for protection. Further, in active infection, the caseous core can 

foster an environment where extracellular bacteria can exist and where increased cell death in the 

granuloma can act as a nutritional source for replicating bacteria 
8
. The granuloma can also act as 

an infectious source to seed new granulomas within the lung 
9
. Thus, a very delicate and dynamic 

balance between Mtb replication and the immune response must be maintained. By identifying 

the cellular differences and biomarkers characteristic of latent and active granulomas, we may 

further understand what specific granulomatic structure sustains long-term bacterial control. 

In humans, a spectrum of granulomas are observed in TB, but the classic granuloma is 

caseous, meaning it has a necrotic core. Mtb-infected macrophages are clustered at the center 

where they can undergo a number of changes including the fusion into multinucleated giant cells 

and/or differentiation into foam cells 
6, 10

. Macrophages constitute the majority of the cells within 

the granuloma. As immune cells infiltrate the lung, a leukocyte cuff forms containing CD4
+ 

T 

helper (Th) cells, CD8
+ 

T cells, natural killer (NK) cells, dendritic cells (DCs), neutrophils, and 

fibroblasts. B cells form distinct lymphocytic aggregates and epithelial cells are also known to 

contribute to the formation of this complex and dynamic structure. The increased number of 

immune cells and Mtb-infected macrophage cell death form the caseum within the granuloma, 

which increases in size as the infection progresses 
7
. Cytokine production is primarily localized 

in the periphery of the granuloma where it is thought that the majority of cross-talk occurs rather 

than in the core 
11-12

. The receptors required for localization of these critical immune cells within 

the granuloma is a significant area of investigation. 
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1.1.3 Animal Models 

TB is a disease that only occurs naturally in humans. However, studying human TB can be 

challenging with considerable variation in age of the subject, duration of infection, bacterial 

strains, and genetic differences. Not to mention, patients with latent and active infection and 

those receiving antibiotic treatment further contribute to disease diversity. Fortunately, TB 

research has several animal models for studying infection, although many aspects should be 

considered when selecting an appropriate animal model. The primary animal models used for 

Mtb infection research include the non-human primate (NHP), the mouse, the guinea pig, and the 

rabbit, with the mouse considered the most commonly used animal model. An important issue 

with other regards to TB research is the need for a biosafety level (BSL)- 3 facility. As such, 

several other mycobacteria animal models have developed, such as the zebrafish model infected 

with M. marinum, that are suitable for BSL-2 work. 

Historically, the guinea pig was the first model used by Robert Koch, the original pioneer 

of TB research, when he infected a guinea pig with infectious brain or lung tissue from humans 

who died of TB 
13

. The lung pathology of a guinea pig is very similar to humans with large 

mononuclear cells that undergo necrosis forming caseous granulomas. However, guinea pigs are 

highly susceptible to infection and limited reagents are available for study 
14

. Further, rabbits 

develop similar lung pathology as humans with more innate resistance to TB, however, similar 

limitations as the guinea pig also exist with this model 
15-16

.  Recently, zebrafish have become an 

excellent model for real-time visualization of granuloma development using M. marinum as 

these fish embryos are transparent 
17

. Although caseous granulomas develop in the zebrafish, 

lesions contain few lymphocytes suggesting innate immunity may play a larger role in 
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granuloma formation in zebrafish 
18

. Despite limitations to this model, new insights into host 

immunity are obtainable with the ease of new technology and genetics available. 

The most exploited model in TB is the mouse model 
19

. It is both economical and easily 

manipulated, with a vast amount of immunological resources available. Various routes of 

infection including intravenous (i.v.) and the low dose aerosol model have been utilized for Mtb 

infection. Intravenous delivery of Mtb is advantageous in that it produces a considerable host 

immune response with a systemic infection. However, the immune response to systemic 

infection differs substantially from an infection through a natural aerosol route where fewer 

bacteria are deposited directly in the lung. Chiefly, a considerable amount of bacteria is required 

for i.v. infection to infect the lung as bacteria circulate and reside in the spleen and liver 
20

.  

Further, bacteria are also deposited within the parenchyma of the lung rather than the alveoli as 

seen in an aerosol infection. The development of specialized equipment to deliver ~100 colony 

forming units (cfu) of Mtb bacteria, which is considered a low dose of Mtb, has made the use of 

the aerosol model more convenient. Microscopic aerosol droplets are deposited in the lower lung 

closely mimicking a natural TB infection making it the most acceptable route of infection 
21-22

. 

Some limitations exist in the mouse model of tuberculosis namely differences in 

granuloma development and the inability to naturally develop latent TB. Mtb-infected mice 

develop a chronic infection that persists throughout the life of the mouse 
23

. Further, the 

granulomatic response, which begins to develop around day 21 post infection, does not progress 

to a necrotic phase, except in certain strains of mice 
24-25

. The murine granuloma starts with the 

accumulation of macrophages followed by infiltration of lymphocytes and the organization of 

distinct CD4
+
 T cells aggregates and interspersed CD8

+
 T cells throughout the lung. Tight 

clusters of B cells can also be observed in the granuloma 
24

. Human granulomas are more 
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structured in comparison to the mouse granuloma, however, great insights into granuloma 

development have resulted from murine TB research. The versatility of the mouse model with its 

capacity for genetic manipulation and vast immunological resources make it an ideal model for 

determining protective immune mechanisms against Mtb. 

Although the mouse model has contributed immensely to our understanding of TB, it 

does not reproduce classical latency. This deficiency can be overcome with the use of NHPs, 

which develop various types of pathological lesions and outcomes similar to human infection 
26

. 

Mtb granulomas contain a classical structure of multinucleated giant cells and caseation with 

liquefacation and cavity formation occurring in the NHP lung with active TB. Cost, containment 

requirements, and ethical concerns for NHP research has limited the use of this model in TB, but 

it still remains our greatest resource in studying latent TB and for examining TB/AIDS co-

infection and reactivation 
26

. 

1.2 MTB HOST DEFENSE 

1.2.1 Initiation of Infection 

The first line of defense against aerosolized Mtb is the alveolar macrophage within the lung. 

Although crucial for eliciting an immune response, the macrophage is also used by the bacterium 

to evade immune recognition and destruction ensuring survival within the host. Several pattern 

recognition receptors (PRRs) are implicated in the internalization of Mtb, namely complement 

receptors (CR) 1, 3, and 4, CD14, the mannose receptor, scavenger receptors and the pulmonary 

surfactant protein (Sp-A) 
27-31

. Once inside the host cell, the maturation of the phagosome is a 
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relatively short process.  However Mtb arrests phagosome development and prevents lysosome 

fusion 
32

. The inability of the macrophage to proceed through this pathway is thought to be 

dependent upon the bacterial expression of surface manosylated lipoarabinamannam (ManLAM) 

and other Mtb lipids such as PIMs that prevents the acquisition of lysosomal hydrolases 
33-36

. The 

arrest of the phagosome provides an ideal environment for Mtb replication and evasion from the 

host that requires adaptive immunity to overcome. 

The development of adaptive immunity is dependent on the uptake of Mtb antigen by 

antigen presenting cells (APCs) mainly dendritic cells (DCs), but also macrophages and B cells. 

DCs, in addition to complement receptors and the mannose receptor, also express DC-SIGN 

(DC-specific intercellular adhesion molecule-3-grabbing nonintegrin), which interacts with Mtb 

surface carbohydrates for cellular uptake 
37-38

. In contrast to human macrophages, DCs prevent 

intracellular growth of Mtb and are able to upregulate activation markers following 

internalization through DC-SIGN and signaling through toll-like receptors (TLRs) 2, 4, and 9 
38-

41
.  Mtb-stimulated  DCs traffic to the lymph node following maturation and upregulation of the 

CC-chemokine receptor CCR7 where they present antigen to naïve T cells and produce    

proinflammatory cytokines initiating the T cell adaptive immune response. T cell priming occurs 

in the mouse model 8-10 days following challenge 
42-44

. Additionally, IL-12p40 is required to 

induce chemokine responsiveness of Mtb-exposed dendritic cells as IL-12p40 deficient DCs 

were unable to migrate from the periphery to secondary lymphoid organs (SLOs), but could be 

rescued with the addition of IL-12p40 homodimer 
45-46

. 

A major consequence of Mtb induced macrophage and DC activation is the production of 

proinflammatory cytokines and chemokines (Mtb cytokine and chemokine secretion will be 

discussed in depth in section 1.3 and 1.4, respectively) responsible for initiating immune cell 
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recruitment for granuloma formation and for shaping the adaptive immune response. In the 

mouse model, this cytokine and chemokine production can be detected in the lung starting at day 

15 post infection and coincides with cellular accumulation and control of the bacterium 
24

. 

Cytokines can induce activation of macrophages and killing of Mtb by driving production of 

reactive oxygen intermediates (ROIs) and inducible nitric oxide synthase (iNOS). It is clear, that 

Th1 skewing cytokines, namely interferon (IFN)- and tumor necrosis factor (TNF)- produced 

by other innate or adaptive immune cells in close proximity to Mtb-infected macrophages drive 

this process.  

1.2.2 CD4
+
 T Helper Cells  

It is well established that CD4
+
 T helper cells are critical in protection against Mtb in 

both mice and humans 
47

. Patients infected with HIV-1 are estimated to have a 30 times greater 

risk of developing tuberculosis. Mice deficient of CD4
+
 T cells succumb ~120 days post 

infection with increased neutophilic influx and reduced lymphocyte accumulation in the lung 
48

. 

Following Mtb infection, distinct activation profiles of DCs drive naïve T helper cells to become 

polarized into Th1, Th17, or T regulatory (Treg) phenotypes in the draining lymph node. These 

cells then migrate to the lung in response to Mtb-induced chemokines to elicit effector functions 

by day 15 post challenge in the mouse model 
49

. Th1 cells, which are driven by IL-12p70 

production and the expression of T-bet, are thought to be the primary cells responsible for 

bacterial control by IFNand TNFinduced macrophage activation 
50

. The arrival of antigen-

specific Th1 cells correlates with cessation of bacterial growth in the lungs of Mtb-infected mice 

51
. Th1 cells localized near Mtb-infected macrophages are essential for cross-talk and subsequent 
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activation and microbial killing in the lung 
52

. It remains undisputed that the CD4
+
 Th1 pathway 

is critical for Mtb protective immunity. 

Th17 differentiation is initiated by IL-6, IL-1, and TGF- production and requires IL-23 

for maintenance 
53-56

. In recent work, Th17 cells were found in the lung following infection with 

Mtb, however, the absence of IL-23/IL-17 did not result in increased susceptibility early in 

infection 
57

. IL-23KO mice had reduced inflammation within the lung, but similar bacterial 

numbers as control mice prior to day 100 post infection, suggesting  Th17 cells do not play a key 

role in early adaptive immunity 
57-58

. However, IL23KO mice had higher bacteria after 100 days 

indicating a role in chronic Mtb host defense. In contrast, Th17 cells are essential in generating 

protective memory responses in several vaccine models
59

. Thus, our expanding knowledge of 

Th17 cells in Mtb infection is rapidly evolving and will be beneficial in the design of an effective 

vaccine. 

Treg cells induced by IL-6 and TGF- cytokines and the expression of FoxP3 are critical 

in homeostatic regulation, but overproduction can lead to lack of infection control 
60

. Foxp3
+
 

Treg cells are found in the lung during Mtb infection and are specifically localized within the 

granuloma and peribronchial regions 
61

. Selective depletion of Foxp3
+
 cells in mixed bone 

marrow chimeric mice resulted in 10-fold less bacteria in the lungs of Mtb-infected mice 
61

. 

Further, adoptive transfer of antigen-specific Foxp3
+
 Treg cells prevented effector cell expansion 

and increased the bacterial burden in the lung suggesting that Tregs are primarily detrimental to 

the generation of a protective immune response in Mtb infection 
62

.   

The involvement of newly emerging cell subsets such as T follicular helper cells, Th22 

cells, and Th9 cells in Mtb infection remain to be defined. In addition, it is now understood that 

T helper cells may possess some degree of plasticity 
63

. The phenotypic flexibility of these 
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subsets in host defense against Mtb may be advantageous allowing the T helper cell to adapt to 

various immune environments as the infection progresses. It is becoming clear that 

multifunctional IFN
+
TNF

+
IL-2

+
 Th1 rather than single positive IFN

+
 Th1 cells correlate with 

better protective immune responses against Mtb 
64

. The plasticity of all CD4
+
 Th cell subsets is 

an important focus for future study in Mtb infection. 

1.2.3 CD8
+
 T cells 

It is generally accepted that CD4
+
 T cells are critical during Mtb infection, but evidence for 

CD8
+
 T cell involvement has been lacking. CD8-deficient mice are not more susceptible and 

have no defects in granuloma development, despite the presence of CD8
+
 T cells in peripheral 

lesions of the lung 
65-66

. Although, this early evidence shifted the primary focus to CD4
+
 T cells, 

further analysis suggests that CD8
+
 T cells may also be required for optimal defense against Mtb 

infection. During the chronic phase of infection, CD8-deficient mice were reported to have 

increased lymphocytic and neutophilic influx 
65

. In addition, antibody depletion studies suggest 

both CD8 and CD4 cells are needed during Mtb infection, although the role for CD4
+
 cells is 

more prominent in the murine model 
67

. In addition, adoptive transfer of immune CD8
+
 T cells 

reduced the bacteria burden within the lung of Mtb-infected mice 
20, 68

. In humans, Mtb specific 

CD8
+
 T cells were found to directly kill Mtb-infected macrophages through granulysin 

production 
69-70

. Additional evidence has shown that CD8
+
 T cells produce the proinflammatory 

cytokines IFN and TNFto further contribute to bacterial control 
71

. Thus, it is clear that CD8
+
 

T cells are involved in Mtb infection and interact with CD4
+
 T cells to contribute to the outcome 

of TB 
72

. 
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1.2.4 B cells 

The function of B cells and antibodies in TB remains an enigma. Although important for 

numerous microbial pathogens in protection and immunological memory, B cells, by themselves, 

are thought to confer little protection against TB 
73

. Historically, passive immune therapy was 

used to transfer humoral immunity with variable protective results, and was replaced by the 

advent of antibiotics as a superior treatment 
74

. Variability in passive immunity is likely 

contributed to differences in the preparation of antisera and treatment durations. Further, B cell 

deficiencies in both humans and mice fail to increase susceptibility to Mtb infection, questioning 

whether B cells markedly participate in Mtb immunity 
75-77

. However, B cell aggregates are a 

dominant structure in both human, NHP, and mouse Mtb-infected lungs and become more 

organized as the infection progresses 
11, 24, 78-79

. The absence of B cells in mice disrupts 

granuloma formation and increases pulmonary inflammation indicating B cells are required for 

maintenance of pulmonary host architecture and for retaining the host immune balance in the 

Mtb-infected lung 
77

. Many questions remain to be answered on the role of these structures in 

Mtb immunity and whether B cells play a greater role towards protection. 

1.3 CYTOKINES IN MTB INFECTION 

Resistance to Mtb is dependent upon cellular signals initiated by Mtb-specific lymphocytes to 

activate macrophage killing mechanisms. Experimental models have firmly established that these 

soluble factors, or cytokines, are responsible for the cell-to-cell communication instigated in 

inflammation. Cytokines are vital for a vast number of innate and adaptive immune responses in 
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TB for regulating not only macrophage activation, but inducing the differentiation of leukocytes, 

driving granuloma formation, and maintaining a balanced host microenvironment. In the mouse 

model of Mtb, induction of cytokine and effector molecules specific to the Th1 pathway, namely 

IL-12, IFN-, TNF-, and iNOS occurs between days 15-21 and coincides with T helper cell 

accumulation within the lung  
80

. The functions of these proteins in host resistance to Mtb are 

well documented in both the mouse model and Mtb-infected humans. 

1.3.1 Interleukin-12 

Mtb is a potent inducer of the multifunctional cytokine IL-12, which can be expressed as either a 

homodimer (IL-12p402) or a heterodimer composed of IL-12p40 and the IL-12p35 subunit (IL-

12p70) 
81

. In the mouse model, both IL-12p35 and IL-12p40 deficient mice are more susceptible 

to Mtb infection compared to wild type controls.  However, a deficiency in IL-12p40 is more 

detrimental to the host compared with IL-12p35 deficiency, suggesting a role for IL-12p40 

outside of IL12p70 expression 
50, 82

.  IL-12p40 is induced early in infection in response to TLR 

stimulation predominantly by macrophages and DCs and signals through the IL-12 receptor 

formed by the IL12R1 and 2 chains. Signaling through this receptor on DCs by the IL-12p40 

homodimer, activates the homing ability of Mtb-primed DCs for migration to secondary 

lymphoid organs 
45

. In the absence of IL-12p40, mice failed to generate activated CD4
+
 Th1 cells 

due to the inability of DCs to become responsive to homeostatic chemokines that drive migration 

from the lung to the draining lymph node (DLN) 
45

. Activation of DCs could be restored with 

treatment of IL-12p402, and IL-12p40 deficient mice can be partially rescued with administration 

of exogenous IL-12p402 
45, 82

.  Upon arrival of DCs to the DLN, IL-12p70 is instrumental in 

driving the differentiation of naïve T cells to a Th1 phenotype 
81

. Th1 cells migrate to the Mtb-
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infected lung where they are responsible for producing IFN and TNF proinflammatory 

cytokines. IL-12 is further required to maintain pulmonary Th1 effector function during chronic 

Mtb infection 
83

. The important role for IL-12 pathway is emphasized in human patients with 

Mendelian defects in IL12R1 and IL-12p40 who demonstrate increased susceptibility to 

mycobacterial infections 
84

. Recently, human dendritic cells producing IL-12 are demonstrated to 

also drive naïve T helper cell induction of a T follicular helper cell phenotype and CXCR5 

expression suggesting newer cell subsets may evolve under Mtb Th1 cytokine conditions 
85

. 

1.3.2 Interferon-

The importance of IFNin mycobacterial protection is clearly demonstrated by the severity and 

increased susceptibility to mycobacterial infections in individuals with defects in IFN signaling 

pathways 
86

. The major defined effect of IFNis the activation of macrophages by signaling 

through the IFNreceptor comprised of two subunits, R1 and R2. Activation stimulates 

antimicrobial expression of LRG47 and nitrogen and oxygen radical intermediates that can kill 

the intracellular pathogen 
87-88

. Recently, IFN has been linked to induction of autophagy known 

to reduce Mtb intracellular bacterial burden within phagocytes 
89

. However, macrophages are not 

the only cell acted upon by IFN. New evidence suggests that IFN is a powerful 

immunomodulator of non-hematopoietic cells, as bone marrow chimeric mice deficient of IFNR 

within lung epithelial and endothelial cells were unable to control chronic Mtb infection 
90

.  

During Mtb infection, numerous cell subtypes have been identified in both mice and 

humans that are capable of producing IFN namely CD4
+
 Th cells, CD8

+
 T cells and NK cells 

72, 

91
. As a result, it is often difficult to assess the major cell contributor of IFNas mice deficient in 
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one cell subset compensate production with another. However, IFN protection is a key function 

of CD4
+
 Th cells. In the Mtb-infected mouse, ~5% of pulmonary leukocytes are producing IFN 

without restimulation 
72

. Further analysis determined that ~90% of IFN producing cells were 

CD3
+
 T cells, of which ~65% were CD4

+
 T cells and ~35% were CD8

+
 T cells confirming that 

Th1 cells are significant producers of IFN during Mtb infection 
72

. However, adoptive transfer 

of antigen-specific IFN deficient CD4
+
 T cells into IFN-/- mice controlled Mtb infection 

compared with transferred wild type CD4
+
 T cells indicating other CD4-dependent Mtb 

protective mechanisms exist 
44

. In addition, a mouse lacking any component of the IFN 

signaling pathway, IFN, IFNR, and STAT1 remains one of the most susceptible genetically 

modified animals to date in Mtb infection with high bacterial burdens, large infiltration of 

polymorphonuclear neutrophils and extensive necrosis 
92-93

. Increased neutophils in mice 

deficient in IFNsignaling pathways is due to regulation of IL-17 by IFNas IL-17 is known to 

control neutrophil recruitment 
94

.  It is clear that IFN is essential to restrict bacterial replication 

and prevent fatal infection in Mtb-infected humans and mice.  

1.3.3 Tumor Necrosis Factor-

TNFis another potent proinflammatory cytokine in Mtb infection as definitely proven by 

multiple studies with genetically modified mice, soluble TNF receptors, and blocking antibodies 

95
. Likewise, patients with severe autoimmune disease are treated with immunosuppression 

therapy using TNFblockers that increase the risk of developing reactivated TB demonstrating a 

critical role for TNF in control of Mtb infection 
96-97

. TNF- can exist in both soluble form and 

membrane bound and is known to act through the trimeric receptors, TNFR1 and TNFR2 
95

. 



 16 

Mice deficient in TNF have an initial delay of cellular influx into the lung, where recruited T 

cells fail to colocalize with macrophages, and necrosis ensues 
98

. TNF-/- mice begin to 

succumb to infection ~28 days post infection following low dose, aerosol Mtb infection 
98

. 

Chronic Mtb-infected mice and NHPs that were TNF neutralized had increased tissue bacterial 

burden with fluid accumulation in the alveolar space 
99-100

. The heightened bacterial burden in 

TNF gene deficient mice is attributed to the bactericidal activity of TNFin activating 

macrophages that is synergistic with IFN


. In addition, TNF is important for chemokine 

production in macrophages and the subsequent recruitment and organization of immune cells 

into the granuloma 
98, 101

. In vitro assays have demonstrated that Mtb-infected murine 

macrophages neutralized with TNF have decreased levels of the chemokines CCR5, CXCL9, 

and CXCL10 
103

. Further, mice deficient in TNFexhibit disrupted granuloma formation in the 

lung, likely attributable to decreased chemokine production 
101

. Cells primarily responsible for 

TNF production in humans and experimental models include macrophages and antigen specific 

CD4
+
 T cells and CD8

+
 T cells 

71, 104-105
. It has further been described that a population of CD4

+
 

T cells are multifunctional and capable of producing both IFNand TNFand may play a role in 

Mtb host defense


. The contribution of TNFto Mtb infection is undisputable with functions 

in bacterial killing, cell survival, lymphocyte recruitment and granuloma formation. 

1.3.4 Nitric Oxide  

The production of reactive oxygen intermediates, reactive nitrogen intermediates, and LRG-47 

are  effective host defenses against infectious pathogens. NO is a signaling molecule synthesized 

when the guanidine nitrogen of L-arginine is oxidized by nitric oxide synthases (NOS), which 
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are either constitutively expressed (neuronal NOS and endothelial NOS) or induced (inducible 

NOS). Expression is driven by the production of proinflammatory cytokines TNFIFN, and 

IL-1, individually or synergistically 
107

. iNOS plays an essential role in  generating NO during 

Mtb infection and killing Mtb within infected macrophages in the mouse 
108-109

. Mtb-infected 

iNOS-/- mice had higher rates of dissemination and increased neutrophilic necrosis that led to 

exacerbated TB, compared with B6 control mice 
110

. In chronic infection, mice treated with 

aminoguianidine, an iNOS inhibitor, showed worsened pathology and increased bacillary load, 

while mice latently infected with Mtb, also known as the Cornell mouse model, developed 

reactivated infection 
111

.  

In contrast to the mouse model of TB, the role of iNOS in human TB remains 

controversial. Few reports have identified antimycobacterial effects of NO, however, iNOS 

expression is upregulated in human Mtb-infected granulomatic lesions 
107, 112

. Early growth 

inhibition of Mtb in human alveolar macrophages is shown to be independent of IFN- mediated 

NO activation as exogenous IFN- added to Mtb infected macrophages produced no 

antimicrobial activity 
113

. However, macrophages and epithelial cells are capable of making NO 

during Mtb infection 
107, 112-115

. One study suggests that alveolar macrophages can make NO 

when infected with Mtb and this correlated with inhibition of Mtb growth 
116

. Importantly, 

polymorphisms in iNOS in -1026G allele, rs2274894 (intron), and rs8078340 (promoter) found 

in Brazilian, African-American, and South African populations, repectively, were associated 

with increased susceptibility to TB, supporting the potential protective role for  NO in human 

infection 
117

. 
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1.4 CHEMOKINES IN MTB INFECTION 

In addition to cytokines, chemokines are critical for protective immunity against Mtb. 

Chemokines are a large family of structurally related proteins that are known to interact with a 

number of G-protein linked receptors to drive angiogenesis, development, the trafficking of 

APCs to SLOs and the recruitment of immune cells to sites of inflammation 
118-121

. Each 

chemokine is categorized into four subfamilies based on structural similarities in their first two 

of four cysteine residues: C, CC, CXC, and CX3C 
118-120

. Based on their expression in 

inflammation or in SLOs, chemokines can be further divided into inflammatory or homeostatic 

chemokines 
122

. However, it is becoming clear that homeostatic chemokines can also be induced 

in response to inflammation 
24, 123-126

. 

 The availability of several animal models of TB has greatly benefited our overall 

understanding of chemokines in Mtb infection. In the mouse model of low dose aerosol Mtb 

infection, mRNA for a number of chemokines and their corresponding receptors have been 

reported to be upregulated in the lung between days 12-21 post infection (Table 1) and this 

coincides with the recruitment of specific immune cells into the lung (Figure 2). Specifically, the 

early accumulation of a variety of different innate cells such as neutrophils, NK1.1 cells,  T 

cells and macrophages (Figure 2a), as well as later accumulation of adaptive effector cells such 

as CD4
+
 T cells, CD8

+
 T cells and B cells appear to coincide with induction of specific 

chemokine mRNAs in Mtb-infected murine lung (Figure 2b).  The coordinated expression of 

chemokines likely plays an important role in granuloma formation. Although granulomas seen in 

the mouse model of TB are not organized similar to granulomas seen in Mtb-infected humans 

and NHPs, the use of novel chemokine deficient mice in the mouse model of TB has been pivotal 
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Table 1: Chemokine Induction in Mtb-infected mice.  

Fold induction of chemokine and chemokine receptor genes in the murine lung were quantified using microarray at 

day 12 (D12), day (D15) and day 21 (D21) following M. tuberculosis infection 
80

. Table was adapted from 
127

. 

 

 

 

in documenting the individual, as well as the overlapping, and redundant roles of chemokines 

and their ligands in Mtb infection. The specific roles of inducible and homeostatic chemokines in 

Mtb infection will be further discussed. 

1.4.1 Inflammatory Chemokines in Mtb Infection 

Cellular recruitment in response to pulmonary inflammation requires the upregulation of 

cytokines, the expression of adhesion molecules on the cell surface and endothelium, and the 

production of inducible chemokines. The majority of identified chemokines are inducible, and 
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are expressed in response to inflammation. During Mtb infection, a number of inflammatory 

chemokines are produced, namely CXCR1/2 (neutrophil recruiter), CXCR3 (lymphocyte 

recruiter), and CCR2/5 (lymphocyte and myeloid recruiter) ligands (Table 1) 
80

. In in vitro 

cultures, these chemokines are produced from Mtb infected macrophages in as little as 2 hours  

with peak expression within ~24 hours post infection 
128-130

. However, in vivo detection of 

pulmonary chemokines in the mouse is delayed until days 12-21 post infection (Table 1) 
80

. The 

most highly discussed chemokines in Mtb, IFNinducible chemokines CXCL9/10/11, are 

thought to be important for the recruitment of Th1 cells to the Mtb infected lung and will be 

further discussed.  

 

 

 

 Figure 2: Timing of accumulation of immune cells in the murine lung following Mtb infection. 

Innate cells such as neutrophils,  T cells, DCs, and macrophages likely respond to early induction of chemokines 

and accumulate in the Mtb-infected lung (a). Following initiation of adaptive immune responses, cytokine-producing 

CD4
+
, CD8

+ 
T cells as well as B cells then respond to appropriate chemokines induced in the lung and accumulate to 

mount protective immune responses against Mtb infection (b). *Indicates the timing of arrival of different immune 

cells to the lung following Mtb infection determined by flow cytometry,. 
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is an inflammatory chemokine receptor that is upregulated on naïve T cells rapidly following 

DC-induced T cell activation 
131

. T-bet, the Th1 master transcription factor directly transactivates 

the CXCR3 promoter in Th1 cells and CTL cells to mediate migration into sites of inflammation 

132
. CXCR3 is highly expressed by CD4

+
 T helper type 1 cells and CD8

+
 T cells, it is also 

detected on B cells, NK and NKT cells and results in migration towards three chemokines 

namely, CXCL9/MIG, CXCL10/IP-10, and CXCL11/ITAC 
132

. CXCL9-11 expression is 

induced during Mtb infection (Table 1) and expression is localized within TB granulomas 
133-134

. 

Further, CXCR3 expressing T cells are found in Mtb-infected NHP lungs and BAL 
134

 as well as 

Mtb-infected mouse lungs 
135

. To investigate the mechanistic role of CXCR3 in response to Mtb 

infection, Cxcr3-/- mice on the C57BL/6 background were infected with low doses of 

aerosolized Mtb, but did not show any defects in bacterial control 
136

.  However, tubercle 

granuloma formation was impaired with associated decrease in the number, size, and density of 

granulomas in the lung 
136

. Furthermore, higher expression of CXCL9 was found to differentiate 

disease severity in human TB patients 
137-138

 and a new potential protective SNP in the promoter 

of CXCL10 has been reported 
139

, suggesting that despite bacterial control in the absence of 

Cxcr3 in murine models, CXCR3 receptor and its ligands may play important roles in human 

TB. 

1.4.2 Homeostatic Chemokines in Mtb 

Constitutive expression of “homeostatic” chemokines accounts for the accumulation of naïve T 

cells, B cells and resident macrophages in SLOs, as well as for the recruitment of dendritic cells 

following antigen exposure. Four chemokines are responsible for SLO organization, specifically 

CCL19, CCL21, CXCL12, and CXCL13. Interestingly, CCL19, CXCL12 and CXCL13 mRNAs 
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are upregulated in the lung at D21 during an Mtb infection (Table 1) and play a critical role in 

protective immunity.  

Migration of T cells and DCs to the paracortical T-cell zones of secondary lymphoid 

organs is dependent upon the expression of the homeostatic chemokines CCL19 and CCL21. 

Naïve and central memory T cells, as well as DCs express CCR7 and respond to this chemokine 

gradient 
140-141

 and the expression of these chemokines are required for effective T-cell priming 

142-144
. Accordingly, following Mtb pulmonary infection, DCs upregulate CCR7 

45, 145-146
 and 

migrate to the draining lymph node 
45, 49

.Consistent with this role for CCR7 in DC migration, 

Ccr7 deficient mice exhibit impaired DC migration to the mediastinal lymph node, resulting in 

delayed dissemination of Mtb to peripheral organs 
147-148

, and delayed activation of T cells 
148

. 

Similarly, mice that have a genetic mutation leading to the loss of CCL19 and CCL21ser 

expression (plt/plt mutant mice) have defects in DC migration to the DLN 
49

 and decreased 

induction of T cells producing IFN in the lymphoid organs 
24

. The delayed generation of IFN-

producing activated T cells in the lymphoid organs correlated with delayed accumulation of IFN 

producing T cells in Mtb-infected lungs, and resulted in increased susceptibility to Mtb infection 

24
. These data together support a role for CCL19 and CCL21 expression in the lymphoid organs 

to mediate optimal DC migration and T cell priming during Mtb pulmonary infection.   

CXCL13, the only ligand for CXCR5, is a homeostatic chemokine expressed 

constitutively in secondary lymphoid organs 
149

 and produced by follicular dendritic cells and 

stromal cells for the specific localization of B cells and Tfh cells within the lymphoid follicle 
150-

154
. Recently, CXCL13 expression has been detected in non lymphoid tissues and associated with 

inflammation seen in conditions such as chronic obstructive pulmonary disease, rheumatoid 

arthritis and TB 
11, 155-156

. CXCL13 is upregulated during an Mtb infection (Table 1) 
80

 and 
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expression is localized specifically within lymphoid follicles containing B cells adjacent to the 

granuloma 
24, 147, 157

. In the absence of Cxcl13, integrity of the B cell follicle and formation of the 

granuloma is severally compromised 
24

. Furthermore, B cells isolated from Mtb infected murine 

lungs expressed CXCR5 and migrated to CXCL13 in vitro 
77

, suggesting that both T cells and B 

cells expressing CXCR5 may be important during TB. Accordingly, mice deficient in CXCL13 

are more susceptible to Mtb low dose aerosol infection, due to defects in correct T cell 

localization within the TB granulomas and leading to decreased macrophage activation and 

mycobacterial control 
24

. Future research will focus on delineating the specific role of CXCR5 on 

T cells and B cells in formation of lymphoid structure formation within TB granulomas and their 

specific role in mycobacterial control.   

1.5 ECTOPIC LYMPHOID FOLLICLES 

Ectopic lymphoid follicles, also known as ectopic lymphoid organs (ELOs), were first identified 

as permanent structures seen in rabbits, rats, and guinea pigs 
158

. Unlike conventional secondary 

lymphoid organs (SLOs), ELOs are not preprogrammed and develop after birth. ELOs can be 

found in nearly every organ in the body and are characterized based on location as gut associated 

lymphoid tissue (GALT), bronchus associated lymphoid tissue (BALT), nasal associated 

lymphoid tissue (NALT), mucosa associated lymphoid tissue (MALT) and conjunctiva 

associated lymphoid tissue (CALT). In humans and mice, little evidence of BALT formation can 

be found in the lung, but in response to antigenic stimulation, mice and humans can develop 

lymphoid follicles throughout the lung, known as inducible bronchus associated lymphoid tissues 

(iBALT) 
158-159

. They differ from BALT in that they do not always form near airways and can be 
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found in the parenchyma. Further, BALT contains an overlying epithelial layer and do not form 

in response to antigen. iBALT are reported to be induced during several inflammatory disease 

conditions of either autoimmune or infectious nature.  

BALT was initially described more than 30 years ago as a dominantly lymphocytic 

aggregate found mainly in the upper bronchi 
160-161

. Today, we compare these structures to SLOs 

with organized B cell follicles, separated T cell areas, macrophages, stromal cells, and follicular 

dendritic cells (FDCs) 
159

. Follicular dendritic cells have a similar function in BALT as they do 

in SLOs presenting antigen and providing co-stimulatory signals to B cells for activation and 

successive class-switching in the germinal center 
162-164

. B cells in BALT can develop into 

plasma cells as IgG cells are detected under some inflammatory conditions; however, the 

majority of cells are IgM
lo

IgD
hi  165-166

. Further, T cells are also known to interact with antigen-

loaded DCs and undergo multiple rounds of proliferation in BALT 
167

. Lymphocytes enter 

through high endothelial venules (HEV) that develop and express peripheral lymph node 

addressin (PNAd) and vascular cell adhesion molecule 1 (VCAM-1) rather than mucosal cell 

addressin cell adhesion molecule 1 (MAdCAM-1) used in Peyer’s patches 
168-169

. The 

inflammatory conditions required for formation of iBALT will be further discussed. 

1.5.1 Chemokine and Cytokine Induced Formation 

iBALT only appear in the lung after prolonged periods of antigen stimulation in response to 

infection or autoimmune disease disorders 
170

. It is clear iBALT is not a constitutive structure in 

the lungs of humans and mice and forms in a process called lymphoid neogenesis, which is 

thought to utilize similar mechanisms to SLO development 
168

. Homeostatic chemokines are an 

important component of lymphoid organ formation during embryogenesis and are also detected 
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within iBALT 
170

. The increased expression of CXCL13, CCL19, and CCL21 are essential for 

SLO development and immunity as mice deficient in Cxcl13 or Cxcl19 are lacking numerous 

lymph nodes and have disorganized splenic architecture 
171-172

. CXCL13 is primarily produced 

by FDCs and other reticular stromal cells in SLOs, which allow the recruitment of CXCR5+ 

cells to the B cell follicular zone 
173-174

. CXCL13 is a unique chemokine in that it is not 

redundant and will only recruit cells expressing CXCR5, namely B cells and Tfh cells 
174

. In 

addition to CCL21 and lymphotoxin (LT)-expression, ectopic expression of CXCL13 is 

known to lead directly to lymphoid neogenesis 
171

. In contrast, CCL19 and CCL21 are produced 

or expressed on HEVs, DCs, and stromal cells in the T cell zone recruiting naïve T cells and 

activated DCs expressing CCR7 
172

. These chemokines are thought to act similarly in iBALT to 

recruit and compartmentalize cells although development and structure appear to differ 

depending upon the source of inflammation. 

Although the induced expression of homeostatic chemokines can be independent of 

cytokine production in the formation of iBALT, the majority of chemokines expressed in ELOs 

is attributable to TNF family members, specifically LT-, TNF-, and LIGHT 
175

. In addition 

to the TNF family members, IL-17 has also been linked to iBALT development by inducing 

CXCL13 and CCL19 expression 
176

. The ELO developmental process is thought be initiated 

similar to SLOs by Lymphoid Tissue inducer (LTi) cells that drive the differentiation of 

mesenchymal cells into stromal cells through engagement of the surface receptor, LTR 
177

. 

These stromal cells then produce the homeostatic chemokines necessary to recruit and organize 

lymphocytes 
172

. However, recent evidence suggests initiation of ectopic lymphoid follicles does 

not parallel conventional lymph nodes. In response to LPS induced inflammation, iBALT 

develops independent of LTi cells and instead requires the transcription factors RORt and Id2 
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driven by IL-17 producing CD4+ T cells 
176

.  IL-17 promoted CXCL13 expression, independent 

of LT-, which was critical for lymphoid follicle formation 
114

. Despite the similarities between 

SLOs and ELOs, the early events in lymphoid follicle development and maintenance remain 

relatively unknown and require further investigation. 

1.5.2 ELOs in Autoimmune Inflammation 

Ectopic lymphoid organs often develop in autoimmune disorders 
170

. Autoreactive T and B cells 

are associated with the development of iBALT 
178

 that typically is seen in the immune targeted 

organ in such diseases as Sjogren’s syndrome 
123, 179-180

, rheumatoid arthritis 
123, 181

, multiple 

sclerosis 
182-183

, and diabetes 
184-185

. Immune targeted organs include the exocrine glands 
186-188

, 

joints and lungs 
189-190

, central nervous system 
182-183

, and the pancreas, respectively 
191

. Typical 

ELO formation contained FDCs, CD4+ and CD8+ T cells, CD20+ B cells, CD38+ plasma cells, 

and CD68+ macrophages with reticular networks 
186-188

. Further, lymphoid aggregates were 

found to contain proliferating Ki-67-expressing cells and HEVs that express PNAd similar to 

SLOs 
123, 183, 188-189, 191

. In RA, CXCL13 has been shown to be produced by FDCs and 

hematopoietic cells such as monocyte-derived macrophages (CD68+) that recruit CXCR5+ T 

and B cells 
192

. Further, induction of homeostatic chemokines is attributed to the cytokines LT-

and LT-


and also to LIGHT in diabetes
184, 191

 . 

It is interesting to note that disease severity was associated with ectopic lymphoid follicle 

formation as patients containing highly developed germinal centers had more severe 

complications 
186

. In Sjogren’s syndrome, patients containing ectopic lymphoid follicles in 

exocrine glands showed lower saliva production, indicating ELOs contribute to impairment of 

salivary gland function 
188, 195-196

. Rheumatoid arthritis patients with ELOs were found to have 
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higher plasma cells in the synovium, suggesting lymphoid follicles may contribute to 

autoreactive B cell generation 
197

. Further, in multiple sclerosis patients, ELOs were associated 

with severe pathology in the cerebral cortex and aggressive clinical progression 
182

. Formation of 

these lymphoid aggregates was attributed to the expression of the homeostatic chemokines 

CXCL13, CCL21, and CCL19 and studies in gene deficient mice indicate that absence of these 

homeostatic chemokines disrupt ELO development 
184, 191, 193-194, 198-200

. However, disruption of 

ELOs did not always ameliorate disease 
200

. 

These studies demonstrate that ELO formation in autoimmune disease correlates with 

homeostatic chemokine expression, autoantibody production, and clinical symptoms.  Despite 

the presence of ELOs in autoimmunity, it remains uncertain the role these structures play in 

disease. It appears ectopic lymphoid aggregates promote autoimmunity in some diseases, but 

may be a result of the autoimmunity itself in others. Studies with transgenic mice expressing 

CXCL13, CCL19, and CCL21 generate ectopic lymphoid follicles, but do not develop 

autoimmunity indicating that additional mechanisms are required for a destructive immune 

response 
171, 201-203

. It is evident that a greater understanding of the cellular and molecular 

mechanisms in autoimmunity is required to determine the function of ELOs. 

1.5.3 ELOs in Infectious Disease 

Numerous infections are known to trigger the development of ectopic lymphoid tissues including 

Helicobacter pylori in the stomach 
204-207

, Borrelia burgdorferi in the skin 
208-210

, and M. 

tuberculosis, Klebsiella pneumonia, Pseudomonas aeruginosa, Haemophilus influenzae in the 

lung 
211

 among other infections 
212-215

. BALT formation can also be seen in other non-infectious 

lung diseases such as chronic obstructive pulmonary disease (COPD) 
156, 216

, pulmonary fibrosis 
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217
, and hypersensitivity pneumonitis 

211, 218
. Despite the prevalence of lymphoid follicles in 

infectious disease, little remains known about the function of ELOs. The current understanding 

of ELO formation and function in infectious disease will be further discussed. 

H. pylori is a prevalent infection in humans that colonizes the gastric epithelium causing 

severe inflammation of the stomach lining that can be acute or chronic, but the majority of cases 

persist for years or life. Chemokines promoting neutrophil recruitment are highly elevated as the 

disease that is characterized by dense infiltration of neutrophils. However, several homeostatic 

chemokines, such as CCL21 and CXCL13, are also upregulated in the mucosa and lead to 

accumulation of lymphoid cells 
204-207, 219

. In cases of gastritis in both humans and mice, it is 

common for ectopic lymphoid follicles expressing homeostatic chemokines, CD3+ T cells, and B 

cells, and prominent germinal center structures containing HEV expressing PNAd and 

MAdCAM to form 
220

. Specifically, in humans 85% of H. pylori positive patients contained 

lymphoid follicles, which were strongly associated with a higher grade of severity 
207

. 

Futhermore, elevated levels of CXCL13 in gastric biopsies correlated with a higher degree of 

gastric inflammation and higher bacterial burden suggesting ELOs may contribute to pathology 

221
. Using a mouse model of chronic H. pylori, Cxcr5 deficient mice, which did not form 

organized ectopic lymphoid follicles, exhibited decreased Th17 immune responses and decreased 

IgA and IgG responses by B cells, but unaltered Th1 cellular responses 
126

. In addition, bacterial 

colonization was similar between wild type mice and Cxcr5 deficient mice suggesting ectopic 

lymphoid formation does not contribute to protective immunity against H. pylori 
126

. 

ELOs appear to contribute to immunity in response to influenza in mice. Using Influenza 

A/PR8/34 infection, mice deficient in SLOs were found to develop ELOs locally in the lung 
168

. 

Follicles consistently contained FDCs, organized GC B cells and CD8
+ 

T cells, CD4
+
 T cells, and 
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dendritic cells in interfollicular areas 
168

. As expected, CXCL13, CCL19 and CCL21 expression 

co-localized with ectopic cells, however, induction was independent of LT- and TNF- 
124, 168

. 

Interestingly, the loss of CXCL13 did not impact ELO formation in influenza infected mice, but 

was instead dependent upon CCL19 and CCL21 expression 
124

. Importantly, SLO deficient mice 

infected with influenza had delayed viral clearance, but enhanced survival 
168

. In addition, SLO 

deficient mice were capable of surviving higher doses of the virus suggesting ELOs are 

protective in influenza and perhaps less pathogenic than immune responses originating in the 

lymph node 
168

. Consistent with these data, Wiley et al. induced ELO formation 

asymptomatically in mice using nanoparticles and found pre-existing ELOs enhanced resolution 

of influenza suggesting ELOs could be a future preventative target 
222

. 

Lymphoid aggregates have been detected in the lungs of Mtb infected humans 
11, 79

, 

NHPs 
78

, and mice 
24, 147

. Further, organized lymphoid aggregates in humans were associated 

with latent TB 
223

. Typical follicles contained CD4
+
 T cells, CD8

+ 
T cells, and B cells suggesting 

these may be ELOs 
11

. However, detection of CXCR5
+
 T cells and GC B cells has not been 

assessed. The homeostatic chemokines CXCL13 and CCL19, but not CCL21, were found to be 

upregulated in the lungs of Mtb-infected mice 
24

. Further, cxcl13-/- mice and plt/plt mice were 

unable to control Mtb infection with higher pulmonary bacterial burden compared to wild type 

mice 
24

. Higher susceptibility in plt/plt mice and Ccr7-/- mice was contributed to defects in T cell 

priming as DCs were unable to migrate to draining lymph nodes to present antigen 
24, 148

. 

However, Cxcl13 deficient mice were unable to organize B cell aggregates and had decreased 

activated macrophages 
24

. These data suggest that lymphoid aggregates found in pulmonary TB 

are likely ELOs that may contribute to protective immunity. 
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The study of ELO function in infectious disease is a newly emerging field. Both CXCL13 

and CCL19/CCL21 appear to contribute to initiation of ELO formation and this can be 

dependent or independent of LT-and TNF-. The contribution of ELOs to protection or 

pathology differ between disease making further investigation critical in elucidating the 

mechanism of action. 
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2.0  ECTOPIC LYMPHOID FOLLICLES IN M. TUBERCULOSIS INFECTION 

2.1 ABSTRACT 

One third of the world’s population is infected with M. tuberculosis. Although most infected 

people remain asymptomatic, they have a 10% lifetime risk of developing active TB. Thus, the 

current challenge is to identify immune parameters that distinguish individuals with latent TB 

from those with active TB. A hallmark of pulmonary TB in both humans and experimentally 

infected animals is the formation of the granuloma that contains Mtb-infected macrophages. The 

structural differences between active TB and latent TB granulomas can differentiate important 

immune components required for protective immune control. Using human and experimental 

models, we demonstrated that organized ectopic lymphoid structures containing CXCR5+ T 

cells, follicular dendritic cells, and germinal center B cells form in the Mtb-infected lung. 

Importantly, in the non-human primate model we show that ectopic lymphoid structures are 

correlated with immune control. Further, the Mtb mouse model forms follicles similar to Mtb-

infected humans suggesting the mouse model is a valuable tool for addressing the mechanism of 

ectopic lymphoid organ development and protection. Therefore, our data demonstrate a critical 

function for ectopic lymphoid follicles in control of Mtb infection. 
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2.2 INTRODUCTION 

M. tuberculosis, is an intracellular pathogen that causes the disease tuberculosis, and infects 

about 2 billion people worldwide. Proper control of Mtb requires the colocalization of adaptive 

immune cells with Mtb-infected macrophages in the lung forming a granuloma, which acts as a 

physical barrier and promotes macrophage activation for bacterial killing 
224

. Despite the 

presence of the granuloma in active TB, these individuals are unable to control bacterial growth 

suggesting differences exist between latent and active TB granulomas. The presence of B cell 

aggregates has long been documented in human, NHP, and mouse granulomas 
11, 24, 78, 223

. In 

humans, B cell clusters are found in the peripheral rim of the granuloma and contain activated 

CD4
+
 T cells, CD8

+
 T cells, CD20

+
 B cells and antigen primed CD68

+
 monocytes/macrophages 

11
. Distinct vascularization and elevated proliferation activity in lymphoid aggregates was also 

associated with latent TB in humans 
223

. Mtb infection in cynomologus macaques identified B 

cell aggregates within the granuloma during primary infection with CD3
+
 T cells, but no CD138

+
 

plasma cells were detected 
78

. Further, B cells expressed higher levels of HLA-DR in the 

draining lymph node of macaques compared with peripheral lymph nodes suggesting B cells in 

the lung are activated although this was not specifically shown in lymphoid aggregates 
78

. 

Chronic Mtb infection in the mouse model triggers formation of pulmonary lymphoid aggregates 

within the granuloma associated with the expression of CXCL13, which is typically expressed in 

SLOs 
24, 147

. Mice deficient of Cxcl13 are more susceptible to Mtb infection with higher bacterial 

burden in the lung and are unable to form B cell lymphoid aggregates 
24

. These data suggest that 

B cell follicles within the lung likely form ectopic lymphoid organs that are required for immune 

control. In the current study, we show that B cell aggregates express the markers of bona fide 

ectopic lymphoid follicles containing follicular dendritic cells, CXCR5
+
 T cells, and germinal 
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center B cells that co-localize with the homeostatic chemokine CXCL13 in the granuloma of 

human, NHP, and mouse Mtb-infected lungs. Importantly, in NHPs that develop latent infection, 

we identified the significant association of ELOs with immune control. 

2.3 MATERIALS AND METHODS 

2.3.1 Human Tissue Samples and Patient Diagnosis 

Archival paraffin samples of human lung biopsies with diagnosis of TB were collected on a 

protocol approved by the Ethics Committee of the Instituto Nacional de Enfermedades 

Respiratorias and the Ethics Committee of the American British Cowdray Medical Center, 

Mexico City (Table 2).  All subjects were of similar socioeconomic status and unrelated to the 

third generation as determined by a questionnaire. TB cases had symptoms (weight loss >10 kg, 

cough, fever, night sweats for >1 mo, or cervical or axillary lymphadenopathy) and chest 

radiographic findings consistent with recent pulmonary TB, a positive sputum acid-fast smear 

and culture confirmed for Mtb. Once the diagnostic protocol was completed, patients were 

discharged and proper treatment was indicated.  
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Table 2: Active TB patient description. 

A-TB patients lung samples were analyzed for markers of ectopic lymphoid tissues including B cell lymphoid 

follicles, CXCR5
+
 T cells and FDC networks. 

 

 

2.3.2 Mtb Infection in NHPs 

Groups of non human primates (NHP) (Indian rhesus macaques) were used in this study at the 

Tulane National Primate Research Center as previously described following the 

recommendations of the Institutional Animal Care and Use Committee 
225

. For L-TB, NHPs 

were infected with low dose of Mtb CDC1551 (200-500cfu) by the aerosol route 
225

. Mtb 

exposure was confirmed by positive tuberculin skin test and PRIMAGAM, a quantiferon-type 



 35 

IFN release assay specifically designed to confirm Mtb infection in NHPs. The NHPs did not 

exhibit any clinical signs of TB, as evident from normal body temperatures and weights, chest x-

rays and serum levels of acute phase proteins 
225

. For A-TB, NHPs were infected with high dose 

of Mtb CDC1551 via aerosol infection (~5000 cfu) 
226

.  Mtb exposure was confirmed by positive 

tuberculin skin test and PRIMAGAM and the NHPs exhibited clinical signs of TB, as evident 

from body temperatures, weights and chest x-rays 
226

.    

2.3.3 Mtb Infection in Mice 

C57BL/6 (B6) were purchased from The Jackson Laboratory, Bar Harbor, ME. Experimental 

mice were age-and sex-matched and used between the ages of 6-8 wks in accordance with 

University of Pittsburgh International Animal Care and Use Committee guidelines. Mtb strain 

H37Rv was cultured in Proskauer Beck medium containing 0.05% Tween 80 to mid-log phase 

and frozen in 1 ml aliquots at -70
o
C. Animals were aerosol infected with ~100 CFU (low dose) 

of bacteria using a Glas-Col airborne infection system 
227

.   

2.3.4 Morphometric Analysis and Immunofluoresence 

Lungs from mice and NHPs were inflated with 10% neutral buffered formalin and embedded in 

paraffin. Lung sections were stained with H&E stain (Colorado Histo-Prep) and processed 

routinely for light microscopy.  Formalin-fixed samples from TB patients were also used. For 

immunofluorescence, paraffin was removed from the formalin-fixed lung sections, washed with 

xylene, alcohol, and PBS.  Antigens were unmasked using a DakoCytomation Target Retrieval 

Solution and were blocked with 5% (v/v) normal donkey serum and Fc block (5 g/ml, 2.4G27).  
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Endogenous biotin was neutralized with avidin followed by biotin (Sigma-Aldrich).  Murine 

sections were probed with goat anti-mouse CD3 (M-20; Santa Cruz Biotechnology), rat anti-

mouse B220 (RA3-6B2; BD Pharmingen), inducible NO Synthase (goat anti-mouse, M-19; 

Santa Cruz Biotechnology), CXCR5 (Biotin, rat anti-mouse CXCR5; BD Biosciences), and IgG 

(FITC-donkey anti-mouse IgG; Jackson Immunoresearch). Primary Abs were detected with 

secondary Ab conjugated to Alexa fluor 568 for CD3 (Alexa fluor 568, donkey anti-goat, 

Invitrogen). Donkey anti-rat Ab conjugated to Alexa Fluor 488 was used to visualize B220 

(Molecular Probes). Some slides were incubated with PNA-FITC (SIGMA) and goat-anti PCNA 

(C-20, Santa Cruz Biotechnology). Rabbit anti-FITC, conjugated to alexa fluor 488 was used to 

amplify PNA signal (Molecular probes). To detect FDCs, slides were incubated with 

biotinylated, rat anti-mouse CD21-CD35 (CR2/CR1- Biolegend) and anti-follicular dendritic cell 

(FDCM-1, BD Pharmingen), followed by detection with SA-Alexa fluor 488 and donkey anti-rat 

conjugated to alexa fluor 488 (Molecular probes). CXCL13 production in infected lungs was 

detected with goat anti-mouse CXCL13 (R&D systems), followed by detection with donkey anti-

goat-alexa fluor 568. Human and NHP tissues were probed with rabbit anti-human ICOS 

(ABCAM), FITC, mouse anti-human CXCR5 (clone 51505, R&D Systems), and goat anti-

human CXCL13 (R&D Systems). Anti-CD3 was further used to detect CD3 lymphocytes 

(clone M-20; Santa Cruz Biotechnology). For B cells, CD20 (Mouse anti-human CD20 (L26); 

ABCAM) and IgD (Ab-1; Lab Vision Corporation) were used with PCNA (Goat anti-PCNA (C-

20); Santa Cruz Biotechnology) to detect germinal center B cells.  Follicular dendritic cells in 

human germinal centers were further detected with anti-human CD21 (Clone 2G9; Lab Vision 

Corporation). Slow fade gold antifade with DAPI (Molecular Probes) was used to counterstain 

tissues and to detect nuclei.  Images were obtained with a Zeiss Axioplan 2 microscope and were 
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recorded with a Zeiss AxioCam digital camera.  Caudal lobes from four mice per group 

underwent morphometric analysis in a blinded manner using the Zeiss Axioplan microscope, 

which determines the area defined by the squared pixel value for each granuloma, B cell follicle 

and perivascular cuff as previously described 
24

. 

2.3.5 CXCL13 In Situ Hybridization 

Mouse CXCL13 cDNA was RT-PCR amplified with primers BFJ.mCXCL13_F1 (5’- 

GAACTCCACCTCCAGGCAGA-3’) and BFJ.mCXCL13_R1 (5’- 

CTTTTGAGATGATAGTGGCT-3’). Human and macaque CXCL13 cDNA was RT-PCR 

amplified with primers (5’-AGACAGAATGAAGTTCATCT-3’ and 5’- 

GTGGAAATATCAGCATCAGGG-3’).  PCR products were ligated to the pGEM-T vector 

(Promega) and DNA sequenced. The pGEMT-CXCL13 plasmid was linearized by restriction 

digest.  Gene-specific riboprobes were synthesized by in vitro transcription using a Maxiscript 

SP6/T7 kit (Ambion) and unincorporated nucleotides were removed using RNA Mini Quick Spin 

Columns (Roche).  Paraffin embedded tissue specimens were pretreated as described 
58

, 

following deparaffinization in xylenes and rinsing in ethanol. In situ hybridization (ISH) with 

35
S-labeled riboprobes was performed at 50

o
C overnight as described 

228
, with 0.1M 

dithiothreitol included in the hybridization mix. Tissue sections were coated with NTB-2 

emulsion (Kodak) and exposed at 10
o
C for 10 days. The sections were counterstained with 

hematoxylin (Vector) and mounted with Permount (Fisher). Images were visualized using an 

Olympus BX41 microscope and captured using a SPOT RT3 digital camera (Diagnostics 

Instruments, Inc). 
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2.3.6 Statistics 

Differences between the means of experimental groups were analyzed using the two tailed 

Student’s t-test.  Differences were considered significant when p≤0.05.   

2.4 RESULTS 

2.4.1 CXCR5
+
 T cells accumulate within ectopic lymphoid structures of human TB 

granulomas 

Normal human lungs do not exhibit appreciable accumulation of lymphocytes or inflammatory 

aggregates 
155

. However, individuals with L-TB exhibit organized pulmonary lymphoid 

aggregates, while cellular aggregates were absent or less organized in lungs of individuals 

undergoing A-TB 
223

. We found that lung sections from 25% of A-TB patients (Table 2) showed 

accumulation of lymphocytes with features of classic ectopic lymphoid structures (Figure 3), 

containing proliferating PCNA
+
 GC B cells (Figure 3b), CXCR5

+
 Tfh-like cells  (Figure 3c) and 

CD3
+
 T cells expressed ICOS (Figure 3d). CXCL13 protein (Figure 6e) and mRNA (Figure 3f, 

g) were also detected within lymphoid aggregates. CD21
+
 follicular dendritic  

cells (FDCs) were also found within ELOs (Figure 3h). Localization of CD3
+
 T cells expressing 

CXCR5 (Figure 3c) and numerous proliferating cell nuclear antigen (PCNA) expressing CD20
+
 

B cells inside compact B cell follicles (Figure 3b) colocalized with macrophages expressing 

CD68 (Figure 3i, j), suggesting these are bona fide ectopic lymphoid structures. 
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2.4.2 Ectopic lymphoid structures are associated with immune control during TB in the 

NHP model of Mtb infection 

Since ectopic lymphoid structures were only seen in a minority of human A-TB granulomas 

analyzed, we hypothesized that generation of lymphoid structures may correlate with immune  

control, rather than active disease. Therefore, we characterized the presence of ectopic lymphoid 

structures in NHPs that were experimentally infected with aerosolized Mtb, in which similar to 

human infection, immune control results in L-TB and the absence of immune control results in 

 

 

 

Figure 3: CXCR5
+ 

T cells accumulate within ectopic lymphoid structures of human TB granulomas. 

Serial sections of FFPE lung biopsies from A-TB patients underwent H&E staining (a). Sections were analysed by 

immunofluorescence using antibodies specific to PCNA, IgD, and CD20 (b); CD3, CXCR5 (c); CD3, ICOS (d); 

CXCL13 (e); CD3, CD21, IgD (h); CD3, T-bet, CD68 (i); and CD3, IgD, and CD68 (j). All sections were 

counterstained with DAPI (blue). Germinal centers are outlined in yellow dashed lines and yellow arrows point to 

colocalization. CXCL13 mRNA was detected by ISH with a CXCL13 cRNA probe (f,g). Arrows point to strong 

areas of CXCL13 hybridization. Original magnification, x200; x600  (ISH).  
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A-TB 
225

. In support of our hypothesis, 100% of lung sections from NHPs with L-TB had well-

organized ectopic lymphoid structures (Figure 4a-top panel, Table 3) with distinct B cell follicles 

containing proliferating CD20
+
 B cells, CXCR5

+ 
T cells and CD21

+
 FDC networks (Figure 4b-

top panel). In contrast, in NHPs with A-TB, only 46% of lung samples contained ectopic 

lymphoid structures (Figure 4a-lower panel, Table 3) which were smaller, less organized and 

diffuse. Furthermore, only 33% of samples from NHPs with A-TB contained proliferating 

CD20
+
 B cells, CD21

+
 FDC networks and CXCR5

+
 T cells (Figure 4b-lower panel, Table 3).  

 

 

Figure 4: NHPs infected with Mtb contain ectopic lymphoid follicles. 

NHPs aerosol infected with Mtb CDC1551 exhibited either L-TB or A-TB as described in Materials and Methods. 

Thirteen weeks after infection or at necropsy, lung FFPE serial sections were stained with H&E (a) or with 

antibodies specific for PCNA, CD20 (a,b); CD3, IgD CXCR5 (b); and CD3, CD21 (b). All sections were 

counterstained with DAPI (blue). GC, containing large, proliferating B blasts (PCNA+CD20+) is outlines in dashed 

yellow lines. The images shown are from a typical representative section. Original magnification, x200, unless 

otherwise indicated. The data represent the mean (±SD) of values from 6-15 NHPs.  
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Table 3: Ectopic lymphoid structures are associated with latent rather than active disease during TB in NHP 

Mtb infection model. 

 
Description of frequency of NHPs with L-TB and A-TB that exhibited ectopic lymphoid structures and contained B 

cell follicles, proliferating B cells, CXCR5
+
 T cells and FDC networks. 

 

 

 
 

 

 

 

 
 

 

Figure 5: Ectopic lymphoid structures are associated with immune control during TB in NHP model of Mtb 

infection. 

 

NHPs were aerosol infected and sacrificed as mentioned in Figure 4. Lung FFPE serial sections were stained with 

H&E or with antibodies specific for PCNA or CD20. The number of granulomas (a), total area occupied by 

granulomas (b), percentage of granuloma area occupied per biopsy (c), and average size (d) and percentage of area 

occupied by B cell lymphoid follicles (e) were determined with the Zeiss Axioplan microscope. The data represents 

the mean (±SD) of values from 6-15 NHPs. **p=0.005, ***p=0.0005  
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Uncontrolled disease was also evident in NHPs with A-TB as large number of necrotic 

granulomas occupied much of the total lung area (Figure 5a,b,c); despite this, lungs from NHPs 

with L-TB had significantly larger B cell follicles, which occupied a significantly larger area of 

the lung biopsy (Figure 5d,e), contrasting with smaller B cell follicles detected in NHPs with A-

TB (Figure 5d,e). These data demonstrate that in NHPs, generation of well organized lymphoid 

structures containing CXCR5
+
 T cells and B cell follicles is associated with immune control in 

L-TB, while loss of immune control during A-TB is associated with absent or loosely organized 

lymphoid aggregates. 

2.4.3 CXCR5
+
 T cells localize within ectopic lymphoid follicles in murine TB granulomas 

Since CXCR5
+
 T cells were associated with immune control, we next addressed the role of CD4

+ 

CXCR5
+
 T cells in a well-established mouse model of TB, in which effective host immunity 

results in chronic infection. Although murine TB granulomas do not demonstrate all the 

characteristics of human TB granulomas 
8
, murine granulomas also form organized lymphoid 

structures (Figure 6a) containing CXCR5 expressing T cells (CD3
+
 CXCR5

+
) (Figure 6b) and 

B220
+
 B cells (Figure 6c) that bound peanut agglutinin (Figure 6d) and contained complex FDC 

networks (Figure 6e,f). In addition, CXCL13 protein (Figure 6e,f) and CXCL13 mRNA 

expression was detected inside lymphoid structures (Figure 7a) and expression increased over the 

course of infection (Figure 7b). 
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Figure 6: CXCR5
+
 T cells localize within ectopic lymphoid follicles in murine TB granulomas 

B6 mice were aerosol infected with ~100 cfu Mtb H37Rv and on day 50 post infection, FFPE serial sections were 

stained with H&E (a) or analyzed by immunofluorescence for CD3, CXCR5, B220 (b); CD3, PNA, B220 (c); 

PCNA, PNA, B220 (d); CD21-CD35-FDCM1; CD11c, CXCL13 (f). All sections were counterstained with DAPI 

(blue). Yellow arrows point to CD3+ CXCR5+ T cells (a), PCNA+B220+ B cells (d) or CXCL13+CD11c+ cells (f). 

Original Magnification, 200X. One of two or more experiments shown. 

Germinal center B cells (GC B cells) were identified as large, proliferating PCNA
+
B220

+
 blasts  

2.5 DISCUSSION 

Ninety percent of all M. tuberculosis infected individuals develop an immune response sufficient 

to control and contain the infection within pulmonary granulomas 
229-230

. Containment is highly 

effective as most individuals go their lifetime without ever developing A-TB. There is a general 

consensus that the architecture of the granuloma contains Mtb-infected macrophages and 

multinucleated giant cells at the core with CD4
+
 T cells, CD8

+
 T cells, neutrophils, NK cells, and  
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Figure 7: CXCL13 mRNA is localized in ectopic lymphoid follicles of Mtb-infected mice. 

B6 mice were aerosol infected with ~100 cfu Mtb H37Rv and on day 50 post infection, FFPE 

serial sections  were analyzed by ISH to determine localization of CXCL13 mRNA expression 

using a murine CXCL13 cRNA probe (a) during different points of infection (b). Black arrows 

point to localization of CXCL13 mRNA within granulomas. Original Magnification, 100X (a), 

and 600X (b). One of two or more experiments shown. 

 

dendritic cells creating a perimeter around the infection 
7, 229

. However, the functional and 

morphological characteristics that coordinate protective cross-talk in L-TB granulomas remain ill 

defined. Recently, areas of strong vascularization, B cell aggregation, and high proliferation 

markers were identified in patients with nonprogressive tuberculomas 
223

.  Furthermore, B cell 

aggregates containing CD3
+
 T cells have been identified in humans, NHPs, and mice 

11, 24, 78, 223
. 

Using immunofluorescence, we further characterized these distinct lymphoid aggregates as 

organized ectopic lymphoid organs containing FDC networks, proliferating GC B cells, CXCR5
+ 

 T cells, and macrophages. Importantly, in NHPs that develop L-TB, we correlated the  



 45 

organization of large organized ELOs containing CXCR5
+
 T cells with immune control, while 

A-TB ELOs were associated with disorganized and smaller lymphoid aggregates. These findings 

establish a critical association of ectopic lymphoid structures in the protective immune response 

against Mtb. 

Cxcl13 mRNA and protein were specifically expressed within ectopic lymphoid follicles 

and could not be detected in any other areas of the parenchyma or bronchovascular regions 

suggesting a critical role in Mtb induced ectopic lymphoid follicle formation. Expression of  

CXCL13 and CCL19/CCL21 is linked to ELO formation in other infectious disease such as H. 

pylori 
204-207, 219

 and influenza 
124, 168

, however, CXCL13 expression was pathological in H. pylori 

and was not required for ELO formation in influenza. CXCL13, and CCL19, but not CCL21 

have been shown to be upregulated in the lungs of Mtb-infected mice 
24

. Previous studies using 

Cxcl13 deficient mice and plt/plt mice in Mtb infection have noted disruption of B cell 

aggregates and increased bacterial burden in the lung 
24

. Plt/plt mice have a delayed 

accumulation of IFN producing T cells that is not observed in the absence of Cxcl13 
24

. 

Decreased recruitment of IFNproducing CD4
+
 T cells in the lung was attributed to a decrease in 

DC migration to the draining lymph node (dLN) resulting in a delay of T cell priming and 

proliferation 
24

. However, ccr7 deficient mice were capable of ectopic proliferation of Ag85B-

specific CD4
+
 T cells in the lung and plt/plt mice still contained B cell follicles although smaller 

than wild type mice 
24, 148

. These data suggest that CCL19/CCL21 are required for activated DC 

migration to the dLN, but decreased B cell follicle formation may be contributing to decreased 

lymphocyte accumulation rather than homeostatic chemokine expression. In contrast, Cxcl13 

deficient mice display complete disruption of B cell follicles within the lung and increased 

bacterial burden without defects in T cell priming 
24

. Further, Cxcl13 knockout mice contained 
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similar numbers of CD4
+
 T cells to wild type mice in the lung suggesting the organization of 

immune cells in ectopic lymphoid follicles assists in macrophage activation and bacterial killing 

24
. 

It has been previously noted that some granulomas are highly vascularized 
223

. 

Vascularization is required for proper oxygen and nutrient supply to support cells and this is 

more often seen in the area occupied by ectopic lymphoid organs and in the periphery of the 

granuloma 
223, 231-232

. Vascularized areas contained highly organized structures of macrophages 

and other antigen presenting cells surrounding by lymphocytes whereas active cavitary TB had 

disorganized lymphoid structures in these regions 
223

. These observations suggest that the 

formation of ectopic lymphoid follicles in the vascularized region of the peripheral granuloma 

provides an ideal environment for cross-talk between the pathogen and host cellular immune 

response. The organization of these ELOs appear to be initiated by CXCL13 expression, but the 

cells and mechanism required for the protective properties of ectopic follicles requires further 

study. 

2.6 ACKNOWLEDGEMENTS 

The author would like to thank Javier Rangel-Moreno, PhD (University of Rochester, NY) for 

immunofluorescence staining and technical feedback and Beth A. Fallert-Junecko and Todd 

Reinhart, ScD (University of Pittsburgh, PA) for performing the CXCL13 in situ hybridization. 

Further, the author would like to thank Moises Selman, MD, Enrique Becerril-Villanueva, MD, 

Javier Baquera-Heredia, MD, and Lenin Pavon, MD for proving Mtb-infected human lung 

samples. Finally, we also thank Smriti Mehra and Deepak Kaushal, PhD for providing latent and 



 47 

active NHP lung samples. This work was supported by Children’s Hospital of Pittsburgh; NIH 

grants A1083541 and HL105427 to S.A. Khader, PhD; RR026006, AI091457, RR020159 and 

Tulane Primate Center base grant to D. Kaushal, PhD; HL69409 to T.D. Randall, PhD; and 

AI060422 to T.A. Reinhart, ScD; start-up funds from the Department of Medicine, University of 

Rochester, and AI91036 to J. Rangel-Moreno, PhD; and a Research Advisory Committee Grants 

from Children’s Hospital of Pittsburgh of the UPMC Health System to S.R. Slight.  



 48 

3.0  MECHANISMS UNDERLYING ECTOPIC LYMPHOID FOLLICLE 

FORMATION AND PROTECTION IN M. TUBERCULOSIS INFECTION 

3.1 ABSTRACT 

M. tuberculosis induced granulomas are central in providing conditions that promote immune 

cell interactions and bacterial containment. However, granulomas are present in both latent and 

active TB indicating structural and mechanistic immune differences must exist in granulomas 

that govern disease outcome. Recently, we have discovered that Mtb-infected lungs contain 

ectopic lymphoid follicles that correlate with protective immune control. To mechanistically 

address the cellular components necessary for protection and formation of ectopic lymphoid 

follicles, the TB mouse model was utilized. We discovered CXCR5
+
 B cells and CD4

+
 T cells, 

that produced Th1 proinflammatory cytokines, accumulated in the Mtb-infected lung. Further, 

mice deficient in Cxcr5 were more susceptible to Mtb infection and do not form lymphoid 

follicles due to improper localization of CD4
+
 T cells in the parenchyma, resulting in decreased 

macrophage activation. Defects in Cxcr5 deficient mice could be rescued by the transfer of B6 

CD4
+
 T cells, but not Cxcr5-/- CD4

+
 T cells. Finally, IL-6 and IL-21, cytokines important for T 

follicular helper cell CXCR5 expression, were required for optimal lymphoid follicle formation, 

but not for Mtb protective immunity. Our data demonstrate that CD4
+
CXCR5

+
 T cells play a 
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protective role in the immune response against TB and highlight their potential use for future TB 

vaccine design and therapy. 

3.2 INTRODUCTION 

Tuberculosis causes 2 million deaths a year despite the majority of infected individuals never 

developing symptoms 
233

. The hallmark characterisitic of TB is the formation of the pulmonary 

granuloma, which requires coordination of multiple chemokines to recruit and organize immune 

cells 
127

. Specific chemokine receptors have been implicated as important contributors to 

leukocyte accumulation, namely CXCR3 in the recruitment of T cells, CCR2 for macrophages 

and T cells, and CCR5 on myeloid cells  (discussed in detail in Section 1.4). Further, the 

homeostatic chemokine CXCL13 is induced in the Mtb-infected lung and is critical for 

protective immunity 
24

. CXCL13 is unique in that it is one of few chemokines that is non-

redundant; there is only one receptor and one ligand. Its corresponding receptor, CXCR5, is 

expressed on Tfh cells and B cells and is responsible for the recruitment and organization of cells 

in the B cell follicle of SLOs  
151, 153, 234

.  

Tfh cells are typically found within SLOs strategically positioned at the T-B cell border 

where they provide support for B cell expansion and differentiation by producing various 

cytokines, namely IL-21 
235-236

. High surface expression of ICOS and PD-1 on Tfh cells act as a 

co-stimulatory molecule inducing production of B helper cytokines and promoting long lived 

plasma cells, respectively 
237-238

. Differentiation of Tfh cells is induced by IL-6 and IL-21 acting 

through STAT-3 to upregulate the transcription factor BCL-6 
239-243

. In addition, IL-12 produced 



 50 

by human DCs was capable of driving differentiation of IL-21 producing Tfh cells suggesting 

Tfh cells may thrive in a Th1 environment 
85, 244

.  

B cells also express CXCR5 for positioning within the follicles of SLOs and ELOs 
151, 234

. 

The role of B cells (as described in section 1.2.4) is very much an enigma in TB. In the mouse 

model, Maglione et al. found low dose Mtb aerosol infection of B cell deficient mice had similar 

bacterial levels to wild type mice, but did not form follicles and had disrupted pulmonary 

architecture 
77

. However, higher bacterial challenge resulted in exacerbated pathology with 

increased neutrophil infiltration and significantly higher bacterial burden in the lung 
77

. In 

addition, Fcreceptor IIB-/- mice have a decreased bacterial burden in the lung and enhanced 

Th1 cellular responses 
245

. These data suggest that antibodies produced by B cells engage Fc 

receptors to modulate the Mtb immune response, in this case detrimentally 
245

. The specific 

function and contribution of B cells continues to be investigated. 

Recently, we have identified that ectopic lymphoid follicles containing CXCR5
+
 cells are 

found within Mtb granulomas and formation correlates with protective immunity (as discussed in 

previous chapter). However, the mechanism of ELO formation and protective immunity against 

Mtb is uncertain. In this report, we show that CXCL13 recruits CXCR5
+
CD4

+
 T cells that are 

essential for ectopic lymphoid follicle formation within Mtb granulomas that mediate protective 

immunity. CXCR5
+
 B cells are also found within the Mtb-infected lung, but these cells did not 

increase in frequency and B cell deficient mice were not more susceptible to Mtb challenge. 

Further, CXCR5
+
CD4

+
 T cells were found to produce the highest levels of Th1 proinflammatory 

cytokines and to localize near Mtb-infected macrophages driving activation and bacterial killing. 

Finally, the typical Tfh driving cytokines, IL-6 and IL-21, were required for optimal ectopic 

follicle formation, but not needed for protection. Our data prove that ectopic lymphoid follicle 
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formation in the granuloma is driven by CXCL13 and protective immunity is ascribed to Th1 

cytokine producing CXCR5
+
CD4

+
 T cells. 

3.3 MATERIALS AND METHODS 

3.3.1 Mtb Infection in Mice 

C57BL/6 (B6), Il6
-/-

, µMT
-/-

 (B cell deficient mice), Cxcl13
-/-

 and Cxcr5
-/-

 mice on the B6 

background were purchased from The Jackson Laboratory, Bar Harbor, ME.  Il21
-/-

 mice were 

obtained from the Mutant Mouse Regional Resource Center (MMRC) and backcrossed to B6 

mice for 10 generations. ESAT-6 (Early Secreted Antigenic Protein 6)  TCR transgenic  (Tg) 

mice recognize IA
b
/ESAT-61-20 and were kindly provided by Dr. G. Winslow (Wadsworth 

Center, Albany, NY) and Dr. D. Woodland (Trudeau Institute, Saranac Lake, NY)
43

. The ESAT-

6 TCR Tg mice were crossed and maintained on the Rag1
-/-

 background. All mouse strains were 

bred and maintained at the Children’s Hospital of Pittsburgh’s animal facility. Experimental 

mice were age-and sex-matched and used between the ages of 6-8 wks in accordance with 

University of Pittsburgh International Animal Care and Use Committee guidelines. Mtb strain 

H37Rv was cultured in Proskauer Beck medium containing 0.05% Tween 80 to mid-log phase 

and frozen in 1 ml aliquots at -70
o
C.  Animals were aerosol infected with ~100 (low dose ) or 

~1000 (high dose) Colony Forming Units (CFU) of bacteria using a Glas-Col airborne infection 

system 
227

.  At given time points, organs were harvested, homogenized and serial dilutions of 

tissue homogenates plated on 7H11 plates and CFU determined. In some experiments, mice were 

subcutaneously vaccinated with ESAT61-20 peptide (400 mg) emulsified with the adjuvant 
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containing MPL with TDM (Sigma-Aldrich) and DDA (ACROS organics) as described before 

135
. On day 14 post vaccination, splenic CD4

+
 T cells were sorted and cultured with irradiated 

APCs and Th polarizing conditions as described below. For generation of Th cell subsets, naïve 

ESAT-6 Tg CD4
+
 T cells were cultured with BMDCs, ESAT61-20 peptide and cytokine cocktails. 

Tfh cells were cultured in Iscove’s complete medium containing IL-21 (50ng/ml), anti-IL-4 

(10g/ml), anti-IFN (10g/ml), and IL-2 (10U/ml); Th1 cells were cultured in complete DMEM 

containing IL-12 (10ng/ml), anti-IL-4 (10μg/ml) and IL-2 (10U/ml) 
246

. Further, B6 mice were 

aerosol infected with ~100 cfu Mtb H37Rv and beginning at day 15 post infection, mice received 

200 µg anti-CXCL13 antibody or isotype control antibody (R&D Biosystems) every other day 

until day 30 post infection on which organs were harvested. 

3.3.2 Mtb Infection In NHPs 

NHPs were infected as previously described in Section 2.3.2. 

3.3.3 Lung and Spleen Single Cell Preparation 

Lung tissue and the spleen were prepared as previously described 
45

. Briefly, single cell 

suspensions were prepared from digested lung tissue or spleen by dispersing the tissue through a 

70µm nylon tissue strainer (BD Falcon, Bedford, MA). The resultant suspension was treated 

with Gey’s solution to remove residual red blood cells, washed twice, counted and used in assays 

described below.  
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3.3.4 Flow Cytometry 

Single cell suspensions were stained with fluorochrome-labeled antibodies specific for CD3 ( 

145-2C11), CD4 (RM4-5), CXCR5 (2G8), IFN (XMG1.2), TNF (MP6-XT22), IL-21 (IL-

21R-FC chimeric protein), IL-2 (JES6-5H4), Tbet (04-46) CD44 (IM7), Gr1 (RB6-8C5), CD11c 

(HL3), CD11b (M1/70), B220 (RA3-6B2), CD19 (ID3), Ly77 (GL7), CXCR3 (173), Bcl6 

(7MG191E), ICOS (7E.17G9), PD-1(J43) and PNA (Sigma) or relevant isotype control 

antibodies. For intracellular analyses of cells, cells stimulated with phorbol myristate acetate 

(PMA-50ng/ml), ionomycin (750 ng/ml; Sigma Aldrich) or ESAT61-20 peptide (5 μg/ml) and 

Golgistop (BD Pharmingen), were surface stained, permeabilized with Cytofix-Cytoperm 

solution (BD Pharmingen) and stained for relevant cytokines. Cells were read using a Becton 

Dickinson FACS Aria flow cytometer using FACS Diva software. Cells were gated based on 

their forward by side scatter characteristics and the frequency of specific cell types was 

calculated using FlowJo (Tree Star Inc, CA). The mean fluorescent intensity was also calculated 

to determine expression levels of different molecules using FlowJo (Tree Star Inc, CA). 

3.3.5 CXCL13 In Situ Hybridization 

Performed as described in Section 2.3.5. 

3.3.6 Morphometric Analysis and Immunofluorescence 

Processing and staining was performed as mentioned in Section 2.3.4. Further, inducible NO 

Synthase (goat anti-mouse, M-19; Santa Cruz Biotechnology) and F4/80 (MCA497GA, Serotec) 
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were used. Primary Abs were detected with secondary Ab conjugated to Alexa fluor 568 for 

iNOS (Alexa fluor 568, donkey anti goat, Invitrogen). 

3.3.7 Real-Time PCR 

RNA was extracted as previously described 
247

.  RNA was treated with DNAse and reverse 

transcribed and cDNA was then amplified with FAM-labeled probe and PCR primers on the ABI 

Prism 7700 detection system. The log10 fold-induction of mRNA in experimental samples was 

calculated over signals derived from uninfected/control samples. The specific gene expression 

was calculated relative to GAPDH expression. The primer and probes sequences targeting genes 

encoding iNOS have been previously published 
24

. 

3.3.8 Detection of IFN--Producing Cells by ELISPOT Assay 

ESAT-61-20-specific IFN--producing IA
b
-restricted T cells from infected lungs or spleen were 

enumerated using peptide-driven ELISpot as described 
45

.  Briefly, 96 well ELISpot plates were 

coated with monoclonal anti-mouse IFNblocked with media containing 10% FBS. Cells from 

lungs and spleen were seeded at an initial concentration of 5x10
5 

cells/well and subsequently 

diluted two fold.  Irradiated B6 splenocytes were used as APCs at a concentration of 1x10
6
 

cells/well in the presence of ESAT-61-20 (10g/ml) peptide and IL-2 (10U/ml). After 24 hrs, 

plates were washed and probed with biotinylated anti-mouse IFN. Spots were visualized and 

enumerated using a CTL-Immunospot S5 MicroAnalyzer.  No spots were detected in cultures 

lacking antigen or when using cells from uninfected mice. 
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3.3.9 Protein Estimation by ELISA 

Mouse Duoset ELISA antibody pairs from R&D Systems were used to detect IFN and IL-21 

protein levels in the supernatant according to manufacturer’s protocol. In some experiments 

protein levels were measured using a mouse Luminex assay (Linco/Millipore). 

3.3.10 Adoptive Transfer of CD4
+
 Cells 

Naive CD4
+
 T cells were isolated from single cell suspensions generated from lymph nodes and 

spleens of ESAT-6 TCR Tg mice, B6 and Cxcr5
-/- 

mice using a positive CD4
+
 T cell isolation kit 

(Miltenyi Biotech) as described 
24

. For adoptive transfer into host mice, 2-5 x 10
6
 naïve T cells 

were transferred intravenously, following which mice were rested for 24 hours and challenged 

with Mtb H37Rv by the aerosol route.  

3.3.11 CXCL13 Chemotaxis Assay 

B6 mice were aerosol infected with 100 cfu Mtb and sacrificed at day 50 post infection. Using a 

positive CD4+ T cell isolation kit (Miltenyi Biotech), CD4+ T cells were isolated and 1x10
5
 cells 

were placed in 24 well transwell plate for chemotaxis assay to CXCL13 (500 ng/ml). CD4+ T 

cells were allowed to migrate for 90 minutes when they were stained with antibodies specific for 

CD4, ICOS, IFNand BCL-6. Wells that did not contain CXCL13 were used as controls. 
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3.3.12 Statistics 

Differences between the means of experimental groups were analyzed using the two tailed 

Student’s t-test.  Differences were considered significant when p≤0.05.   

3.4 RESULTS 

3.4.1 Activated CD4
+
CXCR5

+ 
T cells accumulate in the lung during Mtb infection  

Given that ectopic lymphoid structures associated with TB granulomas contained CXCR5
+
 T 

cells, we next tested whether these cells were functionally important. The accumulation of 

activated, IFN-producing CD4
+
 T cells normally occurs in the murine lung between days 15-21 

following low dose Mtb infection 
51, 80

. We found activated, CD4
+ 

CXCR5
+
 T cells also 

accumulated in the lungs between days 15-21 (Figure 8a). Notably, a higher frequency and 

number of CXCR5
+
 T cells was found in the activated CD44

hi 
CD4

+
 T cell subset when 

compared to unactivated naive CD4
+
 CD44

lo
 T cell subset (Figure 8b).  In contrast, although a 

population of lung B cells also expressed CXCR5; this population did not increase in frequency 

following Mtb infection (Figure 8c). Furthermore, B cell deficient mice are not susceptible to 

low dose Mtb infection 
76-77

, suggesting that CD4
+
 CXCR5

+
 T cells, rather than CXCR5

+
 B cells, 

play a dominant role in protective immunity in the low dose model of Mtb infection. In addition, 

lung activated CD4
+
 CXCR5

+ 
T cells expressed significantly higher levels of Tfh-like cell 

markers, ICOS and PD1, when compared to activated CD4
+ 

CXCR5
-
 T cells and unactivated 

naive CD4
+
 T cells (Figure 8d). 
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Figure 8: Activated CD4
+
 CXCR5

+
 T cells accumulate in the lung during Mtb infection and express both Tfh-

like markers.  

 

B6 mice were infected as in Figure 6. The frequency and number of activated CD4+ CXCR5+ T cells and 

B220+CD19+CXCR5+ B cells was determined by flow cytometry at different time points post infection (a,c). 

Frequency and number of activated (CD44hi) and unactivated (CD44lo) CD4+ CXCR5+ T cells were determined in 

Mtb-infected lungs on day 25 post infection by flow cytometry (b). A typical histogram showing CXCR5 specific 

staining (filled) within activated CD4+ T cells and relevant isotype control antibody (open) is shown (b). Expression 

of ICOS and PD-1 (d) on activated (CD44hi) and unactivated (CD44lo) CD4+ CXCR5+ and CD4+ CXCR5- T cells 

were calculated by determining the mean fluorescent intensity using flow cytometry. A typical histogram showing 

expression of PD1 and ICOS (filled) and relevant isotype control antibody (open) on activated CD4+ CXCR5+ cells 

is shown (d). The data points represent the mean (±SD) of values from 4-6 mice. (a-e). *p=0.05, ***p=0.0005. ns- 

not significant. One experiment representative of two. 



 58 

3.4.2 Pulmonary CD4
+
CXCR5

+
 T cells produce proinflammatory cytokines 

Importantly, we found that ICOS
+
 PD1

+
 CD4

+
 T cell population was increased during infection 

(Figure 9a) and were enriched for expression of CXCR5 and CD44 (Figure 9b). As expected 
248

, 

activated CD4
+ 

CXCR5
-
 T cells also expressed ICOS and PD-1, albeit at reduced levels (Figure 

8d). Interestingly, activated CD4
+ 

CXCR5
+
 T cells also expressed the highest levels of the 

proinflammatory cytokines IFN, TNF and IL-2 (Figure 9c), individually, or in combination 

and cytokine-production by CXCR5
+
 T cells was Mtb-specific (Figure 10a, b). However, only a 

small population of CD4
+ 

CXCR5
+
 T cells produced IL-17 and IL-21 (Figure 10a). Despite 

increased expression of proinflammatory cytokine production in activated CD4
+ 

CXCR5
+
 T 

cells, there were no differences in overall percentage (Figure 10a) or numbers of cytokine-

producing cells between activated CD4
+
 CXCR5

+
 and CD4

+
 CXCR5

-
 T cells. In addition, CD4

+
 

CXCR5
+
 population expressed higher levels of Bcl6, while expressing similar levels of Tbet as 

CD4
+ 

CXCR5
-
 T cell populations (Figure 10c). These data together suggest that activated CD4

+ 

T cells express markers characteristic of Tfh-like cells such as ICOS, PD-1 and Bcl6, but also 

exhibit markers of Th1-like cells such as production of proinflammatory cytokines and 

expression of Tbet. 

3.4.3 CD4
+
CXCR5

+
 T cells coexpress the chemokine receptor, CXCR3 

We then determined if activated CD4
+
 CXCR5

+
 T cells expressed other chemokine receptors 

such as CXCR3, which are associated with Mtb-induced lung inflammatory T cell accumulation 

136
. We detected expression of CXCR3 on a population of activated CD4

+
 T cells (Figure 11a) 
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Figure 9: Pulmonary CD4
+
 CXCR5

+
 T cells produce proinflammatory cytokines. 

On day 25 post infection, organs from uninfected (Un) and infected (Inf) B6 mice were assessed for the percentage 

or number of ICOS+ PD1+ within CD4+ T cells by flow cytometry (a). The expression of CD44 and CXCR5  and 

number of CD44+ CXCR5+ T cells within ICOS+PD1+ gate (R1) or ICOS-PD1- gate (R2) was calculated (b). 

Expression of IFNg, TNFa and IL-2 (c) on activated (CD44hi) and unactivated (CD44lo) CD4+ CXCR5+ and CD4+ 

CXCR5- T cells were calculated by determining the mean fluorescent intensity using flow cytometry. The data 

points represent the mean (±SD) of values from 4-6 mice. (A-D). **p=0.005, ***p=0.0005. One experiment 

representative of two. 
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Figure 10: Pulmonary CD4
+ 

CXCR5
+
 T cells produce proinflammatory cytokines. 

On day 25 post infection, organs from uninfected (Un) and infected (Inf) B6 mice were assessed for the percentage 

of cytokine producing cells within CD44hi CXCR5+ and CD44hi CXCR5- was determined after stimulation with 

PMA/Ionomycin for 5 hours followed by intracellular staining and flow cytometry (a). A typical contour plot 

showing cytokine specific staining (left panel) within activated CD4+ CXCR5+ T cells and relevant isotype control 

antibody (right panel) shown. Cells from day 25 Mtb-infected lungs were stimulated with ESAT6 peptide and 

expression of CXCR5 was determined on CD44 hi IFN+TNF+ cells (b). Expression of Tbet and Bcl6 (c) on 

activated (CD44hi) and unactivated (CD44lo) CD4+ CXCR5+ and CD4+ CXCR5- T cells were calculated by 

determining the mean fluorescent intensity using flow cytometry.The data points represent the mean (±SD) of values 

from 4-6 mice. (a-c). **p=0.005, ***p=0.0005. One experiment representative of two. 
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and found that a subset of CXCR3
+
 CD4

+
 T cells also co-expressed CXCR5 (Figure 11b). 

Surprisingly, we found that the CD4
+ 

CXCR5
+ 

T cell subset expressed the highest frequency and 

expression levels of IFN c) and other proinflammatory cytokines, when compared 

to activated CD4
+ 

CXCR3
+
 or CD4

+ 
CXCR3

+ 
CXCR5

+
 T cell populations within Mtb-infected 

lungs (Figure 11c). Furthermore, in contrast to the localized expression of CXCL13 mRNA 

observed within lymphoid follicles (Figure 7 a, b), we found that mRNA for CXCL9, a CXCR3-

ligand, was localized both within the inflammatory lesions as well as near blood vessels in the 

Mtb-infected murine lung (Figure 11d) and latently infected NHPs (Figure 11e). These data 

together suggest that Mtb-induced inflammatory chemokines such as CXCL9 are expressed near 

blood vessels and likely recruit activated CD4
+
 T cells to the lung, but that CXCR5-CXCL13 

interactions may be specifically required to localize potent cytokine-producing CD4
+
 T cells 

within the lung parenchyma to organize lymphoid follicles and maximize mycobacterial control 

within granulomas.   

3.4.4 CXCR5 expression is required for protective immunity against Mtb infection 

To determine if there was a protective role for CXCR5 in immunity against TB, CXCR5-

deficient (Cxcr5
-/-

) mice were infected with Mtb and found to harbor higher lung bacterial 

burdens during early and chronic stages of infection, when compared to B6 mice (Figure 12a). In 

addition, CXCL13 neutralization also resulted in increased bacterial burden (Figure 12a) and 
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Figure 11: CD4
+
 CXCR5

+ 
T cells also coexpress the chemokine receptor, CXCR3. 

B6 mice were infected as in Figure 6 and lungs were harvested on day 25 post infection. The expression of CXCR3 

(a), CXCR3 and CXCR5 (b) on activated CD4+ cells was determined by flow cytometry. A typical histogram with 

CXCR3 specific staining (filled) and relevant isotype control antibody within activated CD4+ T cells is shown 

(open) (a). A typical contour plot showing co-expression of CXCR3 and CXCR5 on activated CD4+ T cells is 

shown (b). The frequency and mean fluorescent intensity of IFN expression within activated CD4+ CXCR5+, 

CXCR5+CXCR3+ and CXCR3+ T cells was determined in cells stimulated with PMA/Ionomycin for 5 hours 

followed by intracellular staining and flow cytometry (c). The data points represent the mean (±SD) of values from 

4-6 mice. (a-c). Lung FFPE serial sections were analyzed by ISH to determine localization of CXCL9 or CXCL13 

mRNA expression in murine (d) or L-TB NHP (e). Black arrows point to mRNA localization within the lung 

parenchyma, while red arrows point to mRNA localization near blood vessels.  *p=0.05, **p=0.005. Original 

magnification 100x. One experiment representative of two. 
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both Cxcr5
-/- 

and Cxcl13
-/- 

mice demonstrated decreased survival in response to high dose Mtb 

infection (Figure 12b). Using the low dose Mtb infection model, we found that the accumulation 

of total B cells (Figure 12c) was similar in B6 and Cxcr5
-/-

 Mtb-infected lungs, while Cxcr5
-/- 

Mtb-infected lungs showed impaired accumulation of lung GC B cells (Figure 12d). 

Furthermore, no differences in levels of ESAT-6-specific IgG1, IgG2a and IgG2b antibodies 

were found in B6 and Cxcr5
-/-

 Mtb-infected mice. Therefore, we next assessed T cell responses, 

and found that despite lack of mediastinal lymph nodes and defective splenic architecture in 

Cxcr5
-/-

 mice 
249

, comparable percentages of IFNproducing CD4
+
 cells (Figure 12 g, h) and 

number of Mtb-ESAT-6-specific, IFN-producing CD4
+
 cells (Figure 12e, f) were found in the 

lungs and spleen of Cxcr5
-/-

 and B6 Mtb-infected mice. In addition, neither differences in 

frequency of total CD4
+
 T cells producing TNF and IL-2, nor differences in  expression levels 

of IFNTNF and IL-2 within CD4
+
 T cells were observed in B6 and Cxcr5

-/-
 Mtb-infected 

lungs. The percentage of CD4
+
 T cells expressing Tfh-like cell markers ICOS and PD1 (Figure 

13a), and the ability of activated ICOS
+ 

PD1
+
 Th cells to produce IFN (Figure 13b), TNF and 

IL-2 was also similar in B6 and Cxcr5
-/-

 Mtb-infected lungs. To then address if Cxcr5
-/-

 T cells 

had the potential to differentiate into cytokine-producing Th cell subsets, we immunized B6 and 

Cxcr5
-/-

 mice with ESAT6 peptide in adjuvant and expanded splenic CD4
+
 T cells in vitro in the 

presence of Th1 or Tfh cell differentiation conditions. Similar to B6 CD4
+
 T cells, Cxcr5

-/-
 CD4

+
 

T cells produced IFNin response to Th1 polarizing conditions (Figure 13c) and produced IL-21 

in response to Tfh cell differentiation conditions (Figure 13d). These data suggest that in the 

absence of CXCR5, B cells and cytokine producing antigen-specific T cells accumulate 

efficiently in the Mtb-infected lung.   
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Figure 12: CXCR5 expression is required for protective immunity against Mtb infection.   

B6 and Cxcr5-/- mice were infected or B6 Mtb-infected mice received CXCL13 neutralizing antibodies and lung 

bacterial burden determined  (a). Survival of B6, Cxcl13-/- and Cxcr5-/- mice with high dose (1000 CFU) of  

aerosolized Mtb infection was determined (b). The number of total B cells (B220+ CD19+) (c) or GC B cells 

(B220+, CD19+, PNA+, and Ly77+) (d) was determined by flow cytometry in B6 and Cxcr5-/- Mtb-infected lungs 

on day 21 post infection. The total percentage of IFN producing CD4+ T cells in the lung (e) and spleen (f) were 

determined by intracellular staining and flow cytometry after stimulation with PMA/Ionomycin for 5 hours ex vivo. 

The number of ESAT-6 specific IFN-producing CD4+ T cells were determined in the lung (g) and spleen (h) by 

antigen-driven ELISpot assay. The data points represent the mean (±SD) of values from 4-6 mice. (a-h). *p=0.05, 

**=0.005, ***p=0.0005. One experiment representative of two. 

 

 

 

 



 65 

 

 

Figure 13: CXCR5 expression is not required for accumulation of cytokine-producing ICOS
+
 PD1

+
 T cells 

during Mtb infection. 

 

B6 and Cxcr5-/- mice were infected as in Figure 3. The percentage of CD4+ T cells expressing ICOS and PD1 (a) 

and CD4+ ICOS+ PD1+ cells expressing IFN (b) was determined by intracellular staining with PMA/Ionomycin. 

B6 and Cxcr5-/- mice were subcutaneously vaccinated with ESAT61-20 peptide in adjuvant and on day 14 post 

vaccination, splenic CD4
+
 T cells were cultured in vitro along with irradiated APCs and antigen under Th1 or Tfh 

cell differentiation conditions for 6 days as described in methods. At the end of the culture period, the CD4
+
 T cells 

were re-stimulated with beads coated with anti-CD3/CD28 for 24 hours and culture supernatants assayed for IFN 

(c) or IL-21 (d) by ELISA. The data points represent the mean (±SD) of values from 4-6 mice (a-d). ns-not 

significant. One representative of two experiments is shown. *p=0.05. ns=not significant. 

 

We therefore next addressed if the increased susceptibility in the Cxcr5
-/-

 mice was due to 

defects in localization of T cells within lung inflammatory lesions.  In support of a role for 

CXCR5 in correct T cell localization inside granulomas, CD3
+
 T cells were dispersed throughout 

the organized lung granulomas in the B6 Mtb-infected mice (Figure 14a-upper panel). However, 

CD3
+
 T cells were found as distinct perivascular cuffs in Cxcr5

-/-
 Mtb-infected lungs  and B6 

mice that received CXCL13 neutralizing antibody (Figure 14b-lower panel, Figure 14c), 

resulting in disrupted granuloma formation (Figure 14a-lower panel) and defective lymphoid 
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structure generation (Figure 14d, e). These data together suggest that the increased susceptibility 

to Mtb infection seen in the Cxcr5
-/- 

mice, is not due to impaired priming, generation or 

accumulation of cytokine-producing Tfh-like cells in the Mtb-infected lungs, but due to the 

inability of cytokine-producing CD4
+
 T cells to localize correctly within the Mtb-infected lung, 

and therefore unable to activate local macrophages to control Mtb.  

3.4.5 B cell deficient mice localize T cells within the granuloma and control Mtb 

We next addressed whether B cell lymphoid follicle formation within TB granulomas was a 

consequence of correct T cell localization and therefore a correlate of protection, but by itself not 

necessary for mediating the immune protection in Mtb-infected mice. We found that Mtb-

infected B cell deficient mice (μMT
-/-

) despite exhibiting disrupted granuloma formation and 

poorly formed lymphoid follicles in the lungs (Figure 15a-left panel), still controlled infection 

(Figure 15b) as previously described 
76-77

. In addition, B cell deficient Mtb-infected mice 

generated and recruited similar numbers of ICOS
+ 

PD1
+ 

CXCR5
+ 

T cells and accumulated 

similar numbers of antigen-specific IFN-producing cells to the lung (Figure 15c). Furthermore, 

immune control in B cell deficient mice coincided with well dispersed T cells localized in the 

inflammatory lesions in the lungs (Figure 15a-center panel) and resultant macrophage activation 

(Figure 15a-right panel, Figure 15d).  These data together suggest that B cells are not required 

for bacterial control and T cell localization in the mouse.  Further, that B cells are not required 

for macrophage activation, but that it is indeed T cell localization near Mtb-infected 

macrophages and the formation of ectopic follicles that is critical for host protective immunity.  
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Figure 14: CXCR5 expression is required for ectopic lymphoid follicle formation during TB.   

 

B6 and Cxcr5-/- mice were infected or B6 Mtb-infected mice received CXCL13 neutralizing antibodies. At day 50 

post infection, FFPE lung sections were H&E stained or analyzed by immunofluorescence for CD3, B220 (a,b); 

Representative pictures of granulomas (a) and perivascular T cell cuffing (b)  shown. Black and yellow arrows 

indicate T cell perivascular cuffing (b). Average area of perivascular cuffs was quantified using the the Zeiss 

Axioplan microscope (c). Error bars are not visible in day 30 B6 isotype group (c).  B cell lymphoid follicles were 

detected with PCNA, PNA, and B220 at  day 50 post infection (d). The average size of B cells follicles was 

quantified using the Zeiss Axioplan microscope (e). 100X magnification -H&E images; 200X magnification-

fluorescent images. The data points represent the mean (±SD) of values from 4-6 mice (a-e).  One representative of 

two experiments is shown. **p=0.005, ***p=0.0005. ns=not significant. 
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Figure 15: B cell deficient mice localize T cells within the granuloma and control Mtb.   

B6 and MT-/- mice were infected as described in Figure 6 and FFPE lung sections were stained with H&E or  

analyzed using antibodies specific for CD3 and iNOS, F4/80 (a); Representative pictures are shown. 50X 

magnification-H&E images, 200X magnification-fluorescent images.  At day 50 post infection, bacterial burden was 

determined in the lung  (b). The number of ESAT-6 specific IFNproducing CD4+ T cells were determined in the 

lung by antigen driven ELISpot assay (c). Log10 fold induction of iNOS mRNA in B6 and MT-/- Mtb-infected 

lungs relative to levels in uninfected lungs was determined by RT-PCR (d).  The data points represent the mean 

(±SD) of values from 4-6 mice. (a-d). ns=not significant. One experiment representative of two. 

3.4.6 CD4
+
 T cells responsive to CXCL13 produce IFNand activatemacrophages

In support of a role for CXCR5-CXCL13 in T cell localization within the lung for optimal 

macrophage activation, we found that CD4
+
 T cells isolated from B6 Mtb-infected lungs 

migrated in response to CXCL13 in vitro, produced IFN -like cell markers, 

ICOS and Bcl6 (Figure 16a, b). Importantly, we found that despite similar numbers of lung 

macrophages and DCs in B6 and Cxcr5
-/-

 Mtb-infected lungs (Figure 16c, d), Cxcr5
-/-

 Mtb-
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infected lungs had reduced induction of mRNA for the anti-mycobacterial molecule, iNOS 

(Figure 16e), and fewer iNOS
+
 macrophage-like cells were detected within the disorganized 

granulomas of Cxcr5
-/-

 and Cxcl13 deficient (Cxcl13
-/-

) Mtb-infected lungs (Figure 16f). 

Furthermore, CD11c
+
 DCs and macrophages sorted from Cxcr5

-/-
 and Cxcl13

-/-
 Mtb-infected 

lungs, displayed lower iNOS mRNA expression, when compared to cells isolated from B6 Mtb-

infected lungs (Figure 16g). These data together suggest that expression of CXCR5 is critical for 

strategic positioning of effector T cells within the lung for optimal macrophage activation, 

subsequent organization of lymphoid follicles and Mtb control. 

3.4.7 Adoptive transfer of ESAT-6 Tg Th0 cells rescues Mtb-infected Cxcr5-/- mice 

Our data suggests that localization of CD4
+ 

CXCR5
+
 T cells within lymphoid structures is 

critical for generation of lymphoid structure formation, macrophage activation and mycobacterial 

immune control. Therefore, we determined if adoptive transfer of purified naïve ESAT-6-

specific transgenic (Tg) T cells 
43

 capable of expressing CXCR5, into Cxcr5
-/-

 mice would rescue 

T cell localization within the lung, macrophage activation and reverse susceptibility to TB. 

Cxcr5
-/-

 mice that did not receive ESAT-6 Tg Th0 cells had higher bacterial burden (Figure 17a), 

contained numerous lymphocytic perivascular cuffs (Figure 17b), defective lymphoid follicle 

generation and reduced numbers of activated macrophages (Figure 17c-middle panel). In 

contrast, B6 Mtb-infected mice formed ectopic lymphoid structures characterized by 

lymphocytic infiltrates (Figure 17b, c), B cell follicles and granulomas with considerable 

numbers of iNOS-expressing macrophages (Figure 17c-upper panel). Importantly, adoptive 

transfer of ESAT-6 Tg Th0 cells into Cxcr5
-/-

 mice decreased lung bacterial burden (Figure 17a), 
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Figure 16: CD4
+
 T cells responsive to CXCL13 produce IFN and are critical for macrophage activation. 

CD4
+
 T cells were sorted from day 21 Mtb-infected B6 lungs and assayed in vitro for chemotaxis migration assay 

towards CXCL13 (500 ng/ml). The ability of CD4
+
 T cells to produce IFNpre- and post-migration was determined 

by intracellular staining and flow cytometry in PMA/Ionomycin stimulated cells (a). A representative contour plot 

showing surface expression of Bcl6 and ICOS on CD4+ T cells that was determined by flow cytometry (b). B6 and 

Cxcr5-/- mice were infected as mentioned in Figure 6. The number of lung macrophages (c) and dendritic cells (d) 

were determined by flow cytometry on day 21 post infection. Log10 fold induction of iNOS mRNA in B6 and 

Cxcr5-/- Mtb-infected lungs relative to levels in uninfected lungs was determined by RT-PCR on day 21 post 

infection (e). FFPE lung sections from day 21 Mtb-infected B6, Cxcr5-/- and Cxcl13-/- mice were analyzed by 

immunofluorescence for number of iNOS+ cells per granuloma (f). On day 21 post infection, lung CD11c+ cells 

were isolated from uninfected or Mtb-infected B6, Cxcr5-/- and Cxcl13-/- mice. iNOS mRNA expression in 

CD11c+ cells isolated from infected mice over levels detected in uninfected controls was determined by RT-PCR 

(g). The data points represent the mean (±SD) of values from 3-6 samples (a-g).  *p=0.05, **p=0.005, p***=0.0005. 
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restored lung lymphocytic infiltrates, T cell localization, restored generation (Figure 17c) and 

organization of ectopic lymphoid follicles in Cxcr5
-/-

 mice (Figure 17b, c), and activation of lung 

macrophages (Figure 17c-lower panel). Tracking  of  congenic, CD90.2
+
 ESAT-6 Tg cells in 

Mtb-infected congenic CD90.1
+
 mice, revealed that adoptively transferred naive Tg Th0 cells 

had underwent activation and acquired the expression of CXCR5, ICOS, PD-1 and the ability to 

produce proinflammatory cytokines (Figure 17d). 

3.4.8 Adoptive Transfer of B6 but not Cxcr5-/- CD4
+
 T cells rescues Mtb-infected Cxcr5-/- 

mice 

To definitely prove that CXCR5 expression on CD4+ T cells was responsible of for the rescue of 

Cxcr5 deficient mice, Cxcr5-/- CD4
+
 T cells were utilized. We show that the increased bacterial 

burden (Figure 18a) and decreased lymphoid follicle organization (Figure 18b, c) and 

macrophage activation (Figure 18c, d) in Mtb-infected Cxcr5
-/- 

mice could only be reversed by 

adoptive transfer of CD4
+
 T cells isolated from B6 mice, but not by transfer of CD4

+
 T cells 

isolated from Cxcr5
-/- 

mice. These data together show that adoptive transfer of uncommitted Th0 

cells, capable of acquiring expression of CXCR5, restored strategic T cell localization within the 

lung, formation of lymphoid structures and reversed susceptibility to TB. 
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Figure 17: Adoptive transfer of ESAT-6 Tg Th0 cells rescues T cell localization and protection in Cxcr5-/- 

mice. 

 
2-5x10

6
 in vitro generated ESAT-6 Tg Th0 cells were adoptively transferred into Cxcr5-/- mice. 24 hours later, mice 

were infected as in Figure 6 and lung bacterial burden determined on day 50  (a). The average size of B cell 

lymphoid follicles was quantified in B6 and Cxcr5-/- Mtb-infected lungs on day 50  using the Zeiss Axioplan 

microscope (b). Pulmonary granuloma and B cell lymphoid follicle formation was assessed in FFPE lung sections 

that were stained with H&E; CD3, IgG, B220; CD3 alone; iNOS, F4/80 on day 50  (b,c). Original magnification for 

H&E sections, 50X; immunofluorescent sections, 200X. 2-5x10
6
 ESAT-6 Tg CD4

+ 
Th0 cells were adoptively 

transferred into congenic CD90.1 B6 mice and infected as in Figure 6. The frequency of cells expressing different 

molecules was determined in PMA/Ionomycin stimulated CD90.2 Tg cells isolated from infected lungs on day 21 

(d). The data points represent the mean (±SD) of values from 4-6 mice (a-d). *p=0.05, ***p=0.0005. ns-not 

significant. 
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Figure 18: Adoptive transfer of  B6, but not Cxcr5-/- CD4
+
 T cells, rescues T cell localization and protection in 

Cxcr5-/- Mtb-infected mice. 

 

2x10
6
 CD4

+
 B6 or Cxcr5-/- T cells were adoptively transferred into Cxcr5-/- mice. 24 hours later, mice were 

infected as in Figure 3 and lung bacterial burden determined on day 50 (a). The average size B cell lymphoid 

follicles was quantified in FFPE lung sections on day 50 using the Zeiss Axioplan microscope (b). Pulmonary 

granuloma and B cell lymphoid follicle formation was assessed in FFPE lung sections that were stained with H&E; 

CD3, IgG, B220; iNOS, F4/80 on day 50 (b,c). The number of iNOS
+ 

cells were quantitated using the Zeiss 

Axioplan Microscope (d). Original magnification for H&E sections, 50X; immunofluorescent sections, 200X. The 

data points represent the mean (+SD) of values from 4-6 mice (a-d). p**=0.005, ***=0.0005. 
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3.4.9 IL-6 and IL-21 are required for optimal B cell lymphoid follicle formation, but are 

not essential for Mtb control 

IL-21 and IL-6 are required for polarization of Tfh cells 
237, 241, 246

. Coincident with the early 

accumulation of CD4
+
 CXCR5

+
 Tfh-like cells in Mtb-infected lungs, IL-6, IL-21, ICOS and PD1 

mRNA induction occurred in day 21-Mtb-infected lungs
80

 (Table 4). Therefore, we tested 

whether absence of IL-6 and IL-21 impacts protective immunity to TB and found that B cell 

follicle formation was reduced, but not absent, in Il21
-/-

 and Il6
-/-

 Mtb-infected lungs (Figure 19 

a,b,d,e) and did not impact lung bacterial control during Mtb infection (Figure 19 c, f) . These 

data suggest that although IL-6 and IL-21 are required for optimal generation of lymphoid 

structures, either IL-6 or IL-21 alone are sufficient for mediating protective immunity against 

TB.   

 

Table 4: Genes induced during murine TB are associated with generation of Tfh-like cellular responses 
80

.   

 
Fold induction of mRNA in Mtb-infected lungs over levels found in uninfected lungs shown. D-12, day 12 post 

infection; D-15, day 15 post infection; D-21, day 21 post infection. FC= fold change, q-val= q value. 
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Figure 19: IL-6 and IL-21 are required for optimal B cell lymphoid follicle formation, but are not essential 

for Mtb control.   

 
B6 and Il6-/- mice or B6 and Il21-/- mice were infected as in Figure 6. At day 50 post infection, FFPE lung sections 

were assessed for B cell lymphoid follicle organization  by immunofluorescence, 200X magnification (a, d).  The 

average size of B cell lymphoid follicles (b,e) and lung bacterial burden were determined at different time points 

post infection (c, d).  The data points represent the mean (±SD) of values from 4-6 mice (a-f).  ***p=0.0005. ns=not 

signigicant. 
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3.5 DISCUSSION 

We have previously shown that ectopic lymphoid follicles in granulomas are associated with 

immune control (previous chapter), but the mechanism of formation and protective immunity in 

Mtb infection remain unknown. Using the mouse model of TB, we identified two CXCR5 

expressing cell populations within the lung during Mtb infection, a CD4
+
 T cell and 

B220
+
CD19

+
 B cell. We show that CD4

+
CXCR5

+
 T cells are the critical cellular component of 

ectopic lymphoid follicles that contribute to protective immunity against TB. CD4
+
CXCR5

+
 T 

cells expressed a Tfh-like cell phenotype, while concurrently also expressing Th1 cytokines and 

surface markers. Our data prove that potent activated Th1 cytokine producing CXCR5
+
 Tfh-like  

cells localize to CXCL13 to position near Mtb-infected macrophages to activate and promote 

bacterial killing. Although, ectopic lymphoid follicle formation correlated with Mtb protective 

immunity, it was the recruitment of CD4
+
CXCR5

+
 T cells that specifically contributed to host 

defense against Mtb. Our results have far implications in the role of ectopic lymphoid follicles in 

infectious disease and autoimmunity. Further, these data has significant implications for future 

therapies and vaccine design against TB. 

Using Cxcr5 deficient mice, we found that expression of CXCR5 on T cells is not 

required for recruitment of T cells to the Mtb-infected lung, but is essential for T cell localization 

in the parenchyma near infected macrophages. Importantly, localized CD4
+
CXCR5

+
 T cells were 

required for macrophage activation and Mtb control in Cxcr5 deficient mice. The Cxcr5-/- 

phenotype is unique in that these mice lack the majority of lymph nodes and have defective 

splenic architecture 
249

. Despite the absence of lymph nodes, mice demonstrated no defects in T 

cell priming with similar numbers of Mtb-specific Th1 cytokine producing CD4
+
 T cells in the 

lung, which is consistent with previous reports in other antigen models 
250

. Further, similar 
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findings in SLO deficient B6 mice, which are still able to control Mtb, and Ccr7-/- mice show 

adaptive T cell responses that prime in the lung 
148, 251

. Cxcr5 deficient mice did not affect the 

number of ICOS
+
PD-1

+
 or CXCR3

+
CD4

+
 T helper cells arriving in the lung or the production of 

proinflammatory IFN and TNF levels further substantiating that CXCR5 does not affect Tfh 

or Th1 effector expression. However, Cxcr5-/- mice did exhibit reduced activation determined by 

iNOS expression with similar numbers of myeloid cells in the lung suggesting T cell localization 

mediated by CXCR5 is necessary for myeloid cell activation and Mtb control. Importantly, mice 

that received Mtb-antigen specific CD4
+
 T cells or wild type CD4

+
 CXCR5 expressing T cells 

were able to rescue T cell localization, macrophage activation, ectopic lymphoid follicle 

formation, and bacterial control suggesting that it is indeed the CXCR5 expression on CD4
+
 T 

cells that confers protective immunity in ectopic lymphoid follicles. This mechanism is likely 

conferred by localization of Th1 cytokine producing CD4
+
CXCR5

+
 T cells near Mtb-infected 

macrophages inducing activation and bacterial control. It is further possible that CXCR5 

expressing T cells also regulate adhesion molecules and chemokine expression by other 

inflammatory cells inducing cellular organization, which should be further investigated.  

It is becoming clear that some T helper cell phenotypes maintain a degree of plasticity 
63, 

252-253
. Although in vitro generated Tfh cells typically produce classic Tfh cytokines, namely IL-

21, and lineage specific transcription factors (BCL-6), in vivo generated Tfh cells can co-express 

multiple transcription factors in addition to BCL-6 and produce IFN, IL-4, and IL-17a 
237, 241, 246, 

254-256
. Therefore, it appears Tfh cells are heterogeneous becoming either Th1/Th2/Th17 cells that 

are recruited to the B-T cell border for help and induction of class-switching in B cells or 

possibly being driven towards a lineage-specific phenotype in response to antigen stimulation. 

Tfh cells were driven towards a Th1 phenotype in response to immunization with a protein 
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antigen in adjuvant 
257

 and infection with Leishmania major 
256

 and Toxoplasma gondii 
258

 

inducing class switching to IgG2a. In addition, in response to Th2 driving pathogens, 

Schistosoma mansoni 
259

 and Heligmosomoides polygyrus 
255

 drove generation of IL-4 producing 

Tfh cells. Recently, studies found that Tfh cells share a transition stage with Th1 cells through 

STAT4, which induced the expression of T-bet concomitantly with BCL-6 
258

. Cells were 

therefore capable of expressing dual lineage characteristics and functionalities. Our data support 

this model, as CD4
+
 T cells generated during Mtb infection coexpressed both markers of Th1 and 

Tfh cells to become the highest producer of pro-inflammatory cytokines that were crucial for 

mediating protective immunity. Protective immunity produced by Th1 cytokine producing 

CD4
+
CXCR5

+
 T cells is consistent with studies showing that defense against Mtb is mediated by 

proinflammatory cytokines and CD4
+
 T cells that can produce multiple Th1 cytokines  

51, 106
.  

Expression of CXCR3 can also be found on a subset of CD4
+
CXCR5

+
 T cells. CXCR3 is 

a chemokine receptor normally associated with localization of Th1 cells and accordingly 

multiple CXCR3 ligands, CXCL9, CXCL10, and CXCL11 are induced in the Mtb-infected lung 

35, 133, 260-262
. It is possible that CD4

+
CXCR5

+
CXCR3

+
 T cells use CXCR3 and other chemokine 

receptors to get to the lung and use CXCR5 to position within the parenchyma near Mtb-infected 

macrophages for activation. Thus, it is tempting to speculate that CXCR3 may be down regulated 

upon arrival to the lung generating a CXCR5
+
CD4

+
 T cell population. Consistent with 

hypothesis, Cxcr3-/- are not more susceptible to Mtb infection, however, Cxcr5-/- and Cxcl13-/- 

have higher bacterial burdens and decreased macrophage activation with in the lung 
24, 136

. 

Further, CCR2 
263

, CCR5 
264

, and CCR7 
148

 deficient mice, chemokine receptors also expressed 

on T cells during Mtb infection, are also not more susceptible to low dose Mtb infection 

suggesting that redundancy in chemokine expression allow for CD4
+
 T cells to arrive to the lung, 
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but only CXCR5 expression is indispensable for localization of CD4
+
 T cells near infected 

macrophages. 

The role of B cell effector functions and antibody responses in Mtb protective immunity 

is a ongoing area of study as some reports suggest B cells are not essential for protection, while 

others refute this claim. B cells are a principal component of the Mtb-infected lung with B cell 

aggregates observed in human TB granulomas 
11, 79, 223

, A-TB NHP granulomas 
78

, and Mtb-

infected mouse granulomas 
24, 147

. Recently, B cell deficient mice in a low dose aerosol model of 

Mtb infection controlled bacteria in the lung 
77

, which we also found in our low dose mouse 

model. Further, these mice had similar levels of macrophage activation compared to wild type 

mice. Importantly, although these mice did not form ectopic lymphoid follicles, they were still 

able to localize CXCR5
+
CD4

+
 T cells within the parenchyma. In addition, adoptive transfer of 

B6 T cells expressing CXCR5, but not Cxcr5-/- T cells were able to rescue ectopic lymphoid 

follicle formation, bacterial burden, and macrophage activation in Cxcr5-/- mice. These data 

suggest that despite both T cell and B cell populations expressing CXCR5, it is the 

CXCR5
+
CD4

+
 T cells population that is responsible for protective immunity. Ectopic lymphoid 

follicles appear to form in response to correct T cell localization within the lung and can be used 

as a correlate of protection, but the structure itself may not be necessary for Mtb control. 

Determining the direct role of CXCR5
+
CD4

+
 T cells and ectopic lymphoid follicles in Mtb-

infected humans is a challenging task, but needs to be addressed to understand the potential use 

of these cells and markers in future treatment and prevention strategies. 
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4.0  PULMONARY CXCL13 PRODUCTION DURING M. TUBERCULOSIS 

INFECTION 

4.1 ABSTRACT 

CXC chemokine ligand (CXCL)-13 is constitutively expressed in SLOs and is induced in the 

lung during M. tuberculosis infection. Localization of CXCL13 is confined within distinct 

ectopic lymphoid follicles near the granuloma. Although it is known that follicular dendritic cells 

and other stromal cells produce CXCL13 in the lymph node, the cellular source of CXCL13 in 

early and late TB infection remains to be defined. We found in Mtb-infected mice that stromal 

cells, FDCs, and DCs within the lung produced CXCL13. To determine whether hematopoietic 

or non-hematopoietic cells contributed more to immune protection and whether production was 

similar in both early (day 30) and late (day 50) infection, Cxcl13 bone marrow chimeras were 

generated.  Mice deficient in Cxcl13 within non-hematopoietic cells were more susceptible early 

in infection, while both hematopoietic and non-hematopoietic cells producing CXCL13 were 

required for protective immunity in chronic Mtb infection. Further, non-hematopoietic Cxcl13 

deficient mice were unable to develop protective lymphoid follicles. Our data establish the 

importance of CXCL13 production in Mtb infection by both hematopoietic and non-

hematopoietic cell subsets. 
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4.2 INTRODUCTION 

CXCL13 is an 88 amino acid CXC-chemokine that was first discovered in 1998 and has 

sequence similarity to CXCL1, CXCL10, and CXCL12 although it performs a very different 

function 
151, 234

. CXCL13 is a homeostatic chemokine that is normally expressed within SLOs 

and is important for B cell follicle formation and polarization of the germinal center light and 

dark zones 
151, 234, 265

. Further, expression of CXCL13 is critical in ELO formation in certain 

autoimmune and infectious diseases indicating it is also an inducible chemokine (discussed in 

detail in Section 1.5). Initial production of CXCL13 in lymph node development is initiated by 

CD4
+
CD3

-
IL-7R

+
 lymphoid tissue inducer (LTi) cells 

266-267
. LTi cells express LTon their 

surface and engage the LTR on mesenchymal cells to produce homeostatic chemokines, such as 

CXCL13 
267-268

. Mesenchymal cells differentiate into a variety of cells types including follicular 

dendritic cells, the main producer of CXCL13 in the SLO, and other stromal cells 
172

. CXCL13 

then recruits CXCR5 expressing cells, mature B cells and Tfh cells, within the lymph node 
151, 

153, 234
. B cells participate in CXCL13 production by upregulated LT12  in response to the 

chemokine, which interacts with FDCs to further promote CXCL13 production 
152

. In addition, 

Tfh cells also appear to play a role in the production of CXCL13 as genome wide approaches 

have suggested the Cxcl13 gene is highly upregulated in this T cell lineage 
269-270

. Thus multiple 

cell types are responsible for CXCL13 production in SLO formation and maintenance. 

Other cell subsets have been implicated in the production of CXCL13 outside of SLOs, 

however, little is known regarding the production of CXCL13 in ELOs. In ectopic follicles of 

rheumatoid arthritis and ulcerative colitis patients, CXCL13 was produced by monocytes and 

macrophages, and FDCs 
192

. Further, in human blood DCs exposed to influenza virus, CXCL13 
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protein could be detected in supernatants in just 8 hours 
271

. In this study, we investigate the 

source of CXCL13 during Mtb infection in murine ectopic lymphoid follicles. We found that 

CXCL13 was produced by both hematopoietic and non-hematopoietic cells subsets, namely 

FDCs, non-FDC stromal cells, and DCs, but not lymphocytes. Further, we demonstrated that 

non-hematopoietic cell are critical for CXCL13 production early in Mtb infection while non-

hematopoietic and hematopoietic subsets both contribute later during infection. These data 

suggest that multiple stromal and myeloid cell subsets are necessary for pulmonary CXCL13 

induced ectopic lymphoid development in the Mtb-infected lung and that non-hematopoietic 

stromal cells are essential for early initiation.  

4.3 MATERIAL AND METHODS 

4.3.1 Mtb Infection in Mice 

Mice were infected as previously described in Section 3.3.1. 

4.3.2 Generation of Lung Cell Types 

For generation of lung fibroblasts, lungs were perfused with 5 units/ml dispase followed by 1% 

low melting agarose in PBS, washed in PBS and incubated in dispase for 30 minutes at 37
o
C.  

Single cell suspensions were then obtained from DNase/Collagenase treated lungs and 

fibroblasts generated by passaging 2-4 times. Lung alveolar macrophages were obtained by 

bronchoalveolar lavage as previously described 
247

. Lung CD11c
+
 cells were sorted from single 
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cell lung suspensions using a magnetically labeled CD11c positive isolation kit (Miltenyi 

Biotech, CA). Mouse tracheal epithelial cells (MTECs) were generated using an air-liquid 

interface culture as previously described 
272

. All the different cell types were stimulated with 

irradiated Mtb (100 g/ml) for 24 hours and cells supernatants analyzed for CXCL13 protein.  

4.3.3 Protein Estimation by ELISA 

Mouse Duoset ELISA antibody pairs from R&D Systems were used to detect CXCL13 protein 

levels in the supernatant according to manufacturer’s protocol. In some experiments protein 

levels were measured using a mouse Luminex assay (Linco/Millipore). 

4.3.4 Generation of Bone Marrow Chimeric Mice 

To generate chimeric mice, mice were given a medicated Sulfa-Trim diet containing 1.2% 

sulfamethoxazole and 0.2% trimethoprim (TestDiet) two weeks prior to irradiation. Mice were 

sub-lethally irradiated with 1000 rads in two doses (X-Rad 320). Mice were subsequently 

reconstituted with 10x10
6
 bone marrow cells from B6 or gene deficient mice via i.v. injection. 

Mice were allowed to reconstitute for 45 days while continuing to receive a Sulfa-Trim and 

acidified water diet following which they were used in experimental procedures. 

4.3.5 Morphometric Analysis and Immunofluorescence 

Immunofluorescence was performed as previously described in Section 2.3.4. In addition, DCs 

and stromal cells were stained with PE-hamster anti-mouse CD11c (HL3, BD Pharmingen) and 
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PE-mouse anti-mouse CD157 (BP3, BD Pharmingen). To amplify the signal, a rabbit, anti-PE 

antibody (Rockland Inc) was used, followed by its detection with Fab, donkey-anti rabbit-Cy3 

(Jackson Immunoresearch Laboratories). 

4.3.6 CXCL13 In Situ Hybridization 

Performed as previously described in Section 2.3.5. 

4.3.7 Statistics 

Differences between the means of experimental groups were analyzed using the two tailed 

Student’s t-test.  Differences were considered significant when p≤0.05.   

4.4 RESULTS 

4.4.1 CXCL13 is produced by hematopoietic and non-hematopoietic cells during Mtb 

infection 

Our data suggest that CD4
+ 

CXCR5
+
 T cells producing proinflammatory cytokines that 

accumulate in the lung respond to a pulmonary CXCL13 gradient. Accordingly, CXCL13 is 

known to be produced by DCs 
192, 273

, FDCs 
274-276

 and stromal cells 
277

 in SLOs. Following Mtb 

infection, we detected increased expression of CXCL13 protein in lung homogenates 

(uninfected: 42+/- 10.03 pg/ml, Mtb-infected: 452.96 +/- 82.3, p=0.001) and CXCL13 protein 

was found to co-localize with lung BP3
+ 

stromal cells, CD21-CD35
+
 FDCs and  CD11c

+
 DCs in 
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ELOs (Figure 20a). Furthermore, when lung alveolar macrophages, CD11c
+
 cells, mouse 

tracheal epithelial cells and fibroblasts were exposed to Mtb in vitro, CXCL13 protein was 

detected in supernatants from myeloid cells and fibroblasts, but not epithelial cell supernatants, 

suggesting that both hematopoietic and non-hematopoietic cells produce CXCL13 during Mtb 

infection (Figure 20b). Also, both CD11c
+
 and CD11c

-
 cells isolated from Mtb-infected B6 lungs 

expressed CXCL13 mRNA (Figure 20c). 

 

 

 

Figure 20: CXCL13 is produced by stromal and myeloid cells in Mtb infection. 

FFPE lung sections from B6 Mtb-infected mice were assessed for CXCL13-producing populations by 

immunofluorescence (a). Alveolar macrophages, lung CD11c+ cells, lung fibroblasts, and mouse tracheal epithelial 

cells (MTECs) were left untreated or treated with irradiated Mtb (100 mg/ml) for 24 hours and supernatants assayed 

for CXCL13 protein (b). ND-not detectable. CD11c+ and CD11c- cells were sorted from B6 Mtb-infected lungs 

(day 50 post infection) and log10 fold induction of CXCL13 mRNA relative to GAPDH was determined by RT-

PCR (c).  Immunofluorescence original magnification 200X. The data points represent the mean (±SD) of values 

from 3-4 samples (a-b) or from 4-6 mice (c). *p=0.05, **=0.005, ***p=0.0005. ns= not significant. One experiment 

representative of two is shown. 
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4.4.2 CXCL13 by different cell populations is critical in early and late Mtb infection 

To delineate the protective contributions of CXCL13 production by hematopoietic and non-

hematopoietic cells, we infected hematopoietic Cxcl13
-/-

 bone marrow chimeric (BMC) mice (B6 

host/-/- BM) or non-hematopoietic Cxcl13
-/-

 BMC mice (-/- host/B6 BM) with Mtb. As expected 

24
, complete Cxcl13

-/-
 BMC mice (-/-host/-/- BM) were more susceptible to Mtb infection than 

complete B6 BMC mice (B6 host/B6 BM) (Figure 21a). Interestingly, non-hematopoietic, but 

not hematopoietic Cxcl13
-/-

 BMC mice had increased lung bacterial burden at early time points 

(Figure 21a), while at later time points, both hematopoietic and non-hematopoietic Cxcl13
-/-

 

BMC mice had increased lung bacterial burden (Figure 21b), decreased T cell localization within 

the lung and reduced lymphoid structure formation when compared to B6 Mtb-infected lungs 

(Figure 21c, d). Furthermore, hematopoietic Cxcl13
-/-

 BMC mice which were protected during 

early infection, had more distinct T cell localization within the lung, highly organized B cell 

lymphoid follicle structures (Figure 21 c, d) and increased CXCL13 mRNA expression within 

lymphoid structures (Figure 21e). These data show that both hematopoietic and non-

hematopoietic sources of CXCL13 are required for lymphoid structure formation and protective 

immunity against Mtb infection, but that non-hematopoietic sources of CXCL13 are required for 

early protective immunity during TB. 

4.5 DISCUSSION 

Using the Mtb mouse model, we demonstrated that FDCs, non-FDC stromal cells, and DCs, all 

produce CXCL13 within pulmonary ectopic lymphoid follicles. However, we did not  
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Figure 21: CXCL13 is produced by hematopoietic and non-hematopoietic cells and required for Mtb control. 

Hematopoietic Cxcl13-/- BMC mice (B6 host/-/- BM), non-hematopoietic Cxcl13-/- BMC mice (-/- host/B6 BM), 

complete Cxcl13-/- BMC mice (-/- host/-/-BM) and complete B6 BMC mice (B6 host/B6 BM) were infected with 

Mtb and lung bacterial burden determined on day 30 (a) and day 50 (b). Pulmonary B cell lymphoid follicles were 

detected in FFPE lung sections (day 50) by immunofluorescent staining for CD3, IgG, and B220; DAPI (blue) was 

used to detect nuclei (c). Average size of the B cell lymphoid follicles was quantified using the Zeiss Axioplan 

microscope (day 50) (d). Day 30 FFPE lung sections were assayed for CXCL13 mRNA localization by ISH (e). 

Black arrows indicate CXCL13 localization within granulomas (e). ISH original magnification 600X. 

Immunofluorescence original magnification 200X. The data points represent the mean (±SD) from 4-6 mice (a-e). 

*p=0.05, **=0.005, ***p=0.0005. ns= not significant. One experiment representative of two is shown. 
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observe CXCL13 localization with any lymphocytic subset as implied by previous genome array 

studies 
269-270

. Further, in vitro data verified the capability of both stromal and myeloid cells to 

produce CXCL13 in response to Mtb. In addition, we characterized the importance of different 

cell subsets in the initiation of ectopic lymphoid follicle formation and we found that non-

hematopoietic subsets are essential for the earliest production of CXCL13 in the Mtb-infected 

lung as Cxcl13-/- non-hematopoietic bone marrow chimeric mice were unable to control 

infection and to form ectopic lymphoid follicles. However, later during infection (day 50), when 

inflammatory immune cells have infiltrated the lung, both non-hematopoietic and hematopoietic 

cell subsets contributed to ectopic lymphoid follicle formation and protective immunity against 

Mtb. Our data prove that different cellular sources of CXCL13 in ectopic lymphoid tissues can 

impact progression of disease and protective outcomes in chronic infections. Further, varying 

sources of CXCL13 ensure that CXCR5
+
 cells respond and migrate to the lung to elicit the 

highest protective immune response against Mtb. 

With our data and previous studies 
170, 184, 191, 194

, a likely mechanism of ectopic lymphoid 

follicle development unfolds. It is probable that either LTi cells or TNF and LT-induced by 

Mtb initiate production of CXCL13 in stromal cells. As infection progresses, FDCs and reticular 

networks develop further contributing to CXCL13 production. Further, inflammatory myeloid 

cells are recruited in large numbers to the lung, which also have the potential to produce 

CXCL13 later in infection. Upon formation of ectopic lymphoid follicles, B cells likely establish 

a positive feedback loop with FDCs promoting the maintenance of CXCL13 
152

, however, this 

help is dispensable in Mtb infection. Induction of CXCL13 further recruits a Tfh-like Th1 

proinflammatory producing CD4
+
CXCR5

+
 T cells that localizes near Mtb-infected macrophages 

promoting activation and bacterial killing and thus immune control in the lung. Additional 
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studies are required to understand the earliest mechanisms of CXCL13 production in FDCs, 

stromal cells, and DCs, but these studies are clear in the importance of CXCL13 for immune 

control of Mtb and protective ectopic lymphoid follicle formation in the lung. These studies have 

contributed greatly to the understanding of Mtb immune responses and the formation of ectopic 

lymphoid organs during infection. 
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5.0  CONCLUSIONS, SIGNIFICANCE AND FUTURE DIRECTIONS 

M. tuberculosis is the causative agent of the disease that causes tuberculosis, which has multiple 

outcomes including active, latent and reactivated disease 
229, 278

. Latent TB patients are 

asymptomatic and 90% can live a lifetime harboring the bacteria without ever developing 

reactivated infection and complications 
278

. Further, these patients are at little risk to other 

individuals as bacteria is only transmitted during active infection 
278

. Thus, the immune 

components required for maintaining latent infection are important in understanding protective 

immunity and immune control. It was previously understood that CD4
+
 Th1 cells are necessary 

to activate macrophages through IFNand TNF production, which stimulates macrophages to 

upregulate iNOS and contribute to bacterial killing 
51

. Further, the granuloma, the hallmark of 

Mtb infection, is thought to facilitate cross-talk and provide a physical barrier for the prevention 

of bacterial spread and to limit pathology. However, the granuloma forms in both active and 

latent disease indicating immune differences exist in generating a functional and protective 

granuloma. The lack of latent Mtb infection models limits the work in this area.  However, using 

a combination of human, NHP, which develop latent disease, and the Mtb mouse model, which 

is invaluable for mechanistic studies, evidence has emerged on granuloma formation in latent, 

active, and chronic disease. 

Previous work has established the presence of B cell lymphoid aggregates within the 

granuloma of humans 
11

, NHPs 
78

, and mice 
24, 77

. Development of lymphoid follicles was 
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associated with development of L-TB in some humans 
223

. Our data proves that these lymphoid 

follicles are ectopic lymphoid organs that indeed correlate with immune control as 100% of L-

TB NHPs formed ectopic follicles while only 33% of samples from NHPs with A-TB contained 

proliferating GC B cells, FDCs, and CXCR5
+
 T cells. Importantly, we mechanistically addressed 

the formation of ectopic lymphoid follicles and the cells required for protective immunity. We 

found that expression of CXCL13 by stromal cells, FDCs, and DCs were critical for ectopic 

lymphoid follicle formation and recruitment of CXCR5
+
 T cells within the lung. CXCL13 was 

not required for CXCR5
+
 T cells to migrate to the lung, but was required for specific localization 

within the lung parenchyma. CXCR5
+
 T cells, which express dual characteristics of Tfh and Th1 

cells, are essential for controlling Mtb infection in mice by their production of Th1 

proinflammatory cytokines that promote macrophage activation and further contribute to ectopic 

lymphoid follicle development. This protective model is summarized in Figure 25. 

Our study highlights the importance of CXCL13 induction, CXCR5
+
 T cell recruitment 

and formation of ectopic lymphoid follicles in the generation of a protective Mtb immune 

response. Further, these data support the hypothesis that T helper cells exhibit degrees of 

plasticity and can express multiple lineage characteristics. In addition, they support the idea that 

effective granuloma formation does contribute to protective immunity and that significant 

differences exist in both morphological and physiological parameters indicating future diagnostic 

tools may easily be able to differentiate between active and latent TB disease. 

 Although it is difficult to mechanistically determine the role of the CXCL13/CXCR5 

axis in human TB, much work can be performed to validate this hypothesis. Our data translated 

into humans could have extensive implications in diagnostics of L-TB and A-TB and can  
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potentially indicate those individuals reverting to active disease. CXCL13 levels or CXCR5 

expression in the serum or BAL could differentiate those with L-TB, A-TB, or those at risk for 

reactivation. In humans, individuals with specific genetic mutations are predisposed to increased 

mycobacterial infections such as those in the IFN locus (discussed in section 1.3.2). It is 

possible that specific populations with single-nucleotide polymorphisms in the Cxcr5 or Cxcl13  

 

 

Figure 22: CXCR5 expressing T cells mediate protective immunity against tuberculosis.  

Dendritic cells become activated following uptake and processing of Mtb antigen in the lung. Following activation, 

DCs upregulate CCR7 and migrate to the draining lymph node in response to CCL19/CCL21 chemokines. DCs 

present antigen to naïve T helper cells, which differentiate into Tfh-like Th1 cells, which express CXCR5. CXCR5+ 

Th1 cells migrate to the lung in response to inflammatory chemokines. Upon arrival to the lung, CXCR5+ Th1 cells 

use CXCL13 to specifically localize to Mtb-infected phagocytes within the parenchyma. Localization of CXCR5+ T 

cells typically results in the formation of ectopic lymphoid follicles containing CXCR5+ T cells, GC B cells, FDCs, 

and other myeloid cells, which are strongly associated with latent TB. Localized CXCR5+ Th1 cells produce 

IFNand TNF, which act to activate macrophages and kill Mtb thereby assisting in the host protective immune 

response. 
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locus may have a higher incidence rate of Mtb infections and have a higher risk for reactivation. 

Further, our study also provides the rationale for targeting CXCR5 expression on memory T cells 

in vaccine immunity. Accordingly, studies have reported that the use of IL-6 as a vaccine 

adjuvant drives CXCR5 expression on T cells suggesting this is a distinct possibility 
279

. 

Therefore our mechanistic studies using the mouse model of Mtb may have a broader relevance 

in human TB disease. Our findings may also have direct implications in other diseases both 

autoimmune and infectious. These results with other studies implicate ectopic lymphoid follicles 

as both mediators of protection and autoimmune pathology suggesting location and 

circumstances determine the role of this structure.  

The future directions of this investigation will involve study of the mechanisms driving 

induction of CXCL13 and ectopic lymphoid follicle formation. Previous studies 
35

 have found 

pulmonary expression of TNF- and LT- in Mtb-infected mice, both known to induce 

CXCL13 expression, but it is not known if one, both, or neither of these cytokines is responsible. 

Further, it is also possible that Mtb may directly induce CXCL13 expression through TLR 

stimulation 
280

. IL-17, which is implicated in the formation of ELOs in influenza 
176

, is also 

induced during Mtb infection 
80

. Further, Il-23-/- mice lacked organized ELOs later in infection 

suggesting IL-17 may play a role in maintenance of ELO formation during chronic TB 
281

. 

Moreover, the impact of Cxcl13 and Cxcr5 deficiency, on vascular adhesion molecule 

expression, chemokine production, and chemokine receptor expression should be investigated as 

these may also contribute to correct localization of T cells within the granuloma. To gain further 

insight, it would also be beneficial to take advantage of gene expression microarrays to define 

specific activation profiles of CXCR5
+
 and CXCR5- CD4

+
 T cells.  
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Additional studies investigated the protective role of CXCR5/CXCL13 and ELO 

formation in vaccine induced immunity is essential. Indeed, further work done in our lab 

indicates ELOs are induced in mice mucosally vaccinated with ESAT61-20 peptide and formation 

is dependent upon CXCL13 expression 
282

. Further, Cxcl13-/- mice were unable to generate a 

protective vaccine induced immune response following challenge with Mtb 
282

. Induction of 

CXCL13 was dependent upon IL-17, but not IFN production suggesting IL-17 is also involved 

in protective vaccine induced ELO formation 
282

. It is clear that expression of CXCL13 is 

essential in the Mtb mouse model for protective vaccine induced immunity. 

Our data further support the idea that T helper cells are plastic, capable of expressing dual 

characteristics of both Tfh and Th1 lineage cells. Tfh cells appear to be the most dynamic subset 

as in vitro Tfh cells can become Th1, Th2, and Th17 cells 
283

. Further, Th1 cells pass through a 

Tfh-like transition before they become fully committed Th1 cells 
258

. It is possible that this Tfh-

like Th1 transition state is critical in Mtb immunity. CXCR5
+
CD4

+
 T cells in Mtb infection 

could utilize CXCR5 expression to migrate into the parenchyma and position in the granuloma, 

but then down regulate CXCR5 and become fully committed Th1 cells. The exact benefit of T 

cell plasticity in Mtb infection and the cytokines that drive this transition require further study. 

In summary, our data describe a novel and previously undescribed role for CD4
+
CXCR5

+
 

Th cells in Mtb protective immunity through localized proinflammatory cytokine production and 

macrophage activation. As we further elucidate the immune mechanisms required for protective 

immunity against TB, targeted efforts can be made to improve vaccine strategies, diagnostics, 

and treatment against this pulmonary pathogen. 
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