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Subacromial impingement syndrome is one of the most common problems among manual 

wheelchair users (MWUs). While the mechanism of impingement is associated with the 

encroachment of subacromial space, few studies have investigated the relationship between 

space narrowing and intense repetitive wheelchair activities. Ultrasound offers a non-invasive, 

radiation free, portable, and relatively cost-effective modality to identify acromiohumeral 

distance (AHD) between acromion and humeral head. We established moderate to excellent 

intra- and inter-rater reliability and intra- and inter-video reproducibility of the ultrasonographic 

AHD measurement in 10 MWUs with spinal cord injury and 10 able-bodied individuals in 

Chapter 2. AHD was significantly impacted while the shoulder was in overhead positions with or 

without muscle contraction. The effects of repetitive shoulder external rotations between two 

groups revealed that MWUs group had greater AHD decreases between 45° arm elevation and 

neutral. In Chapter 3, twenty-three MWUs performed two shoulder muscle-fatiguing protocols. 

AHD narrowing was detected in holding a weight relief raise compared to a neutral position. 

AHD was significantly reduced with the electromyography signs of sternal pectoralis major 

muscle fatigue after multiple weight relief push-ups. In addition, participants who experienced 

higher shoulder pain scores and perceived exertion after shoulder external rotation fatiguing 

exercises showed greater AHD narrowing. Chapter 4 investigated if shoulder biomechanics 

during the start-up phases of propulsion were related to the AHD measurement. Twenty-one 
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MWUs took part in an intense wheelchair propulsion course. Pushing with a technique that 

resulted in higher shoulder internal rotation moments and lower posterior forces during startup 

was linked to more acute AHD narrowing. AHD measurements related to shoulder 

circumference and years since injury. The findings of this research support the clinical practice 

guideline of reducing overhead shoulder activities and limiting weight relief raises for pressure 

relief technique to protect the integrity of subacromial space following spinal cord injury. 

Ultrasonographic measurement of the AHD provides a reliable and direct examination, easy to 

implement means to identify risk factors for better understanding the mechanisms of subacromial 

impingement syndrome. This imaging technique may help clinicians to evaluate intervention 

strategies and exercise prescriptions to minimize the risks for developing subacromial 

impingement syndrome. 
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1.0  INTRODUCTION 

The upper limbs are used extensively for mobility and activities of daily living (ADLs) in 

manual wheelchair users (MWUs). ADLs including wheelchair propulsion, weight reliefs, and 

transfers cause repetitive and intense stresses to the upper limb. The shoulder joint is the most 

commonly reported site of pain and injury in MWUs.  Approximately 31-73% of MWUs have 

encountered shoulder pain and other disorders. (Ballinger, Rintala, & Hart, 2000; Boninger, 

Towers, Cooper, Dicianno, & Munin, 2001) A previous survey study reported 69% individuals 

with SCI have upper limb pain with the most complaints at the shoulder. (Turner, Cardenas, 

Warms, & McClellan, 2001) Shoulder pain is also one of the major factors that decrease quality 

of life and function among individuals with spinal cord injury (SCI). (Ehde et al., 2003; Hatchett 

et al., 2009; Lundqvist, Siosteen, Blomstrand, Lind, & Sullivan, 1991; Rintala, Loubser, Castro, 

Hart, & Fuhrer, 1998) Many believe that shoulder pain in individuals with SCI is a consequence 

of overuse of the weight-bearing upper limb. (Ballinger et al., 2000; Bayley, Cochran, & Sledge, 

1987) The repeated weight-bearing activities induce large stresses on the upper limb, and cause 

these structures to be at a significant risk of overuse related injuries in in vivo animal model. 

(Soslowsky et al., 2000) The repetitive heavy loading imposes a chronic strain on the shoulder. 

Furthermore, because these activities are necessary for independent mobility, it is difficult to rest 

the shoulder to allow for recovery to decrease pain and inflammation. Without resting, shoulder 
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pain and impingement syndromes are further exaggerated. It is likely that the prevalence of this 

problem will grow as greater numbers of individuals with SCI are living longer. 

 Although many different pathologic conditions result in shoulder pain in the SCI 

population, musculoskeletal changes particularly injuries to the rotator cuff are the most 

common.  It is believed that narrowing of the subacromial space during weight bearing activities 

is a common cause of impingement. (Ballinger et al., 2000; Boninger et al., 2005; Koontz, Lin, 

Kankipati, Boninger, & Cooper, 2011; Lee & McMahon, 2002; Mercer et al., 2006) Previous 

studies used the acromiohumeral distance (AHD) as a linear measurement of the subacromial 

space. (Bey et al., 2007; Chen, Simonian, Wickiewicz, Otis, & Warren, 1999; Chopp, O'Neill, 

Hurley, & Dickerson, 2010; Deutsch, Altchek, Schwartz, Otis, & Warren, 1996; Saupe et al., 

2006; Werner et al., 2008) The height of the AHD in normal shoulders can range between 7mm 

and 16mm in a neutral shoulder position. (Petersson & Redlund-Johnell, 1984) The distance is 

generally less in symptomatic shoulders. The thickness of the supraspinatus tendon in this area is 

6 to 9mm, (Leong, Tsui, Ying, Leung, & Fu, 2011) leaving very little clearance in cases of 

enlargement of the bursa or tendon. AHD measurement less than 7mm is indicative of a tear of 

the rotator cuff tendons and surgical consideration. (Weiner & Macnab, 1970) AHD has been 

measured using different medical imaging modality such as radiography and magnetic resonance 

imaging (MRI). (Chen et al., 1999; Chopp et al., 2010; Werner et al., 2008) Radiography is fast, 

inexpensive, and widely available. However, the person has to be exposed to radiation. MRI 

provides more details and it is easy to change the imaging plane without moving the subject. 

However, it is expensive, time consuming and not widely available. Previous studies also used 

ultrasonography-imaging techniques to measure the AHD. It has several advantages including 

non-invasive, portable, radiation free, and inexpensive. However, it is operator dependent. AHD 
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measured with ultrasound has been done in many studies in different populations including able 

bodied with healthy shoulders (Cheng, Hulse, Fairbairn, Clarke, & Wallace, 2008; Schmidt, 

Schmidt, Schicke, & Gromnica-Ihle, 2004), athletes (Girometti et al., 2006; Silva, Hartmann, De 

Souza Laurino, & Bilo´, 2010; Wang, Lin, Pan, & Wang, 2005), patients with subacromial 

impingement syndrome (SIS) (Desmeules, Minville, Riederer, Cote, & Fremont, 2004; Pijls, 

Kok, Penning, Guldemond, & Arens, 2010; Seitz et al., 2012), individuals with poststroke 

hemiplegia (Kumar, Bradley, Gray, & Swinkels, 2011), and patients with rotator cuff tear. 

(Cholewinski, Kusz, Wojciechowski, Cielinski, & Zoladz, 2008) Surprisingly, no study has 

investigated if the narrowing of subacromial space occurred after repetitive activities in MWUs 

who represent a unique population for studying AHD due to the types of weight-bearing 

activities that they routinely perform and their high potential to develop SIS. (Bayley et al., 1987; 

Dyson-Hudson & Kirshblum, 2004; Lee & McMahon, 2002) Therefore, it is essential to clarify 

the mechanisms contributing to the development of subacromial impingement syndrome in 

MWUs to reduce the occurrence of secondary complications and help develop better 

rehabilitation programs.  

This study was specifically focused on investigating the mechanisms leading to 

subacromial impingement syndrome related to wheelchair activities. Understanding the 

relationship between narrowing of AHD and biomechanical risk factors could be used to 

evaluate interventions tailored to preserving shoulder function. Chapter 2 describes intra- and 

inter-rater reliability of AHD measurement using ultrasonograpy in a case-control design study, 

along with the effects of shoulder positions and repetitive shoulder exercises on the AHD. 

Chapter 3 focuses on the effects of muscle fatiguing tasks on the AHD among MWUs. Chapter 4 
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describes the effects of an intense overground propulsion task on the AHD and shoulder 

biomechanics. 

1.1 BACKGROUND LITERATURE  

1.1.1 Subacromial Impingement Syndrome  

Among MWUs, the primary pathology implicated in most cases of shoulder pain in individuals 

with SCI is subacromial impingement syndrome (SIS). (Bayley et al., 1987; Dyson-Hudson & 

Kirshblum, 2004; Lee & McMahon, 2002)  The mechanisms of SIS can be divided into intrinsic 

and extrinsic factors. (Fu, Harner, & Klein, 1991; Neer, 1972; Seitz, McClure, Finucane, 

Boardman, & Michener, 2011)  The intrinsic factors are mechanisms are related to anatomical 

factors such as degeneration, aging, arthritis, overuses, or anatomical changes, abnormalities 

including subacromial spur, acromioclavicular joint spurs, and acromion shape. Mayerhoefer et 

al. examined 47 individuals with SIS for the relationship between acromial shape and AHD and 

reported that acromial shape is not correlated to AHD narrowing on radiographs or on MRI. 

(Mayerhoefer, Breitenseher, Roposch, Treitl, & Wurnig, 2005) Furthermore, three-dimensional 

MRI has also excluded that acromial shape and slope are the primary causes for SIS among 

subjects with glenohumeral instability or impingement with and without tears. (E. Y. Chang, 

Moses, Babb, & Schweitzer, 2006; Moses, Chang, & Schweitzer, 2006) The extrinsic factors 

include postural misalignment of the acromion, altered scapular kinematics, and mechanical 

compression which forces the humeral head further into the glenohumeral joint, causing 

impingement of the supraspinatus tendon under the acromioclavicular arch and inflammation. 
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Kalra et al. examined the effects of trunk posture on AHD among subjects with shoulder pain 

and rotator cuff disease (n = 31) and those without pain as a control groups (n = 29).  They found 

no AHD significant differences between normal and slouched postures in resting and in a 45° 

arm abduction position. (Kalra, Seitz, Boardman, & Michener, 2010) Intrinsic and extrinsic 

factors may not be mutually exclusive and are exacerbated by overuse syndromes. (Fu et al., 

1991) SIS implies extrinsic compression of the supraspinatus outlet, narrowing of the 

subacromial space and consequent compression of the rotator cuff tendons. The mechanism of 

narrowing of the subacromial space is not fully understood, however, it is a well-known 

phenomenon at late-stage rotator cuff tear. 

 

Figure 1. Intrinsic and extrinsic factors of subacromial impingement syndrome 
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1.1.2 Anatomy of Subacromial Space 

The subacromial space is formed by the inferior aspect of the acromion of the scapula and head 

of humerus and contains the tendons of the rotator cuff (supraspinatus, infraspinatus, and teres 

minor), the long head of the biceps, and the subdeltoid/acromial bursa. (Neer, 1972; Pribicevic & 

Pollard, 2004) Compression of the supraspinatus tendon has been found in an animal model as 

one of the causes of impingement syndrome. (Soslowsky, Carpenter, DeBano, Banerji, & Moalli, 

1996) Several reasons have demonstrated to directly or indirectly alter the subacromial space 

such as rotator cuff muscle imbalance (Burnham, May, Nelson, Steadward, & Reid, 1993), joint 

instability, postural changes, and altered scapular or glenohumeral kinematics. (Michener, 

McClure, & Karduna, 2003) The imbalances of humeral head depressors with comparative 

weakness of the shoulder adductors and external rotators were significantly more severe in the 

paraplegics’ shoulders affected by rotator cuff impingement syndrome. (Burnham et al., 1993) 

Thoracic spine kyphosis posture has also been linked to alterations in subacromial space. 

(Gumina, Di Giorgio, Postacchini, & Postacchini, 2008) The subacromial space narrowing may 

be counteracted with scapular external rotation and posterior tilting that moves the acromion 

superior or posterior that may increase the subacromial space. 
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Figure 2. Anatomy of subacromial space (Adapted From: Interactive Shoulder v1.0 
© 2000 Primal Pictures Ltd.) 

1.1.3 Ultrasound to Investigate Acromiohumeral Distance 

Diagnostic ultrasonography is an imaging technique that uses sound waves with a frequency 

between 2 to 15 MHz. Ultrasonography provides real-time, gray scale, B-mode display in which 

the variations in display intensity or brightness are used to indicate reflected signals of differing 

amplitude.  When an ultrasound image is shown in black background, signals of greatest 

intensity appear as white while absence of signal is shown as black and signals of intermediate 

 7 



intensity appear as shades of gray. A wider dynamic range permits better identification of subtle 

differences in tissue echogenicity. (Dambrosio, Amy, & Colombo, 1995) The application of 

ultrasound imaging in medical diagnosis began in the late 1950s in surgery and obstetrics, being 

later followed in the musculoskeletal ultrasonography. (Carol M Rumack, 2010) Musculoskeletal 

ultrasound has been used to evaluate shoulder pathology. (Cheng et al., 2008; J. L. Collinger, 

Fullerton, Impink, Koontz, & Boninger, 2010; Moosmayer & Smith, 2005; Zanetti & Hodler, 

2000) Ultrasound has been widely used to examine the shoulder pathology including rotator cuff 

disease, SIS, and biceps tendon disruption. (Ottenheijm et al., 2010) Besides the evaluation of 

the soft tissue structure of the shoulder, ultrasound is also used to identify glenohumeral joint 

instability problems, nerve entrapment syndromes, and assessment for subacromial space. 

(Martinoli et al., 2003) Moreover, ultrasound imaging not only characterizes the anatomical 

structures at rest but also displays the musculoskeletal components during functional movement. 

(Hashimoto, Kramer, & Wiitala, 1999) In certain cases, the asymptomatic shoulder is normal in 

appearance. Therefore taking ultrasound images of the shoulder during functional movement 

may provide objective evidence of a pathological condition. Musculoskeletal ultrasonography 

provides several advantages over other imaging techniques (e.g. MRI, fluoroscopy, X-ray) such 

as non-invasive, ionizing radiation free, portable and relatively cost-effective. Ultrasonographic 

imaging identifying bone surfaces and boundaries produce brighter responses than the 

surrounding soft tissue structures. Bone appears more hyper-echoic in contrast to surrounding 

soft tissues that are filled with fluid and appear more hypo-echoic. (Hacihaliloglu, Abugharbieh, 

Hodgson, & Rohling, 2009) Compared to soft tissues which are anisotropic and sensitive to 

probe orientation, the surface of bone is less subject to change in appearance.  These properties 

make it promising for reliable measurement of AHD using ultrasound. 
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AHD is the linear measurement of subacromial space outlet. AHD has been studied in 

patients with rotator cuff impingement using conventional radiographs (Bey et al., 2007; Chen et 

al., 1999; Chopp et al., 2010; Deutsch et al., 1996; Saupe et al., 2006; Werner et al., 2008), MRI 

(Graichen et al., 1998; Hebert, Moffet, Dufour, & Moisan, 2003; Hinterwimmer et al., 2003; 

Saupe et al., 2006; Werner et al., 2008), fluoroscopy (Royer et al., 2009; Teyhen, Miller, 

Middag, & Kane, 2008), arthroscopics (Ryu, Burkhart, Parten, & Gross, 2002; Verhelst et al., 

2010) and ultrasonography. (Cholewinski et al., 2008; Desmeules et al., 2004; Pijls et al., 2010; 

Silva et al., 2010) AHD has been measured using radiography in several studies. (Chen et al., 

1999; Chopp et al., 2010; Deutsch et al., 1996; Gumina et al., 2008) Radiography has the 

limitation of radiation exposure and projectional artifacts. (Lochmuller, Anetzberger, Maier, 

Habermeyer, & Muller-Gerbl, 1997; Peh, Cheng, & Chan, 1995) Borsa compared the correlation 

of glenohumeral laxity determined by ultrasound and conventional radiography. (Borsa, 

Jacobson, Scibek, & Dover, 2005) They concluded that dynamic ultrasound could be used as a 

viable replacement for asymptotic shoulder. Ultrasound modality is especially desirable for 

MWUs because it enables imaging during a functional wheelchair activity such as a weight relief 

raise. Taking images using radiography or MRI may be difficult, time-consuming, and 

inconvenient for MWUs.  Previous studies also used ultrasonographic imaging techniques to 

measure the AHD. (Cholewinski et al., 2008; Desmeules et al., 2004; Pijls et al., 2010; Silva et 

al., 2010) Changes in the size of subacromial space can provide a sensitive marker of rotator cuff 

dysfunction. (Cholewinski et al., 2008) 
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1.1.4 Acromiohumeral Distance in Manual Wheelchair Users 

Ultrasonographic measurement of AHD has been done in many studies with healthy shoulders 

(Cheng et al., 2008; Schmidt et al., 2004), athletes (Girometti et al., 2006; Silva et al., 2010; 

Wang et al., 2005), patients with SIS (Desmeules et al., 2004; Pijls et al., 2010), individuals with 

different stages of rotator cuff degeneration (Azzoni, Cabitza, & Parrini, 2004), and patients with 

rotator cuff tear. (Cholewinski et al., 2008) The AHD in normal shoulders can range between 

7mm and 16mm in a neutral shoulder position. (Petersson & Redlund-Johnell, 1984; Tillander & 

Norlin, 2002; Weiner & Macnab, 1970)  The thickness of the rotator cuff tendon in this area is 5 

to 9mm, leaving very little clearance in cases of enlargement of the bursa, tendon, or 

irregularities of the gliding surface.  The distance is generally less in symptomatic shoulders. 

(Cotton & Rideout, 1964; Leong et al., 2011; Weiner & Macnab, 1970)  An AHD measurement 

less than 7mm is indicative of a tear of the rotator cuff tendons and surgical consideration. 

(Weiner & Macnab, 1970) Prior studies have used ultrasound to describe differences in AHD 

between patients that are symptomatic for impingement syndrome and healthy controls. 

(Cholewinski et al., 2008; Desmeules et al., 2004; Pijls et al., 2010; Seitz et al., 2012) From these 

studies, AHD narrowing (0.8mm to 2.5 mm) from neutral to 90° scapular plane elevation 

occurred in healthy subjects. Several recent studies suggested that deficits in the AHD resulting 

from muscle weakness are more likely to appear when the shoulder is actively abducted. 

(Desmeules et al., 2004; Graichen, Bonel, Stammberger, Haubner, et al., 1999; Hinterwimmer et 

al., 2003; Seitz & Michener, 2011) Under active shoulder abduction, greater narrowing of the 

AHD has been demonstrated for shoulders with subacromial impingement compared to those 

without. (Desmeules et al., 2004) Narrowing of the AHD in a functional position has also been 

associated with altered scapular kinematics which is common among symptomatic shoulders. 
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(Deutsch et al., 1996; Keener, Wei, Kim, Steger-May, & Yamaguchi, 2009; Lewis, Green, & 

Wright, 2005; Paula M. Ludewig & Cook, 2002) One study reported that 26% to 45% narrowing 

in subacromial space resulted from scapular retraction to protraction. (Solem-Bertoft, Thuomas, 

& Westerberg, 1993) Another study showed that less scapular posterior tilting was found in 

impinged shoulders (25.1°±9.1°) compared to nonimpaired shoulders (34.6°±9.7°). 

(Lukasiewicz, McClure, Michener, Pratt, & Sennett, 1999)  

Very few studies have investigated the AHD measurement in MWUs.  MWUs represent a 

unique population for studying AHD due to the types of weight-bearing activities that they 

perform routinely. MWUs with paraplegia demonstrated shoulder muscle imbalances with 

comparative weakness of humeral head depressors placing them at a high risk in the 

development of rotator cuff impingement syndrome. (Burnham et al., 1993) Our study is the first 

to describe ultrasonographic measurement of AHD in a wheelchair user population. Reliability 

of AHD measurement using ultrasound in relation to various shoulder positions before and after 

repetitive exercises is discussed in Chapter 2. 

1.1.5 Acromiohumeral Distance and Shoulder Muscle Imbalance 

Narrowing of AHD could be caused by imbalance of humeral head depressors and shoulder 

surrounding muscles. (Lochmuller, Maier, Anetzberger, Habermeyer, & Muller-Gerbl, 1997) 

Superior humeral head migration (0.60 mm to 2.21mm) was found after rotator cuff (RC) muscle 

fatigue using radiographic (Chopp et al., 2010) and digital fluoroscopic imaging (Royer et al., 

2009; Teyhen et al., 2010) While electromyography (EMG) signs of local muscle fatigue were 

apparent for several shoulder girdle muscles, the infraspinatus muscle was fatigued to a greater 

extent than any of the other muscles during shoulder external rotation. (Brookham, McLean, & 
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Dickerson, 2010; Chopp et al., 2010; Ebaugh, McClure, & Karduna, 2006b; MacDermid, Ramos, 

Drosdowech, Faber, & Patterson, 2004; Stackhouse, Stapleton, Wagner, & McClure, 2010)  

These results indicated that infraspinatus muscle fatigue played a significant role in the migration 

of the humeral head.  The infraspinatus is the primary external rotator muscle of the 

glenohumeral joint. It is also an active depressor of the humeral head. (Nove-Josserand, Levigne, 

Noel, & Walch, 1996) The contraction force generated by infraspinatus contributes to superior 

stability of the gleonohumeral joint.   Reductions in external rotator muscle strength and 

endurance have been identified in subjects with shoulder impingement syndrome or rotator cuff 

tear. (W. K. Chang, 2004; Ebaugh, McClure, & Karduna, 2006a; Roy, Moffet, Hebert, & Lirette, 

2009)  Other major shoulder depressors are the pectoralis major, latissimus dorsi, and teres major 

muscles.  A deficiency in these depressor muscle strength has also been postulated to lead to 

subacromial impingement syndrome. (Sharkey & Marder, 1995) 

Studies on non-wheelchair users have shown that fatigue of the RC muscles reduces their 

ability to stabilize the humeral head against the glenoid cavity of the scapula, and therefore 

causes migration of the humeral head into the subacromial space. (Chopp et al., 2010; Teyhen et 

al., 2008) Chopp et al. investigated radiographic measurement of humeral head migration 

following two types of fatiguing protocols: 1) a global shoulder fatiguing protocol that simulated 

job tasks, and 2) a local fatiguing protocol that targeted fatigue of the shoulder external rotators. 

(Chopp, Fischer, & Dickerson, 2011; Chopp et al., 2010; Tsai, McClure, & Karduna, 2003) 

While both protocols were expected to show reduction in the AHD, the global protocol induced 

greater changes in humeral head translation. (Chopp et al., 2010) Although the amount of 

humeral translation may be considered small (1 to 3 mm), the compressive effects on the 
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subacromial structures were considered significant due to the small size of the subacromial 

space. 

Wheelchair propulsion and weight relief raises result in excessive shoulder joint loading. 

Both activities demand RC muscles to maintain glenohumeral joint stability during the 

maneuvers. (M. M. B. Morrow, Kaufman, & An, 2011; Reyes, Gronley, Newsam, Mulroy, & 

Perry, 1995; S. van Drongelen, van der Woude, & Veeger, 2011)  For example, a person 

performs a weight relief raise by adducting their arms and using them to lift and support the body 

for the purposes of reducing pressure loading on the buttocks. Among the shoulder depressors 

muscles during a weight relief raise in a group of 13 paraplegic individuals, Reyes et al. reported 

that the sternal pectoralis major and latissimus dorsi displayed greater muscle activity than other 

shoulder muscles, reaching 32% and 58% of the maximum voluntary contraction during the lift 

phase, respectively. (Reyes et al., 1995) During wheelchair propulsion, the infraspiantus was 

active approximately 40% of the propulsion cycle and reached a maximum intensity of 44% in 

the push phase to stabilize the glenohuneral joint. (Mulroy, Gronley, Newsam, & Perry, 1996) 

High muscle activation during wheelchair activity makes shoulder muscles vulnerable to fatigue. 

van Drongelen et al. simulated shoulder joint reaction forces during a weight-relief raise using 

musculoskeletal modeling. They found that large weight-bearing forces (1288 N) acted to drive 

the humerus into the GH joint during the weight-relief raise. (S. van Drongelen et al., 2011) It is 

unclear whether these forces cause compression of the subacromial space directly, or if other 

factors such as pain, pathological deficits, muscle weakness, altered shoulder kinematics, and 

fatigue may be associated with unwanted narrowing of subacromial space. (Sharkey & Marder, 

1995) Chapter 3 examined the effects of muscle fatiguing tasks on the AHD in manual 

wheelchair users. 
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1.1.6 Wheelchair Propulsion Biomechanics 

Manual wheelchair propulsion is a primary form of locomotion for individuals with SCI. Relying 

on a manual wheelchair for mobility over an extended period of time often leads to arm pain and 

thus, to secondary disability.  Previous studies reveal that over 50% of MWUs with SCI 

experience shoulder pain that limits one or more of their activities of daily living. (Boninger et 

al., 2001; Dyson-Hudson, Shiflett, Kirshblum, Bowen, & Druin, 2001; M. M. Morrow et al., 

2009; R. N. Robertson, Boninger, Cooper, & Shimada, 1996; Samuelsson, Tropp, & Gerdle, 

2004)  A substantial number of these studies confirm that manual wheelchair propulsion is a 

contributing factor in the development of shoulder pain. (Boninger & Cooper, 1999; Mercer et 

al., 2006) Moreover, an inappropriate wheelchair, improper assessment, poor set-up and fitting 

are associated to shoulder pain. (Boninger, Baldwin, Cooper, Koontz, & Chan, 2000) 

Wheelchair propulsion biomechanics for steady-state conditions have been extensively 

explored for decades. (Rory A. Cooper, 2009) However, wheelchair propulsion biomechanics in 

start-up phases and the effects of intense wheelchair propulsion on the upper limbs are rarely 

investigated. Wheelchair users experienced start-up propulsion over 100 times per day on 

average. (Tolerico et al., 2007)The start-up propulsion generates higher forces and moments in a 

relatively short duration. A rapid acceleration results in higher joint force, moments, velocities, 

and powers than comfortable steady-state propulsion.  In addition, intense wheelchair activity 

accompanied with muscle fatigue may amplify the effects of muscle imbalance. (Price et al., 

2007) The component of propulsion force directed toward the wheel hub is required to generate 

friction for propulsion. This force acts equal and opposite to the amount of force applied towards 

the shoulder which may translate the humeral head into the subacromial space. (Finley, 

McQuade, & Rodgers, 2005; M. M. B. Morrow et al., 2011; Nawoczenski et al., 2003; Philip 
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Santos Requejo et al., 2008; S. van Drongelen et al., 2006)  This force may potentially lead to 

compression and damage of soft tissue caused by impingement.  In people with SCI, uneven 

loading on surrounding muscles during propulsion and a weak rotator cuff may lead to 

impingement of the soft tissue structures within the acromiohumeral space. (Lippitt & Matsen, 

1993)  In a prior work, Mercer et al. found a relationship between shoulder joint kinetics and 

magnetic resonance imaging (MRI) shoulder abnormalities. (Mercer et al., 2006) More 

specifically, posterior directed force at the shoulder was related to coracoacromial ligament 

edema, which is a risk factor for rotator cuff injury. (Hawkins & Kennedy, 1980; Mercer et al., 

2006)  The same study found that internal rotation moment at the shoulder was associated with 

physical examination abnormalities.   

In another previous study, longitudinal views were used to determine diameter and 

echogenicity of the biceps tendon using quantitative ultrasound in pre- and post-rugby and 

basketball game images. (Stefan van Drongelen, Boninger, Impink, & Khalaf, 2007)  The ratio of 

echogenicity of the tendon to a reference area superficial to the tendon sheath decreased 

significantly after the sports game.  The 13 subjects who reported pain during the last month showed 

a lower tendon echogenicity ratio before and after the event than that of subjects who did not report 

pain. This study attests to the ability to use ultrasound to detect acute changes in soft tissue at the 

shoulder after a propulsion task that is correlated with pain. Known biomechanical factors of injury 

(increased cadence, increased propulsion forces) were found related to post-propulsion 

quantitative ultrasound measures. (J. L. Collinger, Fullerton, et al., 2010) Chapter 4 built upon 

this work and utilized ultrasonographic measurement to determine the relationship between AHD 

changes after intense wheelchair activity and start-up propulsion biomechanics. 
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1.2 RESEARCH GOAL 

The overall goal of this dissertation was to evaluate ultrasonographic measurement of 

acromiohumeral distance to identify the mechanism of injury and risk factors of subacromial 

impingement syndrome after acute shoulder muscle fatiguing tasks and intense wheelchair 

propulsion. The purpose of Chapter 2 was to examine the intra-rater and inter-rater reliability of 

ultrasonographic measurement of the acromiohumeral distance (AHD). The objectives of 

Chapter 3 and 4 were to investigate the effects of shoulder muscle fatiguing exercises and intense 

wheelchair propulsion on subacromial space among manual wheelchair users (MWUs), 

respectively. 

This research is important because it provides direct measurement and practical 

application of the AHD measurement to injury mechanism. Outcomes on treatment of upper limb 

injury could be very costly and may take years to show results.  If we could identify predictors 

that are sensitive to changes and related to long-term risk of injury, we could create targeted 

therapeutic interventions and gain insight into their effectiveness. 
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2.0  ULTRASONOGRAPHIC MEASUREMENT OF THE ACROMIOHUMERAL 

DISTANCE IN SPINAL CORD INJURY: RELIABILITY, EFFECTS OF SHOULDER 

POSITIONING AND REPETITIVE EXERCISES 

2.1 INTRODUCTION 

Subacromial impingement syndrome (SIS) is reported as the most common reason for shoulder 

discomfort. (van der Windt, Koes, de Jong, & Bouter, 1995) Research has shown that shoulder 

discomfort due to SIS is associated with muscle fatigue (Wiker, Chaffin, & Langolf, 1989) and 

shoulder dysfunction. (P. M. Ludewig & Cook, 2000) The subacromial space consists of the 

humeral head, acromion, coracoacromial ligament, subacromial bursa, and the acromioclavicular 

joint. (Neer, 1972) SIS refers to the encroachment of the supraspinatus as a result of the 

subacromial space narrowing. (Michener et al., 2003) Manual wheelchair users (MWUs) are at 

an extremely high risk for developing shoulder pathology. (M. M. B. Morrow et al., 2011) The 

prevalence of rotator cuff tears in individuals with paraplegia is 63% which is higher than their 

able-bodied counterparts (15%). (Akbar et al., 2010) Essential repetitive weight bearing activities 

such as wheelchair transfers, weight relief raises, and wheelchair propulsion are likely 

responsible for the increased prevalence of shoulder pathology in individuals with SCI.  

Moreover, individuals with SCI are not able to rest a shoulder that becomes painful because of 
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the reliance on the upper limbs for independence with mobility and other essential daily tasks 

which further perpetuate the problem. 

 Acromiohumeral distance (AHD) is the 2-D linear measurement between the most 

inferior aspect of the acromion and the humeral head and is a widely recognized marker for 

rotator cuff disease. (Cholewinski et al., 2008) Recently, ultrasonography has been used 

increasingly as a viable imaging modality for evaluating the subacromial space because it is 

portable, radiation-free, and non-invasive. AHD measurement using ultrasound has been well 

established in previous studies with healthy shoulders, (Cheng et al., 2008; Kumar et al., 2011; 

Schmidt et al., 2004) athletes, (Girometti et al., 2006; Silva et al., 2010; Wang et al., 2005) 

patients with SIS, (Desmeules et al., 2004; Pijls et al., 2010) patients with poststroke hemiplegia, 

(Kumar et al., 2011) individuals with different stages of rotator cuff degeneration, (Azzoni et al., 

2004) and patients with rotator cuff tear. (Cholewinski et al., 2008) Moderate to excellent inter-

rater reliability (0.64-0.92) and excellent intra-rater reliability (0.87-0.94) of the AHD have been 

demonstrated using ultrasound in able-bodied with healthy and impinged shoulders. (Kumar, 

Bradley, & Swinkels, 2010; Pijls et al., 2010; Schmidt et al., 2004) Moderate intra- and inter-

observer reliability using unmarked sonograms were reported. (Pijls et al., 2010) Discriminant 

validity of the AHD between affected and unaffected shoulders was determined in a hemiplegic 

population. (Kumar et al., 2011) Therefore, AHD measures using ultrasound would be useful for 

quantitatively evaluating effects of an intervention and identifying mechanisms of rotator cuff 

disease and SIS in a wheelchair user population.  

AHD narrowing may be caused by both intrinsic and extrinsic factors. (Michener et al., 

2003) Intrinsic factors such as tendon tears could occur due to degeneration of the tendon from 

long-term use, (Budoff, Nirschl, & Guidi, 1998) whereas extrinsic factors such as poor posture 
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(e.g. scapular protraction and kyphotic trunk postures) or altered glenohumeral kinematics can 

mechanically compress structures surrounding the tendon. (Neer, 1972; Seitz et al., 2011) The 

primary mechanism responsible for subacromial impingement is most likely superior humeral 

migration, which results in AHD narrowing. (Chopp & Dickerson, 2012) Previous studies 

measured AHD with the shoulder in a resting neutral position (Cholewinski et al., 2008; 

Desmeules et al., 2004), active or passive shoulder abduction at 45° and 90° arm elevation 

(Chopp et al., 2010; Graichen, Bonel, Stammberger, Eeglmeier, et al., 1999; Seitz et al., 2012) 

and reported that shoulder position might affect the reliability of AHD measurement. (Pijls et al., 

2010) Superior humeral migration occurs in healthy individuals as the shoulder abducts from 0 to 

90°. (Graichen, Bonel, Stammberger, Eeglmeier, et al., 1999; Lippitt & Matsen, 1993) Within 

this range of shoulder motion, the upward force of the deltoid muscle overwhelms the stabilizing 

force of the rotator cuff muscles, thus resulting in a decrease in the AHD. (Chopp et al., 2010) 

Rotator cuff muscles weakness following SCI may impact the AHD due to alteration of force 

couple mechanism in the shoulder. Because of this counterbalance relationship between the 

deltoid and rotator cuff muscles, investigators have studied the effects of rotator cuff muscle 

fatigue on the subacromial space. (Chopp & Dickerson, 2012) Teyhen et al. reported that the 

AHD narrowing increased following fatiguing exercises regardless of the degree of shoulder 

abduction with the use of digital fluoroscopy imaging techniques. (Teyhen et al., 2008) The 

mechanism leading to AHD narrowing in an able-bodied population might be different from 

MWUs with SCI. Normal shoulder function is comprised in individuals with SCI due to altered 

scapulothoracic rhythm, glenohumeral kinematics, and muscle strength imbalances around the 

shoulder joint. (Lee & McMahon, 2002; Mulroy et al., 1996) The objectives of this study were 

to:  
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1) Assess the intra-rater and inter-rater reliability of ultrasonographic-measured AHD in MWUs 

with SCI (case) and able-bodied population (control);  

2) Evaluate differences in the AHD as a function of shoulder position and muscle activation; 

3) Investigate the acute changes in the AHD following a repeated weight relief raise task and 

rotator cuff exercises and 

4) Compare baseline and acute changes in the AHD measures within and between the case and 

control group.  

We hypothesized that 1) ultrasonographic measurement of the AHD would be reliable 

(ICC > 0.8). 2) Effects of shoulder positions on the AHD changes would be different between 

MWUs with SCI and able-bodied controlsdue to the altered shoulder biomechanics and muscle 

imbalances that follow SCI. 3) Both case and control groups would show acute AHD narrowing 

following repeated weight relief raises and rotator cuff exercises. 

2.2 METHODS 

2.2.1 Study Design and General Procedures 

All participants read and signed the informed consent before participating in this study. The 

research protocol was approved by the Veteran Affairs Pittsburgh Healthcare System Institution 

Review Board. They were instructed not to perform strenuous activities for 24 hours before the 

testing sessions. Before starting the reliability session, participants transferred to a Biodex 

System 4 Isokinetic Dyanometer ™ (Biodex Medical Systems, Inc, Shirley, New York) with 

custom-made adjustable height arm rests (Figure 3A).  Armrests were fitted to each participant to 
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allow participants to pushup from a sitting position with full elbow extension and arms adducted 

to off-load the buttock tissues (Figure 3B).  

 

Figure 3. Imaging positions in the neutral resting (A) and weight relief raise position 
(B). 
 

Age, height, weight, and date of injury/diagnosis were self-reported. Anthropometric data 

including shoulder circumference and upper arm length were measured before the experiment. 

The non-dominant side was chosen for all the measures in order to minimize the effects caused 

by performing activities of daily living on the dominant shoulder. A general questionnaire was 

used to document medical history including history of shoulder pain and surgery.(Boninger et al., 

2001) MWUs with SCI completed the Wheelchair Users Shoulder Pain Index (WUSPI). The 

questionnaire contains 15 items to document shoulder pain during transfer, wheelchair mobility, 

personal care and general activities. Each item documents pain score from 0 (lowest pain) to 10 

(worst pain ever experienced). The OMNI Pain Scale, previously validated by Faces pain scale 

for pediatric oncology, was used to assess exercise-induced muscle pain intensity. (R. J. 

Robertson et al., 2009) The OMNI scale was administered prior to all experimental procedures to 

establish a baseline measurement of pain, and after each fatigue task to determine the amount of 

exercise-induced pain. 
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2.2.2 Participants 

Two groups of participants were recruited, one being MWUs with SCI and the other one being 

able-bodied volunteers. For the individuals with SCI, they must have had their injury for more 

than one year and use a manual wheelchair as their primary means for mobility. Inclusion criteria 

for both groups were 18 years of age or older, English speaking, and able to complete multiple 

weight relief raises. Exclusion criteria for both groups included having a history of fractures or 

dislocations in the shoulder, elbow and wrist from which the participant had not fully recovered, 

the presence of implants or pacemakers, any pain in an upper limb that could interfere with 

normal function and activity, and history of a cardiopulmonary condition that could be 

exacerbated. Able-bodied participants were chosen by matching their age within 5 years of each 

MWUs with SCI.  

2.2.3 AHD Reliability Protocols 

The subacromial space was quantified by measuring the acromiohumeral distance (AHD) using 

ultrasound techniques as described in previous studies. (Lin, 2012) Two ultrasound operators 

underwent training to learn the techniques and then practiced on three to five healthy volunteers 

to become familiar with the protocol and measurement procedure before the reliability study. A 

Philips HD11 1.0.6 ultrasound machine with a 5-12 MHz linear transducer was used to scan the 

shoulder from the anterior aspect of glenoid to the flat segment of posterior scapula to capture 

the bright reflection of the bony contour of the acromion and humeral head (Figure 4)  
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Figure 4. Ultrasonographic probe positioning (A) and image of the acromiohumeral 
distance (B).  
 

Ultrasound video was recorded for the duration of scanning (which took approximately 

10 seconds) at 10 Hz.  Each rater recorded the AHD video in randomized order in the following 

shoulder positions: neutral resting position (Neutral), arm abducted at 45° and 90° in scapular 

plane (with and without resistance), and isometrically holding the weight relief raise position 

(WR) (Figure 3B). For the arm abduction trials, participants were instructed to grab the handle of 

the Biodex which was set to 45° and 90° of arm elevation in the scapular plane. (Figure 5)  
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Figure 5. Participants maintained their arm at the prescribed angle of shoulder 
elevation by grabbing the handle bar of the Biodex. Ultrasound images were 
collected at 45°(A), and 90°(B) at scapular plane elevation with humeral internal 
rotation with and without weight.  These images are from a demonstration and not 
an actual participant. 
 

Participants grabbed the handle with arm internally rotated and thumb downward.  The 

Biodex was used to provide a 5-lb weight in the active trials (45A, 90A) and provided no 

resistance in the passive trials (45P, 90P). (Graichen, Bonel, Stammberger, Eeglmeier, et al., 

1999) The weight was determined through pilot testing and was determined to provide adequate 

muscle activity without causing discomfort to the participant. Once this set-up was completed 

(Time 1), the AHD videos were recorded again by each rater using the same procedures after a 

30-minute time interval (Time 2).  All raters were blinded to each other’s measurements.  The 

AHD absolute values averaged across raters were used as the baseline AHD. 

2.2.4 Fatiguing Protocols 

The fatiguing protocols were performed approximately 5 minutes after the reliability protocols. 

Both groups of participants performed two fatiguing exercise tasks (global and local). The order 

of the two tasks was randomized for each participant. The global fatiguing task involved 
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performing repeated weight relief raises (WR) and holding the buttocks off the seat with both 

elbows in locked positions. (M. M. B. Morrow et al., 2011; Reyes et al., 1995) The WR task was 

repeated at a rate of 30 repetitions per minute with the use of a metronome.  Participants were 

instructed to stop when they were no longer able to keep up the task due to self-perceived 

fatigue. The local fatiguing task involved performing isokinetic shoulder external rotation (ER) 

at an angular velocity of 60 degrees per second for external rotation and 180 degrees per second 

for internal rotation to minimize shoulder internal rotator fatigue. The subject was instructed to 

externally rotate their forearm from a shoulder neutral position to 45 degrees or the maximum 

range of ER that they could comfortably reach similar to that done in other rotator cuff muscle 

fatiguing protocols. (Ebaugh et al., 2006b) The participant’s trunk was secured using straps from 

the Biodex that crossed the chest and lap to minimize compensatory movements. At the end of 

both global and local fatiguing tasks, participants provided their exertion rating score.  A Borg 

scale reading of 10 or more was the threshold to confirm self-reported fatigue, which has been 

found to be closely related to EMG signs of fatigue.(Hummel et al., 2005) Participants’ rating 

scores were obtained after the first 300 repetitions for each exercise. If their rating was below a 

‘10’ the protocol continued for another session of 300 repetitions or until they could not do any 

more. A 30-minute washout period was provided between the two fatiguing tasks.  The AHD 

was measured before each exercise and immediately after each exercise. Rater 2's data were used 

to compare the pre-post exercise AHD measures. 
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2.2.5 Data Analysis 

An investigator blinded to the subject's shoulder positions and timing of the video used a 

customized Matlab program to manually review each frame of the video and mark the inferior 

edge of acromion and humeral head.  The distance between the bony landmarks was calculated 

for each frame of the video and the narrowest distance was used for statistical analyses.  A subset 

of the videos (n=120) were randomly and independently analyzed by a second investigator to 

access intra and inter-video reliability of the manual techniques used to post-process the images. 

Reliability of the post-processing procedures and the ultrasound image data collection process 

were assessed using intraclass correlation coefficients (ICC, two way random, absolute 

agreements).  The following ICC interpretation scale was used: almost perfect (0.81-1), excellent 

(0.61-0.80), moderate (0.41-0.60), and poor to fair (below 0.40). (Landis & Koch, 1977) The 

standard error of measurement (SEM) was calculated using the formula (Portney & Watkins, 

2009):  

, Equation 1 

where SD is the baseline standard deviation of the entire sample.  The minimum detectable 

difference (MDD) was computed based on a confidence interval of 90% following the formula(J. 

L. Collinger, Gagnon, Jacobson, Impink, & Boninger, 2009): 

, Equation 2 

Chi-square or independent t-tests depending on the nature of the variable were used to compare 

demographic differences between the case and control groups. A three-way mixed-design 

analysis of variance (ANOVA) was used to identify differences in the AHD between groups, 

pre-post exercise, and shoulder positions.  As this was a pilot study secondary exploratory 

ICCSDSEM −= 1

265.190 ××= SEMMDD
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analyses consisted of running post-hoc independent t-tests controlling for group differences as 

appropriate to analyze AHD differences between subjects (SCI and able-bodied) or paired t-tests 

for within subject conditions. Pearson’s or Spearman’s correlation statistics were used where 

appropriate to examine the relationships between the absolute AHD measures, AHD percentage 

change determined as the ratio of the amount of change between AHD baseline and post-task, 

AHD to the AHD baseline (Equation 3), OMNI scale score, and demographic data (e.g. height, 

weight, shoulder circumference, arm length, age, and years since injury). Bonferroni correction 

was applied to the planned four pairwise comparisons for active and passive muscle conditions, 

with the alpha corrected level at 0.01. An alpha level of significance was set at 0.05.  Trends in 

the data were noted when the level of significance was set to 0.1.  

100%×
measure AHD pre

measure AHD pre-measure AHDpost   =(%) change percentage AHD , Equation 3 

2.3 RESULTS 

2.3.1 Subject Characteristics 

Ten MWUs with a spinal cord injury including nine men and one woman (2 tetraplegia and 8 

paraplegia) and ten able-bodied individuals including eight men and two women participated in 

the study.  The demographic data and statistical results are summarized in Table 1. 
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Table 1.  Subject Characteristics 
 Case (n = 10) Control (n=10) P Value 

Sex 
Men 
Women 

 
9  
1 

 
8 
2 

0.53 

Age 34.8 ± 10.4 
Range 25-55 

35.8 ± 11.5 
Range 20-53 

0.84 

Height (inch) 68.2 ± 4.9 
Range 60-75 

68.8 ± 3.6 
Range 61-73 

0.78 

Weight (lbs) 
 
Number of WR 
Borg Scale after WR 
OMNI after WR 
Number of ER 
Borg Scale after ER 
OMNI after ER 

152.9 ± 10.4 
Range 101-283 
44.3 ± 19.4 
14.5 ± 3.0 
3.3 ± 2.3 
247.0 ± 297.7  
12.8 ± 1.9 
2.8 ± 2.0 

175.1 ± 29.7 
Range 124-215 
97.5 ± 100.6 
13.6 ± 1.8 
2.9 ± 1.4 
394.9 ± 355.0 
13.2 ± 2.6 
3.7 ± 2.5 

0.28 
 
0.13 
0.43 
0.64 
0.33 
0.70 
0.38 

WR: Multiple Weight Relief Raises 
ER: Repetitive Shoulder External Rotation Exercises  

2.3.2 Reliability of Ultrasonographic AHD Measurement 

The intra-rater (ICC > 0.83) and inter-rater (ICC > 0.78) reliability of AHD measurement for 

each shoulder position was excellent among MWUs with SCI (Table 2). For rater 2, the ICC 

values for the intra-rater reliability of the AHD measurement were almost perfect in MWUs with 

SCI (ICC > 0.90) and able-bodied individuals (ICC > 0.81) (Table 2). For the AHD measured by 

rater 1 in able-bodied, the intra-rater reliability was fair to poor (ICC < 0.40) at 45A and 

excellent for all other positions (ICC > 0.85). Inter-rater reliability was excellent to almost 

perfect (ICC > 0.78) at both time points for the case group at all shoulder positions. Inter-rater 

reliability was excellent (ICC > 0.75) at both time points for the control group for all shoulder 

positions except at 45A in time 1 (ICC < 0.60). 
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Table 2. Intra- and interclass correlation coefficients. 
 MWUs with SCI (n = 10) Able-Bodied Subjects (n = 10) 

Intraclass correlation coefficients 
Position Rater1 

0.83(0.33-0.96) 
0.94(0.72-0.0.99) 
0.92(0.68-0.98) 
0.90(0.62-0.98) 
0.92(0.69-0.98) 
0.93(0.70-0.98) 

Rater2 
0.98(0.93-0.99) 
0.93(0.72-0.98) 
0.97(0.88-0.99) 
0.97(0.88-0.99) 
0.90(0.62-0.98) 
0.93(0.73-0.98) 

Rater1 
0.94(0.74-0.98) 
0.24(-3.06-0.82) 
0.69(-0.08-0.92) 
0.88(0.54-0.97) 
0.97(0.87-0.99) 
0.85(0.41-0.96) 

Rater2 
0.95(0.78-0.99) 
0.96(0.83-0.99) 
0.85(0.38-0.96) 
0.81(0.24-0.95) 
0.92(0.68-0.98) 
0.96(0.86-0.99) 

Neutral 
45A 
45P 
90A 
90P 
WR 

Interclass correlation coefficients 
Position Time1 

0.78(0.19-0.94) 
0.93(0.72-0.98) 
0.84(0.34-0.96) 
0.86(0.41-0.97) 
0.94(0.79-0.99) 
0.89(0.59-0.97) 

Time2 
0.92(0.67-0.98) 
0.95(0.83-0.99) 
0.95(0.80-0.99) 
0.94(0.76-0.99) 
0.93(0.70-0.98) 
0.97(0.88-0.99) 

Time1 
0.85(0.38-0.96) 
0.52(-1.25-0.89) 
0.84(0.30-0.96) 
0.75(-0.08-0.94) 
0.83(0.26-0.96) 
0.75(-0.08-0.94) 

Time2 
0.95(0.82-0.99) 
0.88(0.50-0.97) 

0.66(-0.42-0.92) 
0.84(0.36-0.96) 
0.94(0.73-0.98) 
0.89(0.52-0.97) 

Neutral 
45A 
45P 
90A 
90P 
WR 

Intra-video reliability 
0.81(0.71-0.87) 

Inter-video reliability  
0.85(0.78-0.90) 

Data are given as average-measure values (lower-upper bound 95% confidence interval). 
Time: Time order of recorded ultrasound video 
Neutral: neutral resting position; 45A, 45P: Arm fully extension with humeral internal rotation at 
45° in scapular plane with and without resistance; 90A, 90P: Arm fully extension with humeral  
internal rotation at 90° in scapular plane with and without resistance; WR: Holding the weight 
relief raise position 
 

Figure 6 shows the agreement among raters for the AHD measurements across all shoulder 

positions in both groups.  The Bland-Altman plots, used to compare the individual differences in 

the AHD absolute value for both raters showed good agreement in the case and control groups. 

(Figure 6) The absolute AHD measurements for both groups are shown in Table 4.  
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Figure 6. Bland-Altman plot of average rater 1 and 2 of the AHD measurement in 
MWUs with SCI (A) and able-bodied (B).  Dotted line represents 1.96 standard 
deviations above and below the mean difference. 

 

The AHD is widest in a neutral resting position and narrowest in the 90A positions. The absolute 

reliability was examined using SEM and the MDD for each rater. The SEM and MDD were less 

than 0.73mm and 1.71mm, respectively (Table 3). The inter- and intra-video reliability was 

excellent (ICC > 0.81). 
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Table 3. Standard error of measurement (SEM) and minimum detectable difference 
(MDD) of AHD measurement in six shoulder positions. 

 MWUs with SCI  
(n = 10) 

Able-Bodied Subjects  
(n = 10) 

 SEM (mm) 
 

0.66 
0.47 
0.54 
0.75 
0.66 
0.39 
0.58 

 
 

0.21 
0.58 
0.36 
0.33 
0.76 
0.52 
0.46 

 
 

0.70 
0.53 
0.77 
0.78 
0.58 
0.56 
0.65 

MDD(mm) SEM (mm) 
 

0.42 
1.01 
0.97 
0.50 
0.39 
0.44 
0.62 

 
 

0.39 
0.42 
0.56 
0.60 
0.47 
0.29 
0.46 

 
 

0.65 
1.08 
0.62 
0.66 
0.77 
0.61 
0.73 

MDD(mm) 
Intra-Rater 1 
Neutral 
45A 
45P 
90A 
90P 
WR 
Mean 
 
Intra-Rater 2 
Neutral 
45A 
45P 
90A 
90P 
WR 
Mean 

 
1.53 
1.09 
1.27 
1.76 
1.55 
0.90 
1.35 

 
 

0.50 
1.35 
0.83 
0.78 
1.77 
1.21 
1.07 

 
0.98 
2.35 
2.27 
1.16 
0.90 
1.03 
1.47 

 
 

0.90 
0.97 
1.32 
1.40 
1.10 
0.68 
1.06 

 
Inter-Rater 
Neutral 
45A 
45P 
90A 
90P 
WR 
Mean 

 
 

1.63 
1.23 
1.80 
1.82 
1.35 
1.31 
1.52 

 
 

1.52 
2.51 
1.44 
1.55 
1.81 
1.43 
1.71 
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2.3.3 Effects of Shoulder Position, Exercise and Group Type on the AHD 

MWUs with SCI experienced a continued decrease in AHD from neutral, 45P to 90P (Table 4).  

Able-bodied subjects, however, displayed a pattern in which mean AHD slightly increased from 

neutral to 45P and then decreased from 45P to 90P. For baseline in both groups measured by 

both raters, there was a significant main effect of arm position (p = 0.003). We found that AHD 

was significantly narrower at 90P compared to neutral (p = 0.01). The AHD at 90A is 

significantly narrower than that at neutral, 45P, and WR (p < 0.001). There were no interaction 

effects among fatiguing tasks, shoulder positions and groups. Case has greater AHD narrowing 

occurred between the neutral and 45A position than did the control group after shoulder external 

rotation exercise (p = 0.03). 
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Table 4. Ultrasonographic measurement of acromiohumeral distance in six shoulder positions at baseline (averaged across two 
measures in each rater), before, and after two should fatiguing exercises (rater 2 only). 

AHD (mm) MWUs with SCI (n = 10) Able-Bodied Subjects (n=10) 

Position Baseline from Rater 1 Baseline from Rater 2 Baseline from Rater 1 Baseline from Rater 2 

Neutral 11.43±1.59 11.13±1.51 11.38±1.71 11.41±1.73 

45A 10.07±1.91 9.90±2.18 9.72±1.16 9.75±2.08 

45P 10.97±1.92 10.77±2.06 11.60±1.75 11.36±1.46 

90A 9.24±2.38‡ 9.25±1.93‡ 8.94±1.44‡ 8.58±1.38‡ 

90P 9.78±2.35* 9.78±2.40* 9.50±2.23* 9.49±1.67* 

WR 10.18±1.46 10.17±1.96 10.60±1.14 10.61±1.45 

AHD (mm) PreWR PosWR PreER PosER PreWR PosWR PreER PosER 

Neutral 10.91±1.38 11.51±1.47 11.24±1.38 11.76±2.02 11.33±2.04 11.31±1.62 11.74±1.57 11.41±1.49 

45A 9.64±2.22 9.67±2.07 9.32±2.25 9.27±2.53† 9.25±2.31 9.40±1.68 9.42±2.61 10.10±1.80† 

45P 10.93±1.53 10.69±1.62 10.32±1.98 10.24±2.45 11.80±2.12 11.57±2.05 11.54±2.01 11.95±2.00 

90A 8.91±2.40 8.70±2.28 8.75±2.02 8.16±1.97 8.76±1.66 8.55±1.44 8.52±1.11 8.17±1.53 

90P 9.47±2.51 9.38±2.42 9.05±2.18 9.37±2.34 9.93±1.96 9.16±1.88 9.91±1.81 9.33±2.21 

WR 10.29±1.31 10.23±1.20 10.08±1.28 10.21±1.63 10.51±1.85 10.51±1.36 10.53±1.46 10.62±1.49 
‡ AHD at 90A was significantly narrower than neutral, 45P, and WR (p < 0.001) 
* AHD at 90 P was significantly narrower than neutral (p = 0.01)
†Significant between-group difference while the arm elevated from neutral to 45A after repetitive shoulder external rotation  
Neutral: neutral resting position; 45A, 45P: Elbow fully extension with humeral internal rotation (thumb down) at 45° in scapular plane with and without resistance, respectively; 
90A, 90P: Elbow fully extension with humeral internal rotation (thumb down) at 90° in scapular plane with and without resistance, respectively; WR: Holding the weight relief 
raise position; PreWR, PosWR: Measured before and after multiple weight relief push-ups; PreER, PosER: Measured before and after repetitive shoulder external rotation 
exercises 
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2.4 DISCUSSION 

The study was performed to assess the intra-rater and inter-rater reliability of ultrasonographic-

measured AHD in individuals with SCI and able-bodied population, to study the differences 

between the two groups in shoulder positioning and AHD measurement; and to identify acute 

changes in the AHD following repetitive shoulder exercises. 

2.4.1 Reliability of Ultrasonographic AHD Measurement 

The results showed excellent intra-rater and inter-rater reliability in MWUs with SCI (ICC > 

0.78).  The inter-rater reliability in able-bodied population is moderate to excellent and 

consistent with previous studies (ICC > 0.52). (Desmeules et al., 2004; Pijls et al., 2010) 

However, the intra-rater reliability at 45° arm elevation with humeral internal rotation for rater 1 

was poor to fair (ICC < 0.40).  Pijls et al. reported high to excellent inter-rater reliability but 

moderate intra-rater reliability in individuals with impingement at 60° abduction without 

restricting the humeral internal and external rotation. It is unclear how the intra-rater reliability 

of AHD measurement was influenced by humeral internal rotation in 45° abduction in scapular 

plane as other studies have not reported this data. Because intra-rater ICC's were excellent for 

both raters in this shoulder position for the case group, it may be due to a learning effect since 

almost all the control subjects were tested before the case subjects.  Our study found that the 

reliability in the AHD measurement in MWUs with SCI, whose shoulders are prone to shoulder 

instability, pathologies and altered kinematics is as excellent as that in an control group.  

Bone surfaces produce brighter response than the surrounding soft tissue structures on 

ultrasound. The brightness and contrast of ultrasonographic bone surfaces are less affected by 
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gain, depth, focal zones, or slightly tilting or translation from the ultrasound probe due to the 

dramatic difference in acoustic impedance between bone and soft tissue so rater scanning errors 

are expected to be negligible. (Sanders & Winder, 2007). Other sources of variability relate to 

the video analysis and selection of the 2D slice.  There is uncertainty with the snapshot selection 

of the narrowest distance and the manual determination of the feature points on the acromial and 

humeral head within and between the video observers. 

2.4.2 Effects of Shoulder Positioning 

Muscle activation and motor control play important roles for joint stability, function and 

preserving the subacromial space. Consistent with previous studies, greater AHD narrowing was 

found during scapular plane elevation with humeral internal rotation in healthy subjects. 

(Graichen, Bonel, Stammberger, Eeglmeier, et al., 1999) A similar tendency occurred in the case 

group. The AHD was also narrower in arm elevated positions with muscle activation compared 

to without muscle activation. This was expected as the pull of the middle deltoid draws the 

humeral head into the glenoid when the arm is abducted in the scapular plane. (Yanagawa et al., 

2008) Our findings are consistent with a previous MRI imaging study that found the co-

contraction imbalance between deltoids and shoulder depressors were most prominent around 

90° abduction which resulted in narrower subacromial space. (Hinterwimmer et al., 2003) 

Previous studies also reported that scapular kinematics prone to increased anterior tipping and 

internal rotation in the scapular abduction with internal rotation as the arm elevated may lead to 

AHD narrowing. (M. M. B. Morrow et al., 2011; Thigpen, Padua, Morgan, Kreps, & Karas, 

2006) Therefore, minimizing overhead shoulder activities are necessary for protecting the 

subacromial space from impingement syndrome.  

 35 



2.4.3 Effects of Exercise 

MWUs with SCI had significantly narrower AHD with the shoulder in 90° active scapular 

elevation with humeral internal rotation after repetitive shoulder external rotation exercises. Our 

results also agree in part with those from previous studies in which fatiguing exercises resulted in 

decreased AHD. (Graichen, Bonel, Stammberger, Eeglmeier, et al., 1999) This may be because 

the shoulder muscles (e.g. rotators) that are used to keep the glenohumeral joint stable at 90° arm 

abduction become fatigued after the repetitive exercises, and the imbalance of the deltoid and 

rotators causes the subacromial space narrowing. This finding points to the potential danger of 

impingement when performing repetitive overhead shoulder activities especially after muscle 

fatigue. In the case group, AHD was narrowing at the 45P compared to control group after 

rotator cuff exercise. One possible explanation for finding the decreased AHD in case but not in 

control could be that the case group has altered scapular kinematics compared to the control 

group. A future study is needed to explore the relationship between scapular kinematics and the 

AHD. 

2.4.4 AHD Differences Between Case and Control 

The mean AHD measures obtained in control group are similar to published data from previous 

study utilizing ultrasound imaging technique. (Schmidt et al., 2004) The AHD tended to reduce 

continuously from neutral to 90° abduction in the MWU group. The apparent increase in mean 

AHD from neutral to 45° active abduction in healthy individuals compared to that found in the 

MWUs with SCI may provide insight into the altered biomechanics of the wheelchair users’ 

shoulders. ‘Healthy’ shoulders may have a protective mechanism that keeps the space intact 
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through arm abduction.  Both groups were similar in age and weight, however a majority of 

wheelchair users have early degenerative changes in the shoulder that predispose them to 

shoulder problems due to overuse. (Lal, 1998) Factors such as scapular orientation, trunk 

posture, acromial shape, and tendon deterioration can all affect the subacromial space. (Chopp et 

al., 2010) It would be beneficial for further studies to examine how these other factors may 

impact the subacrominal space.  

SIS is believed to be secondary to shoulder joint instability. (Lee & McMahon, 

2002)While most studies evaluate the influences of shoulder muscle fatigue on the subacromial 

space, there is limited understanding of the influences of spinal cord injury on static and dynamic 

restraints concerning the subacromial space. MWUs with SCI are prone to have superior 

glenohumeral joint instability due to weakness of rotator cuff muscle. (Powers, Newsam, 

Gronley, Fontaine, & Perry, 1994) Muscle forces contributed significantly in the midranges of 

shoulder elevation when the capsule and glenohumeral ligaments are believed to be lax. (Lippitt 

& Matsen, 1993) Repetitive rotator cuff muscle exercises likely exaggerate the influences of 

uneven loading on the subacromial space while fatiguing rotator cuff muscles. The joint 

instability combined with fatigue could explain why the case group had greater AHD narrowing 

when the arm actively elevated from neutral to 45° after repetitive shoulder external rotation 

exercises.  It is important to incorporate muscular training exercises into the rehabilitation 

program to minimize the impact of fatigue on subacromial space.  
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2.4.5 Study Limitation 

There were a few limitations to this study. Although the results showed excellent inter- and intra-

rater reliability of the AHD measurement, the accuracy of ultrasonographic measurement was 

not examined. However, Azzoni et al. compared the accuracy of sonographic measurements to 

radiographic measurements of AHD. Both measurements were highly correlated and the 

concurrent validity was 0.77-0.85. (Azzoni & Cabitza, 2004; Azzoni et al., 2004) In addition, 

High correlation had also been demonstrated between AHD measurement taken with radiographs 

and those with MRI  (r = 0.81). (Saupe et al., 2006) Muscle fatigue was not objectively 

confirmed in this study, and it is possible that some fatiguing tasks were limited by pain or 

discomfort in performing the activities in some subjects.  Since the fatigued state of the 

infraspinatus muscle of the rotator cuff can limit the stabilizing force and result in encroachment 

of the humeral head into the space, (Chopp & Dickerson, 2012) future research is needed to 

confirm infraspinatus fatigue using electromyography. Further research combine methods of 

recording humeral, scapular-thoracic and clavicular kinematics with the ultrasonographic 

measurement of AHD to determine the impact of shoulder joint kinematics on the space pre and 

post fatigue. 

2.5 CONCLUSIONS 

Findings from our study demonstrated that ultrasonography is a reliable means to evaluate the 

subacromial space by ultrasound in manual wheelchair users with spinal cord injury and provides 

reference measures (e.g. minimum detectable difference) for identifying meaningful differences 
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in future interventional type studies. MWUs shoulders actively positioned in a 90° scapular plane 

elevation with humeral internal rotation showed increased narrowing in comparison to the other 

shoulder positions that were tested and following rotator cuff fatiguing exercises. The AHD 

consistently narrowed throughout the range of shoulder abduction movement in manual 

wheelchair users with SCI which was different than that observed in the control subjects who 

mainly demonstrated narrowing between 45° and 90° of shoulder elevation. Our findings provide 

insight into the mechanisms of subacromial impingement syndrome among individuals with SCI.  

Future studies are needed to further evaluate the relationship between subacromial space 

narrowing and other activities of daily living such as wheelchair transfers, wheelchair 

propulsion, and overhead activities. 
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3.0  EFFECT OF MUSCLE FATIGUING TASKS ON ACROMIOHUMERAL 

DISTANCE IN MANUAL WHEELCHAIR USERS 

3.1 INTRODUCTION 

Manual wheelchair users (MWUs) are at a high risk for subacromial impingement syndrome 

(SIS). Approximately 31-73% of MWUs have shoulder pain, much of which is believed to be 

associated with SIS due to repetitive weight-bearing activities such as wheelchair propulsion, 

weight relief raises, and transfers. (Boninger et al., 2001)  SIS occurs when the rotator cuff (RC) 

tendons, subacromial bursa, the long head of biceps tendon, and coracoacromial ligament 

become compressed and irritated as they pass through the subacromial space, which is the area 

located above the humeral head and below the acromion. (Neer, 1972)  Risk factors that have 

been linked to subacromial impingement syndrome include imbalances in shoulder strength, 

limitations in shoulder range of motion, excessive thoracic kyphosis or flexed posture, scapular 

positioning malalignments and muscle fatigue. (Burnham et al., 1993; Niemeyer, Aronow, & 

Kasman, 2004; Seitz & Michener, 2011)  

Studies of non-wheelchair users have shown that fatigue of the RC muscles reduces their 

ability to stabilize the humeral head against the glenoid cavity of the scapula, causing migration 

of the humeral head into the space. (Chopp et al., 2010; Teyhen et al., 2008) Chopp et al. 

investigated radiographic measurement of humeral head migration following two types of fatigue 
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protocols: 1) a global shoulder fatigue protocol that simulated job tasks, and 2) a local fatigue 

protocol that targeted fatigue of the shoulder external rotators. (Chopp et al., 2011; Chopp et al., 

2010; Tsai et al., 2003) While both protocols were expected to show reduction in the AHD, the 

global protocol induced greater changes in humeral head translation.(Chopp et al., 2010) 

Although the amount of humeral translation may be considered small (on the order of 1 to 3 

mm), the compressive effects on the subacromial structures were viewed as significant due to the 

limited size of the subacromial space.   

MWUs represent a unique population for studying AHD due to the types of weight-

bearing activities they routinely perform and their high potential to develop shoulder 

impingement syndrome. Propulsion and weight relief raises result in excessive shoulder joint 

loading and demand on RC muscles to maintain glenohumeral joint stability during the 

maneuvers. (M. M. B. Morrow et al., 2011; Reyes et al., 1995; S. van Drongelen et al., 2011) A 

person performs a weight relief raise by adducting their arms and using them to lift and support 

the body for the purposes of alleviating pressure under the buttocks.  A musculoskeletal 

modeling study of weight-relief raises found large weight-bearing forces (1288 N) acted to drive 

the humerus into the GH joint. (S. van Drongelen et al., 2011)  It is unclear if these forces cause 

compression of the subacromial space and what other factors such as pain and pathological 

deficits, muscle weakness, altered shoulder kinematics, or fatigue may be associated with 

unwanted superior translation of the humeral head. (Sharkey & Marder, 1995)   

The primary purpose of this study was to investigate initial and acute changes (i.e. 

narrowing) in AHD after wheelchair users performed repetitive weight-relief raises (global 

fatigue protocol) and an isolated RC exercise (local fatigue protocol) to self-perceived fatigue.  

Shoulder pain is a significant reason for functional decline in manual wheelchair users and a 
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factor correlated with decreased quality of life. (Gerhart, Bergstrom, Charlifue, Menter, & 

Whiteneck, 1993) A secondary goal of this study was to examine the relationship between 

shoulder pain, subject characteristics, and AHD.  A better understanding of these relationships 

may help to elucidate mechanisms leading to subacromial impingement in wheelchair users and 

enable tailored therapeutic interventions that preserve upper limb function. 

3.2 METHODS 

3.2.1 Subjects 

Study participants were recruited during the 2011 National Veterans Wheelchair Games 

(NVWG) in Pittsburgh, Pennsylvania. Based on previous research (Teyhen et al., 2008), a priori 

power analysis revealed that a sample size of 23 was required to achieve a minimum statistical 

power of 95% at an α level of p = 0.05.  Inclusion criteria were using a manual wheelchair as 

primary means of mobility, able to perform multiple weight-relief raises and between 18 and 65 

years of age.  The exclusion criteria included history of fractures or dislocations in the shoulder 

from which the subject had not fully recovered (i.e. the subject may no longer experience pain or 

limited/altered function due to the injury); upper limb dysthetic pain as a result of a syrinx or 

complex regional pain syndrome (only for individuals with paraplegia); and history of 

cardiovascular or cardiopulmonary disease.  Informed consent was obtained from all the subjects 

before participation in this study. The research protocol was approved by the Department of 

Veteran Affairs institution review board.   
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3.2.2 Questionnaires  

Basic demographic information including age, height, weight, and date of injury/diagnosis using 

self-report and anthropometrics of the shoulder circumference and upper arm length were 

obtained from all subjects at the beginning of testing.  All subjects completed the Wheelchair 

Users Shoulder Pain Index (WUSPI), which has test-retest reliability of the total index score 0.99 

and Cronbach’s alpha (internal consistency) 0.98. (Curtis et al., 1995b) The WUSPI is a 15-item 

self-report instrument that measures shoulder pain intensity in wheelchair users during various 

functional activities of daily living including transfers, wheelchair mobility, dressing, overhead 

lifting, and sleeping. (Curtis et al., 1995a) Each item is scored using a 10 cm visual analog scale 

anchored at the ends with the descriptors of “no pain” and “worst pain ever experienced.” Total 

score was calculated by summing the individual scores divided by the number of performed 

activities and then multiplying by 15. (Curtis et al., 1999) A general questionnaire was used to 

document the medical information including history of shoulder pain and surgery. (Boninger et 

al., 2001) The non-dominant side was chosen for all the measures in order to minimize the 

effects caused by performing ADLs on the shoulder from other general activities.  The OMNI 

Pain Scale, previously validated by Faces pain scale for pediatric oncology, was used to assess 

exercise-induced muscle pain intensity. (R. J. Robertson et al., 2009) This scale is a numerical 

rating scale ranging from 0 to 10.  The OMNI scale was administered prior to the beginning of 

testing, to establish a baseline measure of pain, and after each fatigue protocol, to determine 

amount of exercise-induced pain experienced during the testing.   
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3.2.3 Fatiguing Protocols 

For both the global fatigue and local fatigue tasks, subjects transferred to a Biodex System 3 

dynamometer (Biodex Medical System, Inc, Shirley, New York) with custom-made adjustable 

height arm rests (Figure 1A).  Armrests were fitted to each subject to allow pushing straight up 

with full elbow extension and arms adduction to off load the buttock tissue (Figure 1B).  The 

global fatigue task involved performing weight relief raises (WR) which entailed lifting and 

holding the buttocks off the seat with an elbow locked position. (M. M. B. Morrow et al., 2011; 

Reyes et al., 1995) The WR task was repeated at a rate of 20 repetitions per minute with the use 

of a metronome.  Subjects were instructed to stop when they were no longer able to keep up the 

task due to self-perceived fatigue or at a cutoff time of 2 minutes, whichever occurred first.  The 

local fatigue task followed the same protocol but involved isotonic shoulder external rotation 

(ER). For this task the subject was instructed to externally rotate their forearm from a shoulder 

neutral position to 45 degrees or the maximum range of ER that they could comfortably reach 

similar to that done in other RC fatigue protocols. (Ebaugh et al., 2006b)The trunk was secured 

to minimize compensatory movements using straps from the Biodex that crossed the chest and 

lap.  Resistance for the external rotation motion was set for 5% of self-reported body weight. To 

minimize the shoulder internal rotator fatigue, the minimum resistance setting of 1 lb was used 

for the internal rotation motion. (Reinold et al., 2004)  Both fatigue protocols were administered 

during a single test session.  The subjects rested for a period of approximately 15 minutes in 

between the two fatigue protocols.   
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3.2.4 AHD Ultrasound Examination 

The subacromial space was quantified by measuring the acromiohumeral distance (AHD) using 

ultrasound techniques as described previously in studies with healthy shoulders, (Cheng et al., 

2008) athletes, (Girometti et al., 2006) patients with subacromial impingement syndrome, (Pijls 

et al., 2010) individuals with different stages of rotator cuff degeneration, (Azzoni et al., 2004) 

and patients with a rotator cuff tears. (Cholewinski et al., 2008)  A single examiner (Lin) 

conducted all scans for each subject using a Philips HD11 1.0.6 ultrasound machine with a 5-12 

MHz linear transducer.  A water-based gel was applied on the skin to enhance ultrasound 

conduction between the ultrasound probe and the skin surface.  The non-dominant shoulder was 

scanned from the anterior aspect of glenoid to the flat segment of posterior scapula to capture the 

bright reflection of the bony contour of the acromion and humeral head (Figure 4). Ultrasound 

video was recorded at 60 Hz and scanning the AHD took approximately 10 seconds.  A total of 

five videos of the AHD were recorded during the study: one took place at the beginning of the 

study with the shoulder in a neutral and resting position (Figure 3A), and the other four were 

obtained pre-post each fatigue protocol while isometrically holding the weight relief raise 

position (Figure 3B).  

3.2.5 Surface Electromyography  

Surface electromyography was performed with the bi-polar Noraxon Telemyo 2400T 

electromyography system (Noraxon Inc., Arizona, USA). Reyes et al reported in a fine-wire 

EMG study that the primary muscles involved in the weight relief task among persons with low 

paraplegia (T8 to L1) were the latissimus dorsi, sternal pectoralis major, and the triceps, and 
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therefore these muscles would be more prone to fatigue. (Reyes et al., 1995)   In the absence of 

triceps (e.g. subjects with cervical SCI at C6 or above), the pectoralis major and shoulder 

depressors become more vital to enabling successful weight-relief raises. (Harvey & Crosbie, 

2000)  Thus, for this study we placed electrodes over the sternal pectoralis major, lattismus dorsi, 

long head of the triceps, and infraspinatus, an external rotator and shoulder depressor, as they can 

be accessed reliably by surface electrodes. (Bitter et al., 2007)  Electrodes were placed on the 

non-dominant arm with 2 cm spacing over the muscle belly using standards previously 

developed for these muscles. (Chopp et al., 2011)  A ground electrode was placed on the lateral 

portion of the clavicle.  Prior to marker placement the skin was cleansed with alcohol wipes. 

Participants performed three repetitions of maximum voluntary contractions (MVCs) for each of 

the monitored muscles.  Muscle activities were collected for the entire duration of the fatiguing 

protocols, except triceps activity was not recorded during the ER task.  

 

3.2.6 Data Analysis 

An investigator blinded to the subject testing and timing of the video (e.g. pre or post) used a 

custom developed Matlab program to manually review each frame of the video and mark the 

inferior edge of acromion and humeral head.  The distance between the bony landmarks was 

calculated for each frame of the video and the narrowest distance was used for statistical 

analyses.  To assess reliability of the AHD measure, we compared the two pre-fatigue AHD 

measurements with the shoulder in the weight relief position using the intraclass correlation 

coefficient (ICC, two way random, absolute agreement).  Standard error of measurement (SEM) 
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(Equation 1) and the minimum detectable difference (MDD) (Equation 2) was computed based 

on the equations used in Chapter 2. 

EMG data were used as reference for fatigue onset.  Raw EMG signals were sampled at 

1500 Hz.  The signals were then full-wave rectified and filtered using a fourth-order Butterworth 

low pass filter with 450 Hz cut-off frequency.  The average of the first three repetitions of each 

fatigue task was defined as a fresh state, whereas the average of the last three repetitions was 

defined as the fatigued state.  Local muscle fatigue was confirmed by computing the median 

power frequency (MPF) and mean amplitude and using joint analysis of spectral and amplitudes 

(JASA).  The use of JASA has been validated to differentiate fatigue from other various EMG-

change causations. (Luttmann, Jager, & Laurig, 2000) The results of JASA plots were classified 

into the following four categories:   

(1) Force increase (frequency increase and amplitude increase) 

(2) Recovery (frequency increase and amplitude decrease) 

(3) Force decrease (frequency decrease and amplitude decrease) 

(4) Muscle fatigue (frequency decrease and amplitude increase) 

The power spectral density was used to determine the MPF for each 1-second interval 

over the pre-fatigue and post-fatigue envelopes.  Percentage changes in MPF were determined as 

the ratio of the amount of MPF change between fresh and fatigued state to the averaged MPF 

values in the fresh state.  The percentage change in the mean magnitude of the EMG signal was 

obtained during the same time interval as the MPF with the normalization of 100% MVCs from 

each muscle.   
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3.2.7 Statistical Analyses 

Based on the result of Shapiro-Wilk normality test, paired t-tests were used to assess differences 

in the AHD absolute values between the neutral (unloaded) and weight-relief shoulder position 

and before and immediately after performing the WR and ER tasks for subjects exhibiting EMG 

signs of fatigue for the primary muscles of interest (infraspinatus, pectoralis major, and 

latissimus dorsi).  Spearmans’ nonparametric correlations between the absolute AHD measures, 

AHD percentage changes (Equation 3), WUSPI score, OMNI scale score, and demographic data 

(e.g. height, weight, shoulder circumference, arm length, age, and years since acquiring the 

disability or injury) were examined.  An alpha level less than 0.05 was established for significant 

changes.  The standardized thresholds of effect size above 0.8 and around 0.5 were used to 

define large and moderate effects, respectively. (Faul, Erdfelder, Lang, & Buchner, 2007) 

3.3 RESULTS 

3.3.1 Subjects 

Twenty-three MWUs (22 male and 1 female) convenience samples were recruited for this study.  

Sixteen MWUs had a spinal cord injury (5 cervical, 11 thoracic), one had unilateral transfemoral 

amputation, three had bilateral transtibial amputation, and three had multiple sclerosis.  The 

average age (standard deviation) of the sample was 46(12) years old, post injury or diagnosis was 

15(10) years, and the average height and weight were 178(8) cm and 81(18) kg, respectively.  
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Twenty-two participants were right hand dominant.  Descriptive data for AHD measurements is 

provided in Table 5. 

 

Table 5. Absolute AHD values and percentage change of AHD for each subject.  Bold font 
represents subjects with no self-reported fatigue within the maximum 2-minute time limit 
of exercise.  Symbols represent EMG signs of local muscle fatigue on the Infraspinatus(I), 
Pectoralis Major(P) and Lattisimus Dorsi(L), and Triceps(T).   

  Weight Relief (mm) Rotator Cuff Exercise(mm) 

Disability Rest Pre Post % change Pre Post % change 
C3 spinal stenosis 14.07 10.85 10.85 0.00P,T 10.67 9.31 -12.72I 

T4 com. SCI 11.53 9.32 11.27 20.85T 9.18 9.04 -1.49I,L 
C6 inc. SCI 10.96 10.14 9.03 -10.94 8.77 8.90 1.56 

MS 12.64 8.08 9.45 16.95 11.25 10.82 -3.80 
Amp (LAK) 12.88 12.76 10.17 -20.30 10.17 10.34 1.67I 
T4 com. SCI 11.51 10.00 9.31 -6.94I,P,T 9.72 10.82 11.36I 

Amp (RBK, LAK) 12.37 9.83 11.93 21.39L,T 9.32 10.41 11.65I,P 
T7 inc. SCI 11.64 10.28 11.37 10.58T 10.70 10.69 -0.09 
T9 inc. SCI 12.50 11.64 11.51 -1.18T 11.67 11.10 -4.89P 

MS 9.32 9.04 11.53 27.51 10.27 8.92 -13.19I 
C3 inc. SCI 10.96 10.55 10.83 2.70I,T 10.00 8.45 -15.49L 

MS 12.36 9.03 7.16 -20.67T 8.47 8.36 -1.37 
T12 com. SCI 9.44 10.00 9.31 -6.94P,L 10.00 9.73 -2.70 
T12 inc. SCI 11.81 10.00 10.27 2.74I,T 10.27 10.69 4.04I 

Amp (RAK, LAK) 10.00 8.38 9.31 11.07 7.95 8.08 1.72I 
T12 com. SCI 10.14 9.31 8.77 -5.79P,T 8.75 8.49 -2.93I,P,L 

Amp (RAK, LBK) 10.14 8.49 7.36 -13.33I 7.50 9.04 20.55P 
C5 inc. SCI 13.06 11.39 10.82 -4.98P,L 11.39 10.95 -3.89I,P 
C7 inc. SCI 16.32 10.86 9.66 -11.11I,T 10.52 10.17 -3.31L 
T10 inc. SCI 13.83 12.71 12.28 -3.39T 12.41 13.10 5.55I 
T11 inc. SCI 11.22 10.27 9.45 -8.00I,P 10.14 10.96 8.09I,L 

T12 com. SCI 13.84 11.10 11.51 3.70I,L 9.73 10.41 7.04I 
T9 inc. SCI 8.22 6.03 6.08 0.89I,P,T 6.71 5.83 -13.10P 

SCI, spinal cord injury (com., complete; inc. incomplete); Amp, amputee; RAK, right leg above 
knee; RBK, right leg below knee; LAK, left leg above knee; LBK, left leg below knee;  MS, 
multiple sclerosis. 

 

The AHD in the first weight-relief position (10.00 ± 1.51 mm) was significantly smaller 

than the AHD in the baseline shoulder neutral position (11.77 ± 1.83 mm, p < 0.01).  According 
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to the JASA plots, eight subjects after the repeated weight relief raises and thirteen subjects after 

the ER task showed EMG signs of fatigue of the infraspinatus (Table 5).  Seven subjects after the 

WR task and six subjects after the ER task fell into the quadrant representing fatigue for the 

pectoralis major muscle (Table 5, Figure 7).  Fewer numbers of subjects showed fatigue of the 

latissimus dorsi muscles during the two tasks (Table 2).  The triceps were the most common 

muscle group to fatigue during the WR task (n=13, Table 2) while more subjects showed fatigue 

of the infraspinatus muscle during the ER task (n=13, Table 6). 

AHD significantly decreased after repeated weight relief raises in subjects with EMG 

signs of sternal pectoralis major muscle fatigue (p = 0.046, Table 6).  No statistical significant 

reduction but moderate effect size was found for subjects with confirmed EMG signs of 

infraspinatus muscle fatigue after the WR task (p = 0.263, Table 6).  There were no significant 

differences in the AHD after the ER task for subjects showing objective signs of fatigue in any 

monitored muscle and effect sizes ranged from 0.08 to 0.36.   

 

Table 6. AHD absolute value changes (Mean±SD mm and effect size) among subjects who 
showed EMG signs of muscle fatigue  
Muscle Multiple Weight Relief Raise Shoulder External Rotation 
Infraspinatus  
Pectoralis Major  
Latissimus Dorsi 
Triceps 

-0.35±0.68 (d = 0.53); n = 8 
-0.47±0.35 (d = 1.25); n = 7† 
0.31±1.29 (d = 0.24); n = 4 
0.07±1.13 (d = 0.06); n = 13 

0.12±0.82 (d = 0.15); n = 13 
0.08±0.99 (d = 0.08); n = 6 
-0.29±0.84 (d = 0.36); n = 5 

† p =0.046. 
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Figure 7. JASA analysis for sternal pectoralis major between the fresh and fatigue 
state at weight relief raises (n = 23) (A) and shoulder external rotation tasks (n = 23) 
(B).   
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3.3.2 AHD Changes versus Subject Characteristics 

Among all subjects, no relationship between baseline AHD and age, height, weight, or arm 

length was found.  Individuals with narrower AHD in the resting neutral position had smaller 

shoulder circumferences (r = 0.42, p = 0.044, Figure 8A). Individuals with increased years of 

disability had more AHD percentage narrowing after the WR task (r = -0.54, p = 0.008, Figure 

8B).  The WUSPI scores measured at baseline were 14.08±18.07.  More shoulder pain on 

WUSPI was associated with greater percentage narrowing of the AHD after the ER task (r= -

0.41, p = 0.007, Figure 8C).  The OMNI pain scale results measured at baseline, after WR and 

after ER were 1.04 ± 1.58, 2.09 ± 2.56, 2.30 ± 2.42 respectively. Individuals with higher scores 

on the OMNI pain scale after ER had more percentage narrowing of the AHD after ER (r = -

0.59, p = 0.003) (Figure 8D).   
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. 

Figure 8. Correlation analysis for the AHD in neutral shoulder position with the 
shoulder circumference (p = 0.044, n = 23) (A), AHD percentage change after 
multiple weight relief raises with years since injury (p = 0.008, n = 23) (B), AHD 
percentage change after shoulder external rotation exercise with WUSPI (p = 0.007, 
n = 23) (C), and AHD percentage change with OMNI pain scale after ER (p = 0.003, 
n = 23) (D). 

(A) 
 

(B) 
 

(C) 
 

(D) 
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3.4 DISCUSSION 

The results confirm that AHD narrowing occurs when assuming a weight-bearing position with 

their arms. In healthy shoulders, the height of the AHD can range between 7 mm and 16 mm 

when the shoulder is in a neutral position. (Weiner & Macnab, 1970) Our baseline data were 

consistent with this result (range = 8 to 16 mm).  Given that the thickness of the supraspinatus 

tendon in this area is 6 to 9 mm, little clearance remains for enlarged bursa, swollen tendons, or 

irregularities of the gliding surface which are common pathologies found in the shoulders of 

wheelchair users. (Philip S. Requejo et al., 2008) When our subjects assumed the weight-relief 

position, a statistically significant reduction in space occurred.  In this position, the elbows are in 

full extension allowing the humeral head to be oriented more directly upward and into the joint. 

In addition, during the weight relief raise the scapula is anteriorly tilted and internally rotated. 

(Nawoczenski et al., 2003) This humeral and scapular position combined with the large weight-

bearing forces likely led to the reduction in subacromial space. Narrowing of the AHD can 

overstress the supraspinatus tendon, diminish blood flow, and lead to shoulder impingement. (Fu 

et al., 1991) As weight bearing positions are difficult to avoid and occur daily in high frequency 

such as during wheelchair propulsion, transfers, and pressure relief, wheelchair users are at risk 

for developing impingement. These findings support clinical practice guidelines that recommend 

MWUs limit the WR technique for pressure relief and use propulsion and transfer techniques that 

minimize forces at the shoulders. (Boninger et al., 2005)   

Weight-bearing tasks require the shoulder depressors to stabilize the humeral head within 

the glenoid cavity. (Sharkey & Marder, 1995) A repetitive weight relief task was employed to 

see if globally fatiguing the shoulder muscles would lead to greater narrowing of space.  

However, we found after performing the WR task to self-reported fatigue there was no further 
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narrowing of the AHD (p = 0.89 for all 23 subjects).  As subjects could have quit the protocol 

due to fatigue of the triceps or other reasons, we performed a JASA analysis to identify those 

subjects with objective signs of fatigue on all monitored muscle groups. Subjects who had 

objective evidence of muscle fatigue for the pectoralis major muscle (large effect size) and 

infraspinatus (moderate effect size) showed greater percentage narrowing of the AHD after WR 

activity.  As the pectoralis major is the primary muscle involved in performing weight relief 

raises, its fatigue not only affects the recruitment patterns of other smaller muscles to perform the 

job, but also affects its concomitant function as a humeral depressor.  The sternal portion of the 

pectoralis major, with origins on the sternum and insertions on the lateral lip of bicipital groove, 

provides a compressive and downward force on the humerus when the arms are extended and the 

trunk is elevated. (Philip S. Requejo et al., 2008) Thus impairment in this function could lead to 

unwanted translations.  For these reasons, others (Rankin, Richter, & Neptune, 2011) have also 

found that pectoralis major and infraspinatus during intense wheelchair activity are particularly 

susceptible to muscle fatigue or injury, which may increase the chance of subacromial 

impingement.  The infraspinatus along with other RC tendons serves the purpose of helping to 

stabilize the GH joint and controlling translations. (Sharkey & Marder, 1995) Thus it follows that 

maintaining a healthy force balance around the glenohumeral joint plays a significant role in 

preserving subacromial space for activities involving weight-relief positions.  The results support 

therapeutic programs or exercise prescription in an effort to balance muscle forces around the 

shoulder and minimize risk of impingement. (Boninger et al., 2005)    

The ER exercise in this study used a similar protocol to other studies involving 

neurologically intact individuals without shoulder disorders and designed to fatigue the 

infraspinatus. (Bitter et al., 2007; Ebaugh et al., 2006b; Tsai et al., 2003) Superior migration of 
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the humeral head has been shown to occur after fatiguing the infraspinatus with this protocol. 

(Chopp et al., 2010) The JASA analysis for this study proved that the ER task was effective in 

fatiguing the infraspinatus but we found no difference in the AHD after the task.   The prior 

studies on neurologically intact individuals measured subjects in a non-weight bearing position 

with their arms during scapular plane abduction.  With arm elevation, the deltoid muscle 

enhances the upward pull of the humerus.  This would likely magnify the upward shift of the 

humeral head in arm elevation compared to the weight relief position in which we measured all 

subjects pre-post fatigue.  We chose to examine AHD while subjects held the weight relief raise 

position because it provides a measure of what the AHD looks like under realistic, functional 

loading conditions.  The ER exercise is an isolated muscle fatigue protocol targeting the external 

rotators (primarily the infraspinatus muscle), while very little involvement of other shoulder 

muscles are needed to execute the task.  In comparing the two tasks, not finding greater 

differences in the ER task (local fatigue protocol) compared to after the WR task (global fatigue 

protocol) may mean that compensatory motor strategies or muscle firing patterns were being 

used to preserve the acromiohumeral space when the shoulder was scanned in the WR position. 

(Szucs, Navalgund, & Borstad, 2009) Further studies are needed to understand the compensatory 

muscle activities and if there are other arm positions that would be more sensitive to detecting 

changes with fatigue. 

In our study, the baseline and acute changes in the AHD measure were not significantly 

correlated with the characteristics commonly linked to shoulder impingement syndrome such as 

age, weight, and BMI.  However, AHD in the shoulder neutral position was related to shoulder 

circumference and suggests that future studies should consider normalizing the AHD or 

statistically controlling for this anatomical measurement. A positive correlation was found 
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between percentage narrowing of the AHD after WR and years of injury/diagnosis and shoulder 

pain after controlling for shoulder circumference.  These relationships are likely related to the 

problems commonly seen in long-term wheelchair users such as chronic shoulder pain and 

pathology, muscle strength imbalances around the shoulder, joint instability, altered scapular 

kinematics and abnormal glenohumeral motion, and subluxation. (Bigliani & Levine, 1997) Our 

findings are consistent with studies on non-wheelchair users, which have shown that the AHD is 

smaller in symptomatic shoulders. (Azzoni et al., 2004; Weiner & Macnab, 1970) 

Our study had several limitations. Because our protocol was conducted at a national 

wheelchair sporting event, it was difficult to control for the amount of upper limb activity 

experienced before the testing.  In addition, wheelchair users who participate in sporting events 

may be considered more active than the general population.  However, Tolerico et al found that 

veterans who participate in the NVWG were not significantly different in the mobility 

characteristics and activity levels of their community-dwelling wheelchair using counterparts. 

(Tolerico et al., 2007) The two fatigue exercises were performed in order (WR followed by ER) 

on the same day and it is possible that there was not enough muscle recovery time to compensate 

for the fatigue effects on the muscles; however, the two tasks were quite different in their goals 

and the two pre-fatigue AHD measures taken before each task were not significantly different (p 

= 0.38).  We relied on self-reported fatigue to stop the tasks, which did not always correspond 

with objective signs of fatigue for the muscles of interest.  Each task does provide a simulation of 

how overuse could affect the shoulder, which may be more meaningful considering that most 

wheelchair users when performing ADLs in daily life are not pushing themselves to the point of 

muscle fatigue.  Only a few specific shoulder depressors were monitored using surface EMG and 

crosstalk from neighboring muscles could affect the signal integrity.  However, surface EMG is 
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often preferred to fine-wire because it provides a non-invasive means of fatigue monitoring. 

(Cifrek, Medved, Tonkovic, & Ostojic, 2009)  

Effect sizes were used to judge the significance of the findings, as there were few 

numbers of subjects with objective evidence of fatigue on the selected muscle groups.  

Significant findings after the WR task should be interpreted with caution as the mean magnitude 

difference of the AHD was small (0.5 mm) and within the realm of measurement error. However 

the significant associations found with markers of pain, muscle fatigue, and years post 

injury/disability supports the clinical relevancy of the AHD measure. Other variables such as 

acromial shape, abnormal scapular kinematics, and impaired RC function were not investigated 

and could be additional sources to explain AHD narrowing.  As many wheelchair users have 

signs and symptoms of shoulder pathology and altered shoulder kinematics, future studies should 

look at AHD changes in MWUs relative to healthy controls to further elucidate extrinsic 

mechanisms leading to reductions in the subacromial space.  Acute changes were examined with 

the shoulders in a loaded position and differences may have been more apparent had the arm 

been scanned in an elevated, unloaded position. As scapular orientation has also been shown to 

affect AHD, future work should investigate scapular and humeral positioning during weight-

bearing tasks to gain further insight into injury mechanisms. 

3.5 CONCLUSIONS 

The results of this study suggest that MWUs should limit weight relief raises for pressure relief, 

as placing the shoulder in this position led to a significant reduction in the subacromial space.   

Fatigue of the pectoralis major after performing repetitive weight relief raises led to greater 
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percentage narrowing of the AHD, which points to its importance in functioning as a humeral 

depressor in addition to serving as the largest contributor to performance of a successful weight 

relief raise. This study provides objective evidence that the AHD is associated with pain and 

long-term use of a wheelchair.  Future work should consider how alterations in humeral and 

scapular kinematics affect the subacromial space when performing daily tasks to elucidate more 

clearly the mechanisms of injury.  In addition, the findings indicate the efficacy of quantitative 

ultrasound to identify changes in the AHD.  This could be helpful in evaluating the impact of 

clinical interventions such as wheelchair propulsion or transfer training on preserving the 

subacromial space in future studies.  
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4.0  EFFECTS OF INTENSE WHEELCHAIR PROPULSION AND START-UP 

SHOULDER BIOMECHANICS ON THE SUBACROMIAL SPACE AMONG 

INDIVIDUALS WITH SPINAL CORD INJURY 

4.1 INTRODUCTION 

The shoulder is the most commonly reported site of pain and injury in manual wheelchair users 

(MWUs) with spinal cord injury (SCI). Approximately 31-73% of MWUs with SCI have 

encountered shoulder pain and pathology.(Boninger et al., 2001) The primary pathology found in 

most shoulder pain cases is subacromial impingement syndrome (SIS) in individuals with 

SCI.(Bayley et al., 1987; Dyson-Hudson & Kirshblum, 2004; Lee & McMahon, 2002) The SIS 

may result from several factors, including extrinsic compression of the supraspinatus outlet, 

narrowing of the subacromial space and consequent compression of the rotator cuff tendons. 

Manual wheelchair propulsion is a repetitious high force task that is believed to contribute to the 

development of SIS. (Bayley et al., 1987) During the propulsive phase, forces applied at the 

pushrim act in equal and opposite directions and are absorbed by the joints of the upper limbs.  

These forces may translate the humeral head into the subacromial space(Philip Santos Requejo et 

al., 2008) and compress the soft tissue, therefore causing tissue damage.(Lippitt & Matsen, 1993) 

Moreover, extreme ranges of shoulder motion observed during propulsion combined with high 

forces likely places MWUs at a higher risk for SIS. (Boninger et al., 2005) In addition, the 
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imbalance of muscle strength around the shoulder joint and abnormal scapular and clavicular 

kinematics found in MWUs further predispose them to impingement of the soft tissue structures 

within the subacromial space. (Burnham et al., 1993)  

Ultrasonography has been used to diagnose rotator cuff disorders and abnormalities of the 

biceps tendon and supraspinatus. (Brose et al., 2008; Campbell & Dunn, 2008; Morag et al., 

2012; Zanetti & Hodler, 2000) In addition to the pathological assessment, quantitative 

ultrasonography (QUS) has also been used to detect the acute changes in the biceps and 

supraspinatus tendons after wheelchair propulsion. (J. L. Collinger, Impink, Ozawa, & Boninger, 

2010; Stefan van Drongelen et al., 2007) Increased cadence and larger resultant propulsive forces 

were related to post-propulsion QUS changes of the biceps tendon after an intensive bout of 

overground wheelchair propulsion. (J. L. Collinger, Impink, et al., 2010) In this study wheelchair 

users pushed as fast as they could for as many laps as they could around a figure-8 course in 12 

minutes. Because higher velocities are associated with higher cadences and resultant forces, a 

follow-up study controlling for speed on a dynamometer found a link between shoulder joint 

kinetics and post-acute biceps and supraspinatus tendon changes on ultrasound after propulsion 

on the figure-8 course. (Jennifer L. Collinger, 2009) Because the shoulder kinetics was collected 

under different conditions (e.g. sub-maximal constant speed dynamometer propulsion) they may 

not be representative of shoulder kinetics during intense overground wheelchair propulsion. The 

figure-8 course consists of three distinct propulsion tasks: acceleration, turning and sudden 

braking which simulates the types of propulsion activity that may occur during court sports like 

wheelchair basketball or rugby. The percentages of start-up strokes from complete stop, steady-

state strokes, turning strokes, and braking in each figure-8 course are approximately 22%, 12%, 

33%, and 33%, respectively. Propulsive strokes during start-up (e.g. acceleration from rest) 

 61 



propulsion have significantly different characteristics from those observed for steady-state 

speeds. (Koontz et al., 2005; Koontz et al., 2009) The main purpose of this study was to 

determine if shoulder biomechanics during the startup phases of the figure-8 course are related to 

acute changes on ultrasound after controlling for the velocity of startup. 

The acromiohumeral distance (AHD) is a linear measure of the subacromial space and a 

marker for SIS.  We demonstrated our ability to reliability measure the AHD and detect acute 

narrowing of the subacromial space after a repeated weight relief raise task. (Chapter 2 and 3) 

(Lin, 2012) Previous work also showed that changes in the AHD were correlated with shoulder 

pain and subject characteristics (Chapter 3).  For this study, we hypothesized that individuals 

who propelled with higher biomechanical risk factors to shoulder pathology including increased 

shoulder posterior force and peak internal rotation moments during start up propulsion would 

have greater AHD narrowing compared to those who propelled with lower forces and moments 

controlling for the peak velocity and subject demographics.  The secondary aim of this study was 

to investigate the relationship between AHD changes and subject demographics. 

4.2 METHODS 

4.2.1 Subjects 

Twenty-one subjects volunteered and provided informed consent before participation in this 

study.  The inclusion criteria of the study included age between 18 and 65 years old, have SCI that 

occurred over 1 year prior to the start of the study, and use a manual wheelchair as the primary 

means of mobility (self-propel at least 40 hours per week). People were excluded from this study if 
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they had a history of fractures or dislocations in the shoulder, from which the participant has not 

fully recovered, upper limb dysthetic pain as a result of a syrinx or complex regional pain 

syndrome, and history of cardiovascular and cardiopulmonary disease.  They also had no pain in 

an upper limb that interfered with normal function and daily activity. 

4.2.2 Questionnaires 

Basic demographic information including age, diagnosis, and date of diagnosis/wheelchair 

prescription was collected using self-report questionnaires. Subject’s body weight and 

wheelchair weight were measured using a wheelchair scale.  Subjects were also asked to report 

whether they had experienced shoulder pain in the previous month and whether the shoulder pain 

was related to specific activities of daily living during wheelchair use, as measured by 

Wheelchair Users Shoulder Pain Index.  (Curtis et al., 1999) The WUSPI is a 15-item self-report 

instrument that measures shoulder pain intensity in wheelchair users during various functional 

activities of daily living, such as transfers, wheelchair mobility, dressing, overhead lifting, and 

sleeping.(3) Each item is scored using a 10 cm visual analog scale anchored at the ends with the 

descriptors of “no pain” and “worst pain ever experienced.” Individual item scores are summed 

to arrive at a total index score. (Curtis et al., 1995a) A Borg scale reading of 10 or more was the 

threshold to confirm self-reported exertion.(Hummel et al., 2005) 
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4.2.3 Kinematic and Kinetic Instrumentation 

The SmartWheel b, a three-dimensional force and torque sensing device, was attached to non-

dominant side of the participant’s own chair while an inertia-matched dummy wheel was fitted to 

the other side.(R. A. Cooper, Robertson, VanSickle, Boninger, & Shimada, 1997) The non-

dominant side was chosen because it would be less affected by other daily activities not related 

to wheelchair propulsion. Depending on the size of the subjects’ wheel diameter, a different size 

SmartWheel (24” and 26”) was used to ensure consistency of axle position, camber, wheel 

placement and alignment. Individuals with tetraplegia could use a rubber band to facilitate the 

grip on the SmartWheel handrim.  Kinetic data were collected at a 240-Hz sampling frequency 

and digitally filtered with an eighth-order, zero-phase, and low-pass Butterworth filter with a 20-

Hz cutoff frequency. Kinematic data were collected using a Vicon Motion Systemsc at 120-Hz 

filtered with fourth-order, zero-lag Butterworh lowpass filter with a cut off frequency at 10Hz. 

(Koontz et al., 2011) Twenty cameras were surrounded an area of 22 x 3 square meters allowing 

for an optimized capture volume around the fiture-8 course. (Figure 9)  Following the 

International Society of Biomechanics (ISB) recommendations, reflective markers were placed 

on bony landmarks of the trunk and non-dominant arm.(Wu et al., 2005) Four markers were also 

placed on the wheel hubs during data collection to determine the SmartWheel orientation in the 

lab global coordinate system.  Redundant markers were used on each segment to ensure the 

reliability of the captured kinematic data. Local coordinate systems were created for the trunk 

and upper arm segments using previous definition. (Koontz et al., 2011) A static calibration trial 

was collected to compensate for the unstable or missing markers in the dynamic trials. Kinetic 

and kinematic data collection was synchronized using a custom switch.  
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Figure 9. A schematic of the figure-8 shaped propulsion course. 

4.2.4 Wheelchair Propulsion Protocols 

The figure-8 course is an intense over-ground propulsion task specifically designed to stress the 

upper limbs and simulate overuse as a result of wheelchair propulsion.  The course resembles a 

figure-8 and spans 18 meters on a concrete floor centered in front of the motion capture cameras.  

Cones were placed on the floor to outline the course.  Participants were asked to push at a self-

selected maximum speed, turn around the cones, and come back to center making a sudden 

complete stop before looping around the other half of the course (Figure 9). Subjects were asked 

to push their wheelchair for 4 minutes followed by a 90 second rest break.  This sequence was 

repeated three times resulting in a 12-minute propulsion task, which is about 1/3 of the amount 

of propulsion activity that occurs over the course of an average day. (Tolerico et al., 2007) Each 

subject was encouraged to complete as many laps as possible during each 4-minute trial.  

Biomechanical variables in the first minute and the number of whole figure-8 laps completed in 

12 minutes were recorded. 
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4.2.5 AHD Measurement 

Ultrasonography was collected using a Philips HD11 1.0.6 ultrasound machine a with a 5-12 

MHz linear transducer. AHD measurements were taken at two time points by the same examiner: 

before and immediately after the Figure-8 course. At each time point, the AHD measurements 

were recorded on the non-dominant shoulder in 45° and 90° arm elevation in the scapular plane 

with humeral internal rotation (IR) and holding a 3-lb weight similar to that used in other 

research.(Chopp et al., 2011) For each AHD measurement, the shoulder was scanned from the 

anterior aspect of glenoid to the flat segment of posterior scapula to capture the bright reflection 

of the bony contour of the acromion and humeral head (Figure 4). AHD ultrasonographic images 

were recorded using an external video recorder at 10 Hz for each scan. The AHD measurement 

has excellent intra-rater reliability in 45° and 90° scapular plane elevation with IR (ICC > 0.841) 

(See Chapter 1). 

4.2.6 Data Analysis 

The narrowest distance of the inferior edge of acromion and humeral head was determined 

through manual observation for each frame of the video using a customized Matlab program d, 

which allowed blinded assessment of the AHD videos randomly. The reliability of the manual 

image processing techniques for identifying the AHD was proven in an earlier study (see Chapter 

1).  The first three strokes after accelerating from a resting position are different from steady-

state strokes and constitute startup. (Koontz et al., 2005) During the first minute of the figure-8 

trials, all the second stroke that occurred upon acceleration from a rest position (e.g. center point 

of figure-8) were considered for biomechanical analysis. This resulted in approximately five 
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strokes analyzed per person. Kinetic data were downsampled to 120 Hz to match the kinematic 

data collection sampling rate. Pushrim forces were used as input to an inverse dynamic model 

using a customized Matlab program d to calculate 3D shoulder joint kinetics. (R. A. Cooper, 

Boninger, & Lawrence, 1999) Shoulder movement was described in Euler angles in the plane of 

elevation, elevation, and rotation. (Collinger JL et al., 2008) Pushrim variables included peak 

velocity of each start-up stroke, cadence, body-weight normalized peak resultant force (FTotal), 

the fraction of effective force (FEF) defined by the ratio of force that contributed toward forward 

motion (Ft) in relation to the resultant force (FTotal), and push angle. Shoulder biomechanical 

variables included 3D angles, forces, and moments. All biomechanical variables were analyzed 

for each stroke and then averaged over the total number of strokes obtained during the first 

minute of figure-8 propulsion. Ultrasound variables included absolute AHD measures and AHD 

percentage changes (Equation 1), pre and post figure-8 propulsion. 

4.2.7 Statistical Analysis 

Paired t-tests were used to determine changes in the AHD pre-post propulsion tasks. Pearson’s or 

Spearman’s correlation were used where appropriate between the absolute AHD measures, AHD 

percentage changes (Equation 3), propulsion kinetics, shoulder resultant forces and moments, 

shoulder kinetics and kinematics, number of laps during figure-8 propulsion, and demographic 

data (e.g. age, body weight, shoulder circumference, and years post SCI.  Stepwise linear 

regressions were used to determine if baseline AHD and shoulder biomechanics were significant 

predictors of AHD percentage narrowing. All statistical analyses were performed by using SPSS 

statistic software (IBM SPSS Statistics, Version 21).  The level of significance was set to 0.05. 
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4.3 RESULTS 

4.3.1 AHD and Demographics 

Fifteen men and six women participated in this study. The mean age (standard deviation) was 

37(9.5) years old, the average duration with SCI was 13(7.9) years, and the average weight was 

75.31(20.14) kg. Six persons with tetraplegia (C5-C7) and fifteen individuals with paraplegia 

(T3-L4) were tested. All participants were right hand dominant. Shoulder circumferences were 

related to AHD baseline measures in 90° scapular plane elevation. (r = 0.47, p = 0.03). The mean 

and median WUSPI scores were 2.94 and 2.77 out of 150 (Range from 2.31 to 14.57), 

respectively.  Mean and standard deviation of Borg scale were 14.43 and 2.89, respectively. 

4.3.2 AHD and Propulsion Variables 

There were no statistically significant differences in the AHD measures before and after intense 

propulsion (Table 7). Table 8 displays the propulsion data during the start-up portions of the 

figure-8 course. Since peak velocity was significantly correlated to most propulsion kinetics and 

shoulder biomechanical variables (r > 0.50, p < 0.05) but not the AHD measure, it was 

statistically controlled using a semi-partial correlation. AHD narrowing immediately after 

intense propulsion was not associated with number of laps (p > 0.16). 

Table 7. Mean (SD) AHD measures before and after wheelchair propulsion tasks (n = 21).  
AHD Measure (mm) Before After Difference 
45° weighted AE w/ IR 10.25(2.10) 10.54(1.90) 0.29(1.43) 
90° weighted AE w/ IR 9.64(2.60) 9.20(2.30) -0.44(1.58) 
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Table 8. Pushrim variables for start-up overground propulsion for self-selected maximum 
speed in the first minute of the figure-8 course. 

4.3.3 AHD and Shoulder Biomechanics 

Table 9 and Table 10 summarize the peak shoulder kinetics and kinematics during the first 

minute of start-up figure-8 propulsion, respectively. 

Table 9. Peak shoulder kinetics at start-up overground propulsion for self-selected 
maximum speed in the first minute of figure-8 course. 

Shoulder Kinetics 
Figure-8 first minute 

(n= 21) 
Force (N) Moment (N•m) 

Anterior 23.81±8.11   Abduction 11.52±5.31 
Posterior 22.11±4.74§   Adduction 16.18±9.01 
Superior 42.57±13.65   ER 21.53±9.75 
Inferior 30.34±13.64   IR 22.67±8.57§ 
Medial 52.78±31.72   Flexion 17.59±11.80 
Lateral 46.93±13.39   Extension 17.28±9.59 

Max Resultant Force 92.43±19.72 
Correlated to AHD narrowing at 90° (§) arm elevation in the scapular plane with humeral internal rotation 

Table 10. Peak shoulder kinematics at start-up overground propulsion for self-selected 
maximum speed in the first and last minute of figure-8 course. 
Kinematics Figure-8 first minute 

(n= 21) 
Shoulder Angles (degree) 
Max Plane of Elevation 65.68±29.82 
Max Elevation 65.26±16.41 
Min Internal Rotation  52.19±16.20 
Min Plane of Elevation 52.89±21.06 
Min Elevation 33.78±11.52 
Max Internal Rotation 73.99±26.96§ 

Pushrim Kinetics Figure-8 first minute 
(n= 21) 

Peak Velocity (m/s) 1.26±0.28 
Cadence (1/s) 1.20±0.19 

Peak FTotal (% BW) 15.11±4.49 
FEF 0.35±0.13 

Push Angle (deg) 96.62±14.51 
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Since the peak shoulder posterior forces at the first minute of figure-8 course have the 

strongest correlation coefficients, they were selected as independent variables in the linear 

regression models to predict AHD narrowing. The AHD baseline measures were always the 

strongest predictors of the AHD post-propulsion measure in all measurement positions (r > 0.56, 

p < 0.01). As a result, findings that link biomechanics to the AHD percentage changes have been 

normalized to account for the AHD at baseline. In 90° scapular plane elevated shoulder position, 

we found that AHD baseline measure and peak shoulder posterior force at first minute of startup 

stroke are two predictors of AHD immediately after propulsion (Table 11).  

 Table 11.  Predictors for AHD measure in 90° scapular plane elevation immediately after 
propulsion tasks 

Peak posterior force (r = 0.48, p = 0.02) (Figure 10) and IR moments (r = -0.47, p = 0.03) 

(Figure 11) in the first minute were related to AHD percentage narrowing with the arm at 90° of 

elevation with humeral internal rotation, respectively. 

Dependent 
Variable 

Predictors Coefficient P Value R2 

AHD after 
figure-8 

propulsion 

AHD Baseline 0.751 < 0.01 0.751 
Peak Shoulder Posterior 

Force  
0.341 0.01 
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Figure 10. Scatter plots for the AHD percentage changes in 90° arm elevation with 
humeral internal rotated position vs. peak shoulder posterior force at the start-up of 
figure-8 propulsion course. 

71 



Figure 11. Scatter plots for the AHD percentage changes in 90° arm elevation with 
humeral internal rotated position vs. peak shoulder internal rotation moment at the 
start-up of figure-8 propulsion course. 

4.4 DISCUSSION 

This is the first study to report shoulder joint kinetics during start-up of intense wheelchair 

propulsion on overground surfaces in relation to changes in the subacromial space. Although the 

AHD acute changes before and immediately after intense propulsion were not statistically 

significant, we found AHD percentage changes at 90° scapular plane elevation were associated 

with shoulder kinetics. Our pushrim kinetic variables for all the second start-up strokes during 

the figure-8 course are slightly larger than those reported in previous studies. (Koontz et al., 

2005; Koontz et al., 2009) A major difference between the previous studies and ours was that our 
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participants were asked to push at a self-selected maximum speed and for as many laps as 

possible.  

The figure-8 course resulted in participants experiencing a high level of exertion 

according to their self-reported Borg ratings. The peak shoulder joint resultant forces were 

similar to the findings observed in the glenohumeral joint in vivo measurement during 

wheelchair propulsion. (Westerhoff et al., 2011) However, each component of forces and 

moment’s magnitudes are slightly different in the current study, but this could be attributed to the 

start-up phase, which may require higher demands on the shoulder. (Koontz et al., 2005; Koontz 

et al., 2009) We found that AHD narrowing immediately after propulsion at 90° arm elevation 

with humeral internal rotation was associated with increased peak shoulder internal rotation 

moments. The relationship was consistent with previous findings which linked the internal 

rotation moments obtained during steady-state dynamometer propulsion to increased signs of 

shoulder pathology upon physical examination. (Mercer et al., 2006) Contrary to the hypothesis, 

greater shoulder posterior force was found in AHD with less narrowing.  Our hypothesis was 

based on a previous study which showed that greater shoulder posterior forces was associated 

with more shoulder tendon changes on ultrasound. (Jennifer L. Collinger, 2009) One explanation 

for the difference found could be due to the type of stroke analyzed in each study, this study 

being start-up strokes and the other one steady-state strokes.  Although no studies have compared 

the trunk positions and shoulder kinetics between these two conditions, we observed that many 

subjects use their trunk more during startup (e.g. lean forward) which results in reaction forces at 

the shoulder to be more posteriorly directed. It is also been suggested that leaning forward helps 

to engage the larger muscles around the shoulder (e.g. pectoralis major and anterior deltoid) 

which helps to circumvent humeral head translation. (Perry, Gronley, Newsam, Reyes, & 
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Mulroy, 1996) Thus, leaning forward during propulsion, while resulting in higher shoulder 

posterior forces, may have helped to keep the humerus from encroaching into the subacromial 

space. The AHD changes in relation to trunk and shoulder muscle activity during wheelchair 

propulsion should be examined in future study. 

Joint loading during vulnerable positions of the shoulder may lead to shoulder injuries. It 

is not surprising that ranges of motion of shoulder kinematics are slightly larger than previous 

findings on dynamometer propulsion due to start-up propulsion. Greater internal rotation and 

greater flexion angles occurring simultaneously may cause the greater tuberosity to approach the 

anterior acromion which may lead to SIS. (Neer, 1972) Studies have shown that the internal 

rotated humerus is prone to subacromial impingement since the position does not allow the 

greater tuberosity to clear from under acromion during humeral elevation. (Escamilla, 

Yamashiro, Paulos, & Andrews, 2009) This is also a valuable finding because the shoulder in 

extremes position could be harmful to supraspinatus tendon caused by the narrowing of 

subacromial space. Thus the clinical interventions such as wheelchair skill training or exercise 

prescription could have a significant impact on preservation of shoulder function to enhance the 

glenohumeral joint stability. Finding the relationship between narrowing and biomechanical risk 

factors to shoulder pathology testified that this ultrasonographic AHD measurement is valid and 

clinically relevant. In addition, muscle fatigue may have occurred leading to the reduction in 

space.  This later finding would be consistent with prior work that showed AHD narrowing in 

manual wheelchair users with electromyography signs of shoulder muscle fatigue after 

performing weight relief raises. (Lin, 2012)  
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Study Limitation 

A weakness of this study is the diversity of the sample.  The sample size was too small to 

investigate the influence of specific demographic characteristics like disability type and level of 

injury on the shoulder biomechanics and pushrim kinetics. Other variables such as acromial 

shape, abnormal scapular kinematics, and impaired rotator cuff function were not investigated 

and could be additional sources to explain AHD narrowing. Dynamic imaging of the AHD using 

ultrasound is limited. The three-dimensional bi-plane fluoroscopy could be used to investigate 

dynamic mechanisms within the glenohumeral joint during arm elevation and wheelchair tasks. 

In addition, objective signs of muscle fatigue were not measured during the figure-8 propulsion. 

Instead, we recorded the Borg Scale after each propulsion task to identify the self-reported 

fatigue. Due to the cross-sectional nature of this study, we cannot draw evidence linking the 

AHD measurement to shoulder pathology. As scapular orientation has also been shown to affect 

AHD, future work should investigate scapular and humeral positioning during weight-bearing 

tasks to gain further insight into injury mechanisms. Studies incorporating electromyography to 

determine the objective muscle fatigue after intense overground wheelchair propulsion as well as 

metabolic variables may provide a more comprehensive understanding of the effects of subject-

specific factors on the mechanism of subacromial impingement syndrome. 
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4.5 CONCLUSIONS 

Manual wheelchair users using certain propulsion techniques may be at risk for AHD narrowing 

after intense propulsion. This study provides objective evidence that reductions in the 

subacromial space occur with biomechanical risk factors including greater internal rotation 

moment and less shoulder posterior force during the start-up strokes of intense wheelchair 

propulsion. In addition, shoulder circumference was the primary demographic variable related to 

AHD narrowing. Future work should involve longitudinal study to investigate the biomechanical 

and pathological changes that may occur over an extended period of time. In addition, the AHD 

measurement may be useful for evaluating the impact of clinical interventions such as 

wheelchair setup optimization or wheelchair skill training on preserving the subacromial space. 
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5.0  CONCLUSIONS 

Based on the results of all three experiments in this dissertation, the linear measurement of the 

acromiohumeral distance can be reliably obtained via ultrasound in manual wheelchair users 

with SCI and used to investigate the effects of acute shoulder muscle fatigue and intense 

wheelchair propulsion on the subacromial space.  

Findings from Chapter 2 showed that AHD measurement using ultrasound is a reliable 

tool to evaluate subacromial space in MWUs with SCI. The AHD narrowing that occurred for 

the various shoulder positions increases our understanding of the risk factors of repetitive strain 

injuries. In all of the chapter studies the narrowest distance was determined from a single frame 

from the video clip. It is possible that this led to larger desirable measurement errors making it 

difficult to detect significant changes in the AHD across all the studies.  The uncertainty is 

related to both the snapshot selection of the frame with the narrowest distance and the manual 

determination of the feature points on the acromial and humeral head within and between the 

video observers on that frame. To address this issue we conducted a secondary analysis to see if 

manual errors could be reduced by averaging 5 frames forward and backward totally 11 frames 

around the narrowest distances. A single rater studied 50 random ultrasound videos at two points 

in time. The intra-video reproducibility was improved from 0.81 to 0.94. Additional subjects and 

videos need to be analyzed to confirm this finding but if proven future studies should consider 

this method to reduce error when determining the AHD on ultrasound. The findings in Chapter 2 
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support the clinical practice guideline recommendation that overhead shoulder positions, 

particularly those combining abduction with internal rotation, cause a reduction in the space and 

should be avoided in both MWUs with SCI and able-bodied controls. This recommendation has 

been made in clinical practice guideline. (Boninger et al., 2005) Muscle imbalances commonly in 

MWUs can lead to glenohumeral instability, impingement, and degenerative joint diseases. 

(Burnham et al., 1993) Moreover the onset of muscle fatigue may further exacerbate the effects 

of muscle imbalance on the subacromial space. (Szucs et al., 2009) Our findings support this 

theory as MWUs with SCI had decreased narrowing between the neutral shoulder and 45° of 

scapular plane abduction compared to the control group immediately following repetitive rotator 

cuff exercises (see Chapter 2).   

Findings from Chapter 3 indicated that MWUs should limit weight relief raises as a 

pressure relief technique, as placing the shoulder in this position led to a significant reduction in 

subacromial space. Fatigue of the sternal pectoralis major after performing repetitive weight 

relief raises led to greater percentage narrowing of the AHD, which points to its importance in 

functioning as a humeral depressor in addition to serving as the largest contributor to 

performance of a successful weight relief raise. In addition to investigating AHD measurement 

and muscle fatiguing activities, we applied ultrasonographic measurement of AHD to understand 

the mechanisms of SIS associated with intense overground wheelchair propulsion among MWUs 

with SCI (Chapter 4). The study in Chapter 4 found that pushing with a technique that resulted in 

higher shoulder internal rotation moments and lower posterior forces during startup was linked to 

more acute narrowing of the AHD. Furthermore, shoulder circumference was related to AHD 

measurement (Chapter 3, Chapter 4). The findings of this study provided better understanding of 

the mechanisms of SIS. Wheelchair skill training to optimize the propulsive techniques with 
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lower shoulder internal rotation moment during the start-up propulsion is important. The results 

of these studies can inform clinical decision-making and therapeutic treatment outcomes. 

5.1.1 Limitations 

Minimum detectable difference (MDD) describes the smallest threshold to detect true AHD 

changes beyond the measurement error at a 90% level of confidence interval. For individual 

bases, MDD is appropriate for clinical decision-marking to determine the real differences. 

However, MDD may be too conservative for examining AHD changes among a group. Even 

though some of the statistically significant mean group differences in the AHD were below the 

MDD, the MDD for our ultrasound methods was in line with reported in other studies. (Leong et 

al., 2011) Previous studies supported that ultrasonographic measurement of AHD is able to 

detect the differences after SIS or therapeutic interventions.  For example, Cholewinski reported 

that the ultrasonograhic measurements of AHD in affected shoulder among individuals with SIS 

are significantly narrower than the distance in non-affected shoulder (p < 0.001). (Cholewinski et 

al., 2008) Among the individuals without shoulder pain or known shoulder pathology, the 

modified scapular assistance test resulted in increased ultrasonographic measurement of AHD in 

45° and 90° active arm elevation in the scapular plane. (Seitz et al., 2012) The MDD in Seitz’s 

study ranged from 0.6mm to 0.9mm which enabled them to detect 1.7 to 2.1mm changes after 

intervention. Although MDD in our study are similar (0.9mm to 1.32mm), it may reveal that no 

dramatic AHD changes occur after intense wheelchair activities or the changes are not large 

enough to be detected. Previous studies demonstrated that ultrasonographic measurement of 

AHD is able to detect the differences after SIS or therapeutic interventions. MWUs with painful 

shoulder were excluded in our studies since the intense wheelchair activities may exaggerate the 
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symptom. Our data showed that the MWUs were asymptomatic (median WUSPI scores were 

2.77). This may be a strength of the study in identifying mechanisms of injury as the 

symptomatic shoulder is frequently accompanied with narrowing of subacromial space. 

Due to equipment limitations, dynamic measurement of the subacromial space 

throughout the range of shoulder elevation in the scapular plane or during activity was not 

possible. Instead the AHD measurement was taken during static shoulder positions that were 

based on prior literature and may not be representative of the dynamic state of the AHD while 

performing the actual tasks. The positions were standardized and not based on those observed 

during wheelchair propulsion which can vary dependent on used techniques. Differences 

calculated between each static position may not be representative of the synergy that occurs 

dynamically in between the two points with regards to the glenohumeral translations, muscle 

lines of action, and scapular kinematics. 

5.1.2 Future Work 

It is imperative that future research examines the relationship between shoulder pain, pathology 

and AHD measurement to attach clinical validity to the amount of subacromial space 

compression matters and how it relates to symptoms. In addition, measuring scapular and 

humeral kinematics and shoulder muscle activity during dynamic overground wheelchair activity 

may enable future research to validate the dynamic mechanisms of AHD narrowing in the 

shoulder complex. Rehabilitation programs to maintain the muscle balance could help preserve 

the subacromial space from impingement following spinal cord injury. The appearance on 

supraspinatus tendon measured by ultrasound postpropulsion could be related to AHD 

narrowing. Future study to identify the association between acute changes of supraspinatus 
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tendon measured by QUS and the ultrasonographic measurement of AHD is recommended. 

Based on the results from these three studies, the following future investigations are 

recommended. Dynamic AHD measurements during wheelchair activities will provide further 

etiological insight into SIS among individuals with SCI. Further examination of three-

dimensional scapular kinematic measures is necessary to gain more understanding the 

mechanism of SIS. Longitudinal studies are warranted to test interventions that enable for 

maintaining a healthy amount of subacromial space and help improve the rehabilitative decision-

making, exercise prescription, and the clinical practice guideline to the treatment and prevention 

of SIS. 
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APPENDIX A 

ULTRASONOGRAPHIC VIDEO ANALYSIS OF AHD MEASUREMENT: MATLAB 

CODE 

close all; 
clear; 
  
folder_name = uigetdir; 
cd(folder_name); 
  
positions = [{'00'};{'45A'};{'45P'};{'90A'};{'90P'};{'WR'};]; 
  
rater = [11,12,21,22]; 
  
random_pos = randperm(length(positions)); 
random_rater = randperm(length(rater)); 
filelist = zeros(4,6); 
frame = zeros(4,6); 
ahdscale = zeros(4,6); 
xAC = zeros(4,6); 
yAC = zeros(4,6); 
xGH = zeros(4,6); 
yGH = zeros(4,6); 
finish = 1; 
redo = 0; 
  
if redo == 1; 
    load((folder_name(length(folder_name)-9:length(folder_name)-4))); 
    i = input(['Enter the rater number  :      ']); 
    j = input(['Enter the position number  :      ']); 
     
    TrialNM = 
strcat('Rater',num2str(rater(i)),'_',positions(j),'.avi'); 
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        obj=VideoReader(TrialNM{1}); 
         
        nFrames=obj.NumberOfFrames; 
         
        vidHeight=obj.Height; 
         
        vidWidth=obj.Width; 
         
        % Preallocate movie structure. 
        mov(1:nFrames) = ... 
            struct('cdata', zeros(vidHeight, vidWidth, 3, 'uint8'),... 
            'colormap', []); 
        h = implay(TrialNM{1}); 
         
%         disp('Press any keys to enter the frame number'); 
%         pause; 
%         close(h); 
        
        frame(i,j) = input(['Enter the desired frame number for AHD 
measurement:   ']); 
        while frame(i,j)>nFrames 
            disp('The frame number entered was too large.'); 
            frame(i,j) = input('Enter another frame number'); 
            if frame(i,j)<=0 
                disp('The frame number can not be zero. Enter a 
positive value'); 
            end 
             
        end 
         
        for k = 1 : nFrames 
            if k== frame(i,j) 
                mov(k).cdata=read(obj,k); 
            end 
        end 
         
        
        depth = input(['Enter the depth  :      ']); 
        if depth == 4 
            ydist=145;  % depth 4cm; 
        elseif depth == 5 
            ydist=114; 
        end 
         
        if frame(i,j)~=0 
             
            imshow(mov(frame(i,j)).cdata) 
            title('First click is the acromion position, Second click 
is the humerus position'); 
             
            [xinput,yinput]=ginput(2); 
            xAC(i,j)=xinput(1); 
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yAC(i,j)=yinput(1); 

xGH(i,j)=xinput(length(yinput)); 
yGH(i,j)=yinput(length(yinput)); 
close 

ahdist=abs(yAC(i,j)-yGH(i,j)); 
ahdscale(i,j)=ahdist/ydist; 

disp(' '); 
display(['The acromiohumeral distance is ' 

num2str(ahdscale(i,j)) ' centimeters.']) 

filelist(i,j)=1; 

save(folder_name(length(folder_name)-
9:length(folder_name)-4), 'filelist', 'ahdscale', 'frame', 'xAC', 
'yAC', 'xGH', 'yGH'); 

close all; 
clear obj mov; close(h); 
return; 

        end  
end 

for i = 1:length(rater) 
    for j = 1:length(positions) 
        if  i == 1&& j == 1 &&   
exist(strcat(folder_name(length(folder_name)-9:length(folder_name)-
4),'.mat')) == 2  

load((folder_name(length(folder_name)-
9:length(folder_name)-4))); 
        end 
        if filelist(random_rater(i),random_pos(j))== 1; 

continue; 
        end 

        if finish == 0; 
save(folder_name(length(folder_name)-

9:length(folder_name)-4), 'filelist', 'ahdscale', 'frame', 'xAC', 
'yAC', 'xGH', 'yGH'); 

return; 
        elseif finish == 2 && j ~= 1 && j <= length(positions) 

j = j-1; 
        elseif finish == 2 && j == 1 

i = i-1; 
j = length(positions); 

      end 

        TrialNM = 
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strcat('Rater',num2str(rater(random_rater(i))),'_',positions(random_po
s(j)),'.avi'); 
         
         
        obj=VideoReader(TrialNM{1}); 
         
        nFrames=obj.NumberOfFrames; 
         
        vidHeight=obj.Height; 
         
        vidWidth=obj.Width; 
         
        % Preallocate movie structure. 
        mov(1:nFrames) = ... 
            struct('cdata', zeros(vidHeight, vidWidth, 3, 'uint8'),... 
            'colormap', []); 
        h = implay(TrialNM{1}); 
         
        frame(random_rater(i),random_pos(j)) = input(['Enter the 
desired frame number for AHD measurement:   ']); 
        while frame(random_rater(i),random_pos(j))>nFrames 
            disp('The frame number entered was too large.'); 
            frame(random_rater(i),random_pos(j)) = input('Enter 
another frame number'); 
            if frame(random_rater(i),random_pos(j))<=0 
                disp('The frame number can not be zero. Enter a 
positive value'); 
            end 
             
        end 
         
         
        % Read one frame at a time. 
        for k = 1 : nFrames 
             
            if k== frame(random_rater(i),random_pos(j)) 
                mov(k).cdata=read(obj,k); 
            end 
        end 
         
        depth = input(['Enter the depth  :      ']); 
        if depth == 4 
            ydist=145;  % depth 4cm; 
        elseif depth == 5 
            ydist=114; 
        end 
         
        if frame(random_rater(i),random_pos(j))~=0 
             
            imshow(mov(frame(random_rater(i),random_pos(j))).cdata) 
            title('First click is the acromion position, Second click 
is the humerus position'); 
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            [xinput,yinput]=ginput(2); 
            xAC(random_rater(i),random_pos(j))=xinput(1); 
            yAC(random_rater(i),random_pos(j))=yinput(1); 
             
            xGH(random_rater(i),random_pos(j))=xinput(length(yinput)); 
            yGH(random_rater(i),random_pos(j))=yinput(length(yinput)); 
            close 
             
            ahdist=abs(yAC(random_rater(i),random_pos(j))-
yGH(random_rater(i),random_pos(j))); 
            ahdscale(random_rater(i),random_pos(j))=ahdist/ydist; 
            
            display(['The acromiohumeral distance is ' 
num2str(ahdscale(random_rater(i),random_pos(j))) ' centimeters.']) 
             
                        filelist(random_rater(i),random_pos(j))=1; 
             
            close all; 
            clear obj mov; close(h); 
            finish = input(['Continue AHD analysis? Yes = 1,  No and 
Save = 0,  Redo the trial = 2   :      ']); 
                         
        end 
    end 
end 
  
save(folder_name(length(folder_name)-9:length(folder_name)-4), 
'filelist', 'ahdscale', 'frame', 'xAC', 'yAC', 'xGH', 'yGH'); 
 
[ahdscale(1,:),ahdscale(2,:),ahdscale(3,:),ahdscale(4,:)]*10 
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APPENDIX B 

ELETROMYOGRAPHIC SIGNS OF MUSCLE FATIGUE: MATLAB CODE 

clear all; 
close all; 
  
path = 'C:\Documents and Settings\liny\My Documents\My 
Dropbox\WULACAP\Fatigue MWP'; 
cd(path); 
tp = pwd; 
  
for trial = 1:2 
    if trial == 1 
        load TRIDIPS 
    else 
        load RTC 
    end 
     
    EMG.Pecs = Data{1}(1:length(Data{1})); 
    EMG.Infraspinatus = Data{2}(1:length(Data{1})); 
    EMG.Latts = Data{3}(1:length(Data{1})); 
     
    interval = samplingRate;  % 1500 
     
    MuscleName = [{'Infraspinatus'};{'Pecs'};{'Latts'}]; 
     
    for muscle = 1:3 
        switch muscle 
            case 1 
                absEMG = abs(EMG.Infraspinatus); 
            case 2 
                absEMG = abs(EMG.Pecs); 
            case 3 
                absEMG = abs(EMG.Latts); 
        end 
         
        meanEMG = absEMG; 
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        stdEMG =  absEMG; 
        Wn = 4/750; 
        [num, den] = butter(4, Wn, 'low'); % Design Butterworth 
filter. 
        AnalyzedEMG = filtfilt(num,den,absEMG); 
         
        eval(['AvgPeakEMG.',MuscleName{muscle},' = 
mean(AnalyzedEMG(localMaximum(AnalyzedEMG, interval, true)));']); 
         
        eval(['StdPeakEMG.',MuscleName{muscle},' = 
std(AnalyzedEMG(localMaximum(AnalyzedEMG, interval, true)));']); 
         
        eval(['[median_frequency.',MuscleName{muscle},'] = 
MDF2(EMG.',MuscleName{muscle},', samplingRate, interval);;']); 
         
        eval(['PercentMPFPercent_Fatigue.',MuscleName{muscle},' = 
(mean(median_frequency.',MuscleName{muscle},'(6:10))-
mean(median_frequency.',MuscleName{muscle},'(length(median_frequency.'
,MuscleName{muscle},')-
4:length(median_frequency.',MuscleName{muscle},'))))/mean(median_frequ
ency.',MuscleName{muscle},'(6:10));;']); 
         
        eval(['[RMS.',MuscleName{muscle},'_start] = 
rms(EMG.',MuscleName{muscle},'(1:5*samplingRate));']); 
        eval(['[RMS.',MuscleName{muscle},'_end] = 
rms(EMG.',MuscleName{muscle},'(length(EMG.',MuscleName{muscle},')-
5*samplingRate:length(EMG.',MuscleName{muscle},')));']); 
         
         
eval(['[RMSMVC.',MuscleName{muscle},'] = 
RMS.',MuscleName{muscle},'_end-RMS.',MuscleName{muscle},'_start;']); 
         
resultpath = 'C:\Users\Johnny\Dropbox\Dissertation\Proposal\Results'; 
        cd(resultpath); 
         
        if trial == 1 
            fid = fopen('Fatigue3Muscles.xls','a'); 
            if muscle == 1 
                eval(['fprintf(fid,''USF''''',num2str(subject),''''' 
\n'');']); 
                fprintf(fid,'Infra \t\t Pecs \t\t Latts \n'); 
            end 
            eval(['fprintf(fid, ''%6.6f\t'', 
PercentMPFPercent_Fatigue.',MuscleName{muscle},');;']); 
            eval(['fprintf(fid, 
''%6.6f\t'',RMSMVC.',MuscleName{muscle},');']); 
            save Fatigue_TRIDIPS median_frequency 
PercentMPFPercent_Fatigue AvgPeakEMG StdPeakEMG RMS RMSMVC 
        else 
            eval(['fprintf(fid, ''%6.6f\t'', 
PercentMPFPercent_Fatigue.',MuscleName{muscle},');;']); 
            eval(['fprintf(fid, 
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''%6.6f\t'',RMSMVC.',MuscleName{muscle},');']); 
            save Fatigue_RTC median_frequency 
PercentMPFPercent_Fatigue AvgPeakEMG StdPeakEMG RMS RMSMVC 
        end 
         
    end 
    cd(tp); 
    fprintf(fid, '\n'); 
    clear EMG median_frequency 
end 
fprintf(fid, '\n'); 
fclose(fid); 
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APPENDIX C 

UPPER LIMB KINEMATICS AND KINETICS DURING OVERGROUND 

PROPULSION: MATLAB CODE  

 
close all; 
clear all; 
clc; 
  
loadvicondata = 1;      % Read = 0; Load = 1; 
loadSWdata = 0;      % Read = 0; Load = 1; 
loadinterpmarker = 0;   % Read = 0; Load = 1; 
loadanalysis = 0;       % Read = 0; Load = 1; 
 
analyzedtype = 2;   %    Kinematics = 1; Kinetics = 2; 
statisticflag = 0;  %  Save = 0; Load = 1; 
  
if analyzedtype == 2 
    sDynaTrial = 1; 
else 
    sDynaTrial = 2; 
end 
 
strial = 2; 
numsubject = 21; 
analyzedsubject = 21; 
resultpath = 'J:\HERL\Dissertation\WULACAP\Results'; 
  
  
for subject = strial:strial+numsubject-1 
    for Conditions = 5:5 
         
        if loadanalysis == 0; 
            Vicondatapath = 'J:\HERL\Dissertation\WULACAP\Vicon'; 
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            WULACAPTrialData; 
             
            
Markerset=[{'FH'};{'RTMJ'};{'LTMJ'};{'STRN'};{'XYPD'};{'C7'};{'T3'};{'
T8'};{'SHO'};{'MEP'};{'LEP'};... 
                
{'UA1'};{'UA2'};{'UA3'};{'UA4'};{'LA1'};{'LA2'};{'LA3'};{'LA4'};... 
                
{'RS'};{'UT'};{'HC'};{'3MP'};{'HUB1'};{'HUB2'};{'HUB3'};{'HUB4'}]; 
             
             
            %% Save or Load Subjects' vicon data 
            if analyzedtype == 1 
                if loadvicondata == 0 
                     
                    for trial = 1:length(TrialNM) 
                        fileNM= strcat(TrialNM, '.csv'); 
                        fileNM{trial} 
                        [Kinematics(trial)] = 
ReadViconNexus(fileNM{trial}, Markerset); 
                    end 
                     
                    eval(['save 
RawData_',TrialNM{length(TrialNM)},'.mat Kinematics;']); 
                else 
                     
                    eval(['load 
RawData_',TrialNM{length(TrialNM)},'.mat;']); 
                    loadvicondata = 1; 
                end 
            end 
             
            if analyzedtype == 1 
                %% Static Calibration 
                 
                StaticTrial = 1; 
                 
                for i = 1 : length(Kinematics(StaticTrial)) 
                    for j = 1:length(Markerset) 
 
if strcmp(Markerset{j}, '3MP') == 1 
                            Markerset{j} = 'ThirdMP'; 
                        end 
                        eval(['',Markerset{j},'_global = 
Kinematics(StaticTrial).',Markerset{j},';']); 
                    end 
                end 
                 
                frame_Trucali = FindCaliFrame([STRN_global, 
XYPD_global, C7_global, T8_global]); 
                 
                frame_UABcali = FindCaliFrame([SHO_global, LEP_global, 
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MEP_global]); 
                frame_UATcali = FindCaliFrame([UA1_global, UA2_global, 
UA3_global, UA4_global]); 
                 
                frame_LABcali = FindCaliFrame([LEP_global, MEP_global, 
RS_global, UT_global]); 
                frame_LATcali = FindCaliFrame([LEP_global, MEP_global, 
RS_global, UT_global]); 
                 
                frame_Handcali = FindCaliFrame([RS_global, UT_global, 
ThirdMP_global]); 
                frame_Hubcali = FindCaliFrame([HUB1_global, 
HUB2_global, HUB3_global, HUB4_global]); 
                 
                [Rg2trC, Vg2trC] = 
TrunkCoord_ISB(STRN_global(frame_Trucali,:), 
XYPD_global(frame_Trucali,:), C7_global(frame_Trucali,:), 
T8_global(frame_Trucali,:)); 
                [Rg2uabC, Vg2uabC] = HumerusCoord_ISB(Rg2trC, 
STRN_global(frame_UABcali,:), SHO_global(frame_UABcali,:), 
LEP_global(frame_UABcali,:), MEP_global(frame_UABcali,:)); 
                [Rg2uatC, Vg2uatC] = 
HumerusCoord_Tech(UA1_global(frame_UATcali,:), 
UA2_global(frame_UATcali,:), UA3_global(frame_UATcali,:)); 
                 
                [Rg2labC, Vg2labC] = 
ForearmCoord_ISB(RS_global(frame_LABcali,:), 
UT_global(frame_LABcali,:), LEP_global(frame_LABcali,:), 
MEP_global(frame_LABcali,:)); 
                [Rg2latC, Vg2latC] = 
ForearmCoord_Tech(LA1_global(frame_LATcali,:), 
LA2_global(frame_LATcali,:), LA3_global(frame_LATcali,:)); 
                 
                [Rg2haC, Vg2haC] = 
HandCoord_ISB(RS_global(frame_Handcali,:), 
UT_global(frame_Handcali,:), ThirdMP_global(frame_Handcali,:)); 
                [Rg2hubC, Vg2hubC] = HubCoord(HUB1_global, 
HUB2_global, HUB3_global); 
                 
                [STRN_local, XYPD_local, C7_local, T3_local, T8_local] 
= CoordG2L(Rg2trC, Vg2trC, STRN_global(frame_Trucali,:), 
XYPD_global(frame_Trucali,:), T3_global(frame_Trucali,:), 
C7_global(frame_Trucali,:), T8_global(frame_Trucali,:)); 
                 
                [GH_uatlocal, LEP_uatlocal, MEP_uatlocal, 
UA1_uatlocal, UA2_uatlocal, UA3_uatlocal, UA4_uatlocal] = 
CoordG2L(Rg2uatC, Vg2uatC, SHO_global(frame_UABcali,:), 
LEP_global(frame_UABcali,:), 
MEP_global(frame_UABcali,:),UA1_global(frame_UABcali,:), 
UA2_global(frame_UABcali,:), UA3_global(frame_UABcali,:), 
UA4_global(frame_UABcali,:)); 
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[LEP_latlocal, MEP_latlocal, RS_latlocal, UT_latlocal, 
LA1_latlocal, LA2_latlocal, LA3_latlocal, LA4_latlocal] = 
CoordG2L(Rg2latC, Vg2latC, LEP_global(frame_LABcali,:), 
MEP_global(frame_LABcali,:), RS_global(frame_LABcali,:), 
UT_global(frame_LABcali,:), LA1_global(frame_LABcali,:), 
LA2_global(frame_LABcali,:), LA3_global(frame_LABcali,:), 
LA4_global(frame_LABcali,:)); 

[RS_halocal, UT_halocal, HC_halocal, ThirdMP_halocal] 
= CoordG2L(Rg2haC, Vg2haC, RS_global(frame_Handcali,:), 
UT_global(frame_Handcali,:), HC_global(frame_Handcali,:), 
ThirdMP_global(frame_Handcali,:)); 

Rtr2uaC = Rg2trC'*Rg2uabC; 
Vtr2uaC = (Rg2trC'*(Vg2uabC - Vg2trC)')'; 

Rua2laC = Rg2uabC'*Rg2labC; 
Vua2laC = (Rg2uabC'*(Vg2labC - Vg2uabC)')'; 

Rla2haC = Rg2labC'*Rg2haC; 
Vla2haC = (Rg2labC'*(Vg2haC - Vg2labC)')'; 

Ang_g2trC = RotAngConvert(Rg2trC, 'ZXY');     % 
default  ZXY 

Ang_tr2uaC = RotAngConvert(Rtr2uaC, 'YXY');     % 
default  YXY 

Ang_ua2laC = RotAngConvert(Rua2laC, 'ZXY');     % 
default  ZXY 

Ang_la2haC = RotAngConvert(Rla2haC, 'ZXY');     % 
default  ZXY 

end 
%% Dynamic Calibration 

for DynamicTrial = sDynaTrial:length(TrialNM);
% All trial 

if analyzedtype == 1 
if loadanalysis == 0 

%% Marker Data Interpolation 

if loadinterpmarker == 0 
[b,a]=butter(2,7/30); %defines 4th order 

Butterworth filter with 7Hz cutoff frequency 
for i = 1:length(Markerset)

% All markers/frame 
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eval(['',Markerset{i},'_global = 
Kinematics(DynamicTrial).',Markerset{i},';']); 
 
end 
                            eval(['save 
MarkerData_',TrialNM{DynamicTrial},'.mat;']); 
                        elseif loadinterpmarker == 1 && DynamicTrial 
== sDynaTrial 
                            eval(['load 
MarkerData_',TrialNM{DynamicTrial},'.mat;']); 
                            loadvicondata = 1; 
                        end 
                    end 
                     
                    %% Kinematics during propulsion 
                    eval(['h=waitbar(0, ''Kinematic Data Analysis in 
',TrialNM{DynamicTrial},''');']); 
                    eval(['sprintf(''Analyzing trial is 
',TrialNM{DynamicTrial},''')']); 
                    for frame = 1 : 
eval(['length(Kinematics(DynamicTrial).',Markerset{i},')']);  % All 
frame/trial 
                         
                         
                        %% Trunk Kinematics 
                        [Rg2trD(:,:,frame), Vg2trD(frame,:)] = 
SOM([STRN_local; XYPD_local; C7_local; T3_local; T8_local] , 
[STRN_global(frame,:); XYPD_global(frame,:); C7_global(frame,:); 
T3_global(frame,:); T8_global(frame,:)] ); 
 
                        if sum(sum(isnan(Rg2trD(:,:,frame)))) == 9; 
                            continue; 
                        end 
                         
                        [STRN_globalD, XYPD_globalD, C7_globalD, 
T3_globalD, T8_globalD] = CoordL2G(Rg2trD(:,:,frame), Vg2trD(frame,:), 
STRN_local, XYPD_local, C7_local, T3_local, T8_local); 
                         
                        RtrC2trD(:,:,frame)= Rg2trC' * 
Rg2trD(:,:,frame); 
                         
                        
[Ang_g2trD(frame,:)]=RotAngConvert(Rg2trD(:,:,frame), 'ZXY');  % 
default  ZXY 
                        
[Ang_trC2trD(frame,:)]=RotAngConvert(RtrC2trD(:,:,frame), 'ZXY');  % 
default  ZXY 
 
 
                        %% Humerus Kinematics 
                        if subject ~=4 && Conditions ~=5 
                            [Rg2uatD, Vg2uatD] = SOM([GH_uatlocal; 
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LEP_uatlocal; MEP_uatlocal; UA1_uatlocal; UA2_uatlocal; UA3_uatlocal; 
UA4_uatlocal] , [SHO_global(frame,:); LEP_global(frame,:); 
MEP_global(frame,:);UA1_global(frame,:); UA2_global(frame,:); 
UA3_global(frame,:); UA4_global(frame,:)]); 
 
                        elseif subject ==4 && Conditions ~=5 
                            [Rg2uatD, Vg2uatD] = SOM([GH_uatlocal; 
LEP_uatlocal; MEP_uatlocal; UA1_uatlocal; UA2_uatlocal; UA3_uatlocal] 
, [SHO_global(frame,:); LEP_global(frame,:); 
MEP_global(frame,:);UA1_global(frame,:); UA2_global(frame,:); 
UA3_global(frame,:)]); 
                        elseif Conditions ==5 
                            [Rg2uatD, Vg2uatD] = SOM([GH_uatlocal; 
LEP_uatlocal; MEP_uatlocal; UA1_uatlocal; UA3_uatlocal] , 
[SHO_global(frame,:); LEP_global(frame,:); 
MEP_global(frame,:);UA1_global(frame,:); UA3_global(frame,:)]); 
                        end 
                                               
                         
                        if sum(sum(isnan(Rg2uatD))) == 9; 
                            continue; 
                        end 
                         
                        HumTech(frame,:) = 
RotAngConvert(Rg2uatC'*Rg2uatD,'ZXY'); 
                                                 
                        [SHO_globalD(frame,:), LEP_globalD(frame,:), 
MEP_globalD(frame,:)] = CoordL2G(Rg2uatD, Vg2uatD, GH_uatlocal, 
LEP_uatlocal, MEP_uatlocal); 
                        [Rg2uabD(:,:,frame), Vg2uabD] = 
HumerusCoord_ISB(Rg2trD(:,:,frame), STRN_globalD, 
SHO_globalD(frame,:), LEP_globalD(frame,:), MEP_globalD(frame,:)); 
                        Rtr2uabD= Rg2trD(:,:,frame)' * 
Rg2uabD(:,:,frame); 
                        Vtr2uabD(frame,:) = 
(Rg2trD(:,:,frame)'*(Vg2uabD - Vg2trD(frame,:))')'; 
                         
                        [Ang_tr2uabD(frame,:)]=RotAngConvert(Rtr2uabD, 
'YXY');  % default  ZXY 
                         
                        [Ang_g2humerusD(frame,:)] = 
RotAngConvert(Rg2uabD(:,:,frame), 'YXY'); 
 
                        %% Forearm Kinematics 
                        if Conditions ~= 5 
                            [Rg2latD, Vg2latD] = SOM([LEP_latlocal; 
MEP_latlocal; RS_latlocal; UT_latlocal; LA1_latlocal; LA2_latlocal; 
LA3_latlocal; LA4_latlocal],[LEP_global(frame,:); MEP_global(frame,:); 
RS_global(frame,:); UT_global(frame,:); LA1_global(frame,:); 
LA2_global(frame,:); LA3_global(frame,:); LA4_global(frame,:)]); 
                        else 
                            [Rg2latD, Vg2latD] = SOM([LEP_latlocal; 
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MEP_latlocal; RS_latlocal; UT_latlocal; LA1_latlocal; 
LA3_latlocal],[LEP_global(frame,:); MEP_global(frame,:); 
RS_global(frame,:); UT_global(frame,:); LA1_global(frame,:); 
LA3_global(frame,:)]); 
                        end 
                        if sum(sum(isnan(Rg2latD))) == 9; 
                            continue; 
                        end 
                         
                        [RS_globalD(frame,:), UT_globalD(frame,:), 
LEP_globalD(frame,:), MEP_globalD(frame,:)] = CoordL2G(Rg2latD, 
Vg2latD, RS_latlocal, UT_latlocal, LEP_latlocal, MEP_latlocal); 
                         
                         
                        [Rg2labD(:,:,frame), Vg2labD] = 
ForearmCoord_ISB(RS_globalD(frame,:), UT_globalD(frame,:), 
LEP_globalD(frame,:), MEP_globalD(frame,:)); 
                         
                        Ruab2labD= Rg2uabD(:,:,frame)' * 
Rg2labD(:,:,frame); 
                        Vuab2labD(frame,:) = 
(Rg2uabD(:,:,frame)'*(Vg2labD - Vg2uabD)')'; 
                         
                         
                        
[Ang_uab2labD(frame,:)]=RotAngConvert(Ruab2labD, 'ZXY');  % default  
ZXY 
                         
                        [Ang_g2forearmD(frame,:)] = 
RotAngConvert(Rg2labD(:,:,frame), 'ZXY'); 
                         
                        %                     Vel_uab2labD(frame,:) = 
diff(filtfilt(b,a,Ang_uab2labD(frame,:))); 
                        %                     Acc_uab2labD(frame,:) = 
diff(filtfilt(b,a,Vel_uab2labD(frame,:))); 
                        % 
                        %% Hand Kinematics 
                        if Conditions ~=5 
                            [Rg2haD(:,:,frame), Vg2haD] = 
SOM([RS_halocal; UT_halocal; ThirdMP_halocal; 
HC_halocal],[RS_global(frame,:); UT_global(frame,:); 
ThirdMP_global(frame,:); HC_global(frame,:)]); 
                        else 
                            [Rg2haD(:,:,frame), Vg2haD] = 
SOM([RS_halocal; UT_halocal; ThirdMP_halocal; 
HC_halocal],[RS_global(frame,:); UT_global(frame,:); 
ThirdMP_global(frame,:); HC_global(frame,:)]); 
                        end 
                         
                        if sum(sum(isnan(Rg2latD))) == 9; 
                            continue; 
                        end 

 96 



                         
                        Rlab2haD= Rg2labD(:,:,frame)' * 
Rg2haD(:,:,frame); 
                        Vlab2haD(frame,:) = 
(Rg2labD(:,:,frame)'*(Vg2haD - Vg2labD)')'; 
                         
                         
                        [Ang_lab2haD(frame,:)]=RotAngConvert(Rlab2haD, 
'ZXY');  % default  ZXY 
                         
                        [Ang_g2handD(frame,:)] = 
RotAngConvert(Rg2haD(:,:,frame), 'ZXY'); 
                         
                        %                     Vel_lab2haD(frame,:) = 
diff(filtfilt(b,a,Ang_lab2haD(frame,:))); 
                        %                     Acc_lab2haD(frame,:) = 
diff(filtfilt(b,a,Vel_lab2haD(frame,:))); 
                        % 
                         
                         
                         
                        
waitbar(frame/eval(['length(Kinematics(DynamicTrial).',Markerset{i},')
'])); 
                         
                    end 
                    close(h); 
                     
                    Vel_tr2uabD = diff(filtfilt(b,a,Ang_tr2uabD)); 
                    Acc_tr2uabD = diff(filtfilt(b,a,Vel_tr2uabD)); 
                     
                    Vel_uab2labD = diff(filtfilt(b,a,Ang_uab2labD)); 
                    Acc_uab2labD = diff(filtfilt(b,a,Vel_uab2labD)); 
                     
                     
                    Vel_lab2haD = diff(filtfilt(b,a,Ang_lab2haD)); 
                    Acc_lab2haD = diff(filtfilt(b,a,Vel_lab2haD)); 
                     
                end 
                 
                % %Written by Yen-Sheng (Johnny) Lin 
                % %                 ver 1: Oct 2012 
Based on BioCalc programs written by previous Biolab students 
Updated to calculate moments relative to the distal segment of joint 
 
Wrist moments given in hand coordinate system 
 
Elbow moments given in forearm coordinate system 
Shoulder moments given in upper arm coordinate system 
 
Forces and moments are still in proximal segment coordinate system 
 

 97 



Wrist forces given in forearm coordinate system 
 
Elbow forces given in upper arm coordinate system 
 
Shoulder forces given in trunk coordinate system 
 
References used in this program: 
 
Hanavan, EP.  A Mathematical Model of the Human Body.  Wright-
Patterson Air Force Base. Pub:AMRL-TR-64-102, 1964. 
 
Winter, DA. Biomechanics and Motor Control of Human Movement, Second 
Edition. Wiley-Interscience, New York, 1990. 
 
Cooper RA, Boninger ML, Shimada SD, Lawrence BM. (1999) Glenohumeral 
Joint Kinematics and Kinetics for 
 
Three Coordinate System Representations During Wheelchair Propulsion. 
Am J Phys Med Rehab. 78(5):435-446. 
 
Wu G, van der Helm FCT, Veeger HEJ, Makhsous M, Van Roy P, Anglin C, 
 
Nagels J, Karduna AR, McQuade K, Wang X, Werner FW, Bucholz B. (2005) 
ISB 
Recommendation on definitions of joint coordinate systems of various 
 
Joints for the reporting of human joint motion-PartII: shoulder, 
elbow, 
 
Wrist, and hand. Journal of Biomechanics. 38: 981-992. 
 
This version will work with the icon marker set (6 digit subject IDs) 
and old smartwheel data 
 
Uses trunk markers (instead of hub marker) to compute trunk angle 
 
 
cd('C:\Users\Johnny\Dropbox\Dissertation\Program\WULACAP\SW'); 
 
if (subject < 6 && analyzedtype == 1) || (subject < 10 && analyzedtype 
== 2)%% 6 10 
                    cd([TrialNM{2}(1:4),'0',TrialNM{2}(5)]); 
                else 
                    cd(TrialNM{2}(1:6)); 
                end 
                if analyzedtype == 1 
                    if subject == 2 || subject == 3 
                        FM= load(strcat(TrialNM{2}(1:4),TrialNM{2}(5), 
'wwL', num2str(Conditions), 
num2str(TrialNM{DynamicTrial}(length(TrialNM{DynamicTrial}))),'06fm.tx
t')); 
                    elseif subject < 6 && subject ~= 2 && subject ~= 3   
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%% 6 10 
FM= 

load(strcat(TrialNM{2}(1:4),'0',TrialNM{2}(5), 'wL', 
num2str(Conditions), 
num2str(TrialNM{DynamicTrial}(length(TrialNM{DynamicTrial}))),'06fm.tx
t')); 

else 
FM= load(strcat(TrialNM{2}(1:6), 'wL', 

num2str(Conditions), 
num2str(TrialNM{DynamicTrial}(length(TrialNM{DynamicTrial}))),'06fm.tx
t')); 

end 

else 
if subject == 2 || subject == 3 

FM= load(strcat(TrialNM{2}(1:4),TrialNM{2}(5), 
'wwL', num2str(Conditions), 
num2str(TrialNM{DynamicTrial}(length(TrialNM{DynamicTrial}))),'06fv.tx
t')); 

elseif subject < 10 && subject ~= 2 && subject ~= 
3  %% 6 10 

FM= 
load(strcat(TrialNM{2}(1:4),'0',TrialNM{2}(5), 'wL', 
num2str(Conditions), 
num2str(TrialNM{DynamicTrial}(length(TrialNM{DynamicTrial}))),'06fv.tx
t')); 

else 
FM= load(strcat(TrialNM{2}(1:6), 'wL', 

num2str(Conditions), 
num2str(TrialNM{DynamicTrial}(length(TrialNM{DynamicTrial}))),'06fv.tx
t')); 

end 

end 

if analyzedtype == 1 
plot(FM(:,7)) 
cd ..; cd ..; 

anthro=xlsread('Subject Anthropometrics.xlsx'); 

Anthropometric; 
if Conditions ==5 

cd('J:\HERL\Dissertation\WULACAP\Inverse 
Dynamics\Figure-8'); 

else 
cd('J:\HERL\Dissertation\WULACAP\Inverse 

Dynamics\Overground on two surfaces'); 
end 

g=9.81; %gravity m\s^2 

99 



dt=1/120; %sampling interval 

InertiaCOM; 

kimrows=min([length(Rg2trD),length(Rg2uabD),length(Rg2labD),length(Rg2
haD)]); 

kinrows = min([kimrows,round(swrows/2)]); 

CalculateVelAcc; 

CalculateNetJointFM; 

F_shoulder{subject,DynamicTrial} = f_shoulder; 

M_shoulder{subject,DynamicTrial} = m_shoulder; 

F_elbow{subject,DynamicTrial} = f_elbow; 

M_elbow{subject,DynamicTrial} = m_elbow; 

F_wrist{subject,DynamicTrial} = f_wrist; 

M_wrist{subject,DynamicTrial} = m_wrist; 

Ang_shoulder{subject,DynamicTrial} = Ang_tr2uabD; 

Ang_elbow{subject,DynamicTrial} = Ang_uab2labD; 

Ang_wrist{subject,DynamicTrial} = Ang_lab2haD; 

Cycle = 100; 

if Conditions ~= 5; 

AvgTrialCondition; 
else 

Figure8InverseDynamics 

end 

if SteadyStroke > 10 && loadvicondata == 1 

PlotJointFM; 

end 

[TrialNM{DynamicTrial} sprintf('  done!!  ') sprintf('SteadyStroke = 

100 



') num2str(SteadyStroke)] 
 
clear Ang_tr2uabD Ang_uab2labD Ang_lab2haD Rg2trD Rg2uabD Rg2labD 
Rg2haD FM SHO_globalD LEP_globalD MEP_globalD RS__globalD UT__globalD 
ThirdMP_global f_shoulder m_shoulder f_elbow m_elbow f_wrist m_wrist 
                     
else 
                     
if subject == 2 || subject == 3 
                        FM_encoder= 
load(strcat(TrialNM{2}(1:4),TrialNM{2}(5), 'wwL', num2str(Conditions), 
num2str(TrialNM{DynamicTrial}(length(TrialNM{DynamicTrial}))),'06fm.tx
t')); 
                    elseif subject < 10 && subject ~= 2 && subject ~= 
3 %% 6 10 
                        FM_encoder= 
load(strcat(TrialNM{2}(1:4),'0',TrialNM{2}(5), 'wL', 
num2str(Conditions), 
num2str(TrialNM{DynamicTrial}(length(TrialNM{DynamicTrial}))),'06fm.tx
t')); 
                    else 
                        FM_encoder= load(strcat(TrialNM{2}(1:6), 'wL', 
num2str(Conditions), 
num2str(TrialNM{DynamicTrial}(length(TrialNM{DynamicTrial}))),'06fm.tx
t')); 
                    end 
                     
                    Cycle = 100; 
                    step = FM(:,1); 
                    Fz = FM(:,4); 
                    FR = FM(:,5); 
                    Fr = FM(:,7); 
                    %                 Mz = FM(:,10); 
                    ror_FR = FM(:,12); 
                    ror_Ft = FM(:,13); 
                    ror_Fr = FM(:,14); 
                    FEF = FM(:,15); 
                    Vel = FM(:,16); 
                    encoder = FM_encoder(:,8); 
                    Mz = FM_encoder(:,6); 
                     
                    if Conditions ~=5 
                        AvgPushrimVariable; 
                    else 
                        Figure8Kinetics; 
                    end 
                     
                    figure(1); plot(step); 
                    eval(['title(strcat(TrialNM{2}(1:6), 
num2str(Conditions), 
num2str(TrialNM{DynamicTrial}(length(TrialNM{DynamicTrial})))));']); 
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Figure_8(DynamicTrial,:)=[mean(maxFR);mean(avgFR);mean(maxMz);mean(avg
Mz);mean(maxrorFR);mean(meanfef);mean(avgvel);mean(avgpushangle);mean(
avgfreq);mean(avgpush);mean(avgrecovery);mean(avgpercentpush);mean(max
Fr);mean(avgFr);mean(maxrorFr);mean(maxFz);mean(avgFz);mean(maxrorFt)]
'; 

end 
if analyzedtype == 1 

TrialMeanMaxF_shoulder(Conditions,:) = 
mean(MeanMaxF_shoulder); 

TrialMeanMinF_shoulder(Conditions,:)= 
mean(MeanMinF_shoulder); 

TrialMeanMaxM_shoulder(Conditions,:)= 
mean(MeanMaxM_shoulder); 

TrialMeanMinM_shoulder(Conditions,:)= 
mean(MeanMinM_shoulder); 

TrialMeanMaxFR_shoulder(Conditions,:) = 
mean(MeanMaxFR_shoulder); 

TrialMeanMaxMR_shoulder(Conditions,:)= 
mean(MeanMaxMR_shoulder); 

TrialMeanMaxAng_shoulder(Conditions,:)= 
mean(MeanMaxAng_shoulder); 

TrialMeanMinAng_shoulder(Conditions,:)= 
mean(MeanMinAng_shoulder); 

AllTrialPeakFR(subject,Conditions) = 
TrialMeanMaxFR_shoulder(Conditions,:); 

end 
end 
% if analyzedtype == 1 
clear TrialNM 
% end 

%% Save data to excel spreed sheet 
if analyzedtype == 1 

cd('C:\Users\Johnny\Dropbox\Dissertation\Program\WULACAP\Inverse 
Dynamics'); 

if Conditions == 5 
eval(['fid = 

fopen(''InverseDynamicVariables_',num2str(Conditions),'1.xls'',''a'');
']); 

%% Export Figure-8 beginning Inverse dynamics to Excel Spreed Sheet 
if subject == 2 

fprintf(fid,'maxFx_Shoulder \t maxFy_Shoulder 
\t maxFz_Shoulder \t maxFR_Shoulder \t minFx_Shoulder\t 
minFy_Shoulder\t minFz_Shoulder\t maxMx_Shoulder \t maxMy_Shoulder \t 
maxMz_Shoulder \t minMx_Shoulder\t minMy_Shoulder\t minMz_Shoulder\t 
maxFlex\t maxABD\t minIR\t maxExten\t minABD\t maxIR\t \n'); 
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                    end 
                    %                 fprintf(fid, '%6.6f\t %6.6f\t 
%6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t 
%6.6f\t %6.6f\t', max(F_shoulder{subject,2}), 
min(F_shoulder{subject,2}), max(M_shoulder{subject,2}), 
min(M_shoulder{subject,2})); 
                    fprintf(fid, '%6.6f\t %6.6f\t %6.6f\t %6.6f\t 
%6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t 
%6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t', 
MeanMaxF_shoulder(2,:), MeanMaxFR_shoulder(2,:), 
MeanMinF_shoulder(2,:), MeanMaxM_shoulder(2,:), 
MeanMinM_shoulder(2,:), MeanMaxAng_shoulder(2,:), 
MeanMinAng_shoulder(2,:)); 
                     
                    fprintf(fid, '\n'); 
                    fclose(fid); 
                     
                    %% Export Figure-8 ending Inverse dynamics to 
Excel Spreed Sheet 
                    eval(['fid = 
fopen(''InverseDynamicVariables_',num2str(Conditions),'2.xls'',''a'');
']); 
                    %    
finalout(Conditions,:)=[mean(maxFR);mean(avgFR);mean(maxMz);mean(avgMz
);mean(maxrorFR);mean(meanfef);mean(avgvel);mean(avgpushangle);mean(av
gfreq);mean(avgpush);mean(avgrecovery)]; 
                    if subject == 2 
                        fprintf(fid,'maxFx_Shoulder \t maxFy_Shoulder 
\t maxFz_Shoulder \t maxFR_Shoulder \t minFx_Shoulder\t 
minFy_Shoulder\t minFz_Shoulder\t maxMx_Shoulder \t maxMy_Shoulder \t 
maxMz_Shoulder \t minMx_Shoulder\t minMy_Shoulder\t minMz_Shoulder\t 
maxFlex\t maxABD\t minIR\t maxExten\t minABD\t maxIR\t \n'); 
                    end 
                    %                 fprintf(fid, '%6.6f\t %6.6f\t 
%6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t 
%6.6f\t %6.6f\t', max(F_shoulder{subject,2}), 
min(F_shoulder{subject,2}), max(M_shoulder{subject,2}), 
min(M_shoulder{subject,2})); 
                    fprintf(fid, '%6.6f\t %6.6f\t %6.6f\t %6.6f\t 
%6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t 
%6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t', 
MeanMaxF_shoulder(3,:), MeanMaxFR_shoulder(3,:), 
MeanMinF_shoulder(3,:), MeanMaxM_shoulder(3,:), 
MeanMinM_shoulder(3,:), MeanMaxAng_shoulder(3,:), 
MeanMinAng_shoulder(3,:)); 
                     
                    fprintf(fid, '\n'); 
                    fclose(fid); 
                else 
                    eval(['fid = 
fopen(''InverseDynamic_',num2str(Conditions),'.xls'',''a'');']); 
                    %    
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finalout(Conditions,:)=[mean(maxFR);mean(avgFR);mean(maxMz);mean(avgMz
);mean(maxrorFR);mean(meanfef);mean(avgvel);mean(avgpushangle);mean(av
gfreq);mean(avgpush);mean(avgrecovery)]; 

if subject == 2 
fprintf(fid,'maxFx_Shoulder \t maxFy_Shoulder 

\t maxFz_Shoulder \t maxFR_Shoulder \t minFx_Shoulder\t 
minFy_Shoulder\t minFz_Shoulder\t maxMx_Shoulder \t maxMy_Shoulder \t 
maxMz_Shoulder \t minMx_Shoulder\t minMy_Shoulder\t minMz_Shoulder\t 
maxFlex\t maxABD\t minIR\t maxExten\t minABD\t maxIR\t \n'); 

end 
fprintf(fid, '%6.6f\t %6.6f\t %6.6f\t %6.6f\t 

%6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t 
%6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t', 
TrialMeanMaxF_shoulder(Conditions,:), 
TrialMeanMaxFR_shoulder(Conditions,:), 
TrialMeanMinF_shoulder(Conditions,:), 
TrialMeanMaxM_shoulder(Conditions,:), 
TrialMeanMinM_shoulder(Conditions,:), 
TrialMeanMaxAng_shoulder(Conditions,:), 
TrialMeanMinAng_shoulder(Conditions,:)); 

fprintf(fid, '\n'); 
fclose(fid); 

end 
else 

cd .. 
cd('SW Results'); 
if Conditions ~= 5 

eval(['fid = 
fopen(''PushrimVariables_',num2str(Conditions),'.xls'',''a'');']); 

%    
finalout(Conditions,:)=[mean(maxFR);mean(avgFR);mean(maxMz);mean(avgMz
);mean(maxrorFR);mean(meanfef);mean(avgvel);mean(avgpushangle);mean(av
gfreq);mean(avgpush);mean(avgrecovery)]; 

if subject == 2 
fprintf(fid,'maxFR \t avgFR \t maxMz \t 

avgMz\t maxrorFR\t meanfef\t avgvel\t avgpushangle\t avgfreq\t 
avgpush\t avgrecovery\t avgpercentpush\t maxFr\t avgFr\t maxrorFr\t 
maxFz\t avgFz\t \n'); 

end 
fprintf(fid, '%6.6f\t %6.6f\t %6.6f\t %6.6f\t 

%6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t 
%6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t', finalout(Conditions,:)); 

fprintf(fid, '\n'); 
fclose(fid); 

else 
%% Export Figure-8 beginning kinetics to Excel 

Spreed Sheet 
eval(['fid = 

fopen(''PushrimVariables_',num2str(Conditions),'1.xls'',''a'');']); 
%    
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finalout(Conditions,:)=[mean(maxFR);mean(avgFR);mean(maxMz);mean(avgMz
);mean(maxrorFR);mean(meanfef);mean(avgvel);mean(avgpushangle);mean(av
gfreq);mean(avgpush);mean(avgrecovery)]; 

   if subject == 2 
fprintf(fid,'maxFR \t avgFR \t maxMz \t 

avgMz\t maxrorFR\t meanfef\t avgvel\t avgpushangle\t avgfreq\t 
avgpush\t avgrecovery\t avgpercentpush\t maxFr\t avgFr\t maxrorFr\t 
maxFz\t avgFz\t maxrorFt\t \n'); 

end 
fprintf(fid, '%6.6f\t %6.6f\t %6.6f\t %6.6f\t 

%6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t 
%6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t', Figure_8(1,:)); 

fprintf(fid, '\n'); 
       fclose(fid); 

%% Export Figure-8 ending kinetics to Excel Spreed 
Sheet 

eval(['fid = 
fopen(''PushrimVariables_',num2str(Conditions),'2.xls'',''a'');']); 

%    
finalout(Conditions,:)=[mean(maxFR);mean(avgFR);mean(maxMz);mean(avgMz
);mean(maxrorFR);mean(meanfef);mean(avgvel);mean(avgpushangle);mean(av
gfreq);mean(avgpush);mean(avgrecovery)]; 

if subject == 2 
fprintf(fid,'maxFR \t avgFR \t maxMz \t 

avgMz\t maxrorFR\t meanfef\t avgvel\t avgpushangle\t avgfreq\t 
avgpush\t avgrecovery\t avgpercentpush\t maxFr\t avgFr\t maxrorFr\t 
maxFz\t avgFz\t maxrorFt\t \n'); 

end 
fprintf(fid, '%6.6f\t %6.6f\t %6.6f\t %6.6f\t 

%6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t 
%6.6f\t %6.6f\t %6.6f\t %6.6f\t %6.6f\t', Figure_8(2,:)); 

fprintf(fid, '\n'); 
fclose(fid); 

end 

end 
cd ('J:\HERL\Dissertation\WULACAP\Inverse Dynamics'); 
eval(['save 

InverseDynamics_WULA',num2str(subject),'_',num2str(Conditions),'']); 
        else 

cd ('J:\HERL\Dissertation\WULACAP\Inverse Dynamics'); 
eval(['load 

InverseDynamics_WULA',num2str(subject),'_',num2str(Conditions),'']); 
        end 
    end 
    if analyzedtype == 1 
    AllMeanMaxF_shoulder(subject,:) = mean(MeanMaxF_shoulder); 
    AllMeanMinF_shoulder(subject,:) = mean(MeanMinF_shoulder); 
    AllMeanMaxM_shoulder(subject,:) = mean(MeanMaxM_shoulder); 
    AllMeanMinM_shoulder(subject,:) = mean(MeanMinM_shoulder); 
    AllMeanMaxAng_shoulder(subject,:) = mean(MeanMaxAng_shoulder); 
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    AllMeanMinAng_shoulder(subject,:) = mean(MeanMinAng_shoulder); 
     
    AllTrialMeanMaxF_shoulder(:,:,subject) = TrialMeanMaxF_shoulder; 
    AllTrialMeanMinF_shoulder(:,:,subject) = TrialMeanMinF_shoulder; 
    AllTrialMeanMaxM_shoulder(:,:,subject) = TrialMeanMaxM_shoulder; 
    AllTrialMeanMinM_shoulder(:,:,subject) = TrialMeanMinM_shoulder; 
    AllTrialMeanMaxAng_shoulder(:,:,subject) = 
TrialMeanMaxAng_shoulder; 
    AllTrialMeanMinAng_shoulder(:,:,subject) = 
TrialMeanMinAng_shoulder; 
    end 
end 
cd('C:\Users\Johnny\Dropbox\Dissertation\Dissertation 
Results\WULACAP'); 
if analyzedtype == 1 
save InverseDynamics AllTrialPeakFR AllMeanMaxF_shoulder 
AllMeanMinF_shoulder AllMeanMaxM_shoulder AllMeanMinM_shoulder 
AllMeanMaxAng_shoulder AllMeanMinAng_shoulder 
AllTrialMeanMaxF_shoulder AllTrialMeanMinF_shoulder 
AllTrialMeanMaxM_shoulder AllTrialMeanMinM_shoulder 
AllTrialMeanMaxAng_shoulder AllTrialMeanMinAng_shoulder 
save AllSubjectJointFM F_shoulder_cycle M_shoulder_cycle F_elbow_cycle 
M_elbow_cycle F_wrist_cycle F_wrist_cycle Ang_shoulder_cycle 
Ang_elbow_cycle Ang_wrist_cycle 
end 
  
for Conditions = 1:4 
    if Conditions ~= 5 && analyzedtype == 1 
        PlotAllSubjectJointFM; 
    elseif analyzedtype == 1 
        for DynamicTrial = 2:3 
            PlotAllSubjectJointFM 
        end 
    end 
end 
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