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With the propagation of ever faster and more powerful electronics, the need for active, low 

power cooling is becoming increasingly apparent. In particular, applications which have 

traditionally relied only on natural convection will soon require an active cooling solution due to 

continually rising heat loads. A promising solution lies in utilizing piezoelectric materials via 

fans or pumps. Examples of such devices include synthetic jets and piezoelectric pumps, both of 

which rely on an oscillating diaphragm to induce flow. The device investigated in this thesis is 

able to generate flow rates up to 1 L/min and overcome pressures of over 2 kPa. The focus is to 

experimentally characterize the cooling potential of a piezoelectric-based air pump oriented 

normal to a heated surface, an environment similar to jet impingement. Experimental 

characterizations were made through the use of a thin film heater which provided a constant heat 

flux while an infrared camera was used to capture the resulting temperature field of the heated 

surface. Full-field data of the convection coefficient was analyzed as a function of vibration 

amplitude of the piezoelectric diaphragm and distance from the nozzle to the heated target. The 

maximum heat transfer coefficient was found to always be at the stagnation point regardless of 

vibration amplitude or distance to the target. Correlations have been developed which account 

for both variables considered and can be used to predict the performance of future designs which 
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rely on the same physical characteristics. Further, because of the piezoelectric blower’s ability to 

overcome large pressure drops, a theoretical analysis was conducted to assess the viability of 

using them in oscillating flow cooling. It was found to be a reasonable driver of reciprocating 

flow that can keep fluid temperature change low. Additionally it was found that reciprocating 

flow allows for a more uniform temperature distribution over a heated surface.  
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1.0  INTRODUCTION 

Piezoelectric materials have been widely researched as a low power solution for fluid actuation. 

Applications range from intravenous introduction of pharmaceutical drugs [1] to bionic 

underwater propulsion [2]. The device configuration most common to these applications is a 

piezoelectrically actuated diaphragm. By itself, a single vibrating diaphragm produces no net 

flow (velocities are directed away from the diaphragm during half the stroke and then toward the 

diaphragm during the second half of the stroke). Therefore, multiple solutions exist to generate a 

positive net flow through either mechanical [2] or geometrical [3-7] regulation. The benefits of 

geometrically regulated pumps include ease of manufacturability and low power consumption 

while one of the main drawbacks is a decrease in net flow due to the backflow induced during 

the second half of the oscillation cycle. Synthetic jets [8-12] are another type of flow generation 

using an oscillating diaphragm. The largest difference between these devices and piezoelectric 

pumps is that, for synthetic jets (Figure 1), the inlet and outlet are the same opening. Thus, for 

half of the diaphragm vibration cycle, flow is entering the synthetic jet cavity and for the other 

half of the vibration cycle, flow is exiting. This means that the net mass flux through the orifice 

over one period of oscillation is zero. The blower that is investigated in this paper has a separate 

inlet and outlet and creates a net mass flux through its orifice putting it more in line with a 

standard piezoelectric pump. It does, however, exhibit some traits inherent in synthetic jets as 

well.  
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Figure 1: An illustration of the three types of jets referenced in this thesis. (a) traditional jet, (b) 

confined jet, and (c) synthetic jet. 

 

Cheng et al. [2] used two independently operated magnetic coils to open and close the 

inlet and outlet. The objective was to look at utilizing the reversibility of the pumping 

mechanism in a piezoelectric pump in an underwater propulsion unit. It was theorized that this 

would allow for forward and backward motion without any need for a change in the overall 

structure in the pump. They developed a water resistant pump consisting of two chambers each 

fitted with a piezoelectric disk and operating in the first mode of vibration. The maximum 

displacement of the disk was found to be 28.8 µm. Operating at a frequency of 30 Hz with each 

coil open for half of the stroke, the maximum flow reached 164 mL/min. It was found that there 

was no discernible difference between the forward and reverse flow rate.  

Although it is useful in limited situations, mechanical valve manufacturing inevitably 

becomes complicated as dimensions decrease. This issue can be alleviated with geometric 

regulation of flow direction. This is accomplished with an inlet and outlet diffuser design where 

one end of the valve is smaller than the other. A tapered hole encourages unidirectional flow 

towards the smaller opening. This is due to a higher back pressure to overcome in the opposite 
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direction. However, as the inlet and outlet are no longer mechanically opened and closed, they 

cannot completely eliminate backflow. Nonetheless, at such small sizes, machinability usually 

outweighs the inherent drawbacks for most applications.  

A reciprocating micropump utilizing pyramid shaped flow channels was proposed and 

tested by Gerlach et al. [3, 4]. At 8 kHz, the pump was found to produce a flow of 480 µL/min. 

With pump dimensions of 10 mm by 10 mm, this flow rate was an order of magnitude higher 

than that of similar micropumps. This was at the high end of its output however, as the geometry 

limits operating frequency to between 100 Hz and 10 kHz. At the highest flow rates, the authors 

found the difference between the positive and negative flow rate directions to be 10 - 20% in 

favor of the positive direction. It is assumed that a larger difference between positive and 

negative flow would yield a higher flow rate. The low percentage difference indicates that there 

is considerable backflow in this micropump. At best, 80% of the potential flow is being lost by 

being drawn back in during the relief stroke of the piezoelectric element.  

A model of the pressure vs. flow characteristics of valveless piezoelectric liquid pumps 

was developed by Olsson et al. [5] using a lumped mass model. It was found that vaporization of 

the fluid could occur within the pump chamber if the excitation of the piezoelectric was too high, 

thus creating a physical limiting factor due to low pressures. As expected, vibration amplitude 

was found to play a large role in flow rate and pressure. Their model also shows that the 

dimensions of the diffuser nozzles are integral for maximizing efficiency. 

In order to understand how to enhance performance, Ulmann [6] attempted to analyze a 

single and double chamber valve-less piezoelectric pump. An equation for each pump 

configuration was found to be useful in calibrating design parameters based on nozzle diameter, 

operating frequency and displacement amplitude for a desired volumetric flow rate. It was found 
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that, in general, a smaller nozzle diameter is more likely to yield higher pressure capabilities. 

However, there is a limit to how small the nozzle diameter can be (less than 0.1 mm) before 

negative pressure is created within the pump chamber, negatively affecting performance. A 

double chamber pump yields a significant improvement over its single chamber counterpart. 

There is little difference between the two, however, when the single chamber is enlarged and a 

second piezoelectric element is applied. This insinuates that the number of chambers is not the 

main driving factor in piezoelectric pump performance. It is more likely that the overall volume 

displacement caused by the piezoelectric actuators themselves is a main determining factor in 

pump performance.  

The dual chamber piezoelectric pump was also analyzed by Olsson at al. [7]  to determine 

pressure and flow rate capabilities. The two pumps were arranged in a parallel configuration and 

the piezoelectric patch was operated with either in-phase or counter-phase excitation. Pump 

performance was found to be better with counter-phase operation. Despite only 20% of the fluid 

being brought in by the supply stroke, the maximum pump flow achieved was 16 mL/min and 

pressure was 16.7 kPa. 

Synthetic jets (see Smith and Glezer [8] for an excellent review article on this topic) also 

share some commonality with the blower being investigated in this paper. Synthetic jets are 

composed of a piezoelectric element with only a single orifice that acts as an inlet and exit. 

When the piezoelectric patch is oscillated, it generates vortices that develop and detach 

downstream from their point of origin. By the time of the inlet stroke, the vortex is sufficiently 

far enough away to no longer be influenced by the inward flowing air. This vortex shedding 

creates flow in the desired direction without a mass flux through the jet itself. The lack of a mass 
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flux through the system makes it a poor pump, but it has uses in mixing and flow disruption 

technologies that make it a worthwhile research investment. 

Chaudhari et al. [10] investigated impingement cooling of an axisymmetric synthetic jet 

for a fixed heater size and varying orifice diameters. The Reynolds number ranges from 1150 to 

4180 and the oscillation frequency varies from 100 to 350 Hz. The setup consisted of a copper 

plate affixed to a heater which was surrounded by insulating materials. The copper plate had two 

thermocouples placed 4 mm below the lateral surface on opposite sides to gather an average 

temperature.  

Valiorgue et al. [12] investigated both the heat transfer capabilities and flow field of a 

synthetic jet. They investigated a Reynolds number range of 1000 to 4300. The experimental 

setup was similar to that presented in this paper with the exception of certain essential changes to 

allow for Particle Image Velocimetry measurements. They found that there is a critical stroke 

length where two flow regimes meet. A correlation was also developed, however it was only 

based on stroke length which was not one of the parameters considered in this paper. Therefore it 

was not used as a comparison. 

The piezoelectric pump studied in this paper consists of a single outlet nozzle with a large 

inlet. Its unique construction allows it to overcome pressures over 2 kPa as well as promoting 

better manufacturability. Additionally, the pump has been recorded as yielding a flow rate of 

over 1 L/min. The large potential operating pressure allows for use in applications where low 

flow and high pressure is important (e.g., microchannel applications). The flow rate is notable in 

that it is at least one order of magnitude higher than pumps of similar dimensions [2, 7]. Notable 

dimensions of the blower are that the piezoelectric element is roughly 15 mm in diameter, nozzle 

diameter (D) is 1 mm and the total housing footprint is 20 mm square. All of this is 
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accomplished with minimal, if any, back flow. The typical Reynolds number range encountered 

with this blower is 500-650. 

As the impingement orientation is of primary importance in this work, it is important to 

compare our results with those traditionally accepted for jet impingement. Many correlations 

have been developed to characterize jet impingement heat transfer using air as the working fluid. 

One of the first proposed is that from Martin [13], which is based on several sets of experiments. 

Based on the applicable Reynolds number range of this correlation, it is evident that turbulent 

jets are of primary significance (2000 ≤ Re ≤ 400000). In addition, the valid range in the domain 

size of the heated surface (2.5 ≤ R/D ≤ 7.5) and distance from nozzle to heated surface (2 ≤ H/D 

≤ 12) is also limiting, especially when considering small jet nozzles as is the case in the current 

study. 

Goldstein et al. [14] developed a correlation that encompassed a larger domain size of the 

heated surface (0.5 ≤ R/D  ≤ 32), but only looked at very large Reynolds numbers (61000 ≤ Re ≤ 

124000).  Attempting to develop a correlation following the work of Martin [13], Huang and El-

Genk [15] also included the stagnation point in their correlation. However, as with the previous 

correlations, the range of validity was very limited (6000 ≤ Re ≤ 60000, 0 ≤ R/D ≤ 10, 1 ≤ D ≤ 

12). Of the studies found, Tawfek [16] developed correlations valid over the largest range (3400 

≤ Re ≤ 41000, 2 ≤ R/D ≤ 30, 6 ≤ D ≤ 58), yet the correlation is broken up into four separate, 

overlapping ranges. No area averaged correlation has, to the author’s knowledge, been 

investigated for low Reynolds number continuous jet impingement flow. A recent study by 

Chiriac and Ortega [17] has focused on low Reynolds number heat transfer characteristics for 

slot jets developed a numerical model to predict the local and stagnation heat transfer based on 

the Reynolds number and slot width. However, no studies have been found relating to circular air 
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jets at low Reynolds numbers. Most of the correlations for synthetic jets have investigated low 

Reynolds numbers although the number is few. Of the correlations proposed for synthetic jets, 

only one by Persoons et al. [18] was deemed applicable as a comparison. 

On the other hand, numerous high Reynolds number correlations exist for stagnation heat 

transfer performance in jet impingement. Huang and El-Genk [15]  extended the range of 

validity from Goldstein et al. [14], including stagnation. Lytle and Webb [19] developed a 

correlation for a somewhat limited range of interest (0.1 ≤ D ≤ 1). An analytical correlation was 

derived by Kendoush [20] for the stagnation point. It claims to be verified at D = 8 and D = 24, 

but graphical examination of this correlation does not yield expected results and there is little 

documentation to further verify its validity. San and Shiao [21], Li and Garimella [22], 

Schroeder and Garimella [23] and many others [17, 24-26] have developed stagnation 

correlations for confined jet impingement. However, these studies focus on turbulent jets at 

relatively small distances from the heated surface. It was also found that confined jet 

impingement heat transfer cannot be effectively predicted by correlations for free jet 

impingement [27].  

Another, less common, method of heat transfer is via an oscillating fluid. With this 

process, the reciprocating motion of the fluid results in zero net mass transfer over a cycle. This 

has some unique uses, particularly where the working fluid is expensive or there is no adequate 

means of fluid storage. Previous experimental work by Kurzweg [28] found that the conduction 

heat transfer rates were very large and exceeded that seen in current heat pipe technology.  Zhao 

and Cheng [29] numerically determined that the Nusselt number in a pipe was a function of the 

kinetic Reynolds number, oscillation amplitude of the fluid, and ratio of the length and diameter 

of the pipe. This is contrary to the fact that under steady flow conditions the Nusselt number is 
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constant that only depends on the heating conditions. This was later verified experimentally by 

Akdag and Ozguc [30] with similar results. Due to the high pressure and flow rate capabilities of 

the piezoelectric blower, it would be worthwhile to investigate the feasibility of this type of 

application. 

The purpose of this work is to analyze the thermal performance of low Reynolds number 

jet impingement where the net flow is provided from an oscillating piezoelectric diaphragm. 

Correlations were determined to estimate the most efficient placement and operation for a 

desired cooling effect. Both the area averaged and stagnation Nusselt numbers were of interest 

and compared to previous correlations for jet impingement heat transfer. Additionally, a 

theoretical examination of the cooling potential and temperature distributions under oscillating 

flow conditions is also conducted. 
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2.0  EXPERIMENTAL SETUP AND PROCEDURE 

The Murata Manufacturing Company provided a piezoelectric blower that operates in a novel 

way. Although there is little that can be revealed about its specific construction or operational 

characteristics due to confidentiality, the goal was to determine the heat transfer capabilities 

under various conditions in order to get a better idea of how well it would work for electronics 

cooling. An impingement flow orientation was decided upon to be the first setting for which to 

conduct tests.  

2.1 IMPINGEMENT HEAT TRANSFER SETUP 

The uniform heat generating surface consisted of a thin stainless steel sheet (76.2 mm x 101.6 

mm x 0.0508 mm). This sheet was soldered to two copper bars (76.2 mm x 25.4 mm x 12.7 mm) 

using a tin and lead based solder and a hot plate. As the stainless steel-copper interface covered 

12.7 mm from both ends of the sheet, a surface area of 76.2 mm x 76.2 mm was left exposed to 

the air on both sides. The copper bars served as voltage terminals, and due to uniform heating 

within the stainless steel sheet, a constant heat flux was generated. Each copper bar was affixed 

to a block of Teflon (127 mm x 76.2 mm x 38.1 mm) to act as a thermal and electrical insulator. 

The Teflon blocks were affixed to two 12.7 mm diameter stainless steel rods with springs in 

between to create an opposing force. This allowed the stainless steel sheet to be kept under 
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tension and therefore flat through thermal expansion. This heater assembly was positioned such 

that the heated surface was in a vertical orientation. As Figure 2 illustrates, the blower is 

positioned on one side of the heated surface with an infrared camera (FLIR SC5000) on the 

opposite side in order to measure the temperature distribution. As the stainless steel sheet is very 

thin, the conduction through the thickness is negligible and the temperature contours are the 

same on either side. A laser displacement sensor (Keyence LK-H022) was mounted behind the 

blower to record the oscillatory displacement of the piezoelectric element in order to ultimately 

characterize the performance as a function of vibration amplitude. The stainless steel was coated 

on both sides with a thin layer of Krylon 1602 Ultra Flat black spray paint. This paint has a 

known emissivity of 0.95 [31] and therefore allows the surface temperatures to be quantified via 

infrared thermometry.  

 

Figure 2: Diagram of how the components of the test are oriented. 
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The thin plate was heated using a high current DC power supply (TDK-Lambda Zup 10-

40). Two contacts were made to the copper bars on both sides of the plate (seen in Figure 3). The 

source voltage (Vs) was recorded across the thin plate where the wires meet the copper bar. 

Current across the plate (Is) was measured using a current shunt that was placed on the positive 

side of the circuit. The total generated heat (Q) can then be determined according to: 

 S SQ V I=  (2.1) 

The blower was powered by a function generator (Tektronics AFG 3102) to allow for 

control of the oscillation frequency and input voltage amplitude of the piezoelectric patch. In 

order to determine the power consumption of the blower, a resistor was used as a shunt to 

measure the current input to the blower (Ib) via a measurement of the voltage drop across the 

resistor. Thus, the power consumption can be quantified according to [32]: 

 ( )cosb b bP V I θ=  (2.2) 

where Vb is the voltage across the two leads of the blower (after the initial voltage drop across 

the resistor) and θ is the phase difference between the voltage and current signals.  
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Figure 3: Wiring diagram of the heated thin plate. 

 

The infrared camera, blower, heater assembly and laser displacement sensor were all 

mounted within a 0.61 m by 0.61 m by 1.22 m enclosure made of clear plexiglass. The blower, 

heater assembly and laser displacement sensor were mounted on linear stages to ensure 

repeatability and precise control of reference distances. The enclosure is designed to allow 

operation of all equipment inside without removal of any of the side walls or the top panel. Three 

holes at the bottom of the front panel allow for operation of the equipment (e.g. changing 

distance between the blower and heated surface) without measurably affecting the integrity of 

the experiment. This enables a more consistent steady state temperature due to isolation from 

external flows within the laboratory. 

Four thermocouples mounted at various locations throughout the enclosure were used to 

quantify the ambient temperature. As shown in Figure 4, the locations were: 1) slightly below the 
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thin film for the air that is brought in by natural convection (position 1), 2) at the blower inlet for 

the air being blown onto the plate surface (position 2), 3) on the table surface (position 3), and 4) 

in the air near the center of the enclosure but with careful attention to not place it above any heat 

producing equipment (position 4). An ice point reference (Omega TRCIII) was used to give a 

uniform near zero reference temperature and thus increase thermocouple accuracy. As the forced 

convection from the blower is of primary importance in this work, the ambient temperature used 

in calculating convection coefficients is that of the temperature of the blower inlet.  

 

Figure 4: Picture of the test setup where the location of each thermocouple is marked with a colored 

dot. 

Table 1 gives some important operational attributes of the blower at the 7, 8 and 9 V 

inputs. The source voltage is recorded based on the output settings of the function generator. The 

vibration amplitude was found to change very slightly with an increased voltage input. As a 

result, the effect on the distribution of convection coefficient is minimal as well. The power 

requirement of the blower is in the range of 80 to 100 mW.  
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Table 1: Important operational attributes of the blower at different voltage inputs. 

Function Generator Setting (V) 7.0 8.0 9.0 
Vibration Amplitude (µm) 5.0 5.3 5.5 

2.2 PROCEDURE 

The blower was mounted on an aluminum beam that allowed only the blower to operate 

near the thin plate. The orientation was such that the inlet of the blower was fully exposed while 

the outlet was given a hole in the aluminum beam through which to operate. The depth of the 

hole was such that the end of the nozzle was flush with the side closest to the thin plate. The 

aluminum was formed in an “S” shape where a surface area not much larger than the blower 

would touch the thin plate if the nozzle to plate spacing (H) was ever lowered to zero. This was 

to reduce interaction of the thin plate with anything other than the flow generated by the blower. 

The entire system was elevated 76 mm above the mounting table to reduce boundary effects. The 

power supplied to the thin plate was set such that the minimum temperature observed across all 

experiments never dropped below 40°C, which would provide a temperature difference between 

the ambient of 10-15°C. A temperature difference of this magnitude was important to ensure low 

uncertainty in convection coefficients.  

The procedure followed for any given set of experiments began by turning on the power 

supply, and allowing the enclosure to reach steady state temperatures. The table surface 

temperature does not quite reach steady state due to the added thermal mass of the table itself. 

However, as the three other thermocouples indicate the ambient air reaching steady state and the 

table surface temperature having very limited effect on the heated plate, there was little reason to 

prolong the wait. This was typically achieved after approximately 2.5 hours. The time history of 
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the four thermocouple readings during this interval is shown in Figure 5. The variable parameters 

of interest in this work are the vibration amplitude of the diaphragm (V) and the distance from 

the blower to the heated surface (H). Tests were conducted at 7, 8 and 9 volt outputs from the 

function generator which corresponds to 5.0, 5.3 and 5.5 µm for the vibration amplitude levels. 

Measurements were taken from a distance (H) of 1 mm to 59 mm in 2 mm increments. Each 

thermal image analyzed represents an average of nine separate sets of data captured by the 

infrared camera in one second intervals.  

 

 

Figure 5: Graph of the temperature in the enclosure reaching steady state. 

 

The heat balance for a small volume of the heated surface (e.g., a single pixel from the 

infrared camera imaging plane) reveals the expressions needed to compute the convection 

coefficients. The generated heat (Qt), which is dependent on the total heat (Q), the pixel area 

(Ap), and the total area (A),  is dissipated through radiation (Qr), lateral conduction (Qc), and both 

natural (Qnc) and forced (Qfc) convection according to: 
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The heat loss due to conduction is potentially significant depending on its relative 

magnitude compared to the total heat generation and thus is an important part of our analysis. 

The pixel to pixel conduction losses were analyzed according to: 

 ( )1, 1, , 1 , 1 ,4c m n m n m n m n m nQ k T T T T Tδ + − + −= + + + −  (2.5) 

where m and n are the pixel indices, k is the plate thermal conductivity, δ is the plate thickness, 

and T the temperature of the plate at each pixel based on m and n. Therefore the lateral 

conduction losses are dependent on the temperatures of the neighboring pixels (i.e., lateral 

conduction would be zero for a uniform temperature profile). The magnitude of the temperature 

gradients on the surface (i.e., between neighboring pixels) are what ultimately determines the 

magnitude of the lateral conduction losses. Utilizing Eq. (2.5) also allows for accounting for heat 

loss along the edges near the copper bars. Edge heat loss would additionally only really be a 

concern when the effect of the blower convection is near the edge. 

In order to quantify the natural convection heat transfer coefficient, the following 

correlation was used for a vertically oriented flat surface [33]: 

 ( )
1

44 Pr
3 4nc

k Grh g
L

   =    
   

 (2.6) 

Where Gr is the Grashof number, hnc is the natural convection heat transfer coefficient, L 

is the length of the plate, and g(Pr) is a function defined in [33] based on the Prandtl number. To 

confirm the accuracy of Eq. (2.6), tests were run with the heater under natural convection 

conditions (no forced convection from the blower). The experimental results were compared to 

Eq. (2.6) at the same average plate temperature. Figure 6 illustrates the temperature profile of the 
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thin plate under no forced convection. The surface behaves as expected for a vertically oriented 

surface when subjected to a constant heat flux with natural convection. The temperature is the 

lowest at the bottom of the plate and increases according to a 1/5th power law [33]. 

 

 

Figure 6: Vertical temperature profile of the thin plate under natural convection conditions. 
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Figure 7: Comparison of the calculated natural convection heat transfer coefficient with two separate 

theoretical calculations. The theory is from Eq. (2.6). 

 

With the thin plate at different average surface temperatures, the natural convection heat 

transfer coefficient was calculated. Comparison of the theoretical value to the calculated value, 

shown in Figure 7, reveals that they are within 10% of each other. This does show that the theory 

that is used under-predicts the actual natural convection heat transfer coefficient, but the overall 

influence of the natural convection coefficient plays a small enough role that a 10% error is less 

than a percentage point overall.  

If the assumption is made that ambient and surrounding temperatures are equal (although 

the two temperatures are slightly different the resulting change in radiative heat transfer is 

negligible), Eq. (2.4) can be solved to ultimately determine the forced convection heat transfer 

coefficient (hfc): 

 
( )

( )

4 42t c
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p
fc nc

s

Q Q T T
A

h h
T T

εσ ∞

∞

 −
− −  

 = −
−

 (2.7) 
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where  is the emissivity [31] of the painted plate,  is the Stephan-Boltzmann constant, Ts is the 

surface temperature of the plate and T∞ is the ambient temperature. 

2.3 UNCERTAINTY ANALYSIS 

Every variable that contributed to determining the heat transfer coefficient was measured 

directly in order for application of a complete analysis of uncertainty. All uncertainty analysis 

was done using a simple t-test with a 95% confidence interval. Precision error was also included.  

The surface temperature of the thin sheet was determined using an infrared camera with a 

precision uncertainty of 1°C. The infrared camera was factory calibrated, however the calibration 

was verified using a blackbody system (Infrared Systems Development IR-2106/301). Each 

thermal image consisted of nine temperature captures at each distance (H). The ambient 

temperature is measured via thermocouples with an uncertainty of 0.5°C. Therefore, the 

uncertainty in the difference between surface and ambient temperatures is 1.17°C. This yields an 

uncertainty of approximately 4% to 4.5% at the stagnation point. The ambient temperature was 

calculated from 120 data points in one second intervals with a thermocouple data acquisition unit 

(NI-9211). This yields a precision uncertainty of 0.015%.  

The measurement of voltage and current to the thin plate were both taken with a data 

acquisition unit (Measurement Computing USB-1608HS) for 200 data captures. The precision 

error was calculated, based on the rated resolution of the data acquisition unit, at 0.0015 V and 

0.15 A. This yields a total voltage and current measurement accuracy of about 0.3% and 0.8% 

respectively. The uncertainty of the area measurement of the thin stainless steel sheet, consisting 

of only precision error, was calculated as 1.5%. 
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 The total heat transfer convection coefficient accuracy was calculated by combining all of 

the above accuracy calculations, resulting in an experimental stagnation point uncertainty of 

approximately 7%. A more detailed explanation of the equations used and process can be found 

in Appendix B. 
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3.0  RESULTS AND DISCUSSION 

 The objective of the research included in this paper was to determine the experimental heat 

transfer coefficient and consequent Nusselt number produced by this piezoelectric blower under 

impingement cooling conditions. Then, in order to provide a basis for predicting the cooling 

performance under other conditions, a correlation was developed for both the stagnation point 

and area averaged Nusselt number. There was also a proof of concept analysis of the viability of 

using this blower under oscillating flow conditions. Accompanying this theoretical analysis is a 

brief discussion of the viability of not only the piezoelectric blower’s application, but the 

utilization of the concept of reciprocating flow in general. 

In Figure 8, the radial temperature (the temperature profile that originates at the 

stagnation point and travels in a straight line along the heated plate surface) profiles for different 

values of H/D can be seen. It is apparent that the closest distance (H/D = 5) experiences the 

largest temperature gradient compared to the other distances. Although not shown, this feature 

shows a gradual change from H/D = 5 to H/D = 15. This is mainly due to the area over which the 

flow occurs being very small when the nozzle is close to the heated surface. As was previously 

discussed, these higher temperature gradients cause lateral conduction effects to increase.  
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Figure 8: Radial temperature profiles at various distances for Vb = 8 V. 

 

Neglecting or including lateral conduction can be significant as is shown in Figure 9.  For 

small plate to blower spacing (H) and lateral conduction neglected, the experimental heat transfer 

coefficient is under predicted by a factor as high as 5. These temperature fields are used in Eq. 

(2.7) to determine the full field heat transfer coefficients. These values can then be analyzed 

further to determine the area-averaged convection coefficient (hfc,bar) as a function of size of 

heated target. A circular geometry for the heater is assumed and the average thermal 

performance is quantified according to: 

 , 0

1 R

fc bar fch rh dr
R

= ∫  (3.1) 

where R is the radius of the inspected area of the plate. 

A sample of the area-averaged heat transfer coefficient as a function of radius of heated 

surface can be seen in Figure 10. As would be expected, the blower produces heat transfer above 

what is seen from natural convection alone. At H/D = 5 a heat transfer coefficient of nearly 175 
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W/m2K can be achieved. This is roughly 30 times larger than natural convection at that point (hnc 

= 6 W/m2K). Such a high stagnation heat transfer coefficient at a low H/D can be attributed to, as 

will be discussed later in this thesis, lateral conduction. Even at H/D = 55 the enhancement over 

natural convection is more than 10 times as high at the stagnation point. An important aspect to 

note, and which will be discussed further, is that as H/D increases, the peak seen in the area-

averaged heat transfer coefficient becomes less pronounced. The convection coefficient (hfc) was 

analyzed as a function of the vibration amplitude of the blower (V) and the distance from the 

nozzle to the heated surface (H). These three variables are expressed in dimensionless form 

through proper definitions of the Nusselt number (Nu), Reynolds number (Re), and 

dimensionless gap (H/D). The length scale used for each of these parameters is the nozzle 

diameter (D), a convention typically used in jet impingement studies [8-10, 13-16, 19, 21, 22, 24, 

26, 27, 31]. The Nusselt and Reynolds numbers are defined according to: 

 Re UD
ν

=  (3.2) 

 fc

a

h D
Nu

k
=  (3.3) 

where ν is the kinematic viscosity, U is the fluid velocity, and ka is the thermal conductivity of 

air taken as 1.86x10-5 m2/s and 0.026 W/mK, respectively. 
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Figure 9: Comparison of the stagnation Nusselt number (Vb = 8 V) with and without lateral conduction. 

 

The full-field Nusselt numbers are shown for H/D = 5 and H/D = 25 in Figure 11(a) and 

(b), respectively. As expected, the resulting contours reveal a circular cooling pattern at both 

distances. The overall heat transfer performance of the blower is much higher for H/D = 5 

although the area of the blower’s effectiveness is limited. In other words, one must allow for a 

reduction in the area of coverage for a higher localized thermal performance. For both cases, the 

highest heat transfer occurs at the stagnation point, a behavior consistent across all data captured 

in this study.  



 25 

 

Figure 10: Area-averaged heat transfer coefficient for Vb = 8 V. 

 

Similar experimental results were gathered from H/D = 1 to H/D = 59 and the profiles of 

each exhibited circular patterns of cooling. Attempts were made to develop empirical 

relationships to aid in predicting the thermal performance. In particular, both the stagnation point 

Nusselt Number (Nu0) and the radial averaged Nusselt Number (Nubar) were analyzed. These 

quantities are defined according to Eq. (3.3) and calculated from the raw data according to Eqs. 

(3.4) and (3.5) for stagnation and area averaged values, respectively: 

 
( )0, 0fc
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(a) 

 

(b) 

Figure 11: Nusselt number map of the thin plate when subjected to forced convection from the blower at (a) 

H/D = 5 and (b) H/D = 25. 
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To better understand the importance of Nubar, consider the situation where cooling is 

required for a set of heat sources of varying surface area. This area averaged value gives an idea 

of the total heat being removed over a given area. This allows for maximization of blower 

performance based on the size of the heat source. 

3.1 STAGNATION HEAT TRANSFER 

The thermal performance as a function of distance between the heated plate and blower 

(H/D) is displayed in Figure 12 for three different voltage inputs (Vb) (and therefore three 

separate vibration amplitudes). It is apparent that the trends are very similar with a voltage 

increase causing only a small shift in the Nusselt Number. The maximum stagnation Nusselt 

Number occurs when the blower is closest to the heated plate. This would not be evident unless 

lateral conduction is taken into account. For small plate to blower spacing, the cooling effect is 

very much localized, which in turn causes a very steep temperature gradient at the stagnation 

point. Large temperature gradients cause the lateral conduction, or thermal smearing, to be non-

negligible. This effect is quantified and presented in more detail later in this paper (stagnation 

heat transfer discussion). It is important to note that for all three voltage inputs, the behavior is 

similar. In other words, the performance is maximized when the blower is closest to the heat 

source. This indicates that the optimal operating parameters do not change within our voltage 

input range (and therefore, vibration amplitude). The error bars shown at each data point were 

found from the previously mentioned detailed uncertainty analysis. It can also be gathered by 

this data that a reduction in voltage input (Vb) from 9 to 7 V would not drastically reduce 
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performance for H/D greater than 3. This means that similar performance can be realized even 

when the power input to the blower is reduced, which is very important from an energy 

management point of view. The following expression is proposed to capture the defining 

characteristics of each curve shown in Figure 12: 

 
1 1

1
1 1 Re

H HB E
FD D

oNu A e C e
   − −   
   

 
= + 

  
 (3.6) 

Where A, B, C, E and F are constants whose optimum values are found from a least 

squares fit of the experimental data and the applicability ranges are 1 ≤ 𝐻
𝐷� ≤ 59 and 550 ≤

𝑅𝑒 ≤ 622. The result of the best fit yields A1 = 6.05, B1 = 0.37, C1 = 2.5, E1 = 0.012 and F1 = 

0.120. This curve fit can now be used to predict the stagnation Nusselt Number (Nu0) for a given 

Reynolds number and H/D of the blower. It can be seen that the dependence on Reynolds 

number, and consequently vibration amplitude, is limited in determining Nusselt number. Tests 

were performed with a flow meter (Omega FMA-A2107) on the blower and reveal the Reynolds 

numbers to be 557, 596 and 622 for Vb = 7, 8 and 9 volts respectively. The flow meter has an 

accuracy of +/- 0.02 L/min which corresponds to an uncertainty in the Reynolds number of 3.8%. 

The magnitude of this dimensionless parameter precludes the use of many conventional jet 

impingement correlations. However, comparisons are made with a few well accepted 

relationships in order to better understand their relation to our experimental trends.  
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Figure 12: Stagnation Nusselt number for all three voltage inputs. 

 

 Figure 13 compares the developed stagnation correlation with those from Huang and El-

Genk [15] (6000 ≤ Re ≤ 60000, 1 ≤ H/D ≤ 12), Persoons et al. [18] (500 ≤ Re ≤ 1500, 2 ≤ H/D ≤ 

16) and Schroeder and Garimella [23] (5000 ≤ Re ≤ 20000, 0.5 ≤ H/D ≤ 4) using Re = 596. These 

correlations consider air as the working fluid, but are focused on free and confined jets, 

respectively. The confined jet impingement correlation was chosen because it was felt that for 

small H/D, confined flow might be more appropriate. It is apparent that none are an ideal fit for 

the current data in the ranges depicted in the figure. Persoons et al. [18] does not exhibit the same 

magnitude in cooling effect as the others. As the presented correlation is more in line with those 

looking at continuous jet impingement, it gives the impression that the performance of the 

blower is more similar to a continuous jet rather than a synthetic jet. The Huang and El-Genk 

correlation more closely resembles our data for H/D > 7, but there is no good fit for small values 

of H/D (less than 2.5). In fact, it is stated in their paper that conduction was only considered to 

contribute 2% to heat loss and only through the mounting surface. Although Huang and El-Genk 
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[15] did not consider lateral conduction in their study, a brief analysis of their data suggests this 

could be significant, especially near the lower bounds of their Reynolds numbers. Looking at 

their data for H/D = 2 and Re = 46233, their heated surface temperature changes near the 

stagnation region by about 30 °C over a 5 mm distance. They have a heated surface with the 

same material properties and thickness as that used in this paper (k = 16 W/mK and δ = 0.0508 

mm). If we consider the stagnation region to be a square which is 5 mm x 5 mm and the 

temperature increases in all directions away from this region by 30 °C over a distance of 5 mm, 

then the temperature gradients from four directions are all equal to 6 K/mm. The area for 

conduction will be 5 mm by 0.0508 mm. This yields a lateral conduction of nearly 0.1 W. The 

heat generated for this 5 mm x 5 mm stagnation area could be as high as 0.255 W based on the 

maximum report heat flux of 10.2 kW/m2. Therefore, according to this analysis, the stagnation 

heat transfer coefficient in this case is under-predicted by roughly 40% as it is borrowing heat 

from neighboring pixels or regions. 

 

Figure 13: Comparison of stagnation correlations. The Huang and El-Genk correlation is for free jet 

impingement and the Schroeder and Garimella correlation is for confined jet impingement. 
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3.2 AREA AVERAGED HEAT TRANSFER 

In order to predict thermal performance in realistic applications, the stagnation coefficient 

alone is insufficient. The area averaged Nusselt number (Nubar), governed by the geometry of the 

heat source being considered, must also be characterized. The area-averaged results are shown in 

Figure 14 for Vb = 8 V. The area over which the convection coefficient is averaged is circular in 

shape and the performance is a function of the radius (R). Note that a circular heat source with an 

R/D greater than 10 would call for a spacing of H/D = 35-55, while the curve representing a 

spacing of H/D = 25 would provide better cooling for a heat source with an R/D from 5 to 7. If 

an R/D of less than 5 is required, the H/D = 5 (or smaller) spacing would be the most beneficial 

by far. This trend is true regardless of the voltage provided to the blower. 

 

Figure 14: Area-averaged Nusselt number curve for Vb = 8 V. 

 

We can observe the data shown in Figure 15 as a function of H/D where the Vb = 8V 

input is averaged over the entire 3” x 3” plate and a smaller 1” x 1” section centered about the 
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stagnation point. It can be seen that, for the 3” x 3” case, the average Nusselt number of the plate 

is lowest at about H/D = 3 and has a maximum at some point after H/D = 60. As the geometry of 

the heated target is modified, different curves would result, yielding a different value for optimal 

spacing. This can be seen in the plot of the 1” x 1” area Nubar, where the optimal distance is 

around H/D = 35 - 45. From these results, it can be seen that it is worthwhile to develop area-

averaged correlations not only to predict the thermal performance, but the optimal spacing as 

well. This also illustrates the dependence of the optimum spacing on the heater geometry under 

investigation. More will be presented on this topic later. 

 

Figure 15: Average Nusselt number for the entire 76.2 mm x 76.2 mm plate as a function of spacing. 

 

The trends seen in the area-averaged heat transfer properties are both a function of non-

dimensional distance away from the heated plate and the radial area. However, this dependence 

can be captured with an equation of the following form (suggested by Churchill and Usagi [34]): 
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where 
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 (3.8) 

Using a least squares curve fit, the constants were found to be A2 = 1.08, P = 30, C2 = -

0.564, E2 = -0.233 and F2 = 0.201. The range where Eq. (3.8) is applicable is 1 ≤ H/D ≤ 59 and 1 

≤ R/D ≤ 30. It can be seen in Figure 16 (Re = 596) that the equation is verified as it is within 15% 

at R/D = 15 and H/D 25. It is apparent however, that larger R/D values do not compare well 

particularly as H/D decreases.  

 

Figure 16: Area-averaged curve fit for H/D = 5, 25 and 45. 

 

To determine the efficacy of the area averaged heat transfer correlations with respect to 

those developed by others [13-16], a plot was generated to visually compare them. Figure 17 

shows that all the correlations follow the same general trend with the one presented in this thesis 

residing between the extreme values from the other correlations. The non-dimensional distance 

from the plate was set at H/D = 10 to keep it within all of their range of validity. The R/D range 
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was also limited to the given valid values. The only exception was with the Reynolds number; 

the Re =596 is not within the range of validity of any but the correlation developed for this 

thesis. However, the correlations are still within in the 50% agreement with the bulk of each 

other.  

 

Figure 17: Comparison of the area-averaged Nusselt number correlations at H/D = 10 and Re = 596. 

 

None of the given correlations investigated Re lower than 2000 [13-16], but it is 

interesting to note that each would predict thermal performance within a believable range for the 

Reynolds numbers encountered in the current work. Particularly noteworthy is the similarity 

between the Goldstein [14] (61000 ≤ Re ≤ 124000, 0.5 ≤ R/D  ≤ 32, 2 ≤ H/D ≤ 12) correlation 

and that developed in this paper (errors less than 5%). However, this similarity no longer occurs 

as the distance to the heated target was increased as shown in Figure 18, where H/D = 25. For 

this case, the Tawfek correlation [16] (3400 ≤ Re ≤ 41000, 2 ≤ R/D ≤ 30, 6 ≤ H/D ≤ 58) best 

described our data. The Huang correlation [15] (6000 ≤ Re ≤ 60000, 0 ≤ R/D ≤ 10, 1 ≤ H/D ≤ 12) 

was removed for the circumstances where it diverged enough so that the solution that it gave was 
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no longer within reasonable bounds.  The Goldstein [14] and Huang and El-Genk correlations 

[15] are no longer as close to the other correlations, yet the Martin [13] (2000 ≤ Re ≤ 400000, 2.5 

≤ R/D ≤ 7.5, 2 ≤ H/D ≤ 12) correlation is well outside of its valid H/D range, but very consistent 

with the Tawfek correlation [16]. It is notable that the correlation presented in this paper for the 

area-averaged Nusselt number (Eqs. (3.7) and (3.8)) is similar in form to traditional jet 

impingement correlations [13-16], namely that there is no dependence on Reynolds number once 

all correlations are normalized by the stagnation value.  

 

Figure 18: Comparison of the area-averaged Nusselt number correlations at H/D = 25 and Re = 596. 

3.3 OPTIMUM DISTANCE 

Interesting behavior is apparent when analyzing the optimum spacing as a function of the size of 

the heat source. This plot is provided in Figure 19 and reveals two distinct behaviors depending 

on the range of heat source area under consideration. The first is linear and ends around R/D = 5 
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where it abruptly transitions to a much higher optimum spacing that levels out as R/D becomes 

very large.  

 

Figure 19: Optimum distance between the heat source and nozzle based on size of the cooling target. Data is 

generated using Eq. (3.7). 

 

The reason for this can be observed in Figure 20 where the area-averaged Nusselt number 

is given for three different heater sizes (R/D = 4, 5, and 6). For all three, there appears to be two 

distinct optimum values. However, one of these (H/D < 6) is shown to be the dominant peak for 

small heat sources (R/D < 5), while the second peak begins to dominate the maximum 

performance for large heat sources (R/D > 5). At an approximate heat source size of R/D = 5, 

both of these peaks are nearly equal. It is important to note that Figure 19 and Figure 20 are both 

generated using the developed correlations (Eqs. (3.6) and (3.7)). In order to rule out an anomaly 

in these correlation equations, the actual experimental data was also analyzed in this way (Vb = 

8V).  
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Figure 20: Area-averaged Nusselt number as a function of H/D for three different sizes of the cooling target 

(R/D = 4, 5 and 6). 

 

The result is shown in Figure 21 where it is apparent that both the correlation and the 

comparable data exhibit the same characteristics. It is also important to note that this secondary 

optimum H/D is not observed unless lateral conduction is considered. This reinforces the notion 

that the effect of lateral conduction should be fully investigated before cooling optimization can 

occur. 
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Figure 21: Comparison of the correlation with the experimental data both with and without lateral 

conduction. 
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4.0  OSCILLATING FLOW THROUGH MICROCHANNELS 

The type of air mover that has been analyzed in this paper has the capability to overcome high 

back pressures while maintaining reasonably high flow rates. This makes it well suited to an 

application that utilizes microchannels. For cooling applications, however, using air in heated 

microchannels can lead to flow choking issues due to potentially drastic density changes within 

the channel. One option is to change the working fluid. Using a fluid such as water or a 

fluorocarbon-based fluid can mitigate the problem as well as provide a marked increase in 

cooling potential. 

4.1 THEORY 

  

However, the blower in this research is designed to work exclusively in air. Additionally, water 

will cause it to electrically short and fluorocarbon based fluids are often very expensive. A novel 

workaround to this problem is to use either one or a pair of blowers to create a back and forth 

oscillating flow (similar to an oscillating u-tube manometer). A simple illustration can be seen in 

Figure 22. 
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Figure 22: Generalized illustration of the potential oscillating flow system. 

  

 For the analysis to demonstrate the viability of this concept, a set of microchannels that 

were designed to be used in the water cooling of a computer chip will be used as a model (Figure 

23).  

 

 

   

 Parameter Value 

 Channel Height 0.787 mm 

 Channel Width 0.660 mm 

 Channel Length 30.0 mm 

 Number of Channels 36 

   

Figure 23: A photo of the set of microchannels and the corresponding dimensions. 

 



 41 

A key assumption that must be made is that, at steady state, the fluid that exits the 

microchannels will be cooled sufficiently such that all heat gained while inside the microchannel 

is dissipated. This can potentially be accomplished via small reservoirs of liquid on either side of 

the microchannel openings that have some sort of additional cooling accommodations. In a 

sense, this type of cooling method is akin to a heat pipe. The amount of additional cooling 

needed would be determined by the amount of temperature rise in the fluid over each half of the 

oscillation cycle.  

In addition to the microchannel dimensions, there are a number of other equally 

important parameters that have been given below in Table 2. For this analysis, water will be used 

as the working fluid. 

 

Table 2: Working fluid and operating parameters used in the oscillating flow heat transfer analysis. 

Parameter Symbol Value 

Fluid Density ρf 1000 kg/m3 

Specific Heat C 4183 J/kgK 

Fluid Conductivity kf 0.613 W/mK 

Dynamic Viscosity µ 855*10-6 Ns/m2 

Total Heat Q 65 W 

Volumetric Flow Rate 𝑉̇𝑜  0.12 L/min 

Fluid Oscillation 
Frequency 

ωf 0.7 Hz 

 

The volumetric flow rate and the oscillating frequency were determined via preliminary 

proof of concept experiments. In this experiment, a single piezoelectric blower was attached to a 
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¼ inch nylon tube. The other end of the tube was attached to the set of microchannels seen in 

Figure 23 with a tube of the same inner diameter connected to the other side. Both tubes were 

elevated in a U-shape. The blower was subjected to a square wave of the same frequency (ω) and 

voltage used in the impingement experiments (ω = 25.6 kHz and Vb = 9 V). The frequency of the 

square wave was varied to find a value that yielded the largest fluid movement. That value was 

found to be roughly 0.7 Hz, which corresponds to the frequency of fluid oscillation (ωf). To 

determine the volumetric flow rate (𝑉̇𝑜), the highest and lowest fluid points during the oscillation 

were determined and used to find the total volume displaced over one half cycle. This value can 

then be used to find the peak volumetric flow rate if a sinusoidal flow is assumed.  

 

 

 

Figure 24: General representation of the proof of concept setup to determine the flow rate and oscillation 

frequency of the water. 
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Let us first consider a small slice of fluid that travels through the microchannel an 

incremental distance (dx) for an incremental unit of time (dt). The amount of energy imparted on 

the fluid will be equivalent to the caloric energy gain of the fluid: 

 " ch f chq P dxdt dmC T A C Tdxρ= ∆ = ∆  (4.1) 

where q” is the heat flux added to the system, Pch is the perimeter of the channel, ρf is the fluid 

density, Ach is the surface area of the channel, C is the specific heat, and ∆T is the temperature 

change of the fluid. Solving for the change in temperature and integrating with respect to time, 

we find: 

 ( ) " ch

f ch

q Pt t
A C

T
ρ

=∆  (4.2) 

 This gives us an expected outcome suggesting that the rise in temperature of the fluid 

linearly increases in relation to the time the fluid is subjected to the heat source (assuming all 

parameters remain constant). At this point the only thing that needs to be determined is the 

amount of time that the observed piece of fluid spends in the microchannel. It is apparent that 

Eq. (4.2) is applicable to any piece of fluid in the channel regardless of starting location. This 

means that the time the slice of fluid spends in an unheated state needs to be accounted for as 

well. Therefore, determining the initial location of the fluid slice is the next requirement. This 

can be done by integrating the velocity equation spatially from the initial location (xo) to some 

other x location and temporally from t = 0 to some time t. The velocity (vo) can also be 

effectively approximated as a sinusoidal oscillation. 

 ( ) ( )
0 0o

x t t

o f
x

dx v t dt v sin t dtω= =∫ ∫ ∫  (4.3) 

Integrating and solving for initial location, we find: 
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 ( )( )1o
o f

f

vx x cos tω
ω

= − −  (4.4) 

 Now that the initial location can be found, it can be used to determine the amount of time 

the packet of fluid spends not being heated before entering the microchannel. The unheated time 

(tu) can be found using the same tactic that was used to find the initial location. 

 ( ) ( )
0

0 0

u u

o

t t

o f
x

dx v t dt v sin t dtω= =∫ ∫ ∫  (4.5) 

Integrating and solving for the unheated temperature (tu): 

 1 1 o f
u

f o

x
t acos

v
ω

ω
 

= + 
 

 (4.6) 

This is only applicable if the packet of fluid starts outside of the microchannel (i.e. if, for 

the initial first half of the cycle, xo is negative). In the case of Eq. (4.6) used when the initial 

location is inside the channel, the resultant tu will have crossed over into the imaginary region. 

This restriction shows that there is a limitation to the operating parameters when considering the 

length of the channel. This restriction can be seen as follows based off the channel length (Lm): 

 2m f

o

L
v
ω

≤   (4.7) 

If this condition is not met, it means that at least some amount of the fluid never travels 

outside of the channel. As this means that part of the fluid would continually be forced to receive 

heat, it becomes apparent how integral it would be to keep this condition met. For the current 

microchannel tested under the present operating conditions, Eq. (4.7) is found to be 0.822 which 

satisfies the condition. 
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4.2 LOGIC SYSTEM AND RESULTS 

 It is now possible to use Eqs. (4.4) and (4.6) to determine the amount of time a packet of 

fluid spends in the microchannel. Due to the reciprocating nature of the flow, the first three cycle 

halves will have to be determined separately. After the second and third oscillation cycle halves 

are found, they can be repeated to replicate any cycle. The first half cycle is shown in Figure 25. 

 

 

Figure 25: Logic flow chart for the determining the heated time for the first half cycle in oscillating flow. 

 

 This yields the fluid temperature progression through the channel found in Figure 26. As 

mentioned previously, this progression is unique to the first half cycle. The fluid temperature 

change starts as a constant amount at zero before being pushed out by the initial flow. Shortly 

after the entirety of the initial fluid is expelled from the channel, the temperature profile becomes 

linear (Figure 26(d)). This is what one could expect as a typical temperature profile for a 
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constant heat flux condition. Once the end of the first half of the cycle is approached, the 

temperature profile becomes curved as the fluid begins to slow down dramatically.  

 

Figure 26: Fluid temperature distribution within the microchannel at t*ωf = (a) 0.08, (b) 0.15, (c) 0.23, (d) 

0.30, (e) 0.38, and (f) 0.45. 

 

 The temperature progression for the end of the first complete cycle can be seen in Figure 

27. Due to the fact that it operates with the flow moving in the reverse direction, the logic system 

is more complex. 
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Figure 27: Logic flow chart for the determining the heated time for the second half cycle in oscillating flow. 

 

 The second half of the first cycle will yield the first indication of the maximum 

temperature that should be expected. Looking at Figure 28 (c), it is apparent that the maximum 

fluid temperature that occurs is roughly 17.5 K above inlet temperature. As in Figure 26, once 

the fluid that was inside the channel at the beginning of the half cycle is expelled, the 

temperature profile becomes simply linear with the slowing of the fluid producing a curved 

profile (see Figure 28(d)-(f)).  
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Figure 28: Fluid temperature distribution within the microchannel at t*ωf = (a) 0.58, (b) 0.65, (c) 0.73, (d) 

0.80, (e) 0.88, and (f) 0.95. 

 

 For the third half cycle, the system used to find the heated time of the fluid (Figure 29) is 

very similar to that of the first half cycle. The similarities continue with the temperature profile 

of the fluid (seen in Figure 30) being essentially the mirror image of the temperature profile of 

the previous half cycle. This indicates that continuing the temperature profile through more 

oscillation cycles can be attained by mimicking the second and third half cycles. However, as 
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one would expect for this case, a new result will not be found. More specifically, after the initial 

half cycle, every other half cycle will be exactly the same as the previous one. 

 

 

Figure 29: Logic flow chart for the determining the heated time for the third half cycle in oscillating flow. 
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Figure 30: Fluid temperature distribution within the microchannel at t*ωf = (a) 1.08, (b) 1.15, (c) 1.23, (d) 

1.30, (e) 1.38, and (f) 1.45. 

 

 As one would expect from flow in a heated channel, Figure 31 shows that the ends of the 

microchannel experience both the maximum and minimum temperature change. This occurs, 

expectedly, at alternating half cycles. This also means that the ends of the microchannel would 

experience the highest temperature variation. Note that the first half cycle displays a different 

temperature profile than the rest due to the difference in initial temperature shown in Figure 26. 
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4.3 ANALYSIS 

 

Figure 31: The temperature change progression at the ends of the channel over the first cycle and a half of 

oscillation. 

 

 Looking at Figure 32, the maximum temperature change seen further inside the channels 

is slightly less as well as no longer approaching zero. The two peaks in temperature change also 

start to become equal where they are exactly the same when observing the center of the channel.  
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Figure 32: The temperature change progression at two intermediate points in the channel over the first cycle 

and a half of oscillation. 

 

Although the maximum temperature change occurs at the ends of the channel, it can be 

seen from Figure 33 that the highest average temperature change occurs at the center of the 

channel with the ends having the lowest average temperature change. This is not unexpected due 

to the fact that, although the ends see the largest temperature change, the temperature change 

spikes only occur for a short period of time. There is also the fact that the ends experience a zero 

temperature change for half of a full cycle. This amounts to an average temperature change over 

the entire channel of roughly 4.3 K. 
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Figure 33: Cycle averaged temperature change of the fluid over the length of the channel. 

 

Despite the relatively low average temperature change, it would be important to note that 

the average fluid temperature change that would occur lower in a constant flow situation. For 

example, observing the constant flow like situation in Figure 26(d), the average temperature 

change would amount to roughly 2.5 K which is 42% smaller than that found in a constant flow 

situation. This, understandably, shows that there are drawbacks to this type of cooling. Not only 

would one have to ensure that the fluid is adequately cooled once it exits the microchannel; the 

effective cooling performance is also less. However, this type of cooling limits the amount of 

fluid that is required to operate which can drastically reduce overhead costs if a fluid other than 

water is used (which is typical in electronics cooling applications). Further, this type of system 

should also yield a more consistent surface temperature due to the fluid average temperature 

change being more consistent. More specifically, the difference between the lowest temperature 

and the highest temperature of the fluid over the channel is less than that found in a constant flow 
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situation. This would make this type of cooling more useful in sensitive temperature situations 

where perhaps fatigue or performance was affected by temperature differences along the surface.  
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5.0  CONCLUSION AND FUTURE WORK 

The heat transfer characteristics have been determined for a novel piezoelectric blower 

under impingement flow conditions. It was found that, for this blower, the heat transfer 

coefficient was dependent on distance to the target and voltage input. Correlations for the 

stagnation and area-averaged Nusselt number were developed and compared to traditional and 

synthetic jet impingement studies. This was done for a voltage input of 7, 8 and 9 volts at an H/D 

from 1 to 59. For the stagnation region, it was found that, although there was no perfect 

comparison between the blower and other impingement jet configurations, it was much more 

consistent with a continuous rather than a synthetic jet. 

It was found that the maximum stagnation point Nusselt number occurs when the blower 

is closest to the heat source, with the performance exponentially decreasing as H/D increases. 

The near-plate performance can largely be explained by considering the lateral conduction in the 

data analysis. In other words, large amounts of heat are conducting towards the stagnation point 

due to the large temperature gradient. This finding asserts that, although one can limit the lateral 

conduction, the influence is still apparent and can be a significant influence under certain 

circumstances, especially for low flow situations. The voltage input was found to have limited 

effect on the Reynolds number, and therefore heat transfer capabilities, at the range considered in 

this work. 
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An optimum distance between the nozzle and heat source was determined based on size 

of the heater. A heat source size of roughly 5 nozzle diameters in size was seen to be a transition 

point between small and large optimal H/D values. This means that the general notion of 

increasing the H/D in direct relation to the size of the heated surface is not entirely applicable 

with the blower analyzed in this thesis. 

The blower was also analyzed as a driver of heat transfer via oscillating flow in a 

microchannel. It was found that the ends of the microchannel experience the highest fluid 

temperature change and the lowest cycle average temperature change. The temperature change 

averaged over the entire channel is higher than that found in a continuous flow of the same 

magnitude, but the variation in average fluid temperature along the length of the channel was 

more uniform. This indicates that, although it does not result in as much cooling potential, 

oscillating flow cooling may be more beneficial for applications where the surface temperature 

was more sensitive to variations. 

There is still quite a bit that can be analyzed with regards to this piezoelectric blower. 

Impingement flow is a very important aspect of cooling and was shown to be effective with this 

blower, however there are many more orientations and situations that could be addressed. For 

example, as this blower was created in large part to be used in low profile situations where space 

is limited, it would be prudent to look at the cooling effectiveness in that condition. It would also 

be important to take the theoretical analysis of oscillatory flow heat transfer and verify it with 

experimental work. There are also other situations that could make good use of the blower’s high 

flow rate and pressure capabilities. Essentially, the range of possibilities has yet to be fully 

realized and their remains a wealth of information that one could gather from these novel 

piezoelectric blowers. 
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APPENDIX A 

COMPARISON OF BLOWER VOLTAGE INPUTS 

The compilation of this thesis entailed multiple snapshots of the temperature over a heated plate. 

The following figures are the temperature maps and resulting convection heat transfer maps once 

every mode of heat transfer is taken into account. The two blower voltage inputs are Vb = 7 V 

and 9 V in order to facilitate a visual comparison of the difference when more flow is delivered.  

A.1 TEMPERATURE MAPS 

As one would expect, the temperature map is a vital component of determining the convection 

heat transfer coefficient and thus resulting cooling performance. The following is a comparison 

at different H/D levels in order to visualize the difference between the effect each blower voltage 

input has.  
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(a) 

 

(b) 

Figure 34: Temperature map of the Vb = (a) 7 V and (b) 9 V for H/D = 3. 
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(a) 

 

(b) 

Figure 35: Temperature map of the Vb = (a) 7 V and (b) 9 V for H/D = 7. 
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(a) 

 

(b) 

Figure 36: Temperature map of the Vb = (a) 7 V and (b) 9 V for H/D = 11. 
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(a) 

 

(b) 

Figure 37: Temperature map of the Vb = (a) 7 V and (b) 9 V for H/D = 15. 
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(a) 

 

(b) 

Figure 38: Temperature map of the Vb = (a) 7 V and (b) 9 V for H/D = 25. 
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A.2 HEAT TRANSFER COEFFICIENT MAP 

As discussed in the thesis, the temperature map is used to determine a map of the convection heat 

transfer coefficient. It can be observed that the color profile is much narrower than the 

temperature map. This can be attributed in part to the lateral conduction in the thin film. Also 

note that the colorbar limit was increased on the 9V case due to the much larger heat transfer 

coefficient in the low H/D range. 
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(a) 

 

(b) 

Figure 39: Convection heat transfer map of the Vb = (a) 7 V and (b) 9 V for H/D = 3. 
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(a) 

 

(b) 

Figure 40: Convection heat transfer map of the Vb = (a) 7 V and (b) 9 V for H/D = 7. 
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(a) 

 

(b) 

Figure 41: Convection heat transfer map of the Vb = (a) 7 V and (b) 9 V for H/D = 11. 
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(a) 

 

(b) 

Figure 42: Convection heat transfer map of the Vb = (a) 7 V and (b) 9 V for H/D = 15. 

 



 68 

 

(a) 

 

(b) 

Figure 43: Convection heat transfer map of the Vb = (a) 7 V and (b) 9 V for H/D = 25. 
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APPENDIX B 

BREAKDOWN OF THE UNCERTAINTY ANALYSIS 

For all uncertainty, the repeatability uncertainty was determined using a simple t-test of which 

the form is:  

  0.95
r

t S
u

N
   (7.1) 

where (u) is the uncertainty, (t0.95) is the “t” value based on the sample size at 95% confidence, 

(S) is the standard deviation and (N) is the number of samples. Where applicable, the precision 

and repeatability uncertainty were combined using the following equation: 

  2 2
r pu u u    (7.2) 

 This yields the following uncertainties for each factor taken into account and can be seen 

in Table 3 (Note: this is a representative sample based on a single H/D = 11 at the stagnation 

point): 
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Table 3: List of the uncertainty breakdown of various variables that were captured for this analysis. 

Factor Precision 
Uncertainty 

Repeatability 
Uncertainty 

N Total Uncertainty Units Percentage 

A 0.00085 - - 0.00085 m2 1.5% 
Is 0.15 0.062 200 0.216 Amp 0.7% 
Vs 0.0015 0.00008 200 0.00158 Volt 0.3% 
Ts 1 0.17 9 1.17 K 3.7% 
T∞ 9.5x10-9 0.0043 120 0.0043 K 0.001% 
ka 0.0005 - - 0.0005 W/mK 1.9% 
hnc 0.55 - - 0.55 W/m2K 8.0% 
D 0.00005 - - 0.00005 m 5.0% 
  

Once those values were determined, the combined uncertainty for temperature change, 

local heat generation, and radiation heat loss were found using the following equations: 

 
2 2

sT T T
s

T Tu u u
T T∞∆

∞

   ∂∆ ∂∆
= +   ∂ ∂  

 (7.3) 
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 (7.4) 
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 (7.5) 

which, ends up being 1.17 K, 42 W/m2, and 19 W/m2 respectively. 

The lateral conduction uncertainty was determined based on the surface temperature 

uncertainties and can be determined by: 
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        ∂ ∂ ∂ ∂ ∂
     = + + + +           ∂ ∂ ∂ ∂ ∂        

 (7.6) 

which can be found to be 47 W/m2 at the stagnation point. This same basic idea continues as the 

heat transfer coefficient uncertainty is determined by: 
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2 2 22 2
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 (7.7) 

which yields an uncertainty of 4.0 W/m2K.  

 Again, this is continued with the Nusselt number which gives the following equation: 

 
22 2

ah D ku
a

Nu u u u
h D

Nu u Nu
k

N  ∂ ∂ ∂   = + +     ∂ ∂ ∂     
 (7.8) 

which ultimately yields a stagnation Nusselt number uncertainty of 0.3 or 6.6%. 
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