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CHARACTERIZATION OF ANTERIOR CEREBRAL ARTERY BLOOD

FLOW IN RESTING STATE BY USING TRANSCRANIAL DOPPLER

RECORDINGS

Hanrui Huang, M.S.

University of Pittsburgh, 2013

Transcranial Doppler (TCD) recordings are used to monitor cerebral blood flow in main

cerebral arteries. The resting state is usually characterized by using the mean velocity or

the maximum Doppler shift frequency (an envelope signal) by insonating the middle cerebral

arteries (MCAs). In this study, we characterized the cerebral blood flow in the anterior cere-

bral arteries (ACAs). We analyzed both the envelope signals and the raw signals obtained

from bilateral insonation. We recruited 20 healthy subjects and conducted the data acqui-

sition for 15 minutes. Features were extracted from the time domain, the frequency domain

and the time-frequency domain. The results showed that gender-based statistical difference

exists in the frequency domain and the time-frequency domain. However, no handedness

effect was found. In the time domain, the information-theoretic features showed that the

mutual dependence is higher in raw signals than in envelope signals. Finally, we concluded

that insonating the ACA will serve as a complement of the MCA studies. Additionally, the

investigation of the raw signals provided us with additional information that is not other-

wise available from the envelope signals. The direct TCD raw-data utilization is therefore

validated as a valuable resting-state characterization method.

Keywords: Transcrannial Doppler, anterior cerebral artery, resting-state characteristics.
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1.0 INTRODUCTION

1.1 BRAIN-COMPUTER INTERFACE AS AN ACCESS TECHNOLOGY

In everyday life, we use our vocal language, body language, gestures and facial expressions to

enable communication with other people. However, individuals with severe physical disabil-

ities are not able to live independent lives as they often lack alternative means of interacting

with the surrounding world [1]. Therefore, finding effective and viable communication chan-

nels for them to overcome the communication barrier seems important and meaningful [2].

Hence, a variety of access technologies came into being and are being continuously researched

and updated (e.g., [3]). Generally speaking, the idea of access technologies is to translate

the intentions of users with physical disabilities into functional interactions such as commu-

nication and environmental control [2]. We have seen the use of mechanical devices to help

people who suffer from physical impairments but still retain some ability of volitional body

control. However, mechanical devices become less useful for patients who suffer from severe

paralysis such as locked-in syndrome, a condition in which patients are completely paralyzed

but fully aware [4]. For this population, we have to bring in new access technologies to en-

able their communication channels, and brain-computer interfaces (BCI) have demonstrated

a great potential to break the silence [2].

The BCI, as an example of an access technology application, consists of two parts: access

pathway and signal processing unit. An access pathway is defined as the actual sensors or

input devices by which an expression of functional intent is transduced into an electrical

signal [1]. By applying signal processing and pattern recognition techniques to these signals,

we are able to build an interface as an electronic communication aid [5].
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As mentioned above, a brain-computer interface (BCI) or brain-machine interface (BMI)

allows the control of external devices using brain activities[2]. Direct communication between

the outside world and patients who are suffering from locked-in syndrome can be achieved by

processing available brain signals in real time through BCIs. Previously, functional imaging

modalities employed for BCIs include electroencephalography (EEG), functional magnetic

resonance imaging (fMRI) and near-infrared spectroscopy (NIRS) [6], [7]. EEG directly mea-

sures the neural activity, while fMRI and NIRS measure the blood hemoglobin concentration

change associated with neural activity [8]. However, each of them has limitations that will

be discussed later. Besides, nuclear imaging techniques such as photon emission computed

tomography and positron emission tomography are also available; Nevertheless, researchers

do not prefer these methods considering the measurements are difficult to replicate [9].

These noninvasive methods, unlike the invasive methods which inevitably carry risks

associated with surgical implantation, will enjoy more acceptance, and that is why the imag-

ing modalities have drawn so much attention. Therefore, exploring possibilities of building

noninvasive but inexpensive BCIs is of great interest.

1.2 TRANSCRANIAL DOPPLER AS AN ACCESS PATHWAY

Various imaging techniques, such as functional magnetic resonance imaging, positron emis-

sion tomography, and single photon emission computed tomography, have been used to study

brain functions [10], [11], [12]. In the past decades, the regional cerebral blood flow has been

shown to be highly dependent on brain metabolism due to the need for O2 and glucose

[13]. Different from those typical imaging techniques, Transcranial Doppler (TCD), first

introduced by Aaslid, Markwalder, and Nornes [14], allows for non-invasive investigation of

cerebral blood flow with relatively high temporal resolution [13]. Researchers have taken

advantage of the highly coupled relationship between the cerebral blood flow and brain ac-

tivities to investigate human cognitive process [15]. Previous publications have successfully

discussed the effect of gender (e.g., [16], [17]) and age (e.g., [18]) on the cerebral blood flow

velocity using TCD. There are several major advantages of TCD. First, it is inexpensive to
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acquire in comparison to other methods such as magnetic resonance imaging systems [12].

Second, TCD is relatively simple to operate meaning that experimental data acquisition

or clinic diagnosis of neurological disorders such as stroke (e.g., [19]) is easily achievable.

Therefore, TCD has been seen as a promising and powerful tool in monitoring of brain ac-

tivities. Recently, functional TCD monitoring was proposed as an innovative way of building

a brain-computer interface [20], [21], which increases our freedom to choose among access

pathways (see Figure 1.1).

Figure 1.1: TCD as an access pathway.

1.3 TCD-BASED BRAIN-COMPUTER INTERFACE

TCD-based BCI, also a blood flow sensitive technique, is to some degree similar to fMRI and

NIRS, which means they share the same drawbacks such as low spacial resolution. However,

we are still interested in this technique because it is inexpensive, easy to set up and portable.

Therefore we are trying to build a TCD-based BCI which can at least distinguish resting

states and task states and send corresponding feedback. TCD itself has high temporal

resolution in terms of the measurement of blood flow velocity, but it is possible that there

exists some lag before detecting any observable CBFV increase when stimuli are applied,

and we will consider this in our protocol design.
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The traditional methods have shortcomings in multiple aspects. For example, the most

commonly used method, EEG, is susceptible to electrical interference from environmental

sources as well as artifacts such as electrooculography and electromyography [1]. Also,

proficient use of EEG-based BCIs often involves several training sessions [20]. fMRI and

MEG are too expensive and NIRS is premature. Given these limitations, we believe TCD is

a new solution to brain computer interface.

1.4 COMPARISON OF DIFFERENT BRAIN-COMPUTER INTERFACE

MODALITIES

As discussed, the focus of this research is on TCD. This section makes a brief comparison

between TCD-based BCI and other types of BCI to demonstrate the feasibility of TCD.

Based on different methodological approaches, noninvasive BCI techniques exhibit dif-

ferent performances. However, the setup price range should also be taken into consideration.

Assessing these modalities from a macro perspective, we regard TCD-based BCI as a promis-

ing imaging-based BCI candidate.

Compared with other BCI techniques, TCD-based BCI has decent temporal resolution

(tens of milliseconds) but low spacial resolution because the perfusion can only be detected

through large blood vessels [9]. Figure 1.2 is a summary of the resolution of different BCIs.

Generally, the invasive techniques have better resolution both spatially and temporally,

but noninvasive techniques also have many comparative advantages. Table 1.1 compares

different imaging-based BCI and lists their advantages and disadvantages.

1.5 RESEARCH OBJECTIVE

We are making our way towards building a brain-computer interface, and our current work

seeks to solidify the foundation of the long term goal. In order to detect whether a cognitive

activation exists, we need to find a baseline to be compared with, and hence we consider the

resting state.
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Figure 1.2: A schematic overview of the scale of spatial and temporal resolution of mea-

surement methods used for BCI. Measurement methods are electroencephalography (EEG),

magnetoencephalography (MEG), near-infrared spectroscopy (NIRS), functional magnetic

resonance imaging (fMRI); adapted from Gerven [8].

The resting state describes brain activities without cognitive stimulus [22]. Therefore, the

resting-state CBF information plays a key role in studying the CBF involving cognitive tasks.

To properly characterize the resting-state cerebral blood flow, we are aiming to investigate

features in multiple domains due to the complexity of human brain [23]. However, previous

TCD studies only considered the so-called envelope signal (i.e., the peak values in the TCD
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Table 1.1: Comparison of different imaging-based BCI; adapted from Min, Marzelli and Yoo

[9].

Type Cost Advantages Disadvantages

EEG $5, 000 Good portability and affordability Imperfection in spatial localization,
marginal spatial resolution

Excellent temporal resolution applica-
ble for real-time BCIs

Involvement of inconvenient proce-
dures during the placement of elec-
trodes

Good availability of paradigms and
computational algorithms for BCI ap-
plications compared with other modal-
ities owing to a relatively long develop-
mental history

Difficulties in maintaining good elec-
trodescalp contact and achieving long-
term use of electrodes

MEG $2− 3 million Excellent temporal resolution applica-
ble for real-time BCIs

Limited portability

Superior spatial resolution and func-
tional

High set-up and maintenance costs

Requires dedicated electromagnetic
shielding

fMRI > $1 million Excellent spatial resolution Limited temporal resolution associated
with the inherent hemodynamic delay

Data acquisition covering the entire
brain volume

Limited portability

Excellent source localization – advan-
tageous for identification of function-
specific loci

High set-up and maintenance costs

Safety precaution required for ferro-
magnetic materials

Requires dedicated electromagnetic
shielding

NIRS > $20, 000 Good portability and affordability Limited temporal resolution associated
with the inherent hemodynamic delay

Metabolic specificity depending on in-
frared (IR) spectrum response

IR light occlusion by hair

Uses corrosive-free sensors (e.g. op-
todes)

Optode size (requires spaces for
both emitting and detecting IR light
sources)

fTCD $5, 000 Good portability Difficulties in transcranial delivery of
the ultrasound

Ability to characterize the state of
brain perfusion

Difficulties in adjustment of insonation
path/focus

Potential to actively modulate
spatially-localized neuronal activity as
BCI

Currently constrained to targeting
large vessels

spectrum) [24], [25], [26]. By considering only the envelope signals, valuable information

about cerebral blood flow characteristics may be lost. It is expected that the raw data, used
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in calculation of the envelope signals, contains more comprehensive information about the

resting-state characteristics.

In this research, we wish to investigate the significance of studying both the raw and the

envelope signals. Secondly, following the previous study of the middle cerebral artery resting-

state characteristics [27], my thesis presents a comparative study of cerebral blood flow in the

anterior cerebral arteries using both the envelope signal and the raw data. Thirdly, we wish

to find out whether there exist any gender effect or handedness effect. By completing these

research objectives, we will be able to better understand the resting-state characteristics.

The thesis is outlined as follows: Chapter 2 provides the background knowledge regarding

TCD-based BCI. Chapter 3 describes the data collection procedure. Chapter 4 introduces

the basics of the techniques that we used for feature extraction. The extracted features are

presented in chapter 5 as the research results. Chapter 6 discusses these results and finally,

chapter 7 summarizes our findings and suggests the possible direction of future work.
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2.0 BACKGROUND

2.1 ANTERIOR CEREBRAL ARTERY

There are three major cerebral arteries: middle cerebral artery (MCA), anterior cerebral

artery (ACA) and posterior cerebral artery (PCA) [12]. In many publications assessing

cognitive tasks using fTCD (e.g., [28], [29], [30]), the MCA is mostly insonated as over

80% blood delivery to the brain is achieved through MCA [12]. Also, cerebral blood flow

through MCA is relatively easy to detect with the ultrasound probe due to the anatomical

structure [31]. However, the ACA (60-75mm), which lies deeper than the MCA (35-60mm)

[32], delivers blood to frontal lobes and superior medial parietal lobes [33]. As these regions

are involved in receptive language and episodic memories [34], [35], [36], insonating ACA

data appears to be viable as a complemental method to using solely MCA in understanding

the resting-state characteristics of cerebral blood flow.

Figure 2.1 shows the approximate positions of the main cerebral artery anatomy and

where the TCD probe can be placed to insonate these arteries.

2.2 MODELING THE CEREBRAL BLOOD FLOW

X In our study, the CBF velocity was measured using TCD based on an idealized CBF model

shown in Figure 2.2. The velocity depends on the radius and reaches the maximum at the

center or r = 0. The mathematical expression is [13]:

v(r) = K(R2
0 − r2) (2.1)
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Figure 2.1: TCD insonation: The middle (MCA), anterior (ACA with A1 and A2), and

posterior (PCA with P1 and P2) cerebral arteries, the basilar arteries (BA) and vertebral

arteries (VA); adapted from Stroobant and Vingerhoets [25].

Figure 2.2: A model of idealized CBF; adapted from Deppe [13].

where K is assumed to be only a function of the pressure gradient and R0 is the radius of

the vessel. Therefore, if we define the mean velocity as [13]:

vmean =
1

A

∫
A

v(r)dA (2.2)

9



where A is the cross-section area which equals πR2
0, we can easily show that vmax = 2vmean,

and this vmax is usually called an envelope signal that is a part of this study [13], [12]. Figure

2.3 shows a blood vessel being insonated by a transducer. The blood vessel is modeled as

a cylinder. We assume that: 1) the diameter does not change; 2) the insonnation angle θ

describes the angle between the axes of the cylinder and the transducer.

Figure 2.3: A blood vessel modeled as a cylinder; adapted from Azhari [37].

2.3 TRANSCRANIAL DOPPLER SONOGRAPHY

The cerebral blood flow velocity (CBFV) can be measured using transducers that produce

and receive ultrasound. Based on Doppler effect, the spectral analysis provides an algorithm

to calculate the CBFV.

2.3.1 Doppler effect

The Doppler effect is a physical phenomenon that describes the increase or decrease in

frequencies when the propagating waves are reflected by moving objects. The typical example

from daily life is that when a vehicle passes us by, the pitch of the blowing horn increases;

when it travels away, the pitch goes down. People take advantage of this phenomenon to

measure the blood flow velocity. Figure 2.4 shows a schematic diagram of the principle. An
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object (erythrocyte) is moving in one direction in the vessel. The probe emits a sine wave

towards the object and then receives the reflected wave for frequency analysis.

Figure 2.4: Insonation of a blood vessel at an angle θ; adapted from Deppe [13].

The relationship between the velocity and the frequency shift is quantified by the follow-

ing relationship [37]:

v =
c∆f

2cosθf0

(2.3)

where f0 denotes the frequency of the emitted pulsed signal, c denotes the ultrasonic traveling

speed (≈ 1500 m/s in brain tissue) and θ is the insonation angle. By measuring the frequency

shift, we will be able to estimate the velocity of the moving blood cells.

2.3.2 Doppler frequency shift estimation

One clinical requirement for the measurement is the information of the spacial location of the

insonated vessel. Therefore, the transducer generates and sends pulse wave signals instead

of continuous sinusoids. The depth can thus be calculated by measuring the time elapsed

between sending one pulse and receiving its echo. On the other hand, the pulses are sent at

a frequency that also represents the sampling frequency of the measurement. Therefore, it is
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important to make the pulse repetition frequency larger than twice the maximum frequency

of the desired signal. In this case, the frequency of the signal we consider corresponds to the

Doppler frequency shift.

There are two ways of generating this signal. The first way is called quadrature demod-

ulation that is achieved by mixing two signals and passing through low-pass filters. In this

way, the received signal was sent into two channels simultaneously. The first one is multi-

plied by a cosine function at frequency f0, and the other one is multiplied by a negative sine

function at frequency f0. The two obtained signals then pass through two low-pass filters

respectively. Finally, they are considered as the real part and the imaginary part of the

desired Doppler signal Q(t) from received signal s(t) (see Figure 2.5).

Figure 2.5: Composing Q(t) using quadrature demodulation; adapted from Azhari [37].

Since s(t) is a windowed cosine function, it can be described as w(t)cos(2πft) where w(t)

is a window function. Therefore, absent the low-pass filter:

s′(t) = w(t)cos(2πft)[cos(2πf0 · t)− jsin(2πf0 · t)] (2.4)

Using the Euler’s formula, we obtain:

s′(t) = w(t)[ej·2πt(f−f0) + e−j·2πt(f+f0)] (2.5)
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We can see that equation 2.5 represents two frequency components in the square brackets.

Since f ≈ f0, by adding a low-pass filter, we end up keeping the first term at frequency

(f − f0) which is exactly the Doppler shift.

The second way involves the Hilbert transformation which is defined as [38]:

H{S(t)} =
1

π

∫ +∞

−∞

S(t)

(t− τ)
dτ (2.6)

This transformation rotates the phase of the signal by 90 or -90 degrees depending on the

Figure 2.6: Composing Q(t) using the Hilbert transformation; adapted from Azhari [37].

sign. Using Equation 2.6 and following structure shown in Figure 2.6, we will be able to

construct the desired Doppler signal Q(t) [37]. Using either method, we can find Q(t) whose

frequency component is the Doppler frequency shift that we are looking for.

Q(t) = w(t)ej·2πt(f−f0) (2.7)

2.3.3 Velocity measurement

By plugging Equation 2.3 into Equation 2.7, we obtain the mathematical expression for Q(t)

in terms of the velocity v:

Q(t) = w(t)ej·2πt(cosθf0
2v
c ) (2.8)
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In Figure 2.4, only one particle was shown for demonstration. However, when insonating the

cerebral artery, we will detect many reflections by a large number of particles. Therefore,

the detected signal consists of multiple frequencies and can be expressed as [13], [37],:

Q(t) =
∑
i

ai · qi(fi, t) (2.9)

where ai is the amplitude of a sinusoidal function qi. qi represents the sinusoidal signals

reflected by different moving particles. Therefore, each qi contains a different frequency

component.

We noticed that Equation 2.9 is in the form of Fourier series, and the Fourier transform

will return the frequency components, i.e. the velocity of the blood cells. A TCD device

calculates the ai by Fast Fourier Transform (FFT) within a time period, selects the maximum

value, and then displays the results in a spectrum.

2.3.4 Using relative velocity

For one single pulse, we collected many frequencies, i.e. velocities, reflected by particles in

the blood vessel. Therefore, the intensity-weighted mean velocity which is defined as the

CBFV in 2.2 can be approximated using the mean frequency shift. The mean frequency

shift ∆f = f − f0 is defined as [39]:

∆fmean =

∑
i

ai∆fi∑
i

ai
(2.10)

This definition provides us a way to evaluate the overall frequency shifts due to the super-

position of different blood cells.

2.3.5 Raw signal and envelope signal

In our study, the raw signal Q(t) given in equation 2.7 was exported and considered. Figure

2.7 gives an example of the raw signal. As a comparison, figure 2.8 gives an example of the

corresponding four periods of the envelope signal.
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Figure 2.7: An example of Q(t) exported from participant’s R-TCD channel.
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Figure 2.8: An example of an envelope signal calculated based on Q(t).
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3.0 PROTOCOL DESIGN AND DATA ACQUISITION

This chapter includes two aspects of the protocol design. The goal is to collect data to obtain

sufficient information to characterize resting-state ACA blood flow.

3.1 SUBJECTS

The cerebral blood flow velocity data was collected from 20 healthy voluntary subjects, 9

males and 11 females. The subjects were first requested to read through and sign the consent

form that has been approved by the University of Pittsburgh Institutional Review Board.

None of the participants had a history of heart murmurs, strokes, concussions, migraines or

any other brain or neurological conditions. Basic anthropometric information including age,

height, and weight was also collected. Table 3.1 summarizes the demographic information

of the consenting participants.

Table 3.1: Participants’ demographic information.

Distribution Male Female Overall

Age 22.3 ± 1.64 years old 22.0 ± 2.00 years old 22.1 ± 1.86 years old

Height 180 ± 7.26 cm 163 ± 5.39 cm 171 ± 10.1 cm

Weight 91.6 ± 29.3 kg 52.6 ± 5.89 kg 68.9 ± 27.3 kg

The handedness of each participant was assessed using the Edinburgh Handedness In-

ventory [40] before data acquisition, and the result was scored based on the formula below:
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Handedness Score =

N∑
i=1

X(i, R)−
N∑
i=1

X(i, L)

N∑
i=1

X(i, R) +
N∑
i=1

X(i, L)

(3.1)

where X(i, L/R) is evaluated as either 1 (preferred) or 2 (dominant) for the left (right) hand

doing certain activities. The subjects’ scores are summarized in Table 3.2.

Table 3.2: Participants’ handedness distribution.

Right-handed Left-handed Bidextrous

Number of subjects 16 3 1

Gender 8 males 2 females 1 female

Average score 64 -63 0

3.2 PROCEDURE

Bilateral cerebral blood flow in the ACA was measured using a SONARA TCD system

(CareFusion, San Diego, CA, USA) with two 2 MHz transducers placed on the transtem-

poral window through which the ultrasound can penetrate the skull and reach the arteries

[12]. Since the ACA and the MCA are anatomically close to each other [31], the signal was

obtained by slightly rotating the probes after the MCA signal was obtained (see Figure 3.4

and 3.5). This adjustment could be nontrivial, but the blood flow from two arteries is easily

distinguishable. The direction of the blood flow in the ACA is opposite to the blood flow

in the MCA [24]. The depth of the ACA is about 10-15mm deeper than the MCA, which

also serves as an indicator that the ACA has been successfully insonated. The TCD system

interface displays a time-frequency representation of the envelope signal (see figure 3.2). The

intensity of the detected velocity were represented according to the color bar.
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Figure 3.1: An example of a MCA measurement display on TCD. The MCA is usually

detected before the ACA.

Figure 3.2: An example of a ACA measurement display on TCD.
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Figure 3.3: A bilateral insonation setup; adapted from Deppe [13].

The data acquisition (see Figure 3.3) lasted for 15 minutes for each participant. The

participants were requested to keep quiet and as thought-free as possible during this process.

The probes were fixed using an elastic headband to around 5 cm in front of the ears, above the

zygomatic arch [41] (see Figure 3.4). The specific insonation location may vary depending

Figure 3.4: MCA insonation; adapted from Deppe [13].

on the signal intensity obtained by the TCD system from different subjects. The end-tidal

carbon dioxide was monitored throughout the data acquisition using the BCI Capnocheck
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Figure 3.5: Gently rotate the probe when the MCA is detected to obtain the ACA; adapted

from Deppe [13].

Sleep (Smiths Medical PM, Inc. Waukesha, Wisconsin, USA). The subjects were also fitted

with sensors to record the electrocardiogram, respiration rate, skin conductance and head

movement during the recordings. These sensors are part of a multisystem physiological

data monitoring system made by Nexus-X (Mindmedia, Netherlands). Participants also

completed some additional tasks afterwards, which is not part of the current study.The

raw data was extracted as audio files with a sampling frequency of 44100 Hz. They were

downsampled by a factor of 5 to speed up the computation since the TCD system uses a

low-pass filter which filters out the frequency components above the maximum scale value

that we configured in advance.
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4.0 FEATURE EXTRACTION

To carry out the comparative analysis, we considered a range of features using classical and

modern analysis tools.

4.1 STATISTICAL FEATURE

Three basic parameters widely used in statistics: standard deviation, skewness and kurtosis

[38], were employed to characterize (e.g., [42], [43]) the ACA signal from the left channel

(L-ACA) and the right channel (R-ACA), respectively. The cross-correlation between the

L-ACA and R-ACA is also considered. The zero-lag value was calculated by selecting the

maximum coefficient in the obtained sequences.

Assume we have two signals x and y. The definitions mentioned above are mathematically

expressed and listed below. A typical way to compute the standard deviation is:

σX =

√√√√ 1

n− 1

n∑
i=1

(xi − µX)2 (4.1)

where µX denotes the mean value. The skewness is defined as:

εX =

1
n

n∑
i=1

(xi − µX)3

[ 1
n

n∑
i=1

(xi − µX)2]3/2
(4.2)
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The kurtosis of the distribution is computed as:

γ =

1
n

n∑
i=1

(xi − µX)4(
1
n

n∑
i=1

(xi − µX)2

)2 (4.3)

The zero-lag cross-correlation coefficient is defined as:

CCXY =
n∑
i=1

xiyi (4.4)

4.2 INFORMATION-THEORETIC FEATURE

4.2.1 Lempel-Ziv complexity

The information-theoretic features have been extensively utilized in the analysis of neuro-

logical analysis (e.g., [44], [45]). The Lempel-Ziv complexity [46], the conditional entropy

[45] and the cross-conditional entropy [45] have been used to measure the complexity and

regularity of biomedical signals. They provide us with indices reflecting the signals from

predictability and randomness point of views.

To calculate the Lempel-Ziv complexity, we first quantized the objective signal into 100

levels, so the signal Xn can be expressed as [x1, x2 ... xn] in terms of the quantized levels.

Then these points were grouped in blocks of a length of L, where L increases from 1 to n.

Let Ps(i, j) denote the block [xi, xi+1, ... xj] for all i < j. Then for each L, we check if Ps

has already appeared with previous i and j. If not, we put this block as one element into

a set, V . Finally, let c(n) denote the number of elements in the set V , i.e., the number of

distinct parsed blocks Ps, and the LZC is then defined as follows:

LZC =
c(n)(log100 c(n) + 1)

n
(4.5)
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4.2.2 Conditional entropy

To calculate the conditional entropy (CE), the process xi is normalized and grouped in

blocks of length L, 10 ≤ L ≤ 30, such that SL(i) = [x(i), x(i − 1), ....x(i − L + 1)]. CE is

then calculated (see 4.6) using the joint probability of the previous L− 1 samples and their

values (i.e., XL−1) [45]. Due to the underestimation of CE for larger L, [45] a corrective

term, perc(L)SE(1) (see 4.7) was added to CE, where SE(1) is the Shannon entropy [47],

and perc(L) is the percentage of length L blocks found only once in the process.

CE(L) = −
∑
L−1

p(xL−1)
∑

i|(L−1)

p(x(i)|xL−1)lnp(x(i)|xL−1) (4.6)

where p(xL−1) is the joint probability of the pattern xL−1 and p(x(i)|xL−1) is the conditional

probability of x(i) given xL−1.

SE(1) = −
∑
L

p(x(i))lnp(x(i)) (4.7)

Then, the regularity index is defined as:

ρ = 1−min
{
CE(L) + prec(L)SE(1)

SE(1)

}
(4.8)

Synchronization index (χxy) can be measured by extending and modifying the regularity

index formula [45]. Instead of making use of the previous L−1 samples in the self signal, xL−1,

we replace it with those of the synchronized signal, yL−1. The joint probability thus involves

the current x(i) being looked at and the previous L− 1 samples in y. The synchronization

index is then defined as

χxy = 1−min
{
CExy(L) + prec(L)SEy(1)

SEy(1)
,
CEyx(L) + prec(L)SEx(1)

SEx(1)

}
(4.9)

where CExy(L) is the conditional entropy of the current x given the previous L−1 y sample

points, and similarly, CEyx(L) denotes the conditional entropy of the current y given the

previous L− 1 x sample points.
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4.3 FREQUENCY ANALYSIS

4.3.1 Basics of Frequency analysis

The frequency analysis is based on the investigation of the frequency components of a signal

– a function in terms of the time, t. The Fourier transform is a mathematical transform

that converts a function with argument t into a function with argument f , the frequency,

and various characteristics can be then studied in the frequency domain. However, in order

to implement computation of the original definition of the Fourier transform which involves

integrals, we digitalize the signal in both time domain and frequency domain, where we need

to employ sampling theory and make use of the discrete Fourier transform which is defined

as equation 4.10:

Xk =
N−1∑
n=0

xn · e−j·2πkn/N (4.10)

where xn is a time series indexed by n (a discrete-time signal), and N is the length of this

signal. To do this transform, we have assumed the periodicity of the signal in time domain.

This causes a problem when downsampling is applied because aliasing might happen. There-

fore, in the next section in this chapter where downsapling is mentioned, we guarantee that

the filters have some low-pass characteristics so that aliasing can be avoided.

4.3.2 Frequency features

In the frequency domain, the following parameters were utilized:

The peak frequency (fp) is defined as the frequency which has the largest squared value

in the frequency spectrum [48]:

fp = argmaxf
{
|FX(f)|2

}
(4.11)

It measures the frequency value where the largest power occurs.
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The centroid frequency (fc) measures the center of frequency components in the spectrum

taking center of mass as an analogy [49]. It is defined as:

fc =

fmax∫
0

f |FX(f)|2df

fmax∫
0

|FX(f)|2df
(4.12)

The bandwidth (BW ) of the spectrum is a measure of the spreadness of the frequency

components [50]. It is defined as:

BW =

√√√√√√√√
fmax∫

0

(f − fc)2 |FX(f)|2df

fmax∫
0

|FX(f)|2df
(4.13)

where FX in (4.12) and (4.13) is the Fourier transform of the original signal.

4.4 TIME-FREQUENCY ANALYSIS

4.4.1 The scaling function

In order to express a function using two parameters, we need to define the scaling function.

Taking Fourier series as an analogy, a function f(t) can be written as a linear combination

of some base functions, which means [51]:

f(t) =
∑
k

Akϕk(t) (4.14)

where ϕk(t) is the scaling function defined as [51]:

ϕk = ϕ(t− k) (4.15)

and Ak is a coefficient associated with the term ϕk. In order to make a time-frequency

expression, we add another parameter j such that we have not only the ability to shift the

scaling function in time, but also the freedom to expand and shrink the function around the

origin [51]. Therefore the two-dimensional scaling function is defined as:

ϕj,k(t) = 2j/2ϕ(2jt− k) (4.16)
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4.4.2 The Discrete Wavelet Transform

This section covers the basics of discrete wavelet decomposition (DWT). Equation 4.16 shows

that the scaling function ϕ can be expressed as a linear combination of shifted ϕ(2t), therefore

[51]:

ϕ(t) =
∑
k

h(k)
√

2ϕ(2t− k) (4.17)

where h(k) is a sequence called the scaling function coefficients.
√

2 is there to maintain the

norm of the scaling function.

However, it has been shown that a signal can be better described by defining another

set of function ψ(t) that spans the difference between the spaces spanned by two scaling

functions [51]. Following the same idea, the mother wavelet is defined as:

ψj,l(t) = 2j/2ψ(2jt− l) (4.18)

and a similar form to 4.17 can be obtained

ψ(t) =
∑
l

h1(l)
√

2ψ(2t− l) (4.19)

The scaling function ϕ and mother wavelet ψ together form a wavelet [51]. We also require

the scaling functions form a set of orthogonal basis on jth level. That is:∫
ϕj,l(t)ϕj,k(t)dt = 0 (4.20)

Now, using 4.17 and 4.19, given a general function g(t), we can write it into the expression

as follows:

g(t) =
∑
k

aj0(k)2j0/2ϕ(2j0t− k) +
∑
k

∞∑
j=j0

dj(k)2j/2ψ(2jt− k) (4.21)

where 2j/2 serves to maintain the norm just like the term
√

2 in 4.17 and 4.19. cj and dj are

the coefficient sequences.

Because we are dealing with orthonormal basis, along with 4.17 and 4.19, using the inner

product aj(k) = 〈g(t), ϕj,k(t)〉, we can find that the coefficients satisfy:

aj(k) =
∑
m

h(m− 2k)aj+1(m) (4.22)
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dj(k) =
∑
m

h1(m− 2k)aj+1(m) (4.23)

Equations 4.22 and 4.23 are in the form of convolution and we can employ the idea of

filtering in digital domain to complete the decomposition. The scale of 2 can be generated

by downsampling. Therefore, an algorithm that generates the coefficients can be described

as below(see Figure 4.1). The obtained di represents the coefficient of the mother wavelet

on the ith level (detail coefficient). ai is the coefficient of the scaling function (approximate

coefficient). The filters h and h1 can be designed based on equations 4.17 and 4.19

Figure 4.1: A 3-level discrete wavelet decomposition using filters.

4.4.3 Time-frequency features

The 10-level Meyer discrete wavelet decomposition was applied to the obtained signals and

the relative energy and energy entropy were considered [52]. The scaling function and the

mother wavelet are shown in Figure 4.2 According to Parseval’s theorem, the energy on each

level adds up to the total energy of the original signal (see equation 4.24). In time-frequency

domain, this can be thought of as the partitioning of the time-scale plane.∫
|g(t)|2dt =

∞∑
l=−∞

|a(l)|2 +
∞∑
j=0

∞∑
k=−∞

|dj(k)|2 (4.24)
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Figure 4.2: Meyer wavelet and its scaling function.

The relative energy is defined as the ratio between the energy at the ith level (Ei) and

the total energy (Etotal). Etotal is calculated as the Euclidean norm [52], [53] of the vector

V = [a10, d10, d9, ...d1], where a10 denotes the approximation coefficient and di denotes the

detail coefficient at the ith level [54]. The mathematical expressions are:

Etotal = ‖V ‖ (4.25)

Ea =
a2

Etotal
(4.26)

Edi =
d2
i

Etotal
(4.27)
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The wavelet entropy can be regarded as a measure of how well the process behaves, or in

other words, a measure of information distribution [52].

WE = −
∑
i

E log2E (4.28)

where E is the relative energy calculated above in (4.25). A lower value of WE (close to

0) implies that the wavelet energy is relatively concentrated on a certain band. On the

contrary, a more random process would result in a higher value of WE which represents the

spreadness of the wavelet energy over many decomposed levels.

4.5 WILCOXON RANK-SUM TEST

The Wilcoxon rank-sum test, a non-parametric statistical hypothesis test [55], was used to

infer about statistical differences. One advantage is that when using this method, we do

not have to assume that the distribution of the extracted features adheres to the Gaussian

distribution. The null hypothesis in this test is that the medians are equal. The idea of

using this test is to check whether the sample sets are from the same distribution.

Suppose we have two sets of data X = [x1, x2, x3, ..., xn] and Y = [y1, y2, y3, ..., ym]

which in our case would be the extracted features obtained from the right and left channel

respectively. The length of the feature sets do not have to be the same in order to use the

rank-sum test. But in our research, we dealt with the same length for the left and right

signals because bilateral insonation were processing simultaneously and the sampling rate

applied to both channels is the same. The first step is to combine X and Y to construct a

new array, and sort all the elements in ascending order. We then label each element with the

group it belongs to and its order number ranked in the newly constructed array. Figure 4.3

shows an example of assigning the rank numbers to elements. If adjacent elements happen

to hold the same value, we assign the median to each of them.
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Data : n1 n2 n3 n4 n5 n6 n7 n8 n9 ... nn+m

From : X Y X Y Y X Y X Y ... X

Rank : 1 2 3.5 3.5 5 6 8 8 8 ... n+m

Figure 4.3: Elements are sorted in ascending order and labeled with group and ranking.

In the example in Figure 4.3, we need to add up all ranks ofX, sX = 1+3.5+8+....+n+m,

which is called the rank-sum of X. Considering that for different distributions of X and Y ,

the value of sX varies from (1+n)·n
2

to (2n+m+1)·m
2

, we assign a random variable SX to it.

Therefore, we can define the p value as:

p =

2P(SX ≥ sX) if sX is in the upper tail

2P(SX ≤ sX) if sX is in the lower tail.

(4.29)

The exact p value can be calculated by counting the number of all combination that satisfy

4.29.
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5.0 RESULTS

To safely present the TCD measurement results, we firstly exclude the possibility that the

features were influenced by the end-tidal carbon dioxide level [56]. Firstly, by taking linear

regression test, no evidence was found that the ETCO2 level was affected by the Body Mass

Index (BMI) for either gender (shown in Table 5.1). Secondly, we observed the trend of the

CO2 recording for every participant and found no dramatic fluctuation exists.

Table 5.1: ETCO2 level and BMI.

BMI (m/kg2) CO2 (mmHg) p-value

Male 28.1 ± 8.30 32.0 ± 3.86 0.94

Female 19.7 ± 1.66 35.4 ± 2.70 0.32

5.1 STATISTICAL FEATURE

A summary of statistical feature values for the envelope signals (mean ± standard deviation)

is presented in Table 5.2. A high cross-correlation between the left and right ACA blood

flow was obtained for all subjects. The standard deviation, which represents how far the

sample data deviate from the mean, was found to be statistically higher in the female group

than in the male group (R-ACA: p = 0.04; L-ACA: p = 0.01). The female group also has

statistically higher skewness (R-ACA: p = 0.04; L-ACA p = 0.03) and kurtosis than the male

group (p < 0.05 for both channels). When comparing the left-handed group with the right-
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Table 5.2: Statistical features for the envelope signals.

Male Female Left-handed Right-handed

StddeviationR 11.4 ± 2.48 16.0 ± 4.18 17.7 ± 4.64 13.3 ± 3.75

StddeviationL 11.1 ± 3.06 18.2 ± 6.19 17.7 ± 4.61 14.6 ± 6.28

SkewnessR 1.73 ± 1.04 0.90 ± 0.64 0.96 ± 0.09 1.33 ± 1.01

SkewnessL 1.33 ± 0.49 0.85 ± 0.46 1.07 ± 0.42 1.06 ± 0.55

KurtosisR 8.81 ± 7.57 4.54 ± 2.44 3.87 ± 0.61 6.92 ± 6.17

KurtosisL 6.31 ± 2.84 3.98 ± 1.47 4.19 ± 1.37 5.18 ± 2.60

Crosscorrelation 0.93 ± 0.04 0.90 ± 0.05 0.88 ± 0.05 0.92 ± 0.88

handed group, however, fairly high p-values for both channels (skewness: p > 0.40; kurtosis:

p > 0.68) were obtained. That implies that the null hypothesis could not be rejected.

Table 5.3: Statistical features for the raw signals. ∗ denotes multiplication by 10−3.

Male Female Left-handed Right-handed

StddeviationR 0.15 ± 0.04 0.10 ± 0.02 0.09 ± 0.02 0.13 ± 0.04

StddeviationL 0.14 ± 0.01 0.09 ± 0.02 0.09 ± 0.01 0.12 ± 0.05

SkewnessR (−0.50± 5.42)∗ (−1.94± 8.84)∗ (−0.19± 2.71)∗ (0.12± 5.08)∗

SkewnessL (−0.10± 2.54)∗ (2.06± 8.70)∗ (7.08± 10.1)∗ (−0.76± 4.41)∗

KurtosisR 3.49 ± 0.49 3.87 ± 1.65 3.45 ± 0.56 3.46 ± 0.74

KurtosisL 3.33 ± 0.33 4.41 ± 3.18 3.69 ± 0.92 3.32 ± 0.31

Crosscorrelation 0.01 ± 0.01 (3.18± 1.67)∗ (2.80± 1.27)∗ (5.12± 8.65)∗

Similarly, the statistical feature for the raw signals are presented in Table 5.3. Unlike

the results for the envelope signals, statistical difference between males and females was only

found in the standard deviation values (R-ACA: p < 0.01; L-ACA: p = 0.01). Another major

discrepancy is that the cross-correlation between the left channel and the right channel is
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relatively lower in the raw signal (≈ 0.01), which represents that the dependence in the raw

signals is lower than that in the envelope signals.

5.2 INFORMATION-THEORETIC FEATURE

Table 5.4: A summary of information-theoretic features for the envelope signals. ∗ denotes

multiplication by 10−3.

Male Female Right-handed Left-handed

LZCR 0.65 ± 0.04 0.68 ± 0.04 0.66 ± 0.04 0.70 ± 0.01

LZCL 0.67 ± 0.03 0.70 ± 0.03 0.70 ± 0.04 0.69 ± 0.01

RegularityindexR 0.08 ± 0.07 0.04 ± 0.05 0.07 ± 0.06 (9.63± 4.58)∗

RegularityindexL 0.04 ± 0.04 0.03 ± 0.04 0.04 ± 0.04 0.02 ± 0.01

Synchronization 0.15 ± 0.07 0.13 ± 0.08 0.15 ± 0.08 0.09 ± 0.04

Table 5.5: A summary of information-theoretic features for the raw signals.

Male Female Right-handed Left-handed

LZCR 0.68 ± 0.03 0.70 ± 0.03 0.69 ± 0.03 0.70 ± 0.02

LZCL 0.68 ± 0.03 0.68 ± 0.05 0.69 ± 0.03 0.68 ± 0.05

RegularityIndexR 0.38 ± 0.17 0.25 ± 0.15 0.30 ± 0.16 0.22 ± 0.14

RegularityindexL 0.37 ± 0.15 0.31 ± 0.25 0.31 ± 0.18 0.34 ± 0.27

Synchronization 0.37 ± 0.17 0.27 ± 0.19 0.30 ± 0.17 0.27 ± 0.15

The information-theoretic features of the envelope signal are presented in Table 5.4. The

calculations of Lempel-Ziv complexity do not show any statistical difference on either channel

between females and males (p > 0.08), nor between left-handed and right-handed (p > 0.09).

The regularity index on both channels is low, but the synchronization is relatively higher.
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This implies that the signal is more predictable by looking at the opposite channel than

looking at itself.

Table 5.5 shows the feature values of the raw signals. The mean values of Lempel-Ziv

complexity (≈ 0.68) are similar to those calculated for the envelope signals. However, the

raw signals have higher regularity than the envelope signal in the time domain (p < 0.01).

The raw signals also have higher synchronization than the envelope signal (p < 0.01), which

means the raw signals from the two channels contain more mutual information. In terms of

the value of the regularity and synchronization index, neither gender-based (p > 0.17) nor

handedness-based (p > 0.13) statistical difference was found.

5.3 FREQUENCY DOMAIN FEATURE

Table 5.6 summaries the features in the frequency domain of the envelope signals, and Table

5.7 summaries the features of the raw signals. The envelope signals have low frequencies

around 11–14 Hz. The peak frequencies appeared to be person-specific since the standard

deviation is high compared to its mean. No statistical difference between males and females

or between right-handed and left-handed subjects could be concluded for any of these feature

values (p > 0.05).

Table 5.6: Frequency domain features for the envelope signals. ∗ denotes multiplication by

10−3.

Male Female Right-handed Left-handed

CentroidfrequencyR 11.9 ± 4.79 14.9 ± 4.02 12.9 ± 4.49 17.5 ± 3.34

CentroidfrequencyL 11.7 ± 3.74 15.6 ± 3.89 13.7 ± 4.14 14.4 ± 5.07

PeakfrequencyR 0.69 ± 0.51 0.42 ± 0.55 0.64 ± 0.55 (4.41± 5.42)∗

PeakfrequencyL 0.57 ± 0.50 0.32 ± 0.52 0.51 ± 0.54 (2.97± 3.02)∗

BandwidthR 12.6 ± 2.52 13.9 ± 1.00 13.2 ± 2.08 14.2 ± 0.16

BandwidthL 12.9 ± 1.54 13.9 ± 1.09 13.5 ± 1.38 13.5 ± 1.53
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Table 5.7: A summary of frequency domain features for the raw signals.

Male Female Right-handed Left-handed

CentroidfrequencyR 855 ± 198 1090 ± 197 979 ± 239 1060 ± 183

CentroidfrequencyL 850 ± 201 1060 ± 207 961 ± 232 1050 ± 209

PeakfrequencyR 523 ± 206 631 ± 259 603 ± 212 642 ± 241

PeakfrequencyL 526 ± 168 723 ± 543 526 ± 162 628 ± 107

BandwidthR 627 ± 90.4 743 ± 81.5 682 ± 102 735 ± 114

BandwidthL 606 ± 106 768 ± 129 694 ± 149 701 ± 139

For the raw data, the center frequency for R-ACA was found to be statistically higher

in the female group than in the male group (p = 0.02). Additionally, significant difference

was found between males and females in bandwidth on both channels (R-ACA: p < 0.01;

L-ACA: p = 0.01). Considering that two out of three left-handed subjects are females,

we reconsidered the left-handed group with right-handed-females and found out that no

handedness effect could be concluded so far (p > 0.05).

5.4 TIME-FREQUENCY FEATURE

The relative energy calculated based on the 10-level wavelet decomposition and the wavelet

entropy are summarized and presented in Tables 5.8-5.11. When considering the gender

effect, no statistical difference could be found just by investigating the envelope (Tables 5.8

and 5.9). However, statistical difference can be found by looking at the raw signals.

The features for the raw data are summarized in Tables 5.10 and 5.11. There were

gender-based difference in left channel entropy (p = 0.01). On the right channel, the detail

coefficients d10, d9 and d7 are shown to have gender-based difference (p = 0.01, 0.04 and 0.04

respectively). On the left channel, statistical difference was found in a10 (p = 0.22) and
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Table 5.8: Time-frequency feature for the R-ACA envelope signals.

Male Female Right-handed Left-handed

WER 0.51 ± 0.19 0.49 ± 0.16 0.48 ± 0.18 0.59 ± 0.08

Ea10 93.5 ± 3.05 93.9 ± 2.53 93.9 ± 2.89 92.3 ± 1.39

Ed10 0.75 ± 0.63 0.85 ± 0.55 0.73 ± 0.58 1.24 ± 0.42

Ed9 1.43 ± 1.21 1.60 ± 1.04 1.38 ± 1.12 2.30 ± 0.77

Ed8 1.03 ± 0.84 1.12 ± 0.70 0.99 ± 0.77 1.61 ± 0.49

Ed7 0.78 ± 0.41 0.77 ± 0.34 0.74 ± 0.39 0.96 ± 0.16

Ed6 0.91 ± 0.29 0.59 ± 0.27 0.74 ± 0.32 0.72 ± 0.24

Ed5 0.85 ± 0.26 0.71 ± 0.38 0.82 ± 0.33 0.53 ± 0.28

Ed4 0.57 ± 0.53 0.34 ± 0.32 0.49 ± 0.47 0.17 ± 0.01

Ed3 0.04 ± 0.03 0.05 ± 0.03 0.04 ± 0.03 0.07 ± 0.01

Ed2 0.05 ± 0.03 0.03 ± 0.02 0.04 ± 0.03 0.05 ± 0.01

Ed1 0.05 ± 0.04 0.04 ± 0.01 0.04 ± 0.03 0.03 ± 0.01

d10 (p = 0.01).Besides, when comparing the left-handed and the right-handed subjects, no

statistical difference was found (p > 0.08 for all levels). This finding is the same as what we

find in other extracted features, no statistical difference between the left-handed group and

the right-handed group could be concluded.
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Table 5.9: Time-frequency feature for the L-ACA envelope signals.

Male Female Right-handed Left-handed

WEL 0.44 ± 0.11 0.55 ± 0.18 0.49 ± 0.16 0.53 ± 0.15

Ea10 94.7 ± 1.73 92.9 ± 2.89 93.8 ± 2.59 93.2 ± 2.54

Ed10 0.55 ± 0.38 1.06 ± 0.61 0.79 ± 0.56 1.04 ± 0.64

Ed9 1.03 ± 0.72 2.00 ± 1.14 1.50 ± 1.05 1.93 ± 1.18

Ed8 0.76 ± 0.47 1.41 ± 0.77 1.07 ± 0.71 1.37 ± 0.76

Ed7 0.71 ± 0.28 0.91 ± 0.38 0.81 ± 0.36 0.87 ± 0.30

Ed6 0.88 ± 0.36 0.62 ± 0.29 0.75 ± 0.37 0.67 ± 0.16

Ed5 0.81 ± 0.34 0.62 ± 0.23 0.72 ± 0.29 0.58 ± 0.30

Ed4 0.40 ± 0.33 0.35 ± 0.33 0.40 ± 0.35 0.20 ± 0.06

Ed3 0.04 ± 0.02 0.06 ± 0.04 0.05 ± 0.04 0.05 ± 0.02

Ed2 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02 0.04 ± 0.02

Ed1 0.06 ± 0.06 0.04 ± 0.02 0.05 ± 0.05 0.04 ± 0.02
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Table 5.10: A summary of time-frequency features for the R-ACA raw signals.

Male Female Right-handed Left-handed

WER 1.94 ± 0.17 2.07 ± 0.18 1.96 ± 0.13 2.09 ± 0.05

Ea10 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 0.03 ± 0.01

Ed10 6.55 ± 2.66 11.7 ± 4.64 9.02 ± 4.37 12.2 ± 5.64

Ed9 15.6 ± 12.9 24.4 ± 9.83 20.5 ± 13.5 20.2 ± 2.26

Ed8 38.2 ± 10.7 37.9 ± 6.48 37.5 ± 9.53 41.2 ± 1.62

Ed7 31.8 ± 11.9 20.2 ± 9.61 26.7 ± 12.9 21.7 ± 5.84

Ed6 6.41 ± 5.69 3.38 ± 1.32 5.22 ± 4.59 2.78 ± 0.73

Ed5 0.82 ± 0.69 1.27 ± 2.54 0.61 ± 0.51 0.76 ± 0.84

Ed4 0.35 ± 0.48 0.80 ± 1.89 0.21 ± 0.21 0.59 ± 0.70

Ed3 0.18 ± 0.24 0.32 ± 0.61 0.12 ± 0.12 0.34 ± 0.28

Ed2 0.13 ± 0.17 0.12 ± 0.19 0.07 ± 0.12 0.19 ± 0.12

Ed1 0.03 ± 0.04 0.04 ± 0.05 0.02 ± 0.02 0.08 ± 0.05
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Table 5.11: A summary of time-frequency features for the L-ACA raw signals.

Male Female Right-handed Left-handed

WEL 1.93 ± 0.12 2.16 ± 0.22 2.04 ± 0.16 1.98 ± 0.15

Ea10 0.02 ± 0.01 0.01 ± 0.01 0.01 ± 0.01 (6.99± 3.04)∗

Ed10 6.15 ± 3.63 12.3 ± 5.82 9.41 ± 5.81 11.0 ± 6.34

Ed9 15.3 ± 9.47 21.5 ± 7.80 8.34 ± 9.69 21.3 ± 6.68

Ed8 39.9 ± 7.09 6.16 ± 5.82 37.4 ± 6.68 41.4 ± 6.52

Ed7 30.7 ± 12.6 20.9 ± 8.70 27.1 ± 11.4 20.9 ± 9.95

Ed6 6.31 ± 4.21 5.84 ± 3.55 6.30 ± 3.85 4.61 ± 4.29

Ed5 0.85 ± 0.70 1.89 ± 3.68 0.83 ± 0.61 0.63 ± 0.63

Ed4 0.42 ± 0.50 0.99 ± 2.59 0.33 ± 0.40 0.11 ± 0.06

Ed3 0.18 ± 0.17 0.30 ± 0.68 0.15 ± 0.13 0.06 ± 0.03

Ed2 0.07 ± 0.04 0.09 ± 0.15 0.06 ± 0.04 0.03 ± 0.02

Ed1 0.02 ± 0.02 0.03 ± 0.04 0.02 ± 0.01 0.01 ± 0.01
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6.0 DISCUSSION

In this chapter, we discuss the effects of gender and handedness on the extracted features

from both the raw and envelope CBFV signals.

6.1 GENDER AND HANDEDNESS EFFECT

In the previous section, no evidence has been found of any handedness effect on CBFV in

ACA, while gender-based differences were discovered.

The statistical analysis of the signals yielded several important results. Firstly, the

difference in the the shape of the probability density function between males and females

were discovered by comparing the calculated values of skewness and kurtosis. This finding

demonstrates the significance of envelope signals from a statistical point of view. We can

see that the envelope signals solely provide sufficient confidence in distinguishing males and

females. Secondly, the maximum cross-correlation between the left channel and the right

channel is close to 0 for the raw signals, implying that the signals obtained from two channels

have low dependence in the time domain. On the contrary, the maximum cross-correlation

coefficient value of the envelope signals is high, implying that the envelope signals have a

high similarity at zero-lag between the two channels in time domain. However, none of these

obtained features is found to exhibit any handedness effect.

From the information-theoretic point of view, the results show that the amount of in-

formation is not affected by gender or handedness. Interestingly, the envelope signals have

almost the same Lempel-Ziv complexity as the raw signal. However, the envelope signals

have a low regularity index (close to 0), while the raw signals have a higher regularity value.

This means that the raw signals are more predictable than the envelope signals.
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In the frequency analysis, the raw signals contain higher frequency components than do

the envelope signals. In fact, the time domain features of the envelope signal already re-

flects some frequency domain characteristics because the the calculation that yields envelope

signals involves Fourier transform [13]. However, the frequency analysis quantifies several

parametric values in the frequency domain, while the time domain analysis of the envelope

signal only provides a simple summary about the shape of the probability density function.

Also, more specific features were found in the frequency analysis. Firstly, the envelope signals

have a low-pass characteristic while the raw signals have a band-pass characteristic. Sec-

ondly, we noticed that large standard deviation values were obtained for the peak frequency

feature when considering the envelope signals. This implies that the peak frequency of the

envelope signals is not necessarily the most robust feature of these signals. Fortunately, the

raw signal has a relatively more concentrated peak frequency statistic for both females and

males. Additionally, the seeming differences between left-handed and right-handed subjects

were found to be resulted from the gender effect rather than the handedness effect. That is

to say, although gender effect has been clearly found out, handedness was not an obvious

parameter that contributes to the frequency domain differences. On the other hand, the

low-pass characteristic of the envelope signal is more likely to be contaminated by other

physiological artifacts and the raw data avoids this disadvantage.

The time-frequency analysis has further demonstrated the existence of gender-based dif-

ference. Some of the detail coefficients calculated from the raw signal have shown significant

difference between males and females. Comparatively, the envelope signal only shows that

about 93% energy are concentrated around the approximate coefficient, i.e., the low fre-

quency band. Otherwise, no handedness effect was found.
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6.2 UTILIZATION OF RAW DATA AND ACA SIGNALS

Instead of only considering the envelope signal or the mean BFV, we also directly used the

raw data to characterize the TCD measurements. This will be particularly important in

future studies when cerebral blood flow during cognitive tasks is considered. In this study,

we established the resting-state characterization using both the envelope and raw signals.

Our study has shown that the raw data contains information that we could not capture by

simply looking at the envelope signals.

Despite that the MCA was insonated in most of the related studies, we hope to char-

acterize the cerebral blood flow using the ACA in addition to the MCA. Comparing with

our previous MCA study [27], we have found out that in the frequency domain, the band-

width of the ACA signals is larger than that of the MCA signals. The ACA has ≈ 13 Hz

in envelope signals and ≈ 600 Hz in raw signals, while the MCA has ≈ 10 Hz in enve-

lope signals and ≈ 500 Hz in raw signals. Bandwidth difference between the ACA and the

MCA indicates different cut-off frequencies and hence represents different frequency response

characteristics. In the time-frequency domain, the wavelet entropy calculation is also found

to be presenting statistical difference. MCA has wavelet entropy at 1.77 ± 0.17 [27], and

ACA has 1.94 ± 0.16. This finding demonstrates a different energy spreadness over different

levels. On the other hand, there also exists consistency in our current ACA study and the

previous MCA study. Firstly, in both the MCA and the ACA analysis, the time domain

features of envelope and raw signals have exhibited similar results in kurtosis, skewness and

cross-correlation. This demonstrates the similarity between the shapes of the probability

density function considered in the ACA and the MCA. Secondly, in the frequency domain,

the MCA and the ACA have similar findings in peak and centroid frequencies. Lastly, in the

time-frequency domain, when considering the raw signal, most energy concentrates around

the 8th level and spreads over neighboring levels in both the ACA and the MCA.
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7.0 CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

In this thesis, we investigated the resting-state characteristics of cerebral blood flow through

anterior cerebral arteries using the transcranial Doppler recordings. We collected data from

20 healthy participants during a 15-minute resting period. Both the envelope signals and

the raw TCD signals were considered. The acquired data was analyzed in time, frequency

and time-frequency domain. The results of the numerical analysis showed several important

trends. In the time domain, we have found that the envelope signals carries good amount

of representative features in terms of the separation of males and females, and hence it

is convenient to use envelope signal in this sense. In the information-theoretic analysis,

the envelope signals and the raw signals are found to contain almost the same amount of

information except the raw signals have higher synchronization. In the frequency domain,

the envelope signals exhibited a low-pass characteristic, while the raw signals exhibited a

band-pass characteristic. We may thus take advantage of the band-pass characteristic in

the future to avoid other low-frequency physiological artifacts. Finally, the time-frequency

features were extracted using 10-level Mayer discrete wavelet decomposition. They have

shown that the energy of the envelope signals are concentrated on the low frequency band

while the energy of the raw signals are more spread out in several bands. We have found

statistical differences between males and females in the time, frequency and time-frequency

domain. However, no handedness effect could be concluded.
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7.2 FUTURE DIRECTIONS

Our current project focuses on the characterization of the resting state. However, the re-

search goal is to understand the behavior of cerebral blood flow and study cognitive tasks.

Furthermore, we wish to develop models that describe the relationship between simple human

cognitive activities and cerebral blood flow change, and then design real-time implementa-

tion for a wide range of applications, i.e. BCI. The next step will involve geometrical tasks

and word generation tasks. We will design algorithms to distinguish their different states. In

addition to TCD measurements, other physiological parameters will be considered as well.

The methodology might include pattern recognition and machine learning.

More specifically, I suggest raising the following questions to identify future work:

1. Which features should be utilized to distinguish resting states and cognitive states?

2. Are the features we extracted sufficient to distinguish verbal task and geometric task?

3. Is the run time of the data processing and algorithm implementation short enough to

satisfy the general requirement of building a BCI?

By answering these questions, we will have a further understanding about the feasibility of

TCD-based BCI using the raw signal.

Alternatively, we may proceed along another research track to optimize our BCI design

in the future. Time-frequency distribution analysis [57] may provide a valuable insight

into the signal characteristics by considering time-frequency based statistical features. In

doing so, we hope to loosen the strict assumption that the signals are stationary and their

moments are constants. Under the circumstances, we might investigate the raw data and

seek mathematical modeling of its non-stationarity [58] .
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