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HIGH-FIDELITY SIMULATION OF COMPRESSIBLE FLOWS FOR

HYPERSONIC PROPULSION APPLICATIONS

Collin C. Otis, PhD

University of Pittsburgh, 2013

In the first part of this dissertation, the scalar filtered mass density function (SFMDF)

methodology is implemented into the computer code US3D. The SFMDF is a sub-

grid scale closure and is simulated via a Lagrangian Monte Carlo solver. US3D is

an Eulerian finite volume code and has proven very effective for compressible flow

simulations. The resulting SFMDF-US3D code is employed for large eddy simula-

tion (LES) of compressible turbulent flows on unstructured meshes. Simulations are

conducted of subsonic and supersonic flows. The consistency and accuracy of the

simulated results are assessed along with appraisal of the overall performance of the

methodology.

In the second part of this dissertation, a new methodology is developed for

accurate capturing of discontinuities in multi-block finite difference simulations of

hyperbolic partial differential equations. The fourth-order energy-stable weighted

essentially non-oscillatory (ESWENO) scheme on closed domains is combined with

simultaneous approximation term (SAT) weak interface and boundary conditions.

The capability of the methodology is demonstrated for accurate simulations in the

presence of significant and abrupt changes in grid resolution between neighboring

subdomains. Results are presented for the solutions of linear scalar hyperbolic wave

equations and the Euler equations in one and two dimensions. Strong discontinuities

are passed across subdomain interfaces without significant distortions. It is demon-
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strated that the methodology provides stable and accurate solutions even when large

differences in the grid-spacing exist, whereas strong imposition of the interface con-

ditions causes noticeable oscillations.

Keywords: Large eddy simulation, filtered density function, turbulent reacting

flows, multi-block finite difference schemes, high-order numerical methods, WENO

shock-capturing, computational fluid dynamics.
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1.0 INTRODUCTION

One of the most challenging issues in hypersonic propulsion systems is the predic-

tion of high-speed turbulent reactive flows via computational fluid dynamics (CFD).

For reliable simulations, the underlying CFD methods must be capable of capturing

the chaotic fluid mechanics of an exceedingly complex system of nonlinear chemi-

cal, physical, and thermodynamic processes. This requires that a large number of

individually challenging problems be overcome simultaneously. The flows under con-

sideration are highly-compressible with strong stationary and moving shocks that

can only be captured via accurate and stable numerical methods. The concurrent

existence of regions of premixed and nonpremixed combustion necessitates robust

physical and chemical models to properly account for the reactants conversion. The

entire field is turbulence-dominated and stochastic; thus, turbulence modeling is es-

pecially important to capture highly-nonlinear turbulence-chemistry interactions. In

addition, a myriad of other complexities must be properly treated, such as boundary

conditions, grid generation & refinement, treatment of complex geometries, shock-

vortex interactions, reduced chemistry mechanisms, and computational scalability,

to name a few. Two of the most critical challenges currently at the forefront of CFD

development for high-speed combustion are:4

(1) accurate and generalizable turbulent combustion models, and

(2) high-order accurate and stable numerical methods.

The thrust of this dissertation is to progress the state-of-the-art in both of these

areas.

The first objective of this work is to develop an accurate and flexible turbulent

combustion model for prediction of high-speed flows. Amongst the CFD methodolo-

gies currently available, it is widely accepted that the optimal means of capturing the

1



physics of turbulent reacting flows is via large eddy simulation (LES). In LES, one of

the most challenging technical obstacles is associated with the subgrid scale (SGS)

quantities. For accurate and consistent modeling of these quantities,5–11 the filtered

density function (FDF) methodology, including its mass-weighted form, the filtered

mass density function (FMDF), has proven particularly effective.12,13 The FDF is

essentially the counterpart of the probability density function (PDF) methodology in

Reynolds-averaged Navier-Stokes (RANS) simulations.8,11,14 In its most comprehen-

sive, stand-alone form, the FDF accounts for the joint statistics of five SGS variables:

energy, pressure, frequency, velocity, and all other scalar variables.15 The level of

sophistication can be reduced with consideration of fewer variables. The simplest

and most widely used form considers only the scalar field (SFDF and SFMDF)16,17

and has been successful for prediction of a variety turbulent flames.18–26

A major challenge associated with FDF is its implementation in complex ge-

ometries. Structured multi-block grids lack the required flexibility and robustness

to deal with such geometries. Unstructured grids provide a good option for dis-

cretization on complex shapes. The objective here is to implement the SFMDF

on the popular and very powerful unstructured US3D finite volume (FV) computer

code.27 The flow solver in this code is based on the kinetic energy consistent (KEC)

approach28 that has been extended to sixth-order accuracy. Careful choices of lim-

iters allow high-order solutions to be obtained on a wide range of flows relevant to

hypersonic propulsion systems. The high fidelity and scalability of US3D have been

demonstrated in numerous successful applications.27–36 Herein, a simulation strat-

egy for FDF on US3D is developed with the first demonstration of SFMDF for LES

of compressible flows on unstructured meshes. Sample LES results are presented

of subsonic and supersonic temporally-developing mixing layers under non-reacting

and reacting conditions.

The second objective of this work is to advance the state-of-the-art in numer-

ical solution of highly compressible flows. In these flows, the presence of discon-

tinuities makes it a challenge to obtain accurate and stable solutions. High-order

weighted essentially non-oscillatory (WENO) methods have become popular for such

cases.37–40 The high-order nature of WENO schemes allows for accurate resolution
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of detailed physics, while the stencil-biasing mechanics prevent numerical oscilla-

tions near discontinuities. While WENO schemes are very robust in practice, they

do not satisfy a summation by parts (SBP) convention by default.41,42 Therefore,

a general time-stability proof cannot be derived.43 In contrast, the energy-stable

WENO (ESWENO) scheme43–46 satisfies SBP and is stable in the L2 sense.

A major challenge in the practical application of ESWENO is generating appro-

priate finite-difference grids. Grids must be smoothly-varying and match boundaries

with a high order of accuracy. In moderately complex geometries, mapping such a

smooth mesh to complicated boundaries can be extremely time-consuming, if not

impossible. If such a mesh can be generated, necessary local grid refinement is usu-

ally not feasible. Such geometries are often treated with unstructured FV techniques

with sacrifice of the accuracy. Alternatively, multi-block meshes can alleviate such

difficulties while maintaining high fidelity. Here, a multi-block ESWENO scheme

is developed. Each subdomain is mapped with an independent curvilinear mesh;

the only requirement is that neighboring subdomains have collocated grid points

along the interface surface. The simultaneous approximation term (SAT) interface

closure is used to close interface and global domain boundaries.47 The new scheme,

denoted by ESWENO-SAT, is shown to be stable for linear conservation laws with

continuous solutions. One- and two-dimensional flows are considered to demonstrate

the solution procedure for systems of linear and nonlinear hyperbolic equations on

multi-block domains.

1.1 SCOPE

This dissertation is organized as follows. Chapter 2 deals with SFMDF on US3D.

The work described in this chapter was presented at the 42nd AIAA Fluid Dynamics

Conference & Exhibit,48 and the 48th AIAA/ASME/SAE/ASEE Joint Propulsion

Conference & Exhibit.49 It was also part of an invited talk at the 47th AIAA/AS-

ME/SAE/ASEE Joint Propulsion Conference & Exhibit50 and is currently in press.51

Chapter 3 deals with the ESWENO-SAT scheme. The work described in this chap-

3



ter was presented at the 42nd AIAA Fluid Dynamics Conference & Exhibit52 and

the 7th International Conference on Computational Fluid Dynamics (ICCFD7).53

It was awarded Second Place, Student Paper Award at the latter.
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2.0 SFMDF IN US3D

In the work described in this chapter, the scalar filtered mass density function

(SFMDF) methodology is implemented into the computer code US3D. The SFMDF

is a subgrid scale (SGS) closure and is simulated via a Lagrangian Monte Carlo

solver. US3D is an Eulerian finite volume (FV) hydrodynamic solver and has proven

very effective for compressible flow simulations. The resulting SFMDF-US3D code

is employed for large eddy simulation (LES) of compressible turbulent flows on

unstructured meshes. Simulations are conducted of subsonic and supersonic flows

under non-reacting and reacting conditions. The consistency and the accuracy of

the simulated results are assessed along with appraisal of the overall performance of

the methodology.

2.1 FORMULATION

2.1.1 Governing Equations

High-speed reacting flows are rich with complexities due to the intimate interde-

pendence of mixing, chemical reaction, and hydrodynamics. The transport vari-

ables to describe such flows are the fluid mass density ρ (x, t), the velocity vector

u (x, t) = [u1, u2, u3], total specific enthalpy h (x, t), and mass fractions of Ns chem-

5



ical species [φ1, ..., φNs ], where x = [x1, x2, x3] is the position vector and t is time.

Neglecting radiation and body forces and assuming unity Lewis number, the con-

servation equations are6

∂ρ

∂t
+
∂ρui
∂xi

= 0, (2.1)

∂ρuj
∂t

+
∂ρuiuj
∂xi

= − ∂p

∂xj
+
∂τij
∂xi

, (2.2)

∂ρφα
∂t

+
∂ρuiφα
∂xi

= −∂J
α
i

∂xi
+ ρSα, α = 1, 2, . . . , Ns (2.3)

∂ρh

∂t
+
∂ρuih

∂xi
= − ∂qi

∂xi
+
∂p

∂t
+ ui

∂p

∂xi
+ τij

∂ui
∂xj

, (2.4)

where p is the thermodynamic pressure, τij are the components of the viscous stress

tensor, qi is the heat flux in the ith direction, and Jαi is the scalar mass flux of

chemical species α in the ith direction. To facilitate the use of conservative numerical

schemes, it is sometimes useful to consider the total energy,

E (x, t) = h− p

ρ
+

1

2
uiui, (2.5)

which is governed by

∂ρE

∂t
+
∂ρuiE

∂xi
= − ∂qi

∂xi
+
∂σijui
∂xj

, (2.6)

where σij = τij− pδij and δij is the kronecker delta. We define φ as the scalar array,

φ = [φ1, . . . , φNs , φNh ] , Nh = Ns + 1, φNh = h. (2.7)

The total specific enthalpy is defined as

h =
Ns∑
α=1

hαφα, hα = ∆h◦α +

∫ T

T0

cpαdT
′, (2.8)

where T (x, t) is the thermodynamic temperature, T0 is the reference temperature,

cpα is the specific heat of species α under constant pressure, and ∆h◦α is the enthalpy

of formation of species α at the reference temperature. The system is closed with

an ideal gas equation of state,

p = ρRT, R = φα
R
Wα

, (2.9)
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where R is the specific gas constant of the mixture, R is the universal gas constant,

and Wα is the molecular weight of species α. Assuming a Newtonian fluid with

Fourier conduction, the diffusive fluxes are modeled,54

τij = 2µSij −
2

3
µSnnδij, (2.10)

qi = −λ ∂T
∂xi

+ ρ

Ns∑
α=1

∆h◦αφαVα,i, (2.11)

Jαi = ρφαVα,i, (2.12)

where µ is the fluid dynamic viscosity, λ is the thermal conductivity, and Vα,i is the

diffusion velocity of species α in the ith direction. The strain rate is defined as:

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.13)

Assuming Fickian diffusion,

φ(α)V(α),i = −D∂φα
∂xi

, (2.14)

where parentheses prevent summation convention and D is the coefficient of diffu-

sion, assumed constant. The modeled fluxes are

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂un
∂xn

δij

)
, (2.15)

qi = −λ ∂T
∂xi
− γ∆h◦α

∂φα
∂xi

= −γ ∂h
∂xi

, (2.16)

Jαi = −γ ∂φα
∂xi

, (2.17)

where γ = ρD is the mass and thermal diffusivity. The final equivalence in Eq. (2.16)

assumes calorically perfect gas (CPG).

7



2.1.2 Large Eddy Simulation

Large eddy simulation (LES) involves the use of a spatial filtering function:8,55,56

〈Q (x, t)〉l =

∫ ∞
−∞

Q (x′, t)G (x′,x) dx′ , (2.18)

where G denotes the filter with characteristic length ∆ and 〈Q (x, t)〉l is the filtered

value of Q (x, t). The filter has the following properties:57

G (x′,x) = G (x′ − x) , (2.19a)

G (x) = G (−x) , (2.19b)∫ ∞
−∞
G (x) dx′ = 1 , (2.19c)

which imply spatial invariance, symmetry, and normalization properties, respec-

tively. In variable density flows, it is convenient to consider the Favré (density-

weighted) filtered values,

〈f〉L =
〈ρf〉l
〈ρ〉l

. (2.20)

Applying the filtering operation to Eqs. (2.1)–(2.4) and (2.6) yields

∂ 〈ρ〉l
∂t

+
∂ 〈ρ〉l 〈ui〉L

∂xi
=0, (2.21)

∂ 〈ρ〉l 〈uj〉L
∂t

+
∂ 〈ρ〉l 〈uj〉L 〈ui〉L

∂xi
=− ∂ 〈p〉l

∂xj
+
∂ 〈τij〉L
∂xi

− ∂Tij
∂xi

, (2.22)

∂ 〈ρ〉l 〈φα〉L
∂t

+
∂ 〈ρ〉l 〈ui〉L 〈φα〉L

∂xi
=− ∂ 〈Jαi 〉L

∂xi
− ∂Mα

i

∂xi
+ 〈ρSα〉l , (2.23)

∂ 〈ρ〉l 〈h〉L
∂t

+
∂ 〈ρ〉l 〈ui〉L 〈h〉L

∂xi
=− ∂ 〈qi〉L

∂xi
+
∂ 〈p〉l
∂t

+ 〈ui〉L
∂ 〈p〉l
∂xi

+ 〈τij〉L
∂ 〈ui〉L
∂xj

− ∂Hi

∂xi
+ P + Γ,

(2.24)

∂ 〈ρ〉l 〈E〉L
∂t

+
∂ 〈ρ〉l 〈ui〉L 〈E〉L

∂xi
=− ∂ 〈p〉l 〈ui〉L

∂xi
− ∂ 〈qi〉L

∂xi
+
∂ 〈τij〉L 〈ui〉L

∂xj

− ∂

∂xi

(
γcvQi +

1

2
Ji −Di

)
.

(2.25)
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The unclosed terms are the SGS stress, Tij; SGS mass flux,Mα
i ; SGS heat flux, Hi;

SGS convected pressure gradient, P ; SGS viscous heating, Γ; SGS temperature flux,

Qi; SGS turbulent diffusion, Ji; and SGS viscous dissipation, Di:

Tij = 〈ρ〉l
(
〈uiuj〉L − 〈ui〉L 〈uj〉L

)
, (2.26)

Mα
i = 〈ρ〉l

(
〈uiφα〉L − 〈ui〉L 〈φα〉L

)
, (2.27)

Hi = 〈ρ〉l [〈uih〉L − 〈ui〉L 〈h〉L] , (2.28)

P =

〈
ui
∂p

∂xi

〉
l

− 〈ui〉L
∂ 〈p〉l
∂xi

, (2.29)

Γ =

〈
τij
∂ui
∂xj

〉
l

− 〈τij〉L
∂ 〈ui〉L
∂xj

, (2.30)

Qi = 〈ρ〉l (〈uiT 〉L − 〈ui〉L 〈T 〉L) , (2.31)

Ji = 〈ρ〉l
(
〈uiujuj〉L − 〈ui〉L 〈ujuj〉L

)
, (2.32)

Di = 〈σjiuj〉L − 〈σji〉L 〈uj〉L . (2.33)

In chemically-reacting flows, the chemical source term, 〈ρSα〉l, also requires a closure.

The following approximations are made in deriving Eqs. (2.21)–(2.25):

∂ 〈τij〉l
∂xi

≈
∂ 〈τij〉L
∂xi

=
∂

∂xi

[
2µ 〈Sij〉L −

2

3
µ 〈Snn〉L δij

]
, (2.34)

∂

∂xi

(
−γ ∂ 〈φα〉l

∂xi

)
≈ ∂

∂xi

(
−γ ∂ 〈φα〉L

∂xi

)
, (2.35)

∂

∂xi

(
−γ ∂ 〈h〉l

∂xi

)
≈ ∂

∂xi

(
−γ ∂ 〈h〉L

∂xi

)
, (2.36)

∂ 〈qi〉l
∂xi

≈− ∂

∂xi

[
λ
∂ 〈T 〉L
∂xi

− γ
Ns∑
α=1

∆h◦α
∂ 〈φk〉L
∂xi

]

≈− ∂

∂xi

[
γ
∂ 〈h〉L
∂xi

]
,

(2.37)

where the Favré-filtered strain rate is approximated by:

〈Sij〉L ≈
1

2

(
∂ 〈ui〉L
∂xj

+
∂ 〈uj〉L
∂xi

)
. (2.38)

The filtered equation of state is:

〈p〉l = 〈ρ〉l 〈RT 〉L

≈ 〈ρ〉l 〈R〉L 〈T 〉L , (2.39)

〈R〉L = 〈φα〉L
R
Wα

. (2.40)
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2.1.3 Subgrid Scale Closure

The subgrid scale (SGS) stress is modeled with the modified Smagorinsky58 turbulent

viscosity closure of Yoshizawa,59,60

Tij = −2µt 〈Sij〉L +
2

3
µt 〈Snn〉L δij +

2

3
〈ρ〉l 〈κ〉L δij, (2.41)

where the subgrid viscosity and isotropic part of the subgrid stress are

µt = 〈ρ〉l Cv∆
2
√
〈Sij〉L 〈Sij〉L, (2.42)

〈κ〉L = CI∆
2 〈Sij〉L 〈Sij〉L , (2.43)

respectively and CI = 0.18 and Cv = 0.04 are model constants.61 The eddy-viscosity

closure is used to model the SGS mass and enthalpy fluxes:

∂Mα
i

∂xi
= − ∂

∂xi

[
γt
∂ 〈φα〉L
∂xi

]
, (2.44)

∂Hi

∂xi
= − ∂

∂xi

[
γt
∂ 〈h〉L
∂xi

]
, (2.45)

where the subgrid diffusivity is γt = µt/Sct. The turbulent Prandtl and Schmidt

numbers are taken to be equivalent and constant: Prt = Sct = 0.7. The SGS

convected pressure gradient, P , and viscous heating, Γ, are neglected. The eddy-

viscosity model is used to close the SGS heat flux:

Qj = −λt
cp

∂ 〈T 〉L
∂xj

, λt =
µtcp
Prt

. (2.46)

Both the turbulent diffusion, Jj, and viscous dissipation, Dj, are neglected.

The energy, E, and enthalpy, h, carry overlapping, but not identical, information.

The conservative numerical discretizations used in US3D require the use of E as the

transported thermodynamic variable, while solution of the SFMDF for SGS closure

of the chemical source term as described below necessitates the use of h. US3D

solves Eq. (2.25); the FDF scheme solves Eq. (2.24). As shown in Appendix A,

these two transport equations are consistent, with the assumption:

∂

∂xi

[
γt
∂ 〈h〉L
∂xi

]
− 〈un〉L

∂Tin
∂xi

+
1

2

[
∂Tnn
∂t

+
∂ 〈ui〉L Tnn

∂xi

]
= λt

∂

∂xi

∂ 〈T 〉L
∂xi

. (2.47)

No attempt is made to validate this assumption.
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2.1.4 Filtered Density Function

The filtered chemical source term 〈ρSα〉l is closed via the scalar filtered mass density

function (SFMDF), defined as17

F (ψ;x, t) =

∫ ∞
−∞

ρ(x′, t)ζ[ψ;φ(x′, t)]G (x′ − x) dx′ , (2.48)

where ψ = [ψ1, . . . , ψNh ] denotes the sample-space variables for the scalar array, φ.

The fine-grained density, ζ, is defined as62

ζ[ψ;φ(x′, t)] = δ(ψ − φ(x′, t)) =

Nh∏
α=1

δ(ψα − φα(x′, t)) . (2.49)

Equation (2.48) implies that the SFMDF is the mass-weighted, spatially-filtered

value of the fine-grained density. We define the conditional expectation as

〈Q (x, t) |ψ〉 = 〈Q (x, t) |φ (x, t) = ψ〉

=

∫ +∞
−∞ ρ (x′, t)Q (x′, t) ζ [ψ,φ (x′, t)]G (x− x′) dx′

F (ψ;x, t)
. (2.50)

The SFMDF has the following properties:∫ +∞

−∞
F (ψ;x, t) dψ =

∫ +∞

−∞
ρ (x′, t) ζ[ψ;φ(x′, t)]G (x− x′) dx′ = 〈ρ (x, t)〉l . (i)

If Q (x, t) = Q̂ (φ (x, t)), then

〈Q (x, t) |ψ〉 = Q̂ (ψ) , (ii)

and ∫ +∞

−∞
〈Q (x, t) |ψ〉F (ψ;x, t) dψ = 〈ρQ〉l . (iii)

The chemical source term is considered to be a known function of the scalar array,

Sα (x, t) = Ŝα (φ); therefore, the SFMDF provides closure of the filtered chemical

source term: ∫ +∞

−∞
Ŝα (ψ)F (ψ;x, t) dψ = 〈ρSα〉l . (2.51)

The transport equation for the SFMDF is derived by assuming ρ (x, t) = ρ (φ) and

expanding the total derivative of the fine-grained density:

∂ρζ

∂t
+
∂ρuiζ

∂xi
= − ∂ζ

∂ψi

[
∂ρφi
∂t

+
∂ρujφi
∂xj

]
. (2.52)
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Substituting Eqs. (2.23)–(2.24) into the RHS of Eq. (2.52),

∂ρζ

∂t
+
∂ρuiζ

∂xi
= − ∂ζ

∂ψα

[
∂

∂xi

(
γ
∂φα
∂xi

)
+ ρSα (φ)

]
− ∂ζ

∂ψNh

[
∂

∂xi

(
γ
∂h

∂xi

)
+
∂p

∂t
+ ui

∂p

∂xi
+ τij

∂ui
∂xj

]
. (2.53)

Multiplying Eq. (2.53) by G (x′ − x), integrating over x′ ∈ (−∞,∞), and assuming

filtering and differentiation commute yields

∂F

∂t
+
∂ 〈ui |ψ〉F

∂xi
= − ∂

∂ψk

[〈
1

ρ̂ (φ)

∂

∂xi

(
γ
∂φk
∂xi

) ∣∣∣∣ψ〉F] − ∂ 〈Lh |ψ〉F
∂ψNh

−∂Sα (ψ)F

∂ψα
,

(2.54)

where

Lh =
1

ρ

[
∂p

∂t
+ ui

∂p

∂xi
+ τij

∂ui
∂xj

]
, (2.55)

and boxed terms due to SGS convection, mixing, and compressibility require clo-

sures. The SGS convection is modeled via

∂ 〈ui |ψ〉F
∂xi

=
∂

∂xi
[〈ui〉L F ]− ∂

∂xi

(
γt
∂ (F/ 〈ρ〉l)

∂xi

)
.

SGS mixing is closed using the interaction by exchange with the mean (IEM)

model:63,64

− ∂

∂ψi

[
F

ρ̂

〈
∂

∂xj

(
γ
∂φi
∂xj

) ∣∣∣∣ψ〉] =
∂

∂xi

(
γ
∂ (F/ρ̂)

∂xi

)
+

∂

∂ψi
[ΩmF (ψi − 〈φi〉L)] .

The effect of SGS compressibility is neglected:

∂ 〈Lh |ψ〉F
∂ψNh

≈ ∂

∂ψNh

[
1

〈ρ〉l

[
∂ 〈p〉l
∂t

+ 〈ui〉L
∂ 〈p〉l
∂xi

+ 〈τij〉L
∂ 〈ui〉L
∂xj

]
F

]
.

With these assumptions, the modeled SFMDF transport equation becomes:

∂F

∂t
+
∂ (〈ui〉L F )

∂xi
=

∂

∂xi

[
(γ + γt)

∂ (F/ 〈ρ〉l)
∂xi

]
+

∂

∂ψα
[ΩmF (ψα − 〈φα〉L)]

− ∂ 〈Lh〉L F
∂ψNh

− ∂Sα (ψ)F

∂ψα
,

(2.56)

where

〈Lh〉L =
1

〈ρ〉l

(
∂ 〈p〉l
∂t

+ 〈ui〉L
∂ 〈p〉l
∂xi

+ 〈τij〉L
∂ 〈ui〉L
∂xj

)
. (2.57)
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2.2 SFMDF IN US3D

The SFMDF essentially represents the single-point joint probability density func-

tion (PDF) of Nh random variables. Numerical solution of the SFMDF requires

discretization in (Nh + 4)-dimensional space. This is impractical for large values

of Nh, as is the case with a large number of chemical species. Using the princi-

ple of equivalent systems, an affordable Lagrangian Monte Carlo (MC) technique

is employed instead.65,66 A set of stochastic differential equations (SDEs) are for-

mulated whose Fokker-Planck equation represents the modeled SFMDF transport

equation.67,68 The modeled SDEs are:

dXi =

[
〈ui〉L +

1

〈ρ〉l
∂

∂xi
(γ + γt)

]
dt+

√
2 (γ + γt)

〈ρ〉l
dWi, (2.58)

dψα = −Ωm (ψα − 〈φα〉L) dt+ Sα (ψ) , (2.59)

dψh = −Ωm (ψh − 〈h〉L) dt+
1

〈ρ〉l

[
∂ 〈p〉l
∂t

+ 〈ui〉L
∂ 〈p〉l
∂xi

+ 〈τij〉L
∂ 〈ui〉L
∂xj

]
dt, (2.60)

where Xi, ψα, and ψh represent sample space variables for xi, φα, and h, respectively.

The Fokker-Planck equation corresponding to Eqs. (2.58)–(2.60) is

∂F

∂t
+
∂ 〈ui〉L F
∂xi

=
∂

∂xi

[
(γ + γt)

∂ (F/ 〈ρ〉l)
∂xi

]
+

∂

∂ψα
[Ωm (ψα − 〈φα〉L)F ]− ∂SαF

∂ψα
− ∂LhF

∂ψh
.

(2.61)

Transport equations for each of the filtered scalars, 〈φk〉L, is derived by multi-

plying Eq. (2.61) by ψk, k ∈ [1, . . . , Nh] and integrating over sample-space ψ =

[ψ1, . . . , ψNh ]:

∂ 〈ρ〉l 〈φα〉L
∂t

+
∂ 〈ρ〉l 〈ui〉L 〈φα〉L

∂xi
=

∂

∂xi

[
(γ + γt)

∂ 〈φα〉L
∂xi

]
+ 〈ρ〉l 〈Sα〉L , (2.62)

∂ 〈ρ〉l 〈h〉L
∂t

+
∂ 〈ρ〉l 〈ui〉L 〈h〉L

∂xi
=

∂

∂xi

[
(γ + γt)

∂ 〈h〉L
∂xi

]
+
∂ 〈p〉l
∂t

+ 〈ui〉L
∂ 〈p〉l
∂xi

+ 〈τij〉L
∂ 〈ui〉L
∂xj

.

(2.63)

The US3D computer code solves for cell-centered values of the filtered variables

on unstructured tetrahedral and quadrilateral elements. The viscous terms are eval-

uated via a second-order equivalent weighted least squares approximation, similar to
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Table 1: Ensemble sizes for the Monte Carlo solver.

Label Ensemble Type Nominal Particles Per Cell

E1 Cell 30

E2 Largest sphere contained within cell 30

E3 Sphere with half radius of largest sphere 100

that in central difference schemes.69,70 The convective terms are evaluated by a hy-

brid flux-splitting. A symmetric sixth-order interpolation is used to reconstruct the

convective fluxes in smooth regions of the flow.69 Near the sharp gradients, the flux

approximation smoothly reverts to a Steger-Warming splitting scheme with second-

order MUSCL reconstruction.71 The form of the convective flux is F = Fc + κFdiss,

in which F is the total flux at a face center, Fc is a sixth-order central reconstruc-

tion, Fdiss is the Steger-Warming effective dissipation operator, and κ is the shock

sensor of Ducros et al.72 Time-integration is via an explicit third-order Runge-Kutta

scheme.

The solution of the SFMDF requires integration of the SDEs in Eqs. (2.58)–

(2.60). These are treated using the Euler-Maruyamma approximation.17,73 A large

number of realizations of the SDEs are simulated by overlaying the US3D finite vol-

ume domain with a set of notional MC particles. To reconstruct the SFMDF, an

ensemble of MC particles within a spatial control volume Ω is assembled. Theoret-

ically, we require |Ω| → 0, and Np → ∞, where Np is the number of particles in

the ensemble set. In practice, the ensemble domain is approximated by a geomet-

ric shape of finite size containing a finite number of particles. Table 1 shows the

ensemble sizes considered. The transport equations for all of the first-order filtered

equations and the second-order SGS moments, τ (φ, φ) = 〈φφ〉L−〈φ〉L 〈φ〉L, are also

solved via US3D. The source terms in these equations are obtained from the SFMDF.

The MC solution of the SDEs operates synchronously with the FV solver.74 The FV

solver requires the filtered source terms, 〈Sα〉L, at the cell centers. For integration

of the SDEs, the MC solver requires the filtered hydrodynamic variables at each
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of the particle locations. For this, a second-order interpolation scheme is employed

that uses the cell-centered values and gradients to reconstruct the velocity at each

particle location. The filtered terms corresponding to compressibility are taken from

the center of the cell surrounding the particle. An efficient method is constructed

to track each particle within the volume. There is a certain level of redundancy

inherent in the hybrid scheme in that the first two filtered moments are available

from both FV and MC solvers. This redundancy facilitates consistency assessment

of the computational methodology.

2.3 DEMONSTRATION

The hybrid SFMDF-US3D solver is employed for LES of a three-dimensional, temporally-

developing mixing layer.75–78 In this layer, the stream-wise, cross-stream, and span-

wise directions are denoted by {x, y, z}, with the corresponding velocities {u, v, w}.

The temporal mixing layer consists of two parallel streams traveling in opposite di-

rections with the same speed on a cube-shaped domain with length L. The flow is

periodic in the streamwise and spanwise directions. The cross-stream boundaries

are treated as slip walls. The length L is specified such that L = 2NPλu, where NP

is the desired number of successive vortex pairings and λu is the wavelength of the

most unstable mode corresponding to the mean streamwise velocity profile imposed

at the initial time. Transport of a passive scalar, φ, is considered. Both the filtered

stream-wise velocity and passive scalar fields are initialized with hyperbolic tangent

profiles, where 〈u〉L = Ur, 〈φ〉L = 1 on the top stream, 〈u〉L = −Ur, 〈φ〉L = 0 on the

bottom stream, and Ur is the reference velocity. In these simulations, the Reynolds

number is Re = UrLr/ν = 50 and the Mach number is Ma = Ur/
√
γRTr, where Tr is

the constant temperature at which the entire field is initialized and Lr = δv(t = 0)/2

is the reference length, taken to be one-half of the initial vorticity thickness. The

vorticity thickness is defined as δv = Ur/ |∂ 〈u〉L /∂y|max. Initial perturbations are

used to expedite the formation of large-scale vortical structures. Both two- and

three-dimensional perturbations are added with a random phase shift between the
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Table 2: Grid parameters for resolution assessments.

Label Element Type Number of Cells

G1 Hexahedral 32,768

G2 Tetrahedral 113,832

G3 Hexahedral 125,000

G4 Hexahedral 474,552

three-dimensional modes.79 These perturbations yield vortex pairings and strong

three-dimensionality.

Simulations are conducted of a subsonic (Ma = 0.2) and a supersonic (Ma = 3)

layer for both reacting and non-reacting cases. For reacting cases, a one-step reac-

tion of the form A+B → 2P is used with reactant conversion rate SA = −krφAφB,

where kr is the reaction rate constant and φX is the mass fraction of species X.

The field is initialized with 〈φA〉L = 〈φ〉L, 〈φB〉L = 1 − 〈φ〉L. The reactants are

considered thermodynamically identical and the product is thermodynamically sim-

ilar to the reactants, with a lower enthalpy of formation to simulate exothermic

reaction. The reaction rate constant is parametrized by the Damköhler number,

Da = krρr/ (Ur/Lr), where the reference density, ρr, is taken to be the initial den-

sity of the fluid at the cross-stream boundaries. Simulations are conducted with

slow (Da = 10) and fast (Da = 106) reactions. The reaction exothermicity is

paremetrized by the nondimensional heat release, Ce = −∆h0
P/ (cpT0) = 2, where

∆h0
P is the heat of reaction. Transport of the passive scalar, 〈φ〉L, is considered in

both MC and FV solvers.

Simulations are conducted on the meshes shown in Table 2. The hexahedral grids

are uniformly spaced in all directions and the tetrahedral mesh is shown in Fig. 1. To

assess the effects of grid resolution, simulations are conducted on the four meshes, G1

to G4. The MC particles are initially distributed uniformly throughout the domain

with variable weights to maintain consistency with the filtered fluid density field.80

Due to flow periodicity in the streamwise and spanwise directions, particles that
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leave the domain at one of these boundaries are replaced by new particles introduced

at the opposite boundary with the same velocity and scalar values. In the cross-

stream directions, the free-slip boundary condition is satisfied by mirror-reflection of

particles contacting these boundaries. For calculations of filtered quantities from the

MC solver (e.g. 〈φ〉L), the particles are averaged according to the ensembles specified

in Table 1. A sensitivity analysis is performed to assess the effect of ensemble size

(E1 to E3) on the results. Unless otherwise noted, simulations are conducted on grid

G1 and ensemble E1. Reynolds-averaged results are obtained by ensemble-averaging

along the homogeneous directions of flow. Reynolds-averaged values are denoted by

φ and their Favre-averages by φ̃ = ρφ/ρ. The resolved second-order moments are

denoted by R (φ, φ) = 〈φφ〉L − 〈φ〉L 〈φ〉L and the total second-order moments are

denoted by r (φ, φ) = φ̃φ− φ̃φ̃.

First, we consider the non-reacting, subsonic temporal mixing layer. To demon-

strate visual consistency of the MC and FV solvers, contour plots of the instanta-

neous filtered values of the conserved scalar, 〈φ〉L, are shown in Fig. 2. The layer

displays strong three-dimensionality, primary vortex rollup in the spanwise plane,

and secondary instabilities in the streamwise plane. Further consistency validation

is demonstrated in the scatter plots of 〈φ〉L via FV vs. 〈φ〉L via MC as shown in

Fig. 3. The Reynolds-averaged values for the first moment of the scalar are shown

in Fig. 4. These values compare well with each other and also with previous direct

numerical simulation (DNS) data.1 The second moments of the conserved scalar

for various ensemble sizes are shown in Figs. 5–7. As expected, when the ensemble

size is decreased, the second moments converge to the FV results. The total second

moment (Fig. 7) compares well with DNS results and is consistently calculated on

the MC and FV solvers. A grid resolution study is performed to determine the

sensitivity of accuracy and consistency to mesh spacing. As shown in Figs. 8–10,

the first and second moments converge to the finest mesh and agree well with DNS.

In the reacting case, consistency of the MC solver and realizability of the sim-

ulated results are investigated. Consistency is confirmed by the scatter plots of

the first moments of the product and temperature as shown in Figs. 11–12. The

Reynolds-averaged values for the first moment of the product mass fraction are
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shown in Fig. 13 and show good consistency between FV and MC solvers. Real-

izability is confirmed in Figs. 14–15 where first moments of temperature and mass

fraction via MC are compared with pure mixing and infinitely fast reaction boundary

lines. For further assessment of the realizability, a conserved scalar Shvab-Zeldovich

variable,81

Z = YA +
cp

−2∆h0
p

(T − Tr), (2.64)

is compared with the passive scalar in Fig. 16 and yields an excellent agreement.

Simulations are performed of a supersonic non-reacting temporal mixing layer

with Ma = 3. At high Mach numbers, turbulent mixing is inhibited by compress-

ibility.82 The formation of large- and small-scale vortical structures is retarded

because the layer does not respond significantly to initial perturbations. For this

reason, we increase the initial forcing amplitude to enhance structure growth. The

supersonic layer displays the formation of eddy shocklets identified by regions with

sharp density and pressure gradients. An instantaneous frontal view of the contours

of the conserved scalar with shadowgraph in the background showing shocklets is

displayed in Fig. 17. This figure also shows the ability of both the FV and MC

schemes to capture the shocklets. Large variations in density exist and are captured

consistently by FV and MC solvers as shown in Fig. 18. The consistency of the

conserved scalar and density first moments is further demonstrated in the scatter

plots shown in Figs. 19–20. In aggregate, these results are particularly encouraging

as they demonstrate that the hybrid SFMDF-US3D solver is capable of conducting

LES of shock-dominated flows.

Finally, simulations are performed of a Ma = 3 chemically-reacting supersonic

mixing layer with Da = 106. Conserved scalar, total energy, and density first mo-

ment scatter plots are displayed in Figs. 21–23 and demonstrate consistency. The

Reynolds-averaged values of temperature via FV and MC are shown in Fig. 24 and

compare well.
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2.4 CHAPTER SUMMARY

The scalar filtered mass density function (SFMDF) methodology is implemented

into the US3D computer code. This code is an unstructured FV solver and has

been very effective for large eddy simulation of compressible flows. The result-

ing hybrid SFMDF-US3D method is employed for LES of a temporally developing

mixing layer. The consistency and the accuracy of the methodology is demon-

strated via simulations of low and high Mach number flows for both non-reacting

and chemically-reacting configurations. In particular it is shown that the scheme is

capable of accurate simulation of shock dominated flows. The US3D-SFMDF code

is now ready for LES of flows of interest in practical hypersonic propulsion systems.
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Figure 1: Unstructured tetrahedral mesh.
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(a) 〈φ〉L via FV

(b) 〈φ〉L via MC

Figure 2: Contours of the conserved scalar for Ma = 0.2 non-reacting layer.
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Figure 3: Scatter plot of the filtered values of the conserved scalar for the Ma = 0.2

non-reacting layer on grid G4. The correlation coefficient is 0.99916. Red 45◦ line

shown for comparison.

−30 −20 −10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

y

〈φ
〉 L

 

 

MC:G4

FV:G4

DNS

Figure 4: Cross-stream variation of the Reynolds-averaged values of the resolved

scalar mean at t = 80 for Ma = 0.2 non-reacting layer. The solid line denotes

LES-FV predictions, asterisks denote FDF-MC, and circles denote DNS data.1
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Figure 5: Cross-stream variation of the Reynolds-averaged SGS scalar variance at

t = 80 for Ma = 0.2 non-reacting layer. The solid line denotes LES-FV results and

the other lines denote FDF-MC predictions using various ensemble sizes (Table 1).
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Figure 6: Cross-stream variation of the Reynolds-averaged values of the resolved

scalar variance at t = 80 for Ma = 0.2 non-reacting layer. The solid line denotes

LES-FV predictions and other lines denote FDF-MC results using various ensemble

sizes (Table 1).
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Figure 7: Cross-stream variation of the Reynolds-averaged values of the total scalar

variance at t = 80 for Ma = 0.2 non-reacting layer. The solid line denotes LES-

FV predictions and other lines denote FDF-MC results using various ensemble sizes

(Table 1).
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Figure 8: Cross-stream variation of the Reynolds-averaged values of the resolved

scalar mean at t = 60 for Ma = 0.2 non-reacting layer. The solid line denotes

LES-FV predictions on mesh G4 and other lines denote FDF-MC results on various

meshes (Table 2).
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Figure 9: Cross-stream variation of the Reynolds-averaged values of the resolved

scalar variance at t = 60 for Ma = 0.2 non-reacting layer. The solid line denotes

LES-FV predictions on mesh G4 and other lines denote FDF-MC results on various

meshes (Table 2).
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Figure 10: Cross-stream variation of the Reynolds-averaged values of the total scalar

variance at t = 60 for Ma = 0.2 non-reacting layer. The solid line denotes LES-FV

predictions on mesh G4 and other lines denote FDF-MC results on various meshes

(Table 2).
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Figure 11: Scatter plot of filtered product formation for reacting Ma = 0.2 layer

with Da = 10. Scatter points represent the quantity at a cell center as obtained

from the FV and MC at t = 80.

Figure 12: Scatter plot of filtered temperature for reacting Ma = 0.2 layer with

Da = 10. Scatter points represent the quantity at a cell center as obtained from the

FV and MC at t = 80.
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Figure 13: Cross-stream variation of the Reynolds-averaged values of the filtered

product mass fraction at t = 80 for reacting Ma = 0.2 layer with Da = 10. Solid

lines denote LES-FV predictions and asterisks denote MC results.
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(a)

(b)

Figure 14: Scatter plots of filtered temperature vs. mixture fraction between the pure

mixing and infinitely fast chemistry boundary lines. (a) Da = 10, (b) Da = 106
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(a)

(b)

Figure 15: Scatter plots of filtered species mass fraction vs. the filtered mixture

fraction between the pure mixing and the infinitely fast chemistry boundary lines.

(a) Da = 10, (b) Da = 106.
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Figure 16: Scatter plots of the filtered conserved scalar vs. 〈Z〉L for Da = 106. Inset

graph is magnification to display scatter. The correlation coefficient is 0.99999
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(a) FV

(b) MC

Figure 17: Contours of the filtered conserved scalar, 〈φ〉L, in foreground with shad-

owgraph showing eddy shocklets in background for Ma = 3 non-reacting layer from

FV and MC.
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(a) FV

(b) MC

Figure 18: Contours of filtered density, 〈ρ〉l, for Ma = 3 non-reacting layer from FV

and MC.
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Figure 19: Scatter plot of the filtered values of the conserved scalar for Ma = 3

layer. The correlation coefficient is 0.99965. Red 45◦ line shown for comparison.

Figure 20: Scatter plot of the filtered values of density for Ma = 3 layer on mesh

G4. The correlation coefficient is 0.99414. Red 45◦ line shown for comparison.

33



Figure 21: Scatter plot of filtered product formation for reacting Ma = 3 layer with

Da = 106 on mesh G4. The correlation coefficient is 0.99610. Red 45◦ line shown

for comparison.

Figure 22: Scatter plot of filtered density for reactingMa = 3 layer withDa = 106 on

mesh G4. The correlation coefficient is 0.99413. Red 45◦ line shown for comparison.
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Figure 23: Scatter plot of filtered total energy for reacting Ma = 3 layer with

Da = 106 on mesh G4. The correlation coefficient is 0.94697. Red 45◦ line shown

for comparison.
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Figure 24: Cross-stream variation of the Reynolds-averaged values of the filtered

temperature for Ma = 3 reacting layer with Da = 106 on mesh G4. Solid lines

denote LES-FV predictions and asterisks denote MC results.
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3.0 A MULTI-BLOCK ESWENO SCHEME

In this chapter, a new computational methodology is developed for accurate captur-

ing of discontinuities in multi-block83–85 finite difference simulations of hyperbolic

partial differential equations. A fourth-order energy-stable weighted essentially non-

oscillatory (ESWENO)43–46 finite difference scheme on closed domains is combined

with simultaneous approximation term (SAT)47 weak interface and boundary con-

ditions. Smoothness of grid-spacing across subdomain interfaces is not required.

WENO stencil-biasing37–40,86,87 is truncated near subdomain boundaries and only

collocated interface points are communicated between neighboring subdomains. The

performance of the methodology is assessed in the presence of significant jumps in

grid-spacing across subdomain interfaces. Results are presented for several canonical

test cases involving the linear scalar hyperbolic wave equation in one and two dimen-

sions, and the Euler equations in one and two dimensions. It is demonstrated that

the new methodology allows strong discontinuities to be passed across subdomain

interfaces without a significant distortion. It is demonstrated that the methodol-

ogy provides stable and accurate solutions even when large differences in the grid-

spacing exist, whereas strong imposition of the interface conditions causes noticeable

oscillations. With weak subdomain interdependence, low subdomain-to-subdomain

message-passing overhead, and ease of local grid refinement, the new methodology

is designed to be amenable to parallel simulations of flows in complex geometries.
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3.1 FORMULATION

We consider the linear scalar hyperbolic wave equation on a finite (non-periodic)

domain:

∂v

∂t
+
∂f

∂x
= 0, f = av, x ∈ Ω, Ω = [A,B],

v(x, 0) = v0(x),

v(A, t) = g(t),

(3.1)

where v = v (x, t) is the continuous solution; a, A, and B are positive constants; v0(x)

and g(t) are bounded continuous functions; and x and t are independent variables.

To obtain an energy estimate, Eq. (3.1) is multiplied by v and integrated over the

domain, Ω, which yields the continuous energy estimate,

d

dt
‖v‖2

L2
= −a

[
v2(B, t)− g2(t)

]
, (3.2)

where ‖ · ‖L2 denotes the L2 norm. Equation (3.2) admits a solution that is stable

in time ( d
dt
‖v‖2

L2
≤ 0). Note that Eq. (3.2) is obtained by assuming that ∂f/∂x

satisfies integration by parts (IBP).

The objective of the work in this chapter is to obtain a pth-order accurate finite

difference approximation for the continuous spatial derivative in Eq. (3.1),

∂f

∂x
= D · f +O(∆xp), (3.3)

such that a discrete energy estimate analogous to Eq. (3.2) can be obtained. In

Eq. (3.3), f represents a projection of f onto a uniform N -point discretization of

the Ω, D denotes a discrete derivative operator, and ∆x denotes the constant grid-

spacing of the discretization. The discrete solution of v is denoted by u. Herein,

bold variables represent discrete multicomponent arrays (vectors, matrices, etc.) and

non-bold variables represent scalars or continuous variables. It is well-established
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that in order to facilitate an energy estimate, D must satisfy summation by parts

(SBP),41,42 the discrete analog to IBP. SBP is embodied by the constraints,

D = P−1(Q+R) ; Q+QT = Diag[−1, 0, ..., 0, 1], (3.4)

R = RT ; vTRv ≥ 0, v 6= 0, (3.5)

P = P T ; vTPv > 0, v 6= 0, (3.6)

that is, Q is almost skew-symmetric, R is symmetric positive semidefinite (SPS),

and P is symmetric positive definite (SPD). To facilitate construction of an SPS

matrix, we introduce the dissipation matrix, R:

R = Λ0 + ∆Λ1 [∆]T + ∆ [∆]T Λ2∆ [∆]T + ∆ [∆]T ∆Λ3 [∆]T ∆ [∆]T , (3.7)

where the components Λi are diagonal SPS matrices of appropriate size,

Λe = Diag [λ1, ..., λN ] ; λj ≥ 0, j = 1, N ; e = 2p, p = 0, 1, (3.8)

Λo = Diag [λ1, ..., λN ] ; λj ≥ 0, j = 0, N ; o = 2p+ 1, p = 0, 1, (3.9)

and ∆ is the N + 1×N differencing matrix,

∆ =



−1 1 0 0 0 0

0 −1 1 0 0 0

0 0
. . . . . . 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1


. (3.10)

These forms result in a semi-discrete energy equation that yields time-stability in

the L2 energy norm:46

d

dt
‖u‖P ≤ 0, (3.11)

where ‖ · ‖P (e.g. ‖u‖P = uTPu) is the P -norm, a discrete analog to the L2 norm.

Time-stability in the L2 norm is hereafter referred to simply as stability.
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3.1.1 Non-Oscillatory Schemes

We discretize the domain of Eq. (3.1) with two interdigitated grids:

x = [x1 = A, x2, . . . , xN = B] , (3.12)

x̄ = [x̄0 = A, x̄1, . . . , x̄N = B] . (3.13)

The finite difference grid-points, x, are denoted solution-points because they carry

the solution data. Each solution-point, xi, lies in a control volume bounded on the

left and right by flux-points x̄i−1 and x̄i, respectively. At each of these points, a

numerical flux will be calculated to facilitate conservative calculation of the deriva-

tive. Data located at flux-points carry the overbar notation (e.g. f̄) while data

located at solution-points are represented by variables without an overbar (e.g.f).

The flux- and solution-points are collocated at the boundaries. The solution-points

are equally-spaced, while the flux-points may be unevenly-spaced between solution

points.

The conventional fourth-order WENO finite difference scheme3,88 for Eq. (3.1)

is written in a semi-discrete form,

∂ui
∂t

+
f i − f i−1

∆x
= 0, (3.14)

where f̄i is the WENO flux given by

f̄ =
∑
r

w̄(r)f̄
(r)
, (3.15)

and f̄
(r)

= I(r)f , r ∈ {L,C,R} are second-order fluxes obtained by interpolating

data from the solution-points to the flux-points for the three candidate stencils SL,

SC , and SR (left, center, and right stencils, respectively). As described in Ref. [46],

the interpolation operators I(r) are N + 1×N matrices that interpolate data from

the solution-points to the flux-points.

The nonlinear weight functions, w̄(r), embody the stencil-biasing mechanics of

the WENO scheme. The classical weight functions of Jiang and Shu88 are defined,

w̄(r) =
ᾱ(r)∑
r ᾱ

(r)
, ᾱ(r) =

d̄(r)

(ε+ β̄(r))2
, (3.16)
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where d̄(r) are the target weights that force the WENO scheme to asymptote to

a target central difference scheme in smooth regions of the flow. The smoothness

indicators, β̄(r), are given by

β̄Li = (fi − fi−1)2, β̄Ci = (fi+1 − fi)2, β̄Ri = (fi+2 − fi+1)2. (3.17)

The parameter ε is set to 10−6 to prevent a zero denominator.88 This WENO scheme

does not follow SBP convention; thus, an energy estimate is not readily obtainable.43

The ESWENO scheme involves a modification of the WENO weight functions

such that the derivative operator satisfies SBP, making an energy estimate possi-

ble. Furthermore, an artifical dissipation term is added to the derivative opera-

tor to maintain stability. We consider the finite-domain ESWENO 3-4-3 scheme,

which uses a fourth-order approximation in the domain interior and an inward-

biased, third-order approximation near boundaries. This scheme is globally fourth-

order.46,89,90

The finite-domain ESWENO 3-4-3 scheme is formed by constructing a deriva-

tive operator that permits the WENO stencil-biasing framework of Eq. (3.36) and

satisfies the SBP requirements of Eqs. (3.4)-(3.6). The grid-points are uniformly

distributed with spacing δx = xi − xi−1, while the flux-points are nonuniformly

distributed with spacing δ̄x = x̄i − x̄i−1. The grid suggested in Ref. [46] is used:

x̄ =

[
A,

(
A+

43δx

144

)
,

(
A+

61δx

36

)
,

(
A+

349δx

144

)
,

(
A+

7δx

2

)
, . . . ,(

B − 7δx

2

)
,

(
B − 349δx

144

)
,

(
B − 61δx

36

)
,

(
B − 43δx

144

)
, B

]
.

(3.18)

The ESWENO differentiation operator has the form,

D = P−1∆
∑
r

w̄(r)I(r), (3.19)

where r = L,C,R are the three candidate stencils. Differentiation of the flux, f ,

yields

Df = P−1∆
∑
r

w̄(r)f̄
(r)

= P−1∆
∑
r

w̄(r)I(r)f . (3.20)
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The ESWENO weight functions are defined by

w̄(r) =
ᾱ(r)∑
r ᾱ

(r)
, ᾱ(r) = d(r)

(
1 +

τ̄

(ε+ β̄(r))2

)
, (3.21)

with stencil biasing parameters,

τ̄i = (−fi−1 + 3fi − 3fi+1 + fi+2)2, 2 ≤ i ≤ N − 2, (3.22)

τ̄i = (−fi + 3fi+1 − 3fi+2 + fi+3)2 , i = 1, (3.23)

τ̄i = (−fi + 3fi−1 − 3fi−2 + fi−3)2 , i = N − 1. (3.24)

The smoothness indicators, β̄(r), remain the same as in WENO. However, extra

stencils, SLL and SRR, and smoothness indicators,

β̄LLi = (fi−1 − fi−2)2, β̄RRi = (fi+3 − fi+2)2, (3.25)

are needed to facilitate third-order stencil-biasing mechanics near the boundaries.

A limiting operation is used to ensure that the downwind (DW) stencil weight does

not overtake the central or upwind weights:

β̄DW
i =

(
1

3

∑
r

[
β̄

(r)
i

]4
) 1

4

. (3.26)

A block-norm, P , of the form,

P = δx


P 0 0 0

0 I 0

0 0 P PT
0

 , P 0 =


p11 p12 p13 p14

p12 p22 p23 p24

p13 p23 p33 p34

p14 p24 p34 p44

 , (3.27)

is used and the derivative operator takes the form,

Q =


Q0 Qd 0

−QT
d Ql Qd

0 −QT
d −(Q0)PT

 , Q0 =


−1

2
q12 q13 q14

−q12 0 q23 q24

−q13 −q23 0 q34

−q14 −q24 −q34 0

 ,
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Qd =


0 . . .

0 . . .

− 1
12

0 . . .

8
12

− 1
12

0 . . .

 , (3.28)

where PT denotes the per-symmetric transpose, Pij = P[N−(i−1)][N−(j−1)]. The ma-

trix P and target operator D are given in Appendix B.

A key distinction of the ESWENO scheme is its energy-stabilization term. The

baseline WENO scheme,

Dweno = P−1 (Q+Rweno) , (3.29)

does not guarantee stability; the elements of Rweno may take negative values such

that Rweno is not SPS. Stability is achieved by adding a dissipative operator, Res, to

ensure that the total dissipation operator, R = Rweno+Res, is SPS. The ESWENO

scheme has the form,

D = P−1 (Q+Rweno +Res) . (3.30)

The stabilization operator, Res, is determined by enforcing the condition that the

total dissipation operator, R, is SPS and the entire scheme remains design-order.

We expand Rweno as43

P−1Rweno = Λ0 + ∆Λ1 [∆]T + ∆ [∆]T Λ2∆ [∆]T + ∆ [∆]T ∆Λ3 [∆]T ∆ [∆]T ,

(3.31)

and assuming a similar form for Res:

P−1Res = Λ̂0 +∆Λ̂1 [∆]T +∆ [∆]T Λ̂2∆ [∆]T +∆ [∆]T ∆Λ̂3 [∆]T ∆ [∆]T . (3.32)

We guarantee that R is SPS by smoothly enforcing positivity:

[λj]i + [λ̂j]i ≥ 0, ∀ i, j. (3.33)

We achieve this by constructing the components of Λ̂j as

[λ̂j]i =
1

2

(√
[λj]

2
i + δ2

i − [λj]i

)
. (3.34)
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Design-order accuracy is preserved if the constraints δ1 ≤ O (δx3) and δ2 ≤ O (δx2)

are satisfied. The matrices Λi are specified in Appendix B. Defining the dissipative

energy-stabilization flux,

ψ̄ =
[
Λ̂1 [∆]T + [∆]T Λ̂2∆ [∆]T + [∆]T ∆Λ̂3 [∆]T ∆ [∆]T

]
f , (3.35)

allows the energy-stabilization operator to be combined with the WENO operator,

yielding the combined flux form,

fx = Df = P−1∆
(
f̄ + ψ̄

)
. (3.36)

3.1.2 Simultaneous Approximation Term Penalty Procedure

The simultaneous approximation term (SAT) penalty procedure was first introduced

by Carpenter et al.91 for boundary closures. It was later extended to interface

closures.47 Since that work, it has been successfully used for boundary and interface

closures in a myriad of high-order numerical schemes.92–95 Here, both boundary and

interface conditions are imposed using SAT. Henceforth, the term interface shall

generally refer to both subdomain interfaces and domain boundaries, as their SAT

treatment is identical. A boundary is simply treated as a neighboring subdomain

whose data on ∂Ω (domain boundary) is known exactly.

The SAT methodology is a weak penalty procedure, in that instead of strictly

enforcing interface data by requiring the values of the solution at the interface xi

to be identical in the two neighboring subdomains, the values of the solution at

these interfaces are penalized to pull the respective interface values together. The

advantage of such a weak imposition of the interface condition is that it allows the

global finite difference scheme to maintain SBP and, consequently, stability. Design-

order accuracy of the scheme is also assured by choice of the free parameters.

We begin by requiring that neighboring subdomains have collocated points on

their shared interfacial surface. The discrete solutions to Eq. (3.1) on the left and
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right subdomains are denoted by uL and uR, respectively. The semi-discrete form

of Eq. (3.1) using the SAT interface penalty is

∂uL
∂t

+ aP−1
L QLuL =σ1P

−1
L eL [uL|x=xi − uR|x=xi ] , (3.37)

∂uR
∂t

+ aP−1
R QRuR =σ3P

−1
R eR [uR|x=xi − uL|x=xi ] , (3.38)

where xi is the spatial location of the interface, eL = [0, ..., 0, 1]T , and eR = [1, 0, ..., 0]T .

As described in Ref. [47], Eqs. (3.37)–(3.38) are stable and preserve design-order ac-

curacy if

σ1 ≤
a

2
, (3.39)

σ3 = σ1 − a. (3.40)

The SAT interface penalty provides subdomain connectivity for the multi-block for-

mulation as described in the next section.

3.1.3 Univariate One-Dimensional Multi-Block Formulation

The formulation is first presented in the context of the continuous, one-dimensional

linear scalar wave equation on the global domain x ∈ [A,B]:

∂v

∂t
+
∂F

∂x
= 0, F = av, x ∈ Ω, Ω = [A,B],

v(x, 0) = v0(x),

v(A, t) = gL(t), if a > 0,

v(B, t) = gR(t), if a < 0,

(3.41)

where a is the constant wave speed and gL and gR denote boundary conditions

on the left and right sides of the global domain, respectively. The domain, Ω, is

partitioned into K subdomains. The subdomain k ∈ {1, 2, . . . , K} is discretized

with Nk grid-points on the local domain Ωk = [xL, xR] ⊂ Ω and x ∈ Ωk: xk =

[x1 = xL, x2, . . . , xNk = xR]. We seek the discrete solution on each subdomain: uk =

[u1, u2, . . . , uNk ]. The first and last points in each subdomain lie on the subdomain

boundary, such that there are two collocated points at each subdomain interface.

Each subdomain utilizes an SBP-satisfying differentiation scheme, D = P−1Q,
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which may be different on each subdomain. This leads to the following semi-discrete

form:

ut+aP
−1Qu = (σ−1

2
)aP−1 [Ia>0 (uL,k − uL,nL) e1 − (1− Ia>0) (uR,k − uR,nR) eNk ] ,

(3.42)

where the RHS represents the SAT interface penalty to account for interface condi-

tions. In Eq. (3.42), the left and right interface values on subdomain k are denoted

by uL,k and uR,k, respectively. Corresponding interface values on its neighbors with

partition numbers nL and nR are denoted by uL,nL and uR,nR , respectively. The

vectors,

e1 = [1, 0, . . . , 0]T ,

eNk = [0, . . . , 0, 1]T ,
(3.43)

have length Nk and are used to restrict the penalty term to only the collocated

interface points, although a non-diagonal ESWENO 3-4-3 P -matrix will effectively

smear the effect of the boundary penalty across multiple points near the interface.

The indicator function,

Ia>0 =

 0 : a ≤ 0

1 : a > 0
, (3.44)

is used to require that interface information always travels downwind. The SAT

parameter, σ, controls the tightness of coupling between subdomains.∗ The dis-

cretization of Eq. (3.42) has been previously shown to be stable and accurate for

σ ≤ 0.47,91 Reducing the value of σ indicates additional artificial dissipation at the

interface. Unless otherwise noted, a value of σ = −1
2

is used for all calculations.

Extra dissipation is added in some cases to maintain stability near subdomain inter-

faces because WENO stencil-biasing is not possible. In general, the second term on

the LHS of Eq. (3.42) can be any SBP-satisfying differentiation scheme and need not

be the same for each subdomain. Here, the globally fourth-order accurate ESWENO

3-4-3 scheme is used for all subdomains.

Equation (3.42) is time-stable and accurate to the design-order of Q. Stability

∗The notation of the constant, σ, is presented in a slightly different notation than that of
Eqs. (3.37)–(3.38); however, the two forms are equivalent.
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and accuracy of the multi-block scheme follows trivially by combining the proofs in

Refs. [46, 47]. These hold due to the combination of stable and accurate derivative

operators and boundary closures.

3.1.4 Hyperbolic Systems

The multi-block formulation is developed in the context of a single linear hyperbolic

equation. Systems of hyperbolic equations are accommodated via a characteristic

decomposition that forms a set of uncoupled, frozen, linear hyperbolic equations

that each fit the form of Eq. (3.41). The linear differentiation and penalty scheme is

applied on each of the characteristic equations. The resultant characteristic quanti-

ties are transformed back into the physical space prior to time integration. This is

described further below.

First, we consider the general one-dimensional hyperbolic system of M differen-

tial equations,
∂U

∂t
+
∂F

∂x
= 0, F = F (U), (3.45)

where U (x, t) = [U1 (x, t) , U2 (x, t) , . . . , UM (x, t)] is a vector of M conserved vari-

ables and F (x, t) = [F1 (x, t) , F2 (x, t) , . . . , FM (x, t)] is the flux vector. Applying

the chain rule to the second term on the LHS of Eq. (3.45) yields

∂U

∂t
+A

∂U

∂x
= 0, (3.46)

where the tensor A = ∂F /∂U is the Jacobian matrix. We seek a characteristic

eigen-decomposition of the form,

A = SΛS−1, (3.47)

with eigenvalue matrix Λ = Diag [λ1, λ2, . . . , λM ] and left eigenvector matrix S.

Note that the eigen-decomposition in Eq. (3.47) is not guaranteed, in general, for all

hyperbolic systems. We freeze S and Λ at a single point in time and space, substitute

Eq. (3.47) into Eq. (3.46), and premultiply by S−1 to find the characteristic form:

∂U c

∂t
+ Λ

∂U c

∂x
= 0, (3.48)
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where U c = S−1U and F c = ΛU c are the characteristic variables formed by trans-

forming the physical variables U into characteristic space via S−1. Equation (3.48)

is a set of uncoupled hyperbolic equations in characteristic space. The SAT penalty

is applied in the linearized characteristic space:47

∂U c

∂t
+ Λ

∂U c

∂x
= (σ − 1

2
)P−1Λ

[
IΛ>0

(
[U c]L,k − [U c]L,nL

)
e1

− (1− IΛ>0)
(

[U c]R,k − [U c]R,nR

)
eNk

]
.

(3.49)

Characteristic implementation for the new ESWENO-SAT scheme is as follows. The

multi-block discretization, Eq. (3.42) is applied in characteristic space and rotated

back into the physical space before time-integration. The semidiscrete form is

∂U

∂t
+DF = P−1S(σ − 1

2
)Λ
[
IΛ>0

(
[U c]L,k − [U c]L,nL

)
e1

− (1− IΛ>0)
(

[U c]R,k − [U c]R,nR

)
eNk

]
,

(3.50)

where D represents the ESWENO differentiation operator. We expand D by ap-

plying the flux-differencing form of Eq. (3.36):

DF = P−1∆
(
F̄ + ψ̄

)
. (3.51)

We expand F̄ using the interpolation matrices as in Eq. (3.20):

DF = P−1∆

(∑
r

w̄(r)I(r)F + ψ̄

)
. (3.52)

We expand F using the characteristic decomposition in Eq. (3.47):

DF = P−1∆

(∑
r

w̄(r)I(r)AU + ψ̄

)

= P−1∆

(∑
r

w̄(r)I(r)SΛS−1U + ψ̄

)

= P−1∆S

(∑
r

w̄(r)I(r)ΛU c + S−1ψ̄

)
. (3.53)

To facilitate upwinding, we introduce the Lax-Friedrichs flux splitting,

F±c =
1

2
(ΛU c ±ΛmaxU c) , (3.54)
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where Λmax is the length M vector of maximum eigenvalues on subdomain k. The

final form of the derivative operator is

DF = P−1∆S

(∑
r

w̄(r)I(r)F+
c +

∑
r

w̄(r)I(r)F−c + S−1ψ̄

)
. (3.55)

The final semidiscrete form is

∂U

∂t
+ P−1∆S

(∑
r

w̄(r)I(r)F+
c +

∑
r

w̄(r)I(r)F−c + S−1ψ̄

)
=

P−1S(σ − 1

2
)Λ
[
IΛ>0

(
[U c]L,k − [U c]L,nL

)
e1 − (1− IΛ>0)

(
[U c]R,k − [U c]R,nR

)
eNk

]
.

(3.56)

This yields an effective multi-block ESWENO numerical approximation of the deriva-

tive:

DeffF = P−1∆S

(∑
r

w̄(r)I(r)F+
c +

∑
r

w̄(r)I(r)F−c + S−1ψ̄

)
− P−1S(σ − 1

2
)Λ
[
IΛ>0

(
[U c]L,k − [U c]L,nL

)
e1 − (1− IΛ>0)

(
[U c]R,k − [U c]R,nR

)
eNk

]
.

(3.57)

The new scheme is also applicable for numerical solution of multi-dimensional

systems of equations. For illustration, we consider the two-dimensional system of m

coupled hyperbolic equations,

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0, F = F (U) , G = G (U) , (3.58)

where U = [U1, U2, . . . , UM ]. We use chain rule to expand the last two terms on the

LHS of Eq. (3.58),
∂U

∂t
+Ax

∂U

∂x
+Ay

∂U

∂y
= 0, (3.59)

where the Jacobians Ax = ∂F
∂U

and Ay = ∂G
∂U

are assumed to have the eigen-

decomposition,

Ax = SxΛxS
−1
x , (3.60a)

Ay = SyΛyS
−1
y . (3.60b)
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Substituting Eq. (3.60) into Eq. (3.59):

∂U

∂t
+ Sx

∂F c

∂x
+ Sy

∂Gc

∂y
= 0. (3.61)

We solve Eq. (3.61) by independently applying Eq. (3.57) on ∂F
∂x

and ∂G
∂y

, then

integrating over time. For example, the characteristic decomposition of the two-

dimensional Euler equations,

∂U

∂t
+
∂F

∂x
+
∂G

∂y
= 0, (3.62)

U =


ρ

ρu

ρv

ρE

 , F =


ρu

ρu2 + p

ρuv

(ρE + p)u

 , G =


ρv

ρuv

ρv2 + p

(ρE + p)v

 ,

is accomplished via the characteristic decomposition of Pulliam and Chaussee,96

Sh =


1 0 α α
ū ρ̄ (1− Ih=‘x’) α(ū+ Ih=‘x’c) α(ū− Ih=‘x’c)
v̄ −ρ̄Ih=‘x’ α [v̄ + (1− Ih=‘x’) c] α [v̄ − (1− Ih=‘x’) c]
φ2

γ−1 ρ̄ [(1− Ih=‘x’) ū− Ih=‘x’v̄] α(φ
2+c2

γ−1 + cθ) α(φ
2+c2

γ−1 − cθ)

 ,

(3.63)

S−1
h =


1− φ2

c2
(γ − 1) ū

c2
(γ − 1) v̄

c2
−γ−1

c2
Ih=‘x’v̄−(1−Ih=‘x’)ū

ρ̄
1−Ih=‘x’

ρ̄ −Ih=‘x’
ρ̄ 0

β(φ2 − cθ) β [Ih=‘x’c− (γ − 1)ū] β [(1− Ih=‘x’) c− (γ − 1)v̄] β(γ − 1)
β(φ2 + cθ) −β [Ih=‘x’c+ (γ − 1)ū] −β [(1− Ih=‘x’) c+ (γ − 1)v̄] β(γ − 1)

 ,

(3.64)

α =
ρ√
2c
,

β =
1√
2ρc

,

θ = Ih=‘x’u+ (1− Ih=‘x’) v,

φ2 =
1

2
(γ − 1)u2 + v2,

where the matrices Sx and Sy are presented in the representative form Sh, h ∈

{‘x’, ‘y’}. The operator Ih=‘x’ is an indicator function for h = ‘x’.
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3.2 DEMONSTRATION

The ESWENO-SAT implementation is initialized by defining the problem geometry

and partitioning the domain into a set of independent subdomains. If curvilinear

meshes are used, the shape of the subdomains is flexible and the domain decomposi-

tion may be entirely unstructured, with each block having an arbitrary shape.† Such

a flexibility allows blocks surrounding complex geometry to exactly match the body

only locally, instead of fitting the entire body with one mesh. The only requirement

is that for each subdomain-to-subdomain interface, the sets of points lying on the

interface owned by the left and right subdomains must be collocated.‡ No restriction

is placed on similarity of grid topology or grid-spacing.

In this implementation, each subdomain is sent to a single processor on a distributed-

memory computing architecture. The multi-block ESWENO scheme, Eq. (3.57), is

carried out separately on each subdomain, in each dimension, with message-passing

of collocated interface points between neighboring subdomains for calculation of the

SAT penalty. Time integration is via an explicit fourth-order Runge-Kutta scheme.99

A detailed pseudocode description the implementation is presented in Appendix B.

Simulation results are presented to show the stability and accuracy of the multi-

block scheme. Design-order accuracy on smooth problems is shown and the ability

of the scheme to accurately capture strong shocks without significant oscillation

or diffusion is exemplified. A highlight of the results is the lack of interference of

subdomain interfaces on the physics. Both delicate physical phenomena (such as a

weak vortex) and strong shocks pass through interfaces without noticeable diffusion

or dispersion, even in the presence of large jumps in grid-spacing across the interface.

Additionally, some simulations using strongly-imposed interface conditions are

performed for comparison with results using the SAT interface conditions described

in the previous section. Strong interface condition imposition involves overwriting

data at the interface with results calculated on the upwind subdomain. The interface

†In the work presented in this chapter, only Cartesian meshes are used; extension to curvilinear
grids is reserved for a future work.
‡It seems feasible that this requirement could be relaxed by repurposing ideas from adaptive

mesh refinement (AMR).97,98 Development for non-collocated interface points is reserved for a
future work.
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upwinding is performed before each Runge-Kutta substep and again on the global

variables after each global time integration. Unless otherwise noted, simulations

default to weak SAT interface conditions.

Results are presented for one- and two-dimensional test problems for both linear

and nonlinear hyperbolic systems. To demonstrate convergence of the scheme to

design-order accuracy, the L2 error,

‖E‖L2 =

√√√√ M∑
m=1

∫
Ω

(um − vm)2 dxdy, (3.65)

is integrated numerically using the midpoint rectangle rule.

3.2.1 One-Dimensional Linear Scalar Wave Equation

The one-dimensional linear scalar hyperbolic wave equation,

∂ρ

∂t
+
∂ρ

∂x
= 0, (3.66)

is solved for the conserved scalar ρ(x, t). Numerical results are presented comparing

strong versus weak boundary and interface conditions. Equation (3.66) is solved for

both smooth and discontinuous initial conditions.

Sine-Wave Advection: Equation (3.66) is solved numerically with the initial con-

dition,

ρ(x, 0) = sin(x), x ∈ [−π, π] , (3.67)

after ten flow-through times. Calculations are performed on both a single subdomain

and 4 equally-spaced subdomains. The L2 error and the convergence rates are

shown in Table 3. Both single- and multi-domain results converge to design-order.

Moreover, the difference in L2 error between the two configurations is negligible.

Calculations are also performed on 4 unequally-spaced subdomains using the initial

condition,

ρ(x, 0) = sin(2πfx), x ∈ [0, 1] , (3.68)

with frequency f = 3.0 with periodic boundary conditions for one flow-through time.

Results for both strong and weak interface conditions on a mesh with 101 points per
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Table 3: L2 error and convergence rates for the one-dimensional sine wave advection

problem on single and multiple subdomains.

Number Single domain Four subdomains

of points log (L2) Rate log (L2) Rate

21 -0.2998 0.1996

49 -1.7806 3.89 -1.7819 5.21

101 -3.0587 4.01 -3.0589 4.01

201 -4.2638 4.00 -4.2640 4.00

401 -5.4682 4.00 -5.4683 4.00

801 -6.6723 4.00 -6.6724 4.00

1601 -7.8700 3.98 -7.8628 3.95

subdomain are displayed in Fig. 25. The maximum grid compression ratio between

neighboring subdomains is 4. No noticeable oscillations appear for either interface

condition scheme.

Square-Wave Advection: Equation (3.66) is solved with the initial condition,

ρ(x, 0) =

 1 : x ∈ (0.3, 0.6)

0 : x 6∈ (0.3, 0.6)
, x ∈ [0, 1] , (3.69)

and periodic boundary conditions, for one flow-through time. Calculations are per-

formed on 4 unequally-spaced subdomains using strong and weak boundary and

interface conditions. Figure 26 shows sample results on a mesh with 26 grid-points

per subdomain and 104 total points. The maximum grid-compression factor between

neighboring subdomains is 4. Strong imposition of the interface conditions results

in significant oscillations, while weak conditions eliminate these oscillations.
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3.2.2 Two-Dimensional Linear Scalar Wave Equation

The two-dimensional linear scalar hyperbolic wave equation,

∂ρ

∂t
+ a

∂ρ

∂x
+ b

∂ρ

∂y
= 0, (3.70)

is solved for the conserved scalar ρ(x, y, t). The constants a and b denote the hori-

zontal and the vertical wave speeds, respectively.

Square-Wave Advection: Equation (3.70) is solved for the discontinuous initial

condition shown in Fig. 27. The circle is advected diagonally towards the top-right

of the domain with speed 1. Results after a single pass through the domain are

presented in Fig. 28. Calculations are performed on 4 equally-spaced subdomains

using weak SAT boundary and interface conditions. Each subdomain has 101× 101

grid-points and the entire domain is discretized by 202× 202 points.

3.2.3 Euler Equations

One-Dimensional Sod’s Shock Tube Problem: The one-dimensional Euler equa-

tions,
∂U

∂t
+
∂F

∂x
= 0, (3.71)

U =


ρ

ρu

ρE

 , F =


ρu

ρu2 + p

(ρE + p)u

 ,

are solved for the Sod’s shock tube problem.2 Results for strong and weak boundary

and interface conditions for 4 equally-spaced subdomains with 101 grid-points each

are shown in Fig. 29. Results for strong and weak boundary and interface conditions

for 4 unequally-spaced subdomains with a maximum grid compression ratio of 4

are shown in Fig. 30. Each subdomain has 101 grid-points. Noticeable oscillations

develop for strongly-imposed conditions. Weak conditions prevent oscillations in

density and velocity; however, some perturbation in the energy persists.
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Table 4: Comparison of total L2 error and convergence rates for two-dimensional

inviscid vortex convection problem on single and multiple subdomains.

Grid Single domain Four subdomains

log (L2) Rate log (L2) Rate

21× 21 -0.73 -0.74

41× 41 -1.81 3.60 -1.82 3.58

81× 81 -3.00 3.95 -2.98 3.86

161× 161 -3.98 3.25 -3.91 3.08

321× 321 -4.68 2.32 -4.61 2.33

641× 641 -5.30 2.05 -5.24 2.09

Two-Dimensional Inviscid Vortex: The two-dimensional Euler equations are

solved for an inviscid vortex convection problem with exact solution,

f(x, y, t) = 1−
[
(x− x0 − U∞t)2 + (y − y0)2

]
,

ρ(x, y, t) =

(
1− ε2γ − 1

8π2
exp(f(x, y, t))

) 1
γ−1

,

u(x, y, t) = U∞ − ε
y − y0

2π
exp

(
f(x, y, t)

2

)
,

v(x, y, t) = ε
x− x0 − U∞t

2π
exp

(
f(x, y, t)

2

)
,

p =
ρ

γ
, U∞ = M∞c∞, M∞ = 0.5, x ∈ [0, 10], y ∈ [−5, 5], (x0, y0) = (5, 0).

(3.72)

The exact density solution is shown in Fig. 31. Calculations are performed on 4

equally-spaced subdomains using weak boundary and interface conditions. The L2

error and convergence rates at t = 10s with SAT interface conditions are shown

in Table 4. Both single- and multi-domain results converge to the design-order.

Moreover, the difference in L2 error between the two configurations is small. Sample

results are shown in Fig. 32, left column, where each subdomain has 101× 101 grid-

points, thus the total number of grid-points is 202 × 202. Calculations are also

performed on 4 unequally-spaced subdomains using weak boundary and interface
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Table 5: Number of grid-points in each subdomain for the inviscid vortex convection

problem with unequally-spaced subdomain grids as shown in Figs. 33–34

.

Subdomain Nx Ny

Bottom left 201 91

Bottom right 91 91

Top left 201 201

Top right 91 201

conditions as shown in Fig. 33 and Fig. 34, left column. The number of grid-points

for each subdomain is shown in Table 5. The total grid size is 292 × 292 and the

maximum grid compression ratio across neighboring subdomains is 2.22.

Flow Over a Forward-Facing Step: Results are presented for inviscid flow over

a forward-facing step at Ma = 3.0.3,100 The computed density at t = 4 on 3

equally-spaced subdomains using weak SAT boundary and interface conditions is

shown in Fig. 32. Subdomain partitions are shown. The total grid size is 241 × 81

and the results are compared with the fifth-order WENO scheme of Shu3 on a

242×79 mesh. For demonstration, calculations are also performed on 3 subdomains

with nonuniform grid-spacing. Results for t = 3 are shown in Fig. 34. The total

Table 6: Grid spacing for Mach 3 flow over a front-facing step.

Subdomain ∆x ∆y

Bottom left 0.0125 0.0125

Top left 0.0125 0.025

Top right 0.025 0.025
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grid size is 145 × 49 and subdomain grid-spacing is shown in Table 6. Maximum

grid compression ratio across neighboring subdomains is 2. Interference from the

interfaces is slight; some dissipation is added at interfaces (σ = −5) to maintain

stability.

3.3 CHAPTER SUMMARY

The closed-domain ESWENO 3-4-3 differentiation scheme46 and the SAT penalty

method47 are combined to produce a robust solver for hyperbolic-dominated prob-

lems. This discretization methodology allows smooth solutions and captures discon-

tinuities even with jumps in grid-spacing between subdomains. The flexibility, sta-

bility, and accuracy of the scheme are demonstrated. The methodology is designed

to facilitate high-order accuracy on complex geometries, low-overhead paralleliza-

tion, and flexibility of local grid refinement. With future extension of the method

for three-dimensional discretization, it can be used for simulation of flows of interest

to hypersonic propulsion.
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Figure 25: One-dimensional sine-wave advection problem after one flow-through

time (t = 1.0) on 4 unequally-spaced subdomains for strong and weak (SAT) bound-

ary and interface conditions. X’s on the horizontal axis denote interface locations.
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Figure 26: One-dimensional square-wave advection problem after one flow-through

time on 4 unequally-spaced subdomains using both strong and weak boundary and

interface conditions. X’s on the horizontal axis denote interface locations.
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Figure 27: Initial condition, ρ, for two-dimensional square-wave advection problem.
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Figure 28: Two-dimensional square-wave advection problem for one flow-through

time on 4 equally-spaced subdomains using weak boundary and interface conditions.

Dashed lines denote interface locations. In (a), solid lines denote exact solution and

color contours are the numerical solution at various times. In (b), solid blue lines

denote the exact solution and solid black lines represent contours ρ = 0.01 and

ρ = 0.99 of the numerical solution to display shock smearing.
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Figure 29: Sod’s2 one-dimensional shock tube problem at t = 0.2 on 4 equally-

spaced subdomains. Left column: strong interface conditions. Right column: weak

interface conditions. X’s on horizontal axis denote interface locations.
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Figure 30: Sod’s2 one-dimensional shock tube problem at t = 0.2 on 4 unequally-

spaced subdomains. Left column: strong interface conditions. Right column: weak

SAT interface conditions. X’s on horizontal axis denote interface locations.
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(a) t = 0. (b) t = 5.

(c) t = 10.

Figure 31: Exact density solution for the inviscid vortex advection problem at various

times.
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(d) Exact, t = 10

Figure 32: Density contours for inviscid vortex advection problem at various times.

Left column: computed density on 4 equally-spaced subdomains using weak bound-

ary and interface conditions. Solid lines denote interface locations. Right column:

analytic solution.
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(a) t = 5

Figure 33: Computed density for the inviscid vortex advection problem on 4

unequally-spaced subdomains using weak (SAT) boundary and interface conditions.

Subdomain grid sizes are shown in Table 5. Solid lines denote interface locations.
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(d) Exact, t = 10

Figure 34: Density contours for inviscid vortex advection problem at various times.

Left column: computed contours on 4 unequally-spaced subdomains using weak

(SAT) boundary and interface conditions. Subdomain grid sizes are shown in Table

5 and Fig. 34. Right column: analytic solution.

66



(a) Density with mesh overlaid
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Figure 35: Computed density for two-dimensional Mach 3 flow over a forward-facing

step at t = 4 with uniform grid-spacing. (a),(b) Computed result on 3 equally-spaced

subdomains using weak boundary and interface conditions. In (a), bold solid lines

denote interface locations. The entire grid is 241 × 81. (c) Result of Shu3 for 5th-

order WENO on a 242× 79 mesh.
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(a) Density with mesh overlaid
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Figure 36: Computed density for two-dimensional Mach 3 flow over a forward-facing

step at t = 3 with nonuniform grid-spacing. Computed result is on 3 unequally-

spaced subdomains using weak boundary and interface conditions. Subdomain grid-

spacing is shown in Table 6. Bold solid lines denote interface locations.
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4.0 CONCLUSIONS

In this dissertation, the state of the art in turbulent combustion modeling and shock-

capturing numerical methods for high-speed flows is advanced. These improvements

facilitate high-fidelity prediction of high-speed turbulent reacting flows.

The first part of this dissertation involves extension of the filtered density func-

tion (FDF) for modeling of high-speed flows on unstructured meshes. Since its

original conception, the FDF methodology, including its mass weighted form, the

filtered mass density function (FMDF), has become popular for large eddy simula-

tion (LES) of turbulent combustion.8,11–14 The simplest and most widely used form

considers only the scalar field (SFDF and SFMDF)16,17 and has been successful in

predicting many turbulent flames.18–26 A major challenge associated with FDF is

its implementation in complex geometries. Unstructured grids provide a good so-

lution for meshing complex shapes; however, no previous work has been performed

for FDF of high-speed flows on such grids. Herein, the SFMDF methodology is

implemented into the US3D computer code.27–36 This code is an unstructured finite

volume solver and has been very effective for LES of compressible flows. The result-

ing hybrid SFMDF-US3D method is employed for LES of a temporally developing

mixing layer. The consistency and accuracy of the methodology is demonstrated

via simulations of low and high Mach number flows under both non-reacting and

reacting conditions. In particular it is shown that the scheme is capable of accurate

simulation of shock dominated flows.

The second part of this dissertation involves development of high-order numerical

methods for solution of compressible flows. In these flows, the presence of discon-

tinuities makes it very difficult to obtain accurate and stable solutions. Weighted

essentially non-oscillatory (WENO) schemes have proven effective for overcoming
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such challenges.37–40 While WENO schemes are very robust in practice, their coun-

terpart energy-stable WENO (ESWENO) schemes are needed to guarantee time-

stability.41–46 A major challenge in the practical application of ESWENO exists in

generating appropriate finite-difference grids to match problem geometry and main-

tain high-order accuracy in the presence of shocks. Herein, a multi-block ESWENO

scheme is developed that alleviates many practical grid-construction challenges. The

new method allows smooth solutions and discontinuities to be captured and accu-

rately passed across subdomain boundaries even with jumps in grid-spacing. The

closed-domain ESWENO 3-4-3 differentiation scheme and SAT penalty method are

combined to produce a robust solver for hyperbolic-dominated problems. The flexi-

bility, stability, and accuracy of the scheme are demonstrated.

Some suggestions for future work include the following items:

• Implementation of SFMDF with the multi-block ESWENO scheme for high-

order accurate simulation of high-speed turbulent reacting flows.

• Extension of SFMDF-US3D to use the stand-alone form of the FDF, the energy-

pressure-velocity-scalar FMDF (EPVS-SFMDF).

• Extension of ESWENO for three-dimensional simulations.

• Implementation of SFMDF-US3D and ESWENO for LES of complex flow con-

figurations.

• Implementation of curvilinear grid transformations in the context of the multi-

block ESWENO scheme to facilitate high-order simulation on highly-complex

geometries.

• Utilization of adaptive mesh refinement (AMR) in the multi-block ESWENO

scheme.
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APPENDIX A

SFMDF ENERGY CONSISTENCY

Here, we derive a transport equation for the Favre filtered total energy, 〈E〉L, that

is consistent with the equation for the filtered enthalpy, 〈h〉L. The filtered enthalpy

can be written in terms of the filtered total energy:

〈h〉L = 〈E〉L +
〈p〉l
〈ρ〉l
− 1

2
〈uiui〉L . (A.1)

Substituting Eq. (A.1) into the filtered enthalpy equation, Eq. (2.24), yields

∂ 〈ρ〉l 〈E〉L
∂t

+
∂ 〈ρ〉l 〈ui〉L 〈E〉L

∂xi
=

∂

∂xi

[
(γ + γt)

∂ 〈h〉L
∂xi

]
+ 〈σij〉L

∂ 〈ui〉L
∂xj

+
1

2

[
∂ 〈ρ〉l 〈uiui〉L

∂t
+
∂ 〈ρ〉l 〈uj〉L 〈uiui〉L

∂xj

]
.

(A.2)

The transport equation for the filtered kinetic energy, 〈ui〉L 〈ui〉L /2, is obtained by

multiplying Eq. (2.22) by 〈uj〉L and employing Eq. (2.21):

∂ 〈ρ〉l 〈ui〉L 〈ui〉L
∂t

+
∂ 〈ρ〉l 〈uj〉L 〈ui〉L 〈ui〉L

∂xj
= 〈ui〉L

∂ 〈σji〉L
∂xj

− 〈ui〉L
∂Tji
∂xj

. (A.3)

Using the definition of SGS stress, Eq. (2.26), the transport equation for the turbu-

lent kinetic energy is obtained:

1

2

∂ 〈ρ〉l 〈uiui〉L
∂t

+
1

2

∂ 〈ρ〉l 〈uj〉L 〈uiui〉L
∂xj

= 〈ui〉L
∂ 〈σji〉L
∂xj

− 〈ui〉L
∂Tji
∂xj

+
1

2

∂Tii
∂t

+
1

2

∂ 〈uj〉L Tii
∂xj

.

(A.4)

71



Substituting Eq. (A.4) into Eq. (A.2), yields an enthalpy-consistent transport equa-

tion for the total energy:

∂ 〈ρ〉l 〈E〉L
∂t

+
∂ 〈ρ〉l 〈ui〉L 〈E〉L

∂xi
=

∂

∂xi

[
(γ + γt)

∂ 〈h〉L
∂xi

]
+
∂ 〈ui〉L 〈σij〉L

∂xj

− 〈un〉L
∂Tin
∂xi

+
1

2

[
∂Tnn
∂t

+
∂ 〈ui〉L Tnn

∂xi

]
.

(A.5)

The modeling assumptions in Section 2.1 imply the modeled energy equation,

∂ 〈ρ〉l 〈E〉L
∂t

+
∂ 〈ρ〉l 〈ui〉L 〈E〉L

∂xi
=

∂

∂xi

[
γ
∂ 〈h〉L
∂xi

]
+

∂

∂xi

[
λt
∂ 〈T 〉L
∂xi

]
+
∂ 〈ui〉L 〈σij〉L

∂xj
.

(A.6)

Comparison of Eqs. (A.5)–(A.6) implies this requirement for consistency:

∂

∂xi

[
γt
∂ 〈h〉L
∂xi

]
− 〈un〉L

∂Tin
∂xi

+
1

2

[
∂Tnn
∂t

+
∂ 〈ui〉L Tnn

∂xi

]
=

∂

∂xi

[
λt
∂ 〈T 〉L
∂xi

]
. (A.7)

When converting between filtered enthalpy and energy variables, it is necessary

to account for the turbulent kinetic energy. The filtered kinetic energy is defined as〈
1

2
uiui

〉
L

=
1

2
〈ui〉L 〈ui〉L +

1

2

Tii
〈ρ〉l

. (A.8)

Therefore, the conversion formulas are

〈h〉L = 〈E〉L +
〈p〉L
〈ρ〉l
− 1

2
〈ui〉L 〈ui〉L −

1

2

Tii
〈ρ〉l

, (A.9)

〈E〉L = 〈h〉L −
〈p〉L
〈ρ〉l

+
1

2
〈ui〉L 〈ui〉L +

1

2

Tii
〈ρ〉l

, (A.10)

cv 〈T 〉L = 〈E〉L −
1

2
〈ui〉L 〈ui〉L −

1

2

Tii
〈ρ〉l
−∆h◦α 〈φα〉L . (A.11)
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APPENDIX B

ESWENO IMPLEMENTATION DETAILS

B.1 DISCRETE OPERATORS

The P -norm is

P = δx


P 0 0 0

0 I 0

0 0 P PT
0

 , (B.1)

P 0 =
1

15979414


71043003 −7964853 4820919 −2199519

−7964853 14093655 331299 1445721−

4820919 331299 18932367 253203

2199519 −1445721 253203 15938451

 .
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The target Q matrix is

Q =
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144

− 29
144

0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0
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0 0 0 0 0 0
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.

(B.2)

The energy-stable terms are

Λ1 = Diag
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Λ2 = Diag
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, (B.4)

Λ3 = 0. (B.5)

B.2 PSEUDOCODE FOR TWO-DIMENSIONAL EULER

EQUATION IMPLEMENTATION

1. Read in options and parameters files. Initialize subdomain. Initialize MPI.

2. FOR each time iteration:

. FOR each Runge-Kutta (RK) substep:

• Set conserved variables based on RK substep.

• Compute local RK primitive variables and supplementary vars (enthalpy,

sound speed, Mach number, pressure, etc.) from conserved variables.

• Get analytic/exact solution for calculating L2 error norm and boundary

conditions (if applicable).

• FOR each dimension:

∗ Define one-dimensional (1D) hyperbolic problem in current dimension.

∗ FOR each 1D subproblem in the current dimension (e.g. for each row

or column):
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� Get boundary values via MPI call. (For efficiency, these are batched

at the beginning of each RK substep in a future software release.)

� Reconstruct Roe-averaged variables at the flux points.

� Eigen decomposition: Calculate Λ, S, and S−1 at the flux-points based

on Roe-averaged variables. (Store Λmax for calculating maximum

timestep.) At end-points, calculate decomposition matrices based on

averaged state so that collocated interface points are moved to the

same characteristic space.

� FOR each variable, calculate the derivative via ESWENO-SAT:

? Move from physical to characteristic space. For each flux-point, ro-

tate data at all solution-points in its stencil to its characteristic space

and store in a vector local to each flux-point. Move boundary data

to characteristic space.

? Split into left-running and right-running waves.

? FOR each split:

◦ Interpolate flux onto flux points.

◦ Calculate smoothness indicators based on characteristic variables.

◦ Calculate WENO weights.

◦ Calculate ESWENO stable dissipation and dissipative flux.

? Join left-running and right-running fluxes and dissipative flux.

? Add on interface penalty.

� Return to physical space.

� Calculate derivative as difference of fluxes.

• IF RKstep=1, calculate timestep based on target CFL.

. Integrate in time.

. Compute global primitive and supplementary variables.

3. Clean up memory and MPI. Output results files.
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