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THE DISCRETE LINEAR CHIRP TRANSFORM AND ITS APPLICATIONS

Osama A. S. Alkishriwo, PhD

University of Pittsburgh, 2013

In many applications in signal processing, the discrete Fourier transform (DFT) plays a

significant role in analyzing characteristics of stationary signals in the frequency domain.

The DFT can be implemented in a very efficient way using the fast Fourier transform (FFT)

algorithm. However, many actual signals by their nature are non–stationary signals which

make the choice of the DFT to deal with such signals not appropriate. Alternative tools for

analyzing non–stationary signals come with the development of time–frequency distributions

(TFD). The Wigner–Ville distribution is a time–frequency distribution that represents linear

chirps in an ideal way, but it has the problem of cross–terms which makes the analysis

of such tools unacceptable for multi–component signals. In this dissertation, we develop

three definitions of linear chirp transforms which are: the continuous linear chirp transform

(CLCT), the discrete linear chirp transform (DLCT), and the discrete cosine chirp transform

(DCCT). Most of this work focuses on the discrete linear chirp transform (DLCT) which can

be considered a generalization of the DFT to analyze non–stationary signals. The DLCT is

a joint frequency chirp–rate transformation, capable of locally representing signals in terms

of linear chirps. Important properties of this transform are discussed and explored. The

efficient implementation of the DLCT is given by taking advantage of the FFT algorithm.

Since this novel transform can be implemented in a fast and efficient way, this would make

the proposed transform a candidate to be used for many applications, including chirp rate

estimation, signal compression, filtering, signal separation, elimination of the cross–terms in

the Wigner–Ville distribution, and in communication systems. In this dissertation, we will

explore some of these applications.
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1.0 INTRODUCTION

Stationary signals are well analyzed using the discrete Fourier transform (DFT). The DFT

is a widely used transform since it can be implemented in a very efficient way using the

fast Fourier transform (FFT) algorithm. However, many actual signals are non–stationary

by nature. In some of these signals, we could assume the signal might be stationary, if we

choose short segments, for instance, human speech. In general, analyzing non–stationary

signals using the DFT is not a good choice.

To study non–stationary signals, many time–frequency distributions (TFD) have been

developed to address and characterize signal properties in the joint time–frequency domain

[1, 2]. Wigner–Ville distribution is one of these distributions that can give an ideal rep-

resentation for chirps, but it has the problem of cross–terms which are undesirable terms

that appear in the TFD of multi–component signals. This issue of cross–terms or inter-

ference has limited the ability of using the Wigner–Ville distribution in many applications.

Although some techniques have been introduced to suppress cross–terms, such a process is

computationally expensive [3, 4].

1.1 OVERVIEW

To capture the variability of the non–stationary signal parameters it is necessary to con-

sider extensions of the Fourier–based representations that provide instantaneous–frequency

information for multi–component signals. The fractional Fourier transform (FrFT) is a gen-

eralization of the conventional Fourier transform. It was introduced by Namias [5] in 1980,

and since then it has been applied to different problems in signal processing including signal
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separation, denoising, image watermarking, and communications [6, 7, 48, 9, 10, 11]. The

FrFT provides a continuous representation of a signal from the time to the frequency domain

at intermediate domains by means of the fractional order of the transform that changes from

−π/2 to π/2. Although it has been introduced by many researchers as a tool for analyzing

ideal chirp signals in radar, the ability of the FrFT to deal with real–life signals is limited

for many reasons which will be discussed in chapter 2. Another chirp based transform can

be achieved by considering polynomial–phase transforms [12]. However, second–order poly-

nomial transforms [13, 14] are preferable due to computational viability. Furthermore, a

parametric characterization of the instantaneous frequency of each of the components [15]

provides a realistic view of the evolving nature of the signal. Although procedures based

on the chirplet transform [16, 17, 18, 40, 20, 21, 22], and polynomial chirplet transform

(PCT) [23] have been proposed, their numerical implementation are difficult because of no

straightforward way to solve a non–convex optimization problem with multi–extremes.

1.1.1 Fractional Fourier transform

The fractional Fourier transform (FrFT) is defined as [48]

Xα(u) =

∫ ∞
−∞

x(t)Kα(t, u) dt (1.1)

where −π/2 < α < π/2 is called the fractional order and Kα(t, u) is the kernel of the

transformation which is defined as

Kα(t, u) =

√
1− j cotα

2π
exp

(
j
t2 + u2

2
cotα− jut cscα

)
When α = 0, the FrFT of the signal x(t) is the signal itself, while if α = ±π/2, the FrFT

becomes the Fourier transform of the signal. That is why it is considered a generalization

of the Fourier transform. The signal x(t) can be obtained by the inverse fractional Fourier

transform as

x(t) =

∫ ∞
−∞

Xα(u)K∗α(t, u) du (1.2)

where “ * ” stands for complex conjugate.

2



Unfortunately, (1.1) and (1.2) are continuous transformations. Several authors have

proposed a discrete FrFT [24, 25, 26, 27].

The discrete fractional Fourier transform (DFrFT) is defined in terms of a particular set

of eigenvectors

Xα(ρ) =
N−1∑
n=0

K̂α(n, ρ) x(n) (1.3)

where the kernel K̂α(n, ρ) of the transformation has the following spectral expression

K̂α(n, ρ) =
∑
k∈M

νk(ρ) e−jα k νk(n)

where νk(n) is the kth discrete Hermite–Gaussian function as defined in [25] and M =

{0, · · · , N −2, N −N mod2}. The signal x(n) can be reconstructed using the inverse DFrFT

as

x(n) =
N−1∑
ρ=0

K̂∗α(n, ρ)Xα(ρ) (1.4)

The FrFT has an important property which is the rotation property [28, 29]. It can be

used to rotate a linear chirp in the time–frequency plane to become a sinusoid or an impulse

by setting the fractional order (α) to an appropriate value— which is the fractional order

that corresponds to the chirp rate of the signal. Now, we would like to find the connection

between the chirp–rate γ and the fractional order α of the FrFT.

For a discrete signal x(n), we can define the connection between the fractional order (α)

and the chirp rate (γ) as

α = − tan−1

(
1

2γ

)
(1.5)

Indeed, if x(t) is a continuous linear chirp given by

x(t) = exp
(
j(γt2 + Ωt)

)
3



Substitute x(t) into (1.1) as

Xα(u) =

√
1− j cotα

2π
ej

u2

2
cotα

∫ ∞
−∞

ej(cotα+2γ) t
2

2 × e−j(u cscα−Ω)t dt

=

√
1− j cotα

a
exp

(
j
u2

2
cotα

)
exp

(
b2

2a

)

where a = −j cotα− j2γ and b = ju cscα− jΩ. |Xα(u)| → ∞, when

cot(α) + 2γ = 0 (1.6)

From the condition given in (1.6), we can write the relation between α and γ as

α = − tan−1

(
1

2γ

)
(1.7)

In the discrete form, the signal x(t) can be defined as

x(n) = exp

(
j

2π

N
(βn2 + kn)

)

Therefore, we can write the relation between the discrete chirp rate β and the fractional

order α as

α = − tan−1

(
1

2β

)
(1.8)

The connection between α and γ was shown geometrically in [30, 31]. Figure 1 illustrates

the plot of (1.8).
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Figure 1: Relation between the fractional order α and the chirp rate β

1.1.2 Discrete chirp–Fourier transform

In [14] the discrete chirp–Fourier transform (DCFT) was defined. Given a signal x(n) of

length N , the discrete chirp–Fourier transform (DCFT) is

Xc(k, r) =
1√
N

N−1∑
n=0

x(n) exp

(
−j 2π

N

(
rn2 + kn

))
, 0 ≤ r, k ≤ N − 1 (1.9)

where k represents the frequencies and r is an arbitrarily fixed integer that represents the

chirp rates. The DCFT is the same as the DFT when r = 0. The inverse discrete chirp

transform (IDCFT) is given as

x(n) = exp

(
j

2π

N
rn2

)
1√
N

N−1∑
k=0

Xc(k, r) exp

(
j

2π

N
kn

)
, 0 ≤ n ≤ N − 1 (1.10)

The DCFT approximates the chirp rate by integer numbers r. Therefore, when using the

DCFT to detect a chirp signal, the discrete chirp rate r0 of the signal should be an integer

to guarantee that the parameter can be matched and that the peak will not be lost. This

restriction affects the practical applications of the DCFT.
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1.2 DISSERTATION CONTRIBUTIONS

Non–stationarity relates to the time–dependence of the statistics of a random process. As

such, non–stationary signals display either time–varying mean, variance or evolving spectra,

or a combination of some or all of these. That is why it is necessary to consider extensions

of the Fourier–based representations that provide instantaneous–frequency information for

multi–component signals. The work presented in this dissertation contributes to the litera-

ture of non–stationary signal representation and analysis in the following aspects.

• We develop pairs of direct and inverse transforms in terms of linear chirps bases. The

continuous linear chirp transform is introduced to deal with continuous signals. The dis-

crete linear chirp transform (DLCT) is proposed. The DLCT uses discrete complex linear

chirp bases. It is not a time–frequency but rather a frequency chirp–rate transformation,

implementable using fast Fourier transform (FFT). The discrete Fourier transform or the

DFT is a special case of the DLCT which has the properties of modulation and duality in

time and frequency. We use the DLCT to estimate chirp parameters. The estimation of

chirp parameters is a complicated problem when dealing with multi–component signals

embedded in noise.

Some applications require real transforms to give better performance. Hence, we intro-

duce the discrete cosine chirp transform (DCCT) and its inverse which are based on

orthogonal real linear chirps. The proposed transform can be implemented using the fast

Fourier transform algorithm (FFT).

• The DLCT can be considered an extension of the discrete Fourier transform. Like-

wise, the fractional Fourier transform can be considered a generalization of the Fourier

transform. Thus, we explore the connection and differences between the DLCT and the

DFrFT.

• Signal compression aims to decrease transmission rate (increase storage capacity) by

reducing the amount of data necessary to be transmitted. We propose a new algorithm

for signal compression based on the direct and the dual DLCT, depending on the sparsity

of the signal in either time or in frequency. Furthermore, we develop a data structure

for the extracted coefficients of compressed signals. In the data structure, the extracted

6



parameters are arranged in certain way that are predetermined for the compress and

decompress processes.

• In compressive sensing (CS), a transformation is used to obtain a sparse representation

of a signal in order to assure the reconstruction of the original signal by `–minimization

process. To obtain sparse signals, joint time–frequency is needed. Thus, the potential

of the DCCT in compressive sensing has been presented, illustrated, and compared with

the results of using the DCT with compressive sensing. In addition, we present the

advantage of using the DCCT, which uses real bases (real linear chirps) instead of the

DLCT which represents signals in terms of complex bases (complex linear chirps).

• The empirical mode decomposition (EMD) has gained a great deal of interest for its sim-

plicity and for its connection with the Hilbert spectrum. The EMD is a decomposition

into intrinsic mode functions (IMFs) satisfying a symmetry condition on their envelopes

and a matching of their number of extrema and zero-crossings. Generalized chirp func-

tions can be made to satisfy the IMF conditions. By decreasing the support locally,

linear chirps are used for representing discrete non–stationary signals.

• Time–frequency distributions (TFDs) are widely used for IF estimation based on peak

detection techniques. The most frequently TFD used for linear chirps is the Wigner–

Ville distribution (WVD) due to its ideal representation for such signals. However, in

the case of multi–component signals, Wigner–Ville distribution does not perform well

because of the presence of extraneous cross–terms. Hence, we propose an algorithm for

time–frequency analysis based on the DLCT. The developed approach takes advantage

of the separation of linear chirps given by the DLCT, and that for each of them, the

Wigner–Ville distribution (WVD) provides an optimal representation. Combining the

WVD of linear chirp components, we obtain a time–frequency representation free of cross

terms. It is observed that the DLCT decomposition and the related TFD provides more

compact representation compared with the commonly used time–frequency distributions.

• The design of signal carrier waveforms in digital communication systems has great impact

on system performance. This work is motivated by looking for carrier waveforms that

can maximize the transmitted difference signal energy. We propose five different digital

communication schemes which are: chirp on-off keying (C-OOK), chirp phase shift keying
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(C-PSK), chirp frequency shift keying (C-FSK), chirp rate shift keying (CRSK), and

chirp rate frequency shift keying (CRFSK) where all based on linear chirp carriers. The

performance in terms of bit error rate (BER) and spectrum usage of the proposed schemes

is evaluated for coherent detection receivers.

• Wireless communications suffer from increasing demand on capacity and transmission

speed to support services such as multimedia with high quality. In this section, we

propose a coupled OFDM (C-OFDM) system that connects M OFDM systems, each

of them having N channels, via linear chirps. The coupled OFDM can be operated on

three different scenarios based on the application and user satisfaction. The performance

of the coupled OFDM is investigated and analytical expression for the capacity of the

system is derived.

1.3 ORGANIZATION OF THE DISSERTATION

The rest of the dissertation is organized as follows. In chapter 2, we introduce definitions

of continuous, discrete, and cosine linear chirp transforms. Reconstruction of signals is also

discussed. Fast implementation algorithms for calculating the discrete linear chirp transforms

using fast Fourier transform algorithm are presented. Properties such as duality, modulation,

and linearity are illustrated. Furthermore, we compare the discrete FrFT with the DLCT. In

particular, we consider which of these two transforms is more efficient to transform a non–

sparse signal into a sparse–signal in time or frequency, the resolution at which the transforms

do it and the computational time required. The generality of our transform in estimating

the parameters of chirp signals is illustrated by comparing our results with those using the

discrete chirp–Fourier transform proposed in [14].

Chapter 3 focuses on using the discrete linear chirp transform in signal compression. We

give a brief introduction to the concept of compressive sensing. The discrete cosine chirp

transform is used to transform signals into sparse signals so that compressive sensing can be

applied. Moreover, we illustrate fundamentals of the proposed parameter estimation method.
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In chapter 4, we use the DLCT for decomposition of non–stationary signals and time–

frequency analysis applications. Starting with the theory of empirical mode decomposition,

we define the concept of using linear chirps as intrinsic mode functions which forms the

platform of empirical mode decomposition theory. Furthermore, we employ the DLCT as

a time–varying filter to separate multi–component non–stationary signals locally into a su-

perposition of linear chirps. Thus, by combining the Wigner–Ville distribution of the linear

chirp components, we obtain a time–frequency representation free of cross–terms that clearly

displays the instantaneous frequency. Applying this procedure locally, we obtain an instan-

taneous frequency estimate of a non–stationary multi–component signal.

Chapter 5 discusses the possibility of using linear chirp carriers in communication sys-

tems. Different digital modulation schemes are developed and their performance for Gaussian

channel is evaluated. Moreover, We present the coupled OFDM system and its performance

and capacity have been studied and analyzed.

Finally, chapter 6 summarizes dissertation results and directions for future research are

outlined.
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2.0 DISCRETE LINEAR CHIRP TRANSFORM

2.1 LINEAR CHIRP BASES

The term “chirp” comes from the bird chirp or cricket sounds— a short pulse, high–pitched

sound. This pulse is called a chirped pulse. Scientifically, the term chirp means a wave

whose instantaneous frequency varies over time. Chirps come in many frequency sweep

forms: linear chirp, quadratic chirp, logarithmic-chirp, etc.

A linear chirp is a function whose frequency changes linearly with time. For exam-

ple, while a wave function of the form exp (jΩ0t) has constant frequency Ω0, the chirp

exp (j(Ω0t+ γ0t
2)) has an instantaneous frequency Ω0 + 2γ0t at time t ∈ R. Chirps often

arise in nature as a consequence of the Doppler effect, the phenomenon by which the per-

ceived frequency of a wave is altered whenever the wave is emanating from or reflecting

off a moving body. As such, chirps have historically been of great interest in applications

such as radar and sonar. Thus, we need to use linear chirp bases instead of the classi-

cal Fourier bases because they are more suitable for representing the frequency changes of

non–stationary signals.

2.1.1 Continuous linear chirps

Let the space L2(R) be a Hilbert space of complex functions such that

‖x‖ =

∫ +∞

−∞
|x(t)|2 dt < +∞

The inner product of 〈x, y〉 ∈ L2(R) is defined by

〈x, y〉 =

∫ +∞

−∞
x(t) y∗(t) dt
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where y∗(t) is the complex conjugate of y(t). The continuous linear chirp transform (CLCT)

of x(t) ∈ L2(R) is defined as

X(Ω, γ) =

∫ +∞

−∞
x(t) e−j(Ωt+γt2) dt (2.1)

The inverse continuous linear chirp transform (ICLCT) is given by

x(t) =

∫ +∞

−∞
X(Ω, γ) ej(Ωt+γt2) dΩ (2.2)

where −∞ < γ < +∞. We can show that x(t) is the inverse continuous linear chirp

transform (ICLCT) of X(Ω, γ) as follows. We have,

x(t) =

∫ +∞

−∞
X(Ω, γ) ej(Ωt+γt2) dΩ

Replace X(Ω, γ) by its integral expression yields∫ +∞

−∞

∫ +∞

−∞
x(τ)ejΩ(t−τ)ejγ(t2−τ2) dΩ dτ

using the following integral ∫ +∞

−∞
ejΩ(t−τ) dΩ = δ(t− τ)

we have that ∫ +∞

−∞
x(τ)ejγ(t2−τ2)δ(t− τ) dτ = x(t)

The CLCT is the generalization of the conventional Fourier transform. If the Fourier trans-

form of the signal x(t) is represented by X̂F (Ω), then we can write X(Ω, 0) = X̂F (Ω).

We also can illustrate the continuous linear chirp transform (CLCT) in the framework of

time–varying filtering for continuous time signals. The CLCT can provide us with the same

bandwidth of sinusoid signals if we intent to filter linear chirps in the frequency chirp–rate

space. Thus, the CLCT can eliminate the effect of the chirp rate on the channel bandwidth

of chirp communication systems (chapter 6) if we filter the signal at the corresponding chirp

rate. Thus, we present the CLCT to overcome the broadness of the channel bandwidth.
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Figure 2: The CLCT of x1(t) with Ω0 = 50.27/Tb and γ0 = 35.19/T 2
b : (a) The CLCT in

two–dimentions; (b) The CLCT in three–dimensions; (c) The bandwidth of the signal x1(t)

in the γ0 domain and in Fourier domain.

Example 1. Let the signal x1(t) be a complex linear chirp as

x1(t) = exp
(
j(Ω0 t+ γ0 t

2)
)
, − Tb/2 ≤ t ≤ Tb/2

Given, ∫ Tb

0

cos
(
a t+ b t2

)
dt =

√
π

2b
× [cos(θ2

1)

{
CF (θ2)− CF

(√
2

π
θ1

)}

+ sin(θ2
1)

{
SF (θ2)− SF

(√
2

π
θ1

)}
]
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where CF (u) and SF (u) are Fresnel functions defined as

CF (u) =

∫ u

0

cos
(π

2
z2
)

dz,

SF (u) =

∫ u

0

sin
(π

2
z2
)

dz

θ1 =
a

2
√
b
, and θ2 =

√(
2b

π

)(
Tb +

a

2b

)

then, the magnitude of the CLCT for x1(t) is given by

|X1(Ω, γ)| =
√

π

2(γ − γ0)
×
√

[CF (z2)− CF (z1)]2 + [SF (z2)− SF (z1)]2

where

z2 = Tb

√
(γ − γ0)

2π
+

(Ω− Ω0)√
2π(γ − γ0)

and

z1 = −Tb

√
(γ − γ0)

2π
+

(Ω− Ω0)√
2π(γ − γ0)

Figures 2(a) and (b) show the CLCT of the signal x1(t) for the case of Ω0 = 50.27/Tb and

γ0 = 35.19/T 2
b in two and three dimensions. The bandwidth of the signal x1(t) in the γ0

space is presented in Fig. 2(c) which shows the bandwidth width of the signal x1(t) in the

γ0 domain is much smaller than its width in the Fourier domain which corresponds to γ = 0.
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2.1.2 Complex discrete linear chirps

In this section, we develop an orthogonal representation using linear chirps for a discrete

signal x(n) of finite support 0 ≤ n ≤ N − 1. A discrete–time linear chirp

φβ,k(n) = exp

(
j

2π

N
(βn2 + kn)

)
(2.3)

is characterized by the discrete frequency 2πk/N and by its chirp rate β, a continuous

variable connected with the instantaneous frequency of the chirp

IF (n, k) =
2π

N
(2βn+ k),

Assuming a finite support for β, i.e., −Λ ≤ β < Λ, we can construct an orthonormal basis

{φβ,k(n)} with respect to k in the supports of β and n as

∫ Λ

−Λ

N−1∑
n=0

φβ,k(n)φ∗β,`(n)dβ =

∫ Λ

−Λ

Nδ(k −m)dβ

= 2ΛNδ(k − `) (2.4)

Thus, we have the linear–chirp representation for a discrete signal x(n), 0 ≤ n ≤ N − 1, to

be

x(n) =

∫ Λ

−Λ

N−1∑
k=0

X(k, β)

N
exp

(
j

2π

N
((βn+ k)n)

)
dβ (2.5)

where the coefficients X(k, β) are obtained by using the orthogonality of the basis as

X(k, β) =
N−1∑
n=0

x(n) exp

(
−j 2π

N
(βn2 + kn)

)
(2.6)

To obtain a discrete transformation, we approximate the chirp rate as

β = Cm, where C =
2Λ

L
so that

−L
2
≤ m ≤ L

2
− 1 integer

we thus have the discrete linear–chirp transform (DLCT)
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X(k,m) =
N−1∑
n=0

x(n) exp

(
−j 2π

N
(Cmn2 + kn)

)
0 ≤ k ≤ N − 1, − L/2 ≤ m ≤ (L/2)− 1 (2.7)

x(n) =

L/2−1∑
m=−L/2

N−1∑
k=0

X(k,m)

LN
exp

(
j

2π

N
(Cmn2 + kn)

)
0 ≤ n ≤ N − 1, C =

2Λ

L
(2.8)

Remarks

1. The DLCT is not a time–frequency transformation, but rather a frequency chirp–rate

transformation.

2. One could think of the DLCT as a generalization of the discrete Fourier transform (DFT).

Indeed,

X(k,m) =
1

N
X(k)�DFT

{
exp

(
−j 2π

N
Cm

)}

where “�” is the circular convolution. If m = 0, then X(k, 0) is the DFT of x(n) or the

representation using chirp bases with zero chirp rates (or sinusoids.)

3. It is important to notice that in a discrete chirp, obtained by sampling a continuous

chirp satisfying the Nyquist criteria, the chirp rate β cannot be exclusively an integer as

proposed in [14]. Indeed, if a finite support continuous chirp

x(t) = ejγt
2

γ =
ζΩΩmax

2ζtT
, 0 ≤ t ≤ T

where |ζΩ| and |ζt| ≤ 1, and using a sampling frequency Ωs = 2π/Ts = MΩmax, M ≥ 2,

as determined by the Nyquist criteria, the obtained discrete signal is

x(nTs) = ej[γT
2
s ]n2

, where

γT 2
s =

(
ζΩΩmax

2ζtT

)
T 2
s =

π/M

N − 1

ζΩ

ζt
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after replacing Ωmax = 2π/(MTs) and T = (N − 1)Ts. Comparing then the discretized

linear chirp and equation (2.3) we have that

2π

N
β = γT 2

s ⇒ β =
N

2M(N − 1)

ζΩ

ζt

which in general is not an integer. For N large, M = 2, and ζt = ζΩ = 1, the normalized

chirp rate is 0.25.

4. For each value of m it can be shown that

xm(n) =
N−1∑
k=0

X(k,m)

N
exp

(
j

2π

N
(Cmn2 + kn)

)
(2.9)

equals x(n) so that the inverse DLCT is the average over all values of m. Indeed this

can be shown by replacing X(k,m) in equation (2.9) which yields

xm(n) =
N−1∑
`=0

x(`)

N
exp

(
j

2π

N
Cm(n2 − `2)

)

×
N−1∑
k=0

exp

(
j

2π

N
k(n− `)

)
︸ ︷︷ ︸

Nδ(n−`)

= x(n).

• Properties of the DLCT

Properties of the DLCT are similar to those of the DFT. We are particularly interested in

the modulation and the duality properties which will be useful in time–frequency shifts

and in representing time–impulses and functions of them which cannot be represented

when the chirp rate is assumed to be finite.
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1. Modulation Property: If X(k,m) is the DLCT of x(n) then the linear–chirp modu-

lated signal

y(n) = x(n) exp

(
j

2π

N
(C0m0n

2 + k0n)

)
where C0 = ζC, has a DLCT

Y (k,m) = X(k − k0,m− ζm0)

where ζ should be an integer to preserve the discrete nature of the transform. This

shifting property allows the transformation of one chirp representation into another,

and in particular, the transformation of chirp representations into sinusoidal repre-

sentations.

2. Duality Property: Although the finite chirp rate assumption made before allows a

large range of values for the chirp rate it cannot be used to represent signals that are

impulses and functions of impulses in time. To include them we consider a duality

property for the DLCT. Interchanging the time and frequency variables and using

equation (2.7) and (2.8)

X(n,−m̃) =
N−1∑
k=0

x(−k) exp

(
j

2π

N
(Cm̃k2 + nk)

)
0 ≤ n ≤ N − 1, − L/2 ≤ m ≤ (L/2)− 1 (2.10)

we then have that

x(−k) =

L/2−1∑
m̃=−L/2

N−1∑
n=0

X(n,−m̃)

LN
exp

(
−j 2π

N
(Cm̃k2 + nk)

)
0 ≤ k ≤ N − 1, C =

2Λ

L
(2.11)

Following the same procedure in (2.9), it can be shown that

xm̃(−k) =
N−1∑
n=0

X(n,−m̃)

N
exp

(
−j 2π

N
(Cm̃k2 + nk)

)
(2.12)
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is, also, equal to x(−k). Thus, if x(n) is an impulse or a function of impulses, then

its DFT would be a constant or a sinusoid of zero frequency, and its DLCT can be

calculated.

The proof of the dual pair can be illustrated as follows. Since,

x(−k) = xm̃(−k) =
N−1∑
n=0

X(n,−m̃)

N
exp

(
−j 2π

N
(Cm̃k2 + nk)

)
Replacing this equation into (2.11), we obtain

N−1∑
r=0

X(r,−m̃)

N

N−1∑
k=0

exp

(
j

2π

N
k(n− r)

)
= X(n,−m̃)

We can find the connection between m and m̃ or (β and β̃) from the time–frequency

distribution of a linear chirp. The IF of a linear chirp has a slope of 2β from

the time axis and a slope of 2β̃ from the frequency axis. Given a linear chirp

h(t) = exp(−jγt2) for −∞ < t <∞, its Fourier transform is

H(Ω) =
1

2
√
πγ
e−j

π
4 exp

(
j

Ω2

4γ

)
If we calculate the dual of H(Ω), we obtain

H(t) =
1

2
√
πγ̃
e−j

3π
4 exp

(
−j t

2

4γ̃

)
Since,

IFh(t)(t) = IFH(t)(t) = −2γt = − 2

4γ̃
t

Hence,

γ̃ =
1

4γ

In the discrete form, we have

Cm̃ =
1

4Cm
or β̃ =

1

4β

If β̃ = β = 0.5, then the slope of the IF is equal to 45o which separates the time–

frequency space into two symmetric halves.
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• Implementation with the FFT

The DLCT can be implemented using the fast Fourier transform (FFT). Rewriting

X(k,m) as

X(k,m) =
N−1∑
n=0

[
x(n)e−j2πCmn

2/N
]

︸ ︷︷ ︸
h(n,m)

e−j2πkn/N

then for each −L/2 ≤ m0 ≤ L/2− 1 the X(k,m0) is the DFT of h(n,m0) which can be

obtained by the FFT algorithm.

The inverse DLCT can also be implemented with the inverse FFT. Rewriting the expres-

sion for x(n) as

x(n) =
1

L

L/2−1∑
m=−L/2

[
N−1∑
k=0

X(k,m)

N
ej2πkn/N

]
︸ ︷︷ ︸

g(n,m)

ej2πCmn
2/N

where g(n,m) is the inverse DFT for each −L/2 ≤ m0 ≤ L/2− 1. Then

x(n) =
1

L

L/2−1∑
m=−L/2

g(n,m)ej2πCmn
2/N

If a vector x = [x(0) · · ·x(N − 1)]T then

x =
1

L
diag[G E]

or the diagonal of the product of an N × L matrix

G = {g(n,m)} with an L×N matrix E = {e(m,n) = ej2πCmn
2/N}.
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Figure 3: Comparison of the DLCT and the DCFT: (a) Wigner–Ville distribution of signal

x1(n); (b) Magnitude of the DLCT; (c) Magnitude of the DCFT.

• Comparison with the Discrete Chirp–Fourier transform

Although similar to the DLCT presented above, the discrete chirp–Fourier transform

has a significant drawback. It considers only chirp rates which are integers, which as

indicated before are aliased if they are obtained by sampling continuous chirps without

windowing or filtering. To illustrate this, consider the signal given in [14]

x1(n) = exp

(
j

2π

67
(15n2 + 42n)

)
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Figure 4: Comparison of the DLCT and the DCFT: (a) Wigner–Ville distribution of signal

x2(n); (b) Magnitude of the DLCT; (c) Magnitude of the DCFT.

The Wigner distribution corresponding to x1(n) is shown in Fig. 3(a), which does not

display the instantaneous frequency of the linear chirp due to the aliasing caused by the

integer β. Figure 3(b) displays the magnitudes of the DLCT and Fig. 3(c) the magnitude

of the discrete chirp–Fourier transform proposed by [14]. In this case the results coincide.

If we then test the two procedures for a chirp signal

x2(n) = exp

(
j

2π

257
(0.1n2 + 60n)

)
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with chirp rate β = 0.1, the results are very different. The Wigner distribution clearly

shows the alias–free chirp (Fig. 4(a)). In this case, when the β is not an integer, our

algorithm provides the correct parameters (Fig. 4(b) ) while the discrete chirp–Fourier

transform proposed by [14] does not as shown in Fig. 4(c).

2.1.3 Cosine discrete linear chirps

In the previous section we consider the local representation of signals in terms of complex

linear chirps, and thus develop the discrete linear chirp transform (DLCT). This is a joint

chirp–rate frequency transform, that generalizes the discrete Fourier transform (DFT). We

will next develop the discrete cosine chirp transform (DCCT): definition, implementation,

and linearity property. The presented transform is more applicable to signal compression

application.

• Definition

For a discrete real-valued signal x(n) of finite support 0 ≤ n ≤ N−1 we define its DCCT

as

X(k,m) =
N−1∑
n=0

x(n) cos

(
Cmπn2 + kπ(2n+ 1)

2N

)
0 ≤ k ≤ N − 1,−L/2 ≤ m ≤ L/2− 1 (2.13)

or a representation in terms of cosines with instantaneous frequency

IF (n, k) = βπn/N + kπ/N.

The assumptions made for the DLCT related to the chirp rate β are still valid for the

DCCT. That is, we consider its support finite, −Λ ≤ β < Λ, and that β = mC, and

C = 2Λ/L, or that is not exclusively an integer. We can think of the DCCT as a

generalization of the discrete cosine transform as X(k, 0) is equal to the DCT of x(n).

The DCCT decomposes a signal using real linear chirps as

ψβ,k(n) = cos

(
βπn2

2N
+
kπ(2n+ 1)

2N

)
.

22



The signal is reconstructed by the inverse discrete cosine chirp transform (IDCCT), which

has the form

x(n) =

L
2
−1∑

m=−L
2

N−1∑
k=0

2X(k,m)

LN
cos

(
Cmπn2 + kπ(2n+ 1)

2N

)
0 ≤ n ≤ N − 1 (2.14)

We can prove that (2.13) and (2.14) forms a pair as follows. Substitute (2.13) into (2.14)

L
2
−1∑

m=−L
2

N−1∑
k=0

N−1∑
`=0

2 x(m)

LN
cos

(
Cmπ`2 + kπ(2`+ 1)

2N

)

× cos

(
Cmπn2 + kπ(2n+ 1)

2N

)
(2.15)

Assume that θ1 = Cmπn2/(2N), φk1 = kπ(2n + 1)/(2N), θ2 = Cmπ`2/(2N), and φk2 =

kπ(2`+ 1)/(2N) and first evaluate the summation with respect to k as follows

N−1∑
k=0

cos
(
θ1 + φk1

)
cos
(
θ2 + φk2

)
=
N cos (θ1 − θ2)

2
δ(n− `) (2.16)

where the following identities are used for the evaluation of (2.15)

∑
k

cosφk1 sinφk2 = 0,∑
k

cosφk2 sinφk1 = 0,

∑
k

cosφk1 cosφk2 =
N

2
δ(n− `), and

∑
k

sinφk1 sinφk2 =
N

2
δ(n− `)

Also, for n = `, we have

cos (θ1 − θ2) = 1
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Thus,

N−1∑
k=0

cos
(
θ1 + φk1

)
cos
(
θ2 + φk2

)
=
N

2
δ(n− `)

After we calculate the summation with respect to k, equation (2.15) becomes,

L
2
−1∑

m=−L
2

N−1∑
`=0

2 x(`)

LN

N

2
δ(n− `) =

 x(n) if n = `

0 if n 6= `

or

x(n) =

L
2
−1∑

m=−L
2

N−1∑
k=0

2X(k,m)

LN
cos

(
Cmπn2 + kπ(2n+ 1)

2N

)
0 ≤ n ≤ N − 1 (2.17)

In Fig. 5 we show an example of calculating the DCCT of x1(n) given below. The

signal x1(n) and its DCCT transform are presented in Figs. 5(a) and (b) whereas the

reconstructed signal using (2.14) is given in Fig. 5(c). Figure 5(d) depicts reconstruction

error.

x1(n) = cos
( π

1024

(
0.25n2 + 100n

))
+ cos

( π

1024

(
−0.1n2 + 400n

))
• Implementation

The implementation of the DCCT is very efficient, since it depends on the fast Fourier

transform (FFT) algorithm. Equation (2.13) can be rewritten as follows

X(k,m) = Re

e−j
πk
2N

2N−1∑
n=0

[
x(n)e−j

Cmπn2

2N

]
︸ ︷︷ ︸

h(n,m)

e−j
2πkn
2N


= Re

{
e−j

πk
2N H(k,m)

}
where

H(k,m) = FFT {h(n,m)}

and h(n,m) = 0 for all m and n = N, N + 1, · · · , 2N − 1, and Re[.] stands for the

real part. Also, we can use the inverse FFT algorithm to compute the inverse DCCT.
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Figure 5: (a) The signal x1(n); (b) The magnitude of the DCCT of x1(n); (c) The recon-

structed signal; (d) The reconstruction error.

Defining F (k,m) = 2X(k,m)/N × exp(jπk/(2N)) where F (k,m) = 0 when k ≥ N and

∀m, we can express (2.14) as

x(n) = Re


1

L

L/2−1∑
m=−L/2

[
2N−1∑
k=0

F (k,m)ej
2πkn
2N

]
︸ ︷︷ ︸

f(n,m)

ej
Cmπn2

2N


= Re

 1

L

L/2−1∑
m=−L/2

f(n,m)ejCmπn
2/(2N)
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where

f(n,m) = IFFT {F (k,m)}

• Linearity property

The DCCT is a linear transformation, since for any x1(n) and x2(n) with a DCCT

transform X1(k,m) and X2(k,m), respectively, then the signal x(n) = a x1(n) + b x2(n)

has the DCCT transform given as

X(k,m) = a X1(k,m) + b X2(k,m) (2.18)

where a and b are constants. The linearity property can be easily proved because the

summation is a linear operator as shown below.

If x1(n) and x2(n) are real finite signals in the time support n = 0, · · · , N − 1 and their

discrete cosine chirp transforms are

X1(k,m) =
N−1∑
n=0

x1(n) cos

(
Cmπn2 + kπ(2n+ 1)

2N

)

and

X2(k,m) =
N−1∑
n=0

x2(n) cos

(
Cmπn2 + kπ(2n+ 1)

2N

)

that is

x1(n) ⇐⇒ X1(k,m)

x2(n) ⇐⇒ X2(k,m)

then for x(n) = a x1(n) + b x2(n), its DCCT can be written as

X(k,m) =
N−1∑
n=0

x(n) cos

(
Cmπn2 + kπ(2n+ 1)

2N

)

= a
N−1∑
n=0

x1(n) cos

(
Cmπn2 + kπ(2n+ 1)

2N

)

+b
N−1∑
n=0

x2(n) cos

(
Cmπn2 + kπ(2n+ 1)

2N

)
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which yields,

X(k,m) = a X1(k,m) + b X2(k,m)

Linearity is very important property for the DCCT since it can be used in many ap-

plications such as signal separation, signal modeling, compressive sensing, and other

applications. Thus, we can decompose a real signal x(n) in terms of real chirps as

x(n) =
P∑
i=1

di cos

(
βin

2 + ki(2n+ 1)

2N

)
where di, βi, and ki are amplitudes, chirp rates, and frequencies of P real linear chirps.

2.2 COMPARING THE DLCT WITH THE DFRFT

The DLCT just like the FrFT can be used to convert non–sparse signals into sparse signals

in time or frequency. In the following, we consider the performance in this respect of the

two methods and also consider the resolution, peak location, and computational time for the

two methods.

• Sparsity

Sparsity or compressibility reflects the fact that information carried by certain signal is

much smaller than their bandwidth. Most signals are not sparse in the time domain,

so linear transformation are used to make them sparse in either time or frequency using

certain basis [47, 32]. Stationary signals, such as sinusoids or quasi–periodic speech

segments, are well represented by the discrete cosine transform (DCT) [33]. The DCT

can be used to obtain a sparse representation in frequency for such signals. However,

non–stationary signals, such as chirps may not be sparse in either time or frequency, but

rather in an intermediate domain.

Sparseness is an essential signal characteristic in many applications such as compressive

sensing, compression, and denoising. It can be defined as a concentration of a signal

energy on a few coefficients and the rest of them have low energy so that they can be
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neglected. Therefore, the transform that can give higher sparsity (few coefficients) is

considered better than the one that gives low sparsity (too many coefficients).

For mono–component signals, we can measure the sparsity of a signal analytically by

measuring the broadness of its support in the transformed domain (could be time or

frequency). The frequency spread (B) can be defined in the discrete form as [34]

B =

√∑
k (ωk − 〈ωk〉)2 |X (ejωk)|2∑

k |X (ejωk)|2
(2.19)

where ωk = 2πk/N for k = 0, 1, · · · , N − 1 and 〈ωk〉 is the expected value given by

〈ωk〉 =

∑
k ωk |X (ejωk)|2∑
k |X (ejωk)|2

Similarly, we can define the time spread (T ) as

T =

√∑
n (n− 〈n〉)2 |x (n)|2∑

n |x (n)|2
(2.20)

given that 〈n〉 is the expected value defined as

〈n〉 =

∑
n n |x (n)|2∑
n |x (n)|2

In (2.19) and (2.20), for finite energy signals and without loss of generality we can assume

the energy of the signal is normalized

∑
n

|x (n)|2 =
1

N

∑
k

∣∣X (ejωk)∣∣2 = 1

The idea of measuring the sparsity by determining the broadness of the time spread or the

frequency spread for mono–component signals can be generalized to multi–component

signals. Since the DLCT can separate the components of the signal, we can define the

sparsity measure in the frequency domain for multi–component signals as

B =
P∑
i=1

Bi (2.21)
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and the time spread as

T =
P∑
i=1

Ti (2.22)

where Ti and Bi are the time and frequency spread for each component of a signal which

has P components. We can also define the sparsity metric for multi–component signals

in the form of time–bandwidth product (TB) as

TB =
P∑
i=1

Ti Bi (2.23)

To evaluate the sparsity of the DLCT and the DFrFT, we use a synthetic signal x1(n)

which is generated as follows

x1(n) = exp
(
j
π

256
(0.1n2 + 10n)

)

The signal x1(n) is shown in Fig. 6(a) and its Wigner–Ville distribution is illustrated in

Fig. 6(b). The discrete fractional Fourier transform of x1(n) for α = −0.44π (β ≈ 0.1)

is given in Fig. 6(c) while Fig. 6(d) depicts the discrete linear chirp transform of x1(n)

with β = 0.1. It is clear that, the DLCT gives a transformed signal that is sparser than

the transformed signal that we obtain using the DFrFT.

Applying the sparsity metric to the signal x1(n), we find the frequency spread of the

signal in Fig. 6(c) is BDFrFT = 0.063 rad while it is equal to BDLCT = 5.1× 10−14 rad for

the signal given in Fig. 6(d). Since BDLCT � BDFrFT , this implies that the transformed

signal that we obtain using the DLCT is much sparser than the transformed signal using

the DFrFT.
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Figure 6: (a) Signal x1(n) in time domain; (b) Wigner–Ville distribution of x1(n); (c) The

|DFrFT{x1(n)}| with α = −0.44π; (d) The DLCT of x1(n) with β = 0.1.

• Computation time

Most of applications in signal processing that uses the DLCT or the DFrFT require to

analyze the signal in three dimension space which are frequency, chirp–rate (fractional

order), and magnitude. Computation time is very important factor that we should

consider. Figure 7 explains the computation time load for the DLCT and the DFrFT. The

experiment was executed in a HP machine that has an Intel(R) Core(TM) i7− 2670QM

CPU which is running at 2.2 GHz and installed memory RAM= 8.0 GB. As can be seen

from Fig. 7 the DLCT consumes less time than the DFrFT. For instance, if we have
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2048 Samples, the DLCT can do the task in 0.06 sec whereas the DFrFT needs about

6.13 sec to make the same role. So, we can save a lot of time if we consider using the

DLCT instead of the DFrFT.
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Figure 7: Comparing the computation time between the DLCT and the DFrFT

• Resolution of the transform

A critical point of the time–frequency analysis and signal separation is the resolution of

the transform. The DLCT and the DFrFT have been used to separate linear chirps in

the time–frequency plane by projecting (rotating) them and then followed by a filtering

or a windowing procedure. If the resolution of the transform is good, even very close

harmonics can be separated easily and viceversa. To explain the impact of the resolution

of the DLCT and the DFrFT in signal separation application, a synthetic signal x2(n) is

used.

x2(n) = exp
(
j
π

256
(0.1n2 + 20n)

)
+ exp

(
j
π

256
(0.1n2 + 30n)

)
Figure 8(a) depicts the signal x2(n) whereas Fig. 8(b) shows its Wigner–Ville distri-

bution. The signal x1(n) consists of two linear chirps with the same chirp rate but

different frequencies which are close to each other. The magnitude of the DFrFT of

x2(n) in three dimensions is given in Fig. 8(c) while Fig. 8(d) shows the magnitude of

the DFrFT{x2(n)} at the fractional order α = −0.44π. The three dimension space for

the DLCT of x2(n) is given in Fig. 8(e) and Fig. 8(f) presents the DLCT of x2(n) when
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β = 0.1. We can observe from Figs. 8(d) and (f) that the DLCT has higher resolution

than the DFrFT since we can separate the two chirps using the DLCT easily while it is

difficult to do so by using the DFrFT.

In general for any combination of ideal linear chirps, the resolution of the DLCT is finer

than the resolution of the DFrFT. From examples we observe, the DLCT can separate

two frequency components if they are 2π/N far apart while the DFrFT can separate

them if they are close to each other by 19 (2π/N).

• Peak location

All the algorithms that use the DLCT or the DFrFT for parametric characterization

of chirps depend on searching for peaks for all possible chirp rates or fractional orders

to obtain the optimal chirp rate or the optimal fractional order that maximizes the

|DLCT{x(n)}| or equivalently |DFrFT{x(n)}|. Therefore, it is obvious that the peaks

should occur at the corresponding chirp rates and frequencies. For instance, if we consider

a signal x3(n) which is given as

x3(n) = exp
(
j
π

256
(0.15n2 + 80n)

)

and its Wigner–Ville distribution is shown in Fig. 9(a), the peak should show up at

β = 0.15 (α = −0.4π). Unfortunately, that is not the case when we use the DFrFT as

shown in Figs. 9(b) and (c) because the peak occurs at α = −0.28π (β ≈ 0.41). On the

other hand, if we use the DLCT to estimate the chirp rate, the peak shows up exactly

at β = 0.15 as presented in Figs. 9(d) and (e).

It should be clarified that the DLCT can be used to estimate the chirp rate (β) and the

frequency (k) as illustrated in example 1 (Fig. 6(d)), but the DFrFT can not be used

to estimate the frequency (k) because the fractional Fourier transform rotates the signal

around its center frequency as shown in Fig. 6(c).

Finally, when the chirp rate of the DLCT matches the optimal chirp rate or (the fractional

order of the DFrFT matches the optimal fractional order ), then the transformed signal

at the optimal chirp rate (optimal fractional order) will be sparser than for any other

chirp rate or fractional order because the time–bandwidth product will be minimum.
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Figure 8: Resolution: (a) Signal x2(n) in time domain; (b) Wigner–Ville distribution of x2(n);

(c) The |DFrFT{x2(n)}| in three–dimension space; (d) The |DFrFT{x2(n)}| at α = −0.44π;

(e) The DLCT of x2(n) in three–dimension space; (f) The DLCT of x2(n) at β = 0.1.
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Figure 9: Peak detection: (a) |DFrFT{x3(n)}| in two–dimension space; (b) |DFrFT{x3(n)}|

in three–dimension space; (c) The DLCT of x3(n) in two–dimension space; (d) The DLCT

of x3(n) in three–dimension space.

2.3 ESTIMATION OF LINEAR CHIRP PARAMETERS

Chirp signals are frequently encountered in many signal processing applications such as

radar, sonar, and telecommunications. The estimation of chirp parameters is a complicated

problem when dealing with multi–component signals embedded in noise. Many methods

have been proposed, but they have problems with initialization. In [35, 36], Kalman filtering

is used to estimate parameters of chirps. A minimum mean square error method (MMSE) to

estimate the parameters of the chirps was explained by [37]. It is an extension to the MMSE

estimation method of sinusoidal parameters proposed in [38]. The maximum likelihood

estimation method offers the optimal solution to this problem, but it is very difficult to
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implement because it involves the numerical optimization of nonlinear cost function with

many local minima [39]. Therefore, many approaches were developed to look for suboptimal

solution, for instance, the chirplet decomposition [40, 41].

Consider a signal representation using complex linear chirps as

x(n) =
P∑
i=1

ai exp

(
j

2π

N
(βin

2 + kin) + jφi

)
(2.24)

where ai, βi, ki, and φi are amplitude, chirp rate, frequency, and phase of the ith linear chirp,

respectively. Each chirp can be described by a set of parameters {ai, βi, ki, and φi}. In this

section, we use the DLCT to estimate these parameters. Given the signal

x(n) = ejπ/2 exp

(
j

2π

512
(0.2n2 + 25n)

)
+ ejπ/4 exp

(
j

2π

512
(−0.1n2 + 225n)

)
Figures 10(a) and (b) display the two and three–dimensional plots of |X(k,m)|. At the

locations (k, β) = (25, 0.2) and (k, β) = (225,−0.1) the transformation displays peaks cor-

responding to the two chirps with the given frequencies and chirp rates. In Fig. 10(c),

we display the reconstruction of the signal using (k, β) = (25, 0.2) and (225,−0.1) and the

magnitude and phase of the peaks. In the case when noise is added, the parameters of the

two chirps are not estimated that accurately. However, as shown in Fig. 10(d) measuring

the reconstruction mean square error for different noise levels, it decreases as expected and

levels off at −27.68 dB for SNRs higher than about 45 dBs. At these levels the parameters

of the signal are estimated exactly.
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Figure 10: Parameters of chirp and reconstruction: (a) |X(k,m)| in two–dimensions; (b)

|X(k,m)| in three–dimensions; (c) Original, estimated and error; (d) Mean square error

(MSE) of x(n).
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3.0 SIGNAL COMPRESSION

Signal compression transforms a signal into an efficient compact form, for transmission or

storage, that can be decompressed back to produce the original or a close approximation of

the original signal. The goal of signal compression is to minimize data rate and to conserve

bandwidth, while keeping the quality and intelligibility of the original signal. Unfortunately,

the compression ratio is inversely proportional to the quality of the signal. Hence, there is

always a tradeoff between compression ratio and quality [42, 43].

The performance of compression algorithms is measured by the signal to noise ratio SNR

and the compression ratio Cr:

SNR = 10 log
(
σ2
x/σ

2
e

)

Cr =
length of original signal

length of compressed signal

where σ2
x is the variance of the original signal and σ2

e is the variance of the difference between

original and reconstructed signals. Another factor that plays an important role in compres-

sion is the threshold value. After calculating the DLCT or the DCCT of a signal, many of

the coefficients of the resulted signal are close to or equal to zero. Thus, we can modify those

coefficients to produce more zeros by zeroing them out using certain threshold.

3.1 COMPRESSIVE SENSING USING DCCT

Compressive sensing (CS) [44] aims to take advantage of the signal’s sparser representation

dictated by the uncertainty principle. For instance, in [45] the signal to be compressed is
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represented in the sparser domain using the discrete cosine transform (DCT) and taking

random measurements from the new sparse signal so that the length of the measurement

is smaller than the length of the original signal. The original signal can be reconstructed

from the measurements using `1-minimization. Although CS provides very good results for

signals that are sparse in either time or frequency, it does not for signals that are not sparse

in either time or frequency such as the case of chirp signals [46, 47]. Time–frequency analysis

is needed to obtain an intermediate domain where the signal is sparser than in time or in

frequency. The Fractional Fourier Transform [48, 49] can be used for that, here we propose

the DCCT to obtain a sparse representation of a signal that is not sparse in time or frequency

domains.

3.1.1 Compressive sensing

The conventional paradigm in digital signal processing for reconstructing signals from mea-

sured data follows Shannon sampling theorem. This approach guarantees the preservation

of the information that is in the signal being sampled, but the cost is reflected in the number

of samples that are needed to represent the signal. Recently, the new theory of compressive

sensing— also known as compressive sampling or sparse recovery — has emerged [50, 51] as

an alternative to the traditional sampling theory. Compressive sensing asserts that we can

reconstruct certain signals using fewer samples than those required by the sampling theory

if we satisfy two conditions: sparsity and incoherence which means the sensing vectors are

as different as possible from the sparsity basis. If we satisfy those conditions, signal recon-

struction can be achieved from cardinally smaller measurements by using `1-minimization

[45], [44].

Consider a finite support real signal with values given by a vector x ∈ Rn, and that is

expressed in terms of the basis ψ = [ψ1...ψN ] [44] as

x =
N∑
i=1

siψi or x = ψ s (3.1)

where ψ is an N × N matrix, and s is a vector of size N × 1. The basis that transforms

x into a sparse signal s can be, for instance, the one for the discrete cosine transform for a

certain class of signals.
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When the signal x is sparse it can be represented with K � N nonzero coefficients.

Compressive sensing assumes that the K nonzero coefficients are not extracted directly, but

we project the vector x onto a matrix φ of size M×N where M < N . The matrix φ is called

the measurement matrix and it satisfies the condition that the columns of the sparsity basis

ψ cannot sparsely represent the rows of the measurement matrix φ (incoherence condition).

We can represent the measurement signal y as follows

y = φ x = φ ψ︸︷︷︸
θ

s

where y is a vector of size M × 1. Reconstruction of the signal is a convex optimization

aimed at recovering the signal via `1-minimization as shown in [45]

ŝ = argmin ‖s‖1 subject to y = θs (3.2)

from which we can recover s, and then we use the inverse basis to obtain the original signal

x.

3.1.2 Using the DCCT to obtain sparse signals

Just like the DCT that is used to convert stationary signals into sparse signals in either

time or frequency, the real chirp basis (DCCT) can be used to obtain sparse non–stationary

signals. To illustrate how the DCCT can be used to give sparse signals, several experiments

are conducted.

In the first experiment, the signal is a combination of two real linear chirps, windowed

by a Hamming window w(n)

xw(n) = x1(n) w(n) where

x1(n) = cos

(
0.1πn2 + 25π(2n+ 1)

512

)
+ 2 cos

(
0.1πn2 + 300π(2n+ 1)

1024

)
This signal is clearly not sparse in time, so we consider if it is sparse in frequency or in other

domain. The plot in Fig. 11(a) shows the DCT of xw(n) whereas Fig. 11(b) presents the

frequency sparse signal Y (k, 0) obtained from the DCCT of the signal xw(n) after projecting

the two chirps on the time domain by β1 = 0.4 and β2 = 0.2, obtained from the DCCT
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Figure 11: Sparseness of xw(n): (a) using the DCT; (b) using the DCCT.

of xw(n). The projection in the DCCT is different from the DLCT modulation property.

The projection in the DCCT is to reallocate the peaks from their locations {(ki, βi)} to new

locations {(ki, 0)} or sinusoids.

We can measure the resulted sparsity using (2.21), (2.22), or (2.23). The frequency

spread, and the time-bandwidth product metric of Xw(k) are B= 0.29 rad and TB= 22.71

rad while they are B= 0.027 rad and TB= 2.14 rad for Y (k, 0) where the original signal can

be reconstructed (see (2.14)) from these sparse signals with SNR= 32 dB. Comparing the

time–bandwidth product of both signals, the DCCT signal is much sparser than the DCT

signal where TBDCCT � TBDCT .

In the second experiment, we use an actual bird song signal xb(n) (see Fig. 12(a)) to

show that for such signals, the DCCT can give sparser representations than the DCT. Figure

12(b) gives the DCT of the bird signal showing this signal is not sparse in either time or

frequency. Figure 12(c) gives the transformed signal obtained via the DCCT of the bird

signal after being rotated with β = −0.48. The DCCT of the rotated signal yb(n) at β = 0

yields Yb(k, 0).
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Figure 12: Sparseness of bird signal: (a) Bird signal in the time domain; (b) Sparseness

using the DCT; (c) Sparseness using the DCCT.

In the third experiment, we use the bat echolocation signal shown in Fig. 13(a). Its

DCT is depicts in Fig. 13(b). Figure 13(c) presents a sparse signal, which is obtained from

the DCCT of the bat signal. It can be seen form these plots, the DCCT gives sparser signal

than the DCT.

The signal given in Fig. 13(c) is sparser than the signal shown in Fig. 13(b). The

frequency spread or the time–bandwidth product of each signal with a reconstruction SNR=

15 dB is given as, B= 0.904 rad or TB= 66.52 rad for the DCT and B= 0.246 rad or

TB=13.97 rad for the DCCT.
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Figure 13: Sparseness of bat signal: (a) Bat signal in the time domain; (b) Sparseness using

the DCT; (c) Sparseness using the DCCT.

3.1.3 Compression mechanism

Compression with compressive sensing using DCCT is different from the one that uses DCT

in that we need to know the chirp rates that we use for obtaining a sparse representation of

the original signal. Thus, the frame sample is given in Fig. 14. The first part of the frame

contains the measurement signal y which is obtained from CS and the second part of the

frame has the chirp rates which decomposes the original signal into a combination of real

linear chirps.
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Time 

Magnitude 

𝛽1 𝛽2 𝛽𝑃 

Measurement signal Chirp rates 

Figure 14: Compression sampling frame.

To illustrate how the DCCT improves compressive sensing performance, we consider the

three experiments from the previous section. Figure 15(a) shows the results of the first

experiment. Since our goal is to achieve high SNR with high compression ratio, it is obvious

compressive sensing using the DCCT gives better results than compressive sensing using

the DCT. In this case, the sample frame has two chirps (β1 = 0.2 and β2 = 0.4) with the

measurement signal. Another example of interest is the bird signal given in Fig. 12(a). The

compressed signal (sample frame) in this experiment consists of the measurement signal and

the chirp rate (β = −0.48). The compression ratio versus the SNR is shown in Fig. 15(b)

which explains the improvement that can be achieved using the DCCT. Also, the results

of compression the bat signal using compressive sensing with the DCCT and the DCT are

given in Fig. 15(c). It is shown that the performance of compressive sensing with the DCCT

is fabulous compared with it with the DCT. In this case, the sample frame has four chirp

rates {−0.58 − 0.426 0.829 0} along with the measurement signal.
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Figure 15: Compression using compressive sensing: (a) Experiment 1: two windowed chirps;

(b) Experiment 2: bird signal; (c) Experiment 3: bat signal.

In the theory of CS, the most important condition that we have to satisfy is the signal

sparsity. Hence, the DCCT achieves better results than the DCT as shown in Figs. 11, 12,

and 13 where clearly the DCCT is more applicable for analyzing such signals than the DCT.

3.1.4 Real and complex chirp bases in CS application

In this section, we want to justify considering real chirp bases in compressive sensing appli-

cation by comparing them with the complex chirp bases. The discrete linear chirp transform
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Figure 16: (a) The sparseness of the bat signal using the DLCT; (b) Comparison between

CS with the DCCT and CS with the DLCT.

(DLCT), which uses complex chirp bases, will be used for this purpose instead of the other

transforms that based on complex chirp bases because it is more efficient. The bat signal is

considered since it is multi–component. The sparse signal that we obtain using the DLCT

is shown in Fig. 16(a) where its frequency spread B= 0.118 rad and its time–bandwidth

TB= 6.1 rad. Comparing the frequency spread of the DCCT signal which is shown in Fig.

13(c) with the signal given in Fig. 16(a), we observe the DLCT provides sparser signal than

the DCCT where BDLCT = 0.118 � BDCCT = 0.246. Figure 16 provides the compression

using compressive sensing with the DCCT (real chirp bases) and the DLCT (complex chirp

bases). Although the DLCT gives sparser signals than the DCCT, it does not achieve good

results in terms of compression. The reason for that stands for the fact that the DLCT is

combined the signal in terms of complex chirps.
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3.2 PARAMETER COMPRESSION METHOD

The direct and the dual DLCT are used to represent signals that can be better represented

by one of them locally. Considering that a sinusoid has a chirp rate β = 0, while an impulse

has as chirp rate β → ∞, we separate signals into two groups: one having |β| ≤ 0.5,

corresponding to a linear chirp with a slope with an angle in [−45o 45o], and the other for

0.5 < |β| < ∞ corresponding to a linear chirp with a slope with an angle in [45o, 90o] or

[−45o, − 90o]. The value of β = 0.5 is not arbitrarily chosen since it relates to the slope of

the instantaneous frequency such that

Slope = tan(θ) = 2β

If β = 0.5, then θ = π/4 which is the angle that separates the time-frequency space into two

symmetric halves.

3.2.1 The proposed compression algorithm

In this section, we present a new algorithm for signal compression using DLCT. Figure 17

shows the block diagram of the proposed method.

Consider the local representation of a signal x(n), 0 ≤ n ≤ N − 1, as a superposition of

P linear chirps

x(n) =
P−1∑
i=0

ai exp

(
j

2π

N
(βin

2 + kin) + jϕi

)

=
P−1∑
i=0

x{|βi|≤0.5}(n) + x{|βi|>0.5}(n)

where {ai, ϕi, ki, βi} are the amplitude, phase, frequency, and chirp rate of the ith linear

chirp. The algorithm has two paths for the signal, the upper which is the dual path and

the lower which is the direct path. Depending on the minimum value of the extracted βs

for certain segment of the signal, we can do the compression either by the dual path or by

the direct path. The coefficients {ai, ϕi, ki, βi} are extracted and from theses coefficients
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we can reconstruct an approximation for the signal x(n)— where the arrangement of these

coefficients is done according to the proposed data structure shown in Fig. 18.

 

DLCT 

FFT IDLCT 
Dual of 

DLCT 

compress 𝛽𝑚𝑖𝑛 ≤ 0.5 
𝑥(𝑛) 

to transmit 

or store 

No 

Yes 

Figure 17: Compression algorithm.

3.2.2 Data Structure

The proposed data structure for sending or storing the extracted parameters is shown in

Fig. 18, we choose P chirp rates that correspond to the peaks of chirps from the DLCT of

the signal and P is the order of the chirp model. Then, from each vector which corresponds

to the chosen chirp rates from the chirp transform X(k, β) or X(n,−β̃) matrix, we select

Mj amplitudes, phases, and frequencies or samples that have more energy of the signal

concentrated upon them.

 

Time 

Amplitude 

     

# of frequencies at 

   each chirp rate     
# of samples at 
   each chirp rate    

𝛽0 ≤ 0.5 𝛽𝑃 > 0.5 
𝑎𝑀0

 𝜑𝑀0
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Figure 18: Data structure.
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3.2.3 Experimental results

In this section, we present three experiment to illustrate the performance of the proposed

method and compare the results with the compressive sensing method.
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Figure 19: Experiment 1: (a) Segment of speech; (b) |X(k, β)| in two–dimensions; (c) The

Wigner–Ville distribution of the signal showing time and frequency marginals; (d) Compres-

sion ratio vs SNR for different methods.

In the first experiment, we use a segment of speech (1024 samples, sampling rate fs =

8kHz) as shown in Fig. 19(a). Figure 19(b) and (c) give the magnitude of the DLCT and

the Wigner–Ville distribution for this segment of speech. The compression ratio versus the

SNR plot is shown in Fig. 19(d). Our goal is to obtain high SNR with high compression ratio

as shown in Fig. 19(d), the proposed method gives more compression ratio than compressive

sensing method, for an acceptable SNR. This segment of speech has very small chirp rates

at high frequency components, with low concentrated energy, and sinusoids at low frequency
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components with high concentrated energy. Since the minimum value β is less than 0.5, the

compression is obtained by the direct path. Even though, this segment of speech can be

considered a sparse signal in the frequency domain, the proposed algorithm outperforms the

compressive sensing method.

In the second experiment, a bird song signal (2048 samples and sampling rate fs =

7, 350Hz) with β = 0.88 is considered; see Fig. 20(a). This signal is sparser in the time

domain than in the frequency domain. Its dual DLCT and its Wigner distribution are

shown in Figs. 20(b) and (c). Figure 20(d) displays SNR versus compression ratio. In this

experiment, the minimum value of β is greater than 0.5. Thus, the dual path is used for the

compression. The proposed method performs better than CS method.
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Figure 20: Experiment 2: (a) Bird chirping; (b) |X(n, βd)| in two–dimensions; (c) The

Wigner–Ville distribution of the signal showing time and frequency marginals; (d) Compres-

sion ratio vs SNR for different methods.
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4.0 DECOMPOSITION OF NON–STATIONARY SIGNALS AND

TIME–FREQUENCY ANALYSIS

The processing of non-stationary signals in applications is complicated by the continuous

variation of local signal characteristics. Over the years, many approaches have been proposed

to represent such signals from wavelets to time–frequency distributions to the more recent

empirical mode decomposition and Hilbert spectrum.

4.1 EMPIRICAL MODE DECOMPOSITION

The Hilbert–Huang transform (HHT) method was developed to represent non–stationary

signals in the time–frequency plane without assistance of window functions. It is a combined

approach of Hilbert transformation (HT) and the empirical mode decomposition (EMD)

[52]. The EMD is used to decompose the signal into a set of functions called Intrinsic Mode

Functions (IMFs). It does not have priori defined basis function, unlike the Fourier and

Wavelet transform, the whole decomposition is adaptive and depends on the local oscillation

of the data. The decomposition is based on the local characteristic time scale of the data

and, therefore, it is applicable to nonlinear and non–stationary processes. Hilbert transform

is applied to each intrinsic mode function for the purpose of providing the global time–

frequency distribution of the underlying signal to estimate its instantaneous frequency (IF)

[53]. The application of the HHT method to audio and speech signals have already been

done [54, 55, 56]. In [57, 58, 59] the HHT is used to estimate the IF of biomedical signals

such as EEG data and heart signals.

50



The empirical mode decomposition is an approach that we can use to separate a multi–

component signal into its basic component. Thus, a non–stationary signal can be decomposed

into a finite set of functions that have meaningful instantaneous frequencies. These functions

are called intrinsic mode functions (IMFs) in which each mode should be independent of the

others and must satisfy the following two conditions: First, the number of extrema and the

number of zero crossings must either equal or differ at most by one. Second, the mean value

of the envelope defined by the maxima and the envelope given by the minima is zero. The

IMFs can be computed according to the following algorithm [52]

1. Let x̂(t) = x(t) where x(t) is the original signal.

2. Identify all local maxima and minima of x̂(t).

3. Find a lower envelope el(t) that interpolates all local minima.

4. Generate an upper envelope eu(t) that interpolates all local maxima.

5. Evaluate the local mean value,

m(t) =
el(t) + eu(t)

2

6. Subtract the local mean value from x̂(t),

d(t) = x̂(t)−m(t)

7. Let x̂(t) = d(t) and go to step 2.

8. Repeat until d(t) becomes an IMF.

The decomposition of the signal x(t) can be written as

x(t) =
M∑
i=1

fi(t) + r(t) (4.1)

where M is the number of IMFs, fi(t) is the set of IMFs, and r(t) is the final residue.
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4.2 INTRINSIC MODE FUNCTIONS USING LINEAR CHIRPS

A chirp function

c(t) = Aejφ(t) 0 ≤ t ≤ T (4.2)

where φ(t) is a polynomial in t

φ(t) = Ω0t+
∞∑
k=0

βkt
k+2

can be considered an IMF. Indeed, its envelope is symmetric so that its instantaneous mean

is zero, and by adjusting the value of T the number of extrema and of zero crossings are

made to match.

Given the complexity of using higher order chirps, we consider linear chirps with an

appropriate support so that they are IMFs.

The signal x(n) can be expressed in terms of the extracted IMFs or sources si(n) as

x(n) =
M∑
i=1

si(n) + e(n) (4.3)

where e(n) ≈ 0 since most of signal energy is decomposed inside si(n).
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4.3 COMPARISON OF EMD AND DLCT

4.3.1 Instantaneous frequency estimation

The Hilbert transform is used to compute the IF of each of the signal components. Given

one of the IMFs xi(t) of x(t) we obtain its Hilbert transform

yi(t) =
1

π

∫ ∞
−∞

xi(τ)

t− τ
dτ

to get the analytic signal zi(t) from which we find its phase function to obtain the IF of

xi(t):

zi(t) = xi(t) + jyi(t) = ai(t)e
jψi(t)

IFxi(t) =
dψi(t)

dt

For the DLCT, the peaks of the |X(k,m)|2 provide the parameters {k, Cm} of the linear

chirps of the signal (See (2.7)). Using these parameters we obtain for each component an IF

by computing the derivative of the phase of each component.

Consider the sum of two crossed quadratic chirps

x1(n) = exp
(
j
π

512
(10n+ ξ(n− 512)3)

)
+ exp

(
j
π

256
(−502n+ ξ(n− 512)3)

)
where ξ = 6× 10−4. The signal is shown in Fig. 21(a) while the actual IFs of the two linear

chirps are given in Fig. 21(b). The estimated IFs using the DLCT are depicted in Fig.

21(c). Figure 21(d) illustrates the results of applying the EMD algorithm for estimating the

IFs. The performance of the IF estimation using the EMD is degraded at the crossing of the

chirps due to the closeness of the frequencies. The parametric estimation provided by the

DLCT does not suffer from this condition.

As a second example to test the IF estimation, consider the addition of two sinusoidal

chirps corrupted by Gaussian noise η(n) with a signal to noise ratio SNR=5 dB:

x2(n) = cos
( π

10
n+

π

6400
n2 + 8 sin

( π

200
n
))

+ cos

(
2π

5
n+

0.18π

1024
n2 + 8 sin

( π
50
n
))

+ η(n)
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Figure 21: Experiment 1: (a) Signal x1(n); (b) Actual IFs of x1(n) components; (c) Esti-

mated IF of x1(n) using DLCT; (d) Estimated IF of x1(n) using EMD.

Figure 22(a) depicts the signal x2(n), while the actual IFs of the two individual components

are shown in Fig. 22(b). Figures 22(c) and (d) give the estimated IFs of x2(n) using the

DLCT and the EMD decomposition algorithms, respectively. The performance of the EMD

as an IF estimator is very much affected by the presence of the noise.

Comparing the estimated IFs based on the DLCT and the EMD of both experiments

with the actual IFs, we conclude the DLCT decomposition attains better results than the

EMD.
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Figure 22: Experiment 2, x2(n) with additive noise (SNR=5dB): (a) Noiseless signal x2(n);

(b) Actual IFs of noiseless x2(n); (c) Estimated IFs of x2(n) using DLCT; (d) Estimated IFs

of x2(n) using EMD.

4.3.2 Decomposition of speech signals.

The performance of decomposition and representation of speech signals using the EMD and

the DLCT is explored. Our experiment is conducted using a speech segment corresponding

to “among them are canvases by a young artist” sampled at 8 kHz. The speech signal is

divided into blocks of 437 msec to capture its local characteristics.
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The DLCT decomposes the speech segment into 5 components si(t) as shown in Fig.

23(a) along with their spectra. Notice these five components display the characteristics of

IMFs. Using these five components a reconstruction of the signal and its error are shown in

Fig. 23(c) with a SNR=25.69 dB.

For comparison, we decompose the same speech signal using the EMD. The speech seg-

ment is windowed into blocks of the same width as before. The EMD decomposes the speech

signal also into 5 IMFs as shown on the left in Fig. 23(b). However, the reconstructed signal

gives a SNR=20.8 dB not as good as the reconstructed signal from the DLCT method. Also

the frequency representation of each of the five components has overlapping bandwidths

(see Fig. 23(b) on the right) while the frequency representation for each of the components

obtained with the DLCT (see Fig. 23(a) on the right) appear in slightly different bands.

4.4 TIME–FREQUENCY ANALYSIS USING DLCT

In many applications in biomedicine, speech processing, communications, radar, underwater

acoustics, where non–stationary signals are present, it is typically necessary to estimate

the instantaneous frequency of the signals [60]. Time–frequency distributions (TFDs) are

widely used for IF estimation based on peak detection techniques [61, 62, 63]. The most

frequently TFD used for linear chirps is the Wigner–Ville distribution (WVD) due to its ideal

representation for such signals. However, in the case of multi–component signals, Wigner–

Ville distribution does not perform well because of the presence of extraneous cross–terms.

The work of [64] in multi–component signal IF estimation requires to have a TFD that

has high resolution and is free of cross–terms. In [65] an iterative method is proposed

for IF estimation using the evolutionary spectrum. In general, the instantaneous frequency

estimation requires signal separation, for multi–component signals, and high resolution time–

frequency distributions.

In this section we develop an algorithm that combines the DLCT with the Wigner–Ville

distribution (WVD) to obtain a time–frequency representation with high resolution. Locally

the DLCT approximates the signal as a sum of linear chirps, for each of which the WVD
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Figure 23: (a) Decomposition of the speech segment and their corresponding spectra using

DLCT; (b) The synthesized IMFs of the speech segment using EMD; (c) Original and re-

constructed speech segments, and error signal e(t); (d) Original speech signal, reconstructed

signal, and error signal r(t).

provides optimal representations. Superposing these WVDs we obtain a time–frequency

representation of the whole signal without interfering cross–terms. The proposed algorithm

is shown in Fig. 24.
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Figure 24: Time–frequency representation algorithm and instantaneous frequency estimator.

The energy of the signal can be found in the joint chirp–rate frequency domain using the

DLCT. Using equation (2.8) we obtain the following Parseval relation between the energy

in the two domains:

∑
n,m

|xm(n)|2 =
∑
m,k,s

X(k,m)X∗(s,m)

N2
×
∑
n

exp

(
j

2π

N
n(s− k)

)
=

∑
m,k

|X(k,m)|2

N2

and since xm(n) = x(n) then

∑
n,m

|xm(n)|2 =
∑
n

L|x(n)|2 so that

∑
n

|x(n)|2 =
1

LN2

∑
m,k

|X(k,m)|2. (4.4)

The energy concentration is thus indicated by the peak values of |X(k,m)|2 as a function of

k and m. Considering the region in the joint chirp–rate frequency plane where these peak

values occur, we are able to find the values of the chirp–rates and frequencies that can be

used to approximate the given signal locally as a sum of linear chirp components

x(n) =
P∑
i=1

xi(n). (4.5)

The instantaneous frequency of each of these components can be parametrically repre-

sented by the chirp–rates and frequencies. Corresponding to the peaks, the determination
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of the range of chirp–rates and frequencies where the energy of the signal is the most signif-

icant is analogous to masking. A better way to display the instantaneous frequencies of the

signal components is to use the Wigner–Ville distribution which for a linear chirp concen-

trates the energy exactly along the instantaneous frequency in an optimal way. Indeed, for

x(t) = exp(j(γ t2/2 + Ω0t)) with instantaneous frequency IF (t) = γ t+ Ω0, its Wigner–Ville

distribution [2] gives

W (t,Ω) =
1

2π

∫
x∗
(
t− τ

2

)
x
(
t− τ

2

)
e−jτΩ dτ

= δ(Ω− [γ t+ Ω0]),

i.e., a line in the time–frequency plane that coincides with the IF (t) of the linear chirp.

However, for multi–component signals cross–terms appear. Using the DLCT filter or mask

however the time–frequency representation of the signal x(n) in (4.5) would be

W (n, ω) =
P∑
i=1

Wi(n, ω)

where Wi(n, ω) is the Wigner–Ville distribution of the linear chirp components xi(n). Since

the Wigner–Ville distribution concentrates the energy along the instantaneous frequency,

the IF is estimated by

ŵ(n) = arg

[
max

P∑
i=1

Wi(n, ω)

]
(4.6)

As indicated above, the instantaneous frequency is approximated locally by linear chirps.

Thus the signal in general is windowed before applying the above procedure locally. The

estimated IF ω̂(n) is obtained from the peak detection approach for the high resolution

time–frequency distribution which is a result of combining the DLCT with the WVD. The

accuracy of the estimation is measured by the mean square error

MSE = 〈{ω(n)− ω̂(n)}2〉 (4.7)

where 〈.〉 is the average.

The DLCT mask is time–varying mask that can be used to filter non–stationary signals

in the frequency chirp–rate space. As shown in Fig. 25, by selecting the frequency band
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Figure 25: Joint chirp–rate frequency filtering in chirp–rate frequency plane and in time–

frequency plane.

[f1, f2] and the chirp–rate range [β1, β2] one can select the components of x(t) having a DLCT

with joint chirp–rate and frequencies in the chirp–rate and frequency band.

This is equivalent to masking in the time–frequency plane using a time–varying mask

with the desired frequency band [f1, f2] but the slope determined by the chirp–rate range

[β1, β2] (See Fig. 25). Notice that the frequency response of the mask changes with time.

To evaluate the performance of the proposed instantaneous frequency estimation method,

we consider multi–component signals with linear, quadratic, and sinusoidal instantaneous

frequencies. Also, we add noise to the signals and test our procedure for several signal to

noise ratios (SNRs) values.

Table 1: Comparison of mean square error (MSE) for different time–frequency distributions

with four different SNRs.

Time-frequency SNR (dB)

Distribution

-5 0 5 100

Synthesized WVD -36.2 dB -40.01 dB -41.78 dB -43.06 dB

STFT -5.96 dB -34.42 dB -38.79 dB -42.01 dB

WVD -3.93 dB -5.47 dB -6.72 dB -6.95 dB
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Figure 26: Example 1, x1(n) with SNR = −5 dB: (a) Wigner–Ville distribution of x1(n);

(b) STFT with Hamming window of length 64; (c) Synthesized Wigner–Ville distribution;

(d) Original IF; (e) Estimated IF; (f) Mean square error.

Consider the multi–component signal x1(n)

x1(n) = exp
(
j
π

256
(0.15n2 + 50n)

)
+ exp

(
j

(
πn2

2560
− 40 cos(

π

500
n)

))
+ η(n)
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where η(n) is a complex white gaussian noise with a total of variance σ2 is added to the

signal. Figures 26(a) and (b) display the WVD and the short time Fourier transform (STFT)

of x1(n) for a SNR= −5 dB while Fig. 26(c) shows the superposition of the WVDs of the

chirp components (synthesized WVD). Notice that the WVD does not clearly display the

chirps due to cross–components and the smearing of the noise over the time–frequency space

and the STFT is not robust against noise. The estimated and the original instantaneous

frequencies of the signal x1(n) at SNR= −5 dB are given in Figs. 26(d) and (e). The mean

square error (MSE) for the instantaneous frequency is shown in Fig. 26(f). It shows that,

the estimated IF using the proposed method matches well the original IF even at low SNRs.

Let the signal x2(n) be a multi–component signal which has two intersected components in

the time–frequency plane. The considered signal is embedded in noise as

x2(n) = exp
(
j
π

256
(ξ(n− 256)3 + 10n)

)
+ exp

(
j
π

256
(ξ(n− 256)3 − 246n)

)
+ η(n)

where ξ = 4 × 10−4. The WVD, STFT, and synthesized WVD of the signal x2(n) with

SNR= 0 dB are shown in Figs. 27(a), (b), and (c). Figures 27(d) and (e) illustrate the

original (ω(n)) as well as its estimate (ω̂(n)). The MSE error as a function of SNR is given

in Fig. 27(f).

Tables 1 and 2 summarize the MSE measured in dB for the estimated IFs using syn-

thesized WVD, STFT, and WVD under the effect of noise. It is shown, the synthesized

WVD is more robust against noise attack and gives better IF estimation than the other

time–frequency distributions. On the other hand, the WVD presents poor IF estimate even

for high SNRs because it suffers from the cross–terms interference. The STFT shows good

results for high SNRs but it gives poor IF estimate for low SNRs.

Finally, we apply our algorithm to the bat signal shown in Fig. 13(a). The STFT of this

signal is given in Fig. 28(a), where the signal components are smoothed as expected. The

Wigner–Ville distribution is shown in Fig. 28(b). The WVD has interference cross–terms

which make it difficult to recognize the signal components.
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Figure 27: Example 2, x2(n) with SNR = 0 dB: (a) Wigner–Ville distribution of x2(n); (b)

STFT with Hamming window of length 64; (c) Synthesized Wigner–Ville distribution; (d)

Original IF; (e) Estimated IF; (f) Mean square error.

Figure 28(c) depicts the time–frequency distribution which is computed by the proposed

algorithm. The estimated IF of the bat signal is illustrated in Fig. 28(d) from which we can

observe that the bat signal has five components.
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Table 2: Comparison of mean square error (MSE) for different time–frequency distributions

with four different SNRs.

Time-frequency SNR (dB)

Distribution

-5 0 5 100

Synthesized WVD -18.85 dB -31.56 dB -34.96 dB -38.14 dB

STFT -4.12 dB -13.26 dB -20.22 dB -23.28 dB

WVD -0.74 dB -0.91 dB -1.36 dB -1.88 dB

The results of the proposed algorithm for the bat signal are interesting. A new fifth

component is obtained. In the past publication some of them are shown two components

[40], three components [20, 21, 22], or four components [28, 66] for the same bat signal. In

addition, as we can see from Fig. 28(d), the bat signal is suffering from some aliasing as

shown in the third and forth components. Therefore, the sampling frequency of the bat

signal, which originally is sampled at 0.4 MHz [67], should be sampled at higher sampling

frequency rate to avoid the aliasing that occurs at the third and forth components.
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Figure 28: Example 3: (a) The bat signal in the time domain; (b) Wigner–Ville distribution

of the bat signal; (c) STFT with Hamming window of length 64; (d) Synthesized Wigner–

Ville distribution; (e) Estimated IF.
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5.0 HIGH DATA RATE AND HIGH CAPACITY COMMUNICATION

SYSTEMS

The rapid growth, marketing, and applications of wireless communications has increased

research interest in looking for an alternative digital communications that can adapt to

the increasing demand of the limited bandwidth. The desired properties for an ideal dig-

ital communication system would be low transmission power, high bit transmission rate,

and less bandwidth. As one can feel, such system is not possible and often, as in most

engineering applications, we trade–off one quantity for the other. This leads to choosing dif-

ferent modulation schemes that have different characteristics like “power–efficient schemes”,

“bandwidth–efficient schemes” [68].

In the last few years, wireless communications have shown enormous growth in the market

and technology. Researchers have focused their attention on the next generation of wireless

communication systems to send large volumes of data and to provide users with a wide range

of services such as voice, video, text messages, and high speed internet. The challenge for

achieving these goals is to have a communication system that can transmit data with high

data speed transmission and has high capacity (i.e. can handle as many users as possible)

without increasing the bandwidth which is often limited by the cost of the radio spectrum

required or by the international telecommunication union (ITU) spectrum allocation [69].
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5.1 DIGITAL COMMUNICATIONS BASED ON LINEAR CHIRP

CARRIERS

Chirp signals have been extensively used in radar and sonar systems to determine distance,

velocity, and object detection [70]. The use of chirp signals for digital communication was

first proposed by Winkler [71]. The advantage of using chirp signal carriers compared to FSK

and PSK for various channels was discussed in [72, 73, 74, 75]. Among several applications

for chirp modulations is high frequency data transmission [76].

The work on digital modulation using chirp waveforms has not received much consider-

ation. In this section, we propose five different digital modulation schemes based on linear

chirp carriers and their performance are investigated for coherent receivers with matched fil-

ter detection. We optimize the parameters of the chirp carriers such that they maximize the

transmitted difference signal energy. Moreover, we use the continuous linear chirp transform

(CLCT) in the context of time–varying filter. The CLCT can be used to filter the pass band

signals in the frequency chirp–rate plane. Therefore, we can eliminate the impact of the

chirp rate on bandwidth. Consequently, preservation of bandwidth occupancy is achieved.

5.1.1 Bit error rate calculation

The probability of error for the output signal is the performance measure of a digital system.

To derive a general form for the bit error rate (BER) of a detected binary signal, let the

transmitted signal over a bit interval 0 < t ≤ Tb be

s(t) =

 s1(t), 0 < t ≤ Tb, for binary 1

s2(t), 0 < t ≤ Tb, for binary 0

The general expression of s1(t) and s2(t) for linear chirp carriers can be written as

s1(t) = A cos
(
Ω1t+ γ1t

2
)

(5.1)

and

s2(t) = A cos
(
Ω2t+ γ2t

2
)

(5.2)
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The transmitted signal s(t) is usually corrupted by an additive noise η(t). Thus, the received

signal r(t) is given by

r(t) = s(t) + η(t)

Following the procedure given in [77] for calculating the BER of binary signalling cor-

rupted by additive white Gaussian noise, coherent detection, matched filter reception, and

by using the optimum threshold setting, the BER is

Pe = Q

(√
Ed

2N0

)
(5.3)

where Q(x) = 1√
2π

∫∞
x
e−t

2/2dt, N0/2 is the power spectral density of the noise, and Ed is the

transmitted difference signal energy defined as

Ed =

∫ Tb

0

[s1(t)− s2(t)]2 dt (5.4)

To minimize Pe, we need to maximize Ed. The transmitted difference signal energy Ed can

be maximized by choosing the parameters {Ω1,Ω2, γ1, γ2} of the chirp carriers appropriately.

The optimized parameters can be found by solving an optimization problem with inequality

constraints as

max
Ω1,Ω2,γ1,γ2

Ed

subject to Ω1,Ω2 ≥ 2π/Tb (5.5)

If we define the bit energy by Eb = A2Tb, then the optimal solution for Ed would be

Ed = λ Eb (5.6)

where λ is a real positive number and it depends on the type of modulation scheme used

and the bit interval (bit rate). We can think of (5.5) as an upper bound for Ed (lower bound

for Pe). The lower bound for Ed can be achieved by minimizing Ed in (5.5) after imposing

the following constraints: |Ω1−Ω2| ≥ εΩ or |γ1− γ2| ≥ εγ to avoid the trivial solution which
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is s1(t) = s2(t). If we represent the lower bound by µ1 and the upper bound by µ2 where µ1

and µ2 are real positive numbers, then we can rewrite (5.6) as

Ed = λ Eb, µ1 ≤ λ ≤ µ2 (5.7)

Substituting (5.7) into (5.3), we acquire the general bit error rate formula for matched filter

coherent detection digital modulation

Pe = Q

(√
λ Eb
2N0

)
, µ1 ≤ λ ≤ µ2 (5.8)

Pe forms a lower bound when λ = µ2.

It is difficult to solve (5.5) for a closed form solution since the evaluation of Ed requires

to deal with integrals of the form

∫ Tb

0

cos
(
a t+ b t2

)
dt =

√
π

2b
× [cos(θ2

1)

{
CF (θ2)− CF

(√
2

π
θ1

)}

+ sin(θ2
1)

{
SF (θ2)− SF

(√
2

π
θ1

)}
]

where CF (u) and SF (u) are Fresnel functions defined as

CF (u) =

∫ u

0

cos
(π

2
z2
)

dz ,

SF (u) =

∫ u

0

sin
(π

2
z2
)

dz

θ1 =
a

2
√
b
, and θ2 =

√(
2b

π

)(
Tb +

a

2b

)

Therefore, we will solve (5.5) numerically for different digital modulation schemes.
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5.1.2 Digital modulation schemes

• Chirp on-off keying (C-OOK)

The C-OOK is an amplitude modulation operating on a unipolar digital data m(t) and

it is represented by

s1(t) = A cos(Ωt+ γt2), 0 < t ≤ Tb (binary 1)

and,

s2(t) = 0, 0 < t ≤ Tb (binary 0)

For coherent detection, the demodulation process is illustrated in Fig. 29. The per-

formance of this match filter receiver for C-OOK scheme is obtained using (5.8) where

0.267 ≤ λ ≤ 0.695 for Tb/Ts = 32 and Ts is the sampling period. Figure 30(a) shows the
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Figure 29: Coherent detection of C-OOK or C-PSK schemes.

BER of the conventional OOK (λ = 0.5) [77] and the BER of the C-OOK with λ = 0.695

where the frequency and the chirp rate of the carrier are set to 12.57/Tb and 10.66/T 2
b ,

respectively. The C-OOK can perform better than the OOK if we choose the parameters

of the chirp carrier so that λ > 0.5. As we mentioned before, the constant λ depends

on the modulation scheme and the bit rate (Rb = 1/Tb). The effect of the bit rate on

λ for C-OOK scheme is given in Fig. 30(b) for the lower and the upper bounds. The

bandwidth of the transmitted C-OOK signal is 12.57/Tb, twice the bit rate.
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Figure 30: (a) BER of C-OOK and OOK; (b) Effect of bit rate on λmax and λmin.

• Chirp phase shift keying (C-PSK)

Refereing to (5.1) and (5.2), we can represent the transmitted data as

s1(t) = A cos(Ωt+ γt2), 0 < t ≤ Tb (binary 1)

and,

s2(t) = −A cos(Ωt+ γt2), 0 < t ≤ Tb (binary 0)

The receiver of the C-PSK is shown in Fig. 29. We explore the performance of the

C-PSK for coherent detection. For the bit interval Tb/Ts = 32, 1.07 ≤ λ ≤ 2.782.

The upper bound λ = 2.782 is determined by choosing the following carrier parameters

Ω = 12.57/Tb and γ = 10.66/T 2
b . The corresponding BER for the upper bound of λ is

presented in Fig. 31(a) with a comparison to the conventional PSK digital modulation

scheme [77]. The λmax and λmin as a function of the bit interval Tb/Ts is illustrated in

Fig. 31(b). The bandwidth between first nulls around the carrier is 2Ωb.
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Figure 31: (a) BER of C-PSK and PSK; (b) Effect of bit rate on λmax and λmin.

• Chirp frequency shift keying (C-FSK)

In binary chirp frequency shift keying (C-FSK), the binary data m(t) can be transmitted

using the following carriers

s1(t) = A cos(Ω1t+ γt2), 0 < t ≤ Tb (binary 1)

and,

s2(t) = −A cos(Ω2t+ γt2), 0 < t ≤ Tb (binary 0)

We can demodulate C-FSK signals using a receiver as shown in Fig. 32. The carrier

frequency Ω = (Ω1 + Ω2)/2 and ∆Ω = Ω2 − Ω1.

The BER versus Eb/N0 for C-FSK and FSK [77] with Tb/Ts = 32 is shown in Fig. 33(a).

We find the frequencies Ω1 = 12.57/Tb, Ω2 = 16.99/Tb, and the chirp rate γ = −10.86/T 2
b

maximizes the difference signal energy Ed and gives λ = 1.999. In this scheme, 0.299 ≤

λ ≤ 1.999 where the lower bound is evaluated when εΩ = 6.03/Tb. The impact of bit
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Figure 32: Coherent detection of C-FSK, CRSK, and CRFSK digital modulation schemes.

rate on λ is depicted in Fig. 33(b). We can determine the channel bandwidth of C-FSK

as

BT = (∆Ω + 4π/Tb) (5.9)

Since ∆Ω = 4.42/Tb, the bandwidth of the C-FSK channel would be BT = 16.99/Tb.
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Figure 33: (a) BER of C-FSK and FSK; (b) Effect of bit rate on λmax and λmin.
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• Chirp rate shift keying (CRSK)

Chirp rate shift keying (CRSK) represents digital data ones and zeros by carrier pulses

with two distinct chirp rates, γ1 and γ2 as

s1(t) = A cos(Ωt+ γ1 t
2), 0 < t ≤ Tb (binary 1)

and,

s2(t) = −A cos(Ωt+ γ2 t
2), 0 < t ≤ Tb (binary 0)

Figure 32 shows the proposed receiver structure labeled with the relevant signals for

the interval under consideration. We can achieve the upper bound of λ if we use γ1 =

−11.86/T 2
b , γ2 = −6.74/T 2

b , and Ω = 13.47/Tb. The lower bound of λ depends on the

constraint εγ. For εγ = 12.06/T 2
b , the parameter λ can take the values in the range

0.18 ≤ λ ≤ 1.49 when Tb/Ts = 32. The BER of the CRSK is given in Fig. 34(a). Figure

34(b) explains how the bit rate can affect the upper and the lower values of λ. The

bandwidth of CRSK channel is 12.57/Tb.
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Figure 34: (a) BER of CRSK for Tb/Ts = 32; (b) Effect of bit rate on λmax and λmin.
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• Chirp rate frequency shift keying (CRFSK)

Binary chirp rate frequency shift keying (CRFSK) impresses baseband information onto a

carrier by changing the carrier’s frequency and chirp rate in sympathy with the baseband

digital data as
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Figure 35: (a) BER of CRFSK for Tb/Ts = 32; (b) Effect of bit rate on λmax and λmin.

s1(t) = A cos(Ω1t+ γ1 t
2), 0 < t ≤ Tb (binary 1)

and,

s2(t) = −A cos(Ω2t+ γ2 t
2), 0 < t ≤ Tb (binary 0)

The modulated signal will be switched between these two chirps depending on the mes-

sage and separated in the frequency and chirp rate plane by ∆Ω and ∆γ where ∆Ω = Ω2−Ω1

and ∆γ = γ2 − γ1.

The transmitted data can be detected by the receiver shown in Fig. 32. The performance

of CRFSK with Tb/Ts = 32 for λ = 2.231 is shown in Fig. 35(a). We can attain the upper

bound of λ by setting the parameters of the carriers to Ω1 = 14.58/Tb, γ1 = −8.04/T 2
b ,

Ω2 = 26.64/Tb, and γ2 = −18.1/T 2
b . The lower bound is a function of εΩ and εγ where they
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are set to 6.03/Tb and 12.06/T 2
b , respectively, to acquire the lower bound λ = 0.063. Thus,

0.063 ≤ λ ≤ 2.231. The upper and the lower bounds of λ versus the bit period Tb/Ts is

illustrated in Fig. 35(b). We can measure the bandwidth of CRFSK channel by (5.9). If the

frequency deviation ∆Ω = 12.06/Tb, then the bandwidth of CRFSK channel is given by

BT = ∆Ω + 4π/Tb = 24.63/Tb

Plots of the BERs for all proposed digital modulation schemes with the upper bound

of λ and bit period Tb/Ts = 32 are shown in Fig. 36. To compare performance of various

proposed systems and to serve as a convenient reference, the channel bandwidth required

and the Eb/N0 that we need to obtain an average bit error rate of 10−4 for each system are

summarized in Table 3.
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Figure 36: Comparison of proposed binary digital modulation schemes performance.
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Table 3: Comparison of different digital modulation schemes in terms of power and channel

bandwidth with Pe = 10−4.

Modulation 1Nominal bandwidth (Hz/sec) Eb/N0 (dB)

OOK 2Rb 17.43

PSK 2Rb 11.41

FSK 2.715Rb 13.57

C-OOK 2Rb 16

C-PSK 2Rb 9.98

C-FSK 2.704Rb 11.41

CRSK 2Rb 12.69

CRFSK 3.92Rb 10.93

5.2 COUPLED OFDM COMMUNICATION SYSTEM

A better approach for securing a transmission system with high capacity and high speed

transmission is how we can exploit the allocated spectrum more efficiently. To achieve this,

a resource management scheme is required. Time division multiplexing (TDM), frequency

division multiplexing (FDM), code division multiplexing (CDM), orthogonal frequency divi-

sion multiplexing (OFDM), and space division multiplexing are well–known techniques for

resource management based on the principle of time sharing, frequency sharing, code shar-

ing, and space sharing [78, 79, 80]. Among these existing resource management techniques,

orthogonal frequency division multiplexing (OFDM) [81, 82, 84, 83] has shown a number of

advantages and has attracted substantial interest. The main merit of OFDM is that the radio

channel is divided into many narrow band, low rate, frequency subchannels or subcarriers,

so that multiple symbols can be transmitted in parallel, while maintaining a high spectral

efficiency. Each subcarrier may also deliver information for a different user, resulting in a

simple multiple access scheme known as orthogonal frequency division multiple access

1Nominal bandwidth is the null to null bandwidth and it is equal to two times the minimum bandwidth.
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(OFDMA) [85, 86]. The OFDM have already been used in the market for applications such

as digital video broadcasting, wireless LAN networks, forth generation cellular network, and

WiMAX [87].

The use of linear chirps for resource management technique is reported in [88, 89, 90]. It

has been shown that, this modulation technique has an inherent capability to mitigate the

effects of channel Doppler shifts and multi–path fading due to a moving receiver [10].

This section introduces the concept of coupled OFDM (C-OFDM) system and investi-

gates its suitability for broadband applications in additive white Gaussian channel. Three

different scenarios for operating the C-OFDM based on the application and the needs of

service provider are proposed. In the first scenario, we can use all the coupled OFDM sys-

tem channels to transmit the input serial data with the highest transmission speed of the

C-OFDM. If a conventional single carrier modulation technique can send data with a data

rate Rb, then the same data can be transmitted with a data rate of up to NMRb using

the C-OFDM transmission system. In the second scenario, the maximum capacity of the

system can be achieved if we dedicate one channel for each user. Thus, the system can

handle N ×M users simultaneously with a transmission rate of Rb. In the third scenario,

a trade–off approach can be used to trade capacity with transmission rate. We can assign

one OFDM system to each user. As a result, the system can be utilized by M users with a

transmission rate of NRb for each user. The performance of the developed system is explored

in the presence of additive white Gaussian noise. Simulation results show the effectiveness of

the proposed system for handling a large amount of data with an acceptable bet error rate.

5.2.1 Coupled OFDM system (C-OFDM)

A block diagram of the general coupled OFDM communication system appears in Fig. 37.

We consider the transmission of digital data pulses over additive Gaussian noise channel.

• System model

Let the transmitted data pulses Xk(t) for k = 0, 1, · · · , N − 1 represented as

Xk(t) =

 dk, 0 ≤ t ≤ Tb

0, otherwise
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where dk are the transmitted symbols. In case of BPSK modulation, dk=+1 or −1. Also,

define the coupled functions g`(t) as

g`(t) =

 exp (jγ`t
2) , 0 ≤ t ≤ Tb

0, otherwise

where ` = 0, 1, · · · ,M − 1. Performing the inverse discrete Fourier transform (DFT) on

Xk`(t) and multiplying each parallel OFDM path by the corresponding coupled linear

chirp g`(t), the transmitted signal yn(t) can be expressed as

yn(t) =
M−1∑
`=0

N−1∑
k=0

Xk`(t)g`(t) exp

(
j

2π

N
kn

)
+ ηn(t) (5.10)
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Figure 37: The proposed coupled OFDM communication system.

The received signal after the matched filter can be expressed as follows

Ẑkr(t) = TbXkr(t) + Tb

M−1∑
`=0,`6=r

Xk`(t)ρ`r + TbWkr (5.11)

where,

ρ`r =
1

Tb

∫ Tb

0

g`(t)g
∗
r(t)dt and Wkr =

1

Tb

∫ Tb

0

ηk(t)g
∗
r(t)dt
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The symbol “*” stands for complex conjugate. It is clear from (5.11), in addition to

the channel noise effect Wkr, the system suffers from a multiple access interference ρ`r

which can further degrade the system performance. We can reduce the effect of the

noise by increasing the signal to noise (SNR) ratio, but the effect of the multiple access

interference can only be mitigated by reducing the cross–correlation coefficient ρ`r.

• Capacity analysis of C-OFDM

Consider the C-OFDM system with N used carriers with carrier spacing ∆f and M

parallel paths. The decision variable Ẑkr can be rewritten as

Ẑkr = TbXkr + Ukr + TbWkr

= TbXkr + ηkr (5.12)

where

Ukr = Tb

M−1∑
`=0,`6=r

Xk` ρ`r

If the transmitted symbols Xkr are assumed to be uncorrelated circularly symmetric

complex Gaussian random variables with zero mean and variance E/M where E is the

total power available for transmission and noise Wkr is circularly symmetric complex

Gaussian with zero mean and variance σ2
w, then ηkr and Ẑkr are also circularly symmetric

complex Gaussian with zero mean and variances σ2
ηkr

and σẐkr given as

σ2
ηkr

= T 2
b

E

M

M−1∑
`=0,` 6=r

|ρ`r|2 + T 2
b σ

2
w

and

σ2
Ẑkr

= T 2
b

E

M
+ T 2

b Eb

M−1∑
`=0,` 6=r

|ρ`r|2 + T 2
b σ

2
w

The capacity Ckr can be defined as

Ckr = max
p(Xkr)

I (Xkr;Rkr)
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where p(Xkr) is the probability density function of the input symbols and I (Xkr;Rkr) is

the mutual information defined in [91] as

I (Xkr;Rkr) = H (Rkr)−H (ηkr)

where H(.) is the differential entropy. Since the interference–plus–noise in (5.12) ηkr and

Ẑkr are random variables with circularly symmetric complex Gaussian distributions, then

the mutual information is given by

I (X;R) ≤
∑
k

∑
r

I (Xkr;Rkr)

≤
∑
k

∑
r

log2

(
2πeσ2

ˆzkr

)
−log2

(
2πe

(
σ2
ηkr

))
(5.13)

Hence, the capacity of C-OFDM system is

C = N
M−1∑
r=0

log2

1 +
E/M

2 E
M

∑M−1
`=0
`6=r
|ρ`r|2 + σ2

w

 (5.14)

If M = 1, then (5.14) reduces to the capacity of the conventional OFDM system [80].

• Linear chirp design

To maximize performance and capacity of the C-OFDM system, we need to minimize

the cross–correlation coefficient ρ`r, that is

min
γ`,γr,r 6=`

|ρ`r| (5.15)

We can find the function of ρ`r by evaluating the following integral

ρ`r =
1

Tb

∫ Tb

0

exp
(
j(γ` − γr)t2

)
dt

Hence,

|ρ`r| =
1

ξ

√
CF (ξ)2 + SF (ξ)2
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where CF (ξ) and SF (ξ) are Fresnel functions defined as

CF (ξ) =

∫ ξ

0

cos
(π

2
z2
)

dz ,

SF (ξ) =

∫ ξ

0

sin
(π

2
z2
)

dz

and,

ξ = Tb

√
2

π
(γ` − γr)

In case of γ` − γr = ∆γ, we can plot |ρ| as a function of ∆γ as shown in Fig. 38. It

is clear that ρ → 0 as ∆γ → ∞. Thus, we can minimize the cross–correlation error by

choosing large value for ∆γ.
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Figure 38: The cross–correlation as a function of ∆γ
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Figure 39: (a) Performance comparison of OFDM and C-OFDM with different values of M ;

(b) Impact of increasing parallel paths M on BER for different values of SNRs.

5.2.2 Simulation and numerical analysis

The proposed C-OFDM system is simulated to evaluate and compare its performance with

the conventional OFDM system as shown in Fig. 39(a). The performance of the C-OFDM

system degrades as M increases. This result coincide with the theoretical analysis since the

multiple access interference increases as M increases. Figure 39(b) shows the bit error rate

as a function of parallel paths M for SNR=−15 dB, −10 dB, and −5 dB. Again, for certain

SNR, the bit error rate increases as M increases.

We also study the capacity of the C-OFDM system. The capacity C (bit/sec/Hz) as a

function of SNR for different values of M is given in Fig. 40. We can see that capacity indeed

increases for increasing M . We can furthermore observe that for large number of M , system

capacity can be increased slightly because of the effect of cross–correlation interference.
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Eb/N0 = E/σ2
w

5.2.3 Implementation scenarios

This section provides three scenarios that illustrate usage of the C-OFDM system. Service

provider can operate the coupled OFDM system in three different ways depending on the

type of application and providing good quality of service. In general, C-OFDM system has

N ×M channels with a coming in digital data rate Rb where Rb = 1/Tb. Clearly, there are

many possibilities of assigning these channels with different transmission data rates.

• Scenario I

In this scenario, each channel is dedicated to one user. Thus, we can have N ×M users

who can use the system at the same time as show in Fig. 41(a). Thus, we increase

system capacity by M compared to the conventional OFDM system, but with the same

transmission rate Rb.

• Scenario II

Figure 41(b) shows transmitting the digital input data with a transmission rate of NMRb

instead of Rb. We operate the C-OFDM system as a one channel. The conventional

OFDM can send the same information with a transmission data rate NRb.
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• Scenario III

Some applications require high transmission rates and high capacity. Figure 41(c) pro-

vides a solution for such applications. In this case, we have M channels and each channel

can serve a user with a transmission rate NRb.
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Figure 41: Implementation scenarios: (a) scenario I; (b) scenario II; (c) scenario III.
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6.0 CONCLUSIONS AND FUTURE WORK

6.1 SUMMARY

Stationary signals can be analyzed and studied using discrete Fourier transform (DFT).

Unfortunately, most of signals that arise in real–life applications are non–stationary. Thus,

the DFT would not be suitable to deal with such signals. In this dissertation, we propose

chirp transforms using linear chirps. Based on the type of the linear chirp— continuous or

discrete, real or complex— three definitions of linear chirp transforms are introduced.

The continuous linear chirp transform (CLCT) uses continuous linear chirp bases. We

can reconstruct the signal using the inverse continuous linear chirp transform. The CLCT

can be used to filter transmitted signals that have been sent using chirp modulation systems.

Thus, we can eliminate the effect of the chirp rate on the bandwidth. Furthermore, we can

use the CLCT to detect the transmitted signals if we intent to use non–coherent receivers.

The discrete linear chirp transform (DLCT) is based on discrete complex linear chirps.

It is not a time–frequency transformation, but rather a frequency chirp–rate transformation

that generalizes the discrete Fourier transform and can be implemented with the fast Fourier

transform algorithm. The parameters of a chirp or combination of chirps can be clearly

determined with this transform. It also provides a modulation property that allows shifting

of chirps into other chirps or sinusoids. The representation of impulses or functions of

impulses is possible via a duality property of the transform. An interesting application of

the DLCT is the chirp parameter estimation of multi–component signals embedded in noise.

We compare the results of the DLCT with the discrete chirp–Fourier transform (DCFT).

Unlike the DCFT which can only estimate integer chirp rates, the DLCT can estimate all

values of chirp rates. In addition, we analyze and compare the results of the discrete linear
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chirp transform (DLCT) with the discrete fractional Fourier transform (DFrFT) in terms of

sparsity, computation time, resolution, and peak location. Simulation results show that the

DLCT outperforms the DFrFT over all these important aspects. We show that the DLCT

gives higher sparsity, lower consume time, higher resolution, and better peak localization

than the DFrFT.

The discrete cosine chirp transform (DCCT) depends on discrete cosine linear chirp

bases. It is a generalization of the discrete cosine transform. Thus, the DCCT can be used

to convert signals into sparse signals in time or frequency by considering locally the DCCT

and by appropriately rotating the instantaneous frequencies so that we obtain sinusoidal

representations.

In chapter 3, we present a new algorithm for signal compression based on the discrete

linear chirp transform (DLCT) and its dual. The extracted coefficients can be arranged in

the developed data structure. The simulation results show the effectiveness of the proposed

method over the compressive sensing (CS) method. The improvement in the compression

ratio depends on the nature of the signal. The effect of chirp rate on the performance of

the direct and dual paths is also investigated. It turns out the compression ratio depends

on the minimum chirp rate of the linear chirps that forms the signal. The value of β = 0.5

is the decision maker. If βmim ≤ 0.5 we use direct path, otherwise dual path is used. We,

also, use the discrete cosine chirp transform (DCCT) to compressive sensing application.

Our approach for CS based on the decomposition of a signal using real linear chirps basis

and then rotate each one of them with the corresponding chirp rate such that all the chirps

become sinusoids. Hence, the compressed signal has two parts— the measurement signal and

the extracted chirp rates. Simulation results show CS with the DCCT gives better results

than CS with the DCT. Furthermore, we compare the compression performance of using the

DCCT which is based on real chirps instead of using a transform that depends on complex

chirps such as the DLCT. As can be seen from the results, using real chirps in application

such as compressive sensing achieves high quality performance than using complex chirps.

In chapter 4, we compare the DLCT and the EMD methods for the processing of non–

stationary signals. Different from the EMD, the basis used in the DLCT are orthogonal

and optimal in a mean–square sense. The DLCT uses linear chirps as the IMFs. The
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DLCT provides a parametric estimation of the instantaneous frequency of the signal compo-

nents, which is not affected by the closeness of the frequency of the components. Applying

the Hilbert transform to each of the components in the DLCT or the EMD provides the

corresponding instantaneous frequencies. The DLCT provides a joint frequency chirp–rate

filtering that permits us to separate the signal according to the magnitude of the DLCT—

or time–varying filtering. The advantage of the DLCT over the EMD is illustrated using

instantaneous–frequency estimation and the decomposition of speech.

Also, In this chapter, a time–frequency algorithm has been proposed to characterize

the underlying time–frequency feature of the signal based on the DLCT which decomposes

the signal in terms of linear chirps. The proposed time–frequency representation provides

a compact, clear, and readable picture of the time–frequency energy content of the signal

structure. It has been shown through simulation that the proposed algorithm can efficiently

describe the time–frequency content of the signal with high resolution. Therefore, it can be

used for instantaneous frequency estimation of multi–component signals.

In chapter 5, we have introduced different digital modulation schemes which are based on

time–varying carriers such as linear chirps. The performance of the proposed digital systems

has been explored, in particular, we have investigated the bit error rate of these systems.

The carrier parameters are chosen such that they maximize the transmitted difference signal

energy. The performance of the presented schemes are compared with the conventional

digital schemes from the perspective of the transmitted power and the channel bandwidth.

Results show the effectiveness of the proposed digital schemes.

In addition, we have introduced the idea of combining M OFDM systems with lin-

ear chirps which are more suitable for multi–carrier transmission over rapidly time–varying

channels with respect to the traditional frequency–invariant carriers. The performance of

the system and its capacity is explored. Simulation results show the effectiveness of the pro-

posed communication system for providing high capacity and high data transmission rates

compared to the conventional OFDM communication system.
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6.2 FUTURE WORK

The idea of linear chirp transforms can be extended to higher order chirps. However, the

case become more challenging since the signal is going to be viewed in more than three

dimensions. Thus, looking for a fast algorithm to extract the optimal parameters from the

multi–dimensional plane is a good research topic.

In image processing, the DLCT decomposition can be used to analyze images. Hence,

we can apply image watermarking to the analyzed images, explore its robustness against

attacks, and compare its performance with similar existed techniques such an EMD and

wavelet.

The general concept of time–varying filter is to have filters that can follow the individual

instantaneous frequencies of multi–component signals. So far, we have used the DLCT to

this task by approximating a signal locally with linear chirps. It might be an interesting

point for research to design time–varying filters with high polynomial chirps.

To have more efficient use of bandwidth, we need to extend binary linear chirp digital

modulations to M-array digital modulation. The performance of such systems needs to be

explored in the static as well as fading channels.

The performance of any digital modulation system is dependent on synchronization. In

the C-OFDM, when we analyze its performance, we assume having perfect synchronization.

However, this assumption is unrealistic. So another possible future research area would con-

centrate on determining the degradation of the system performance due to synchronization

errors.

It is well known the performance of OFDM systems is sensitive to the carrier frequency

offset (CFO) and the OFDM receiver must estimate and compensate the CFO effectively to

maintain good performance. So, it is an interesting point for research to find out how the

performance of the coupled OFDM degrades under these circumstances.

Since the coupled OFDM uses linear chirp carriers, we should also consider linear chirp

offset and evaluate the system performance degradation under this condition.

Time-varying channels degrade performance of communication systems. Channel esti-

mation is required to reduce the effect of such channels. As a future work, we need to
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investigate perhaps new channel estimation methods that can provide better performance

for coupled OFDM under the effect of time-varying channels.

The performance of communication systems can also be improved if we use diversity

techniques. In coupled OFDM system, we can assign some of the OFDM channels to carry

same information like others and transmit them with different antenna. Thus, we will have

space-chirp diversity method which trades capacity for power. It is motivating to see how

the advantages of this technique play on trading capacity with power.
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