
1

Exploratory Efforts to Manage Power-Aware

Memories using Software Generated Hints

Mohammad Hammoud and Rami Melhem

Department of Computer Science

University of Pittsburgh

Abstract

This report presents our exploratory efforts for managing main memory power-aware chips. Current state-

of-the-art power-aware DRAM chips offer various power modes (active, standby, nap, and powerdown) in

order to provide a potential to limit power consumption in the face of increasing demand for performance.

Our goal in this study is to utilize and exploit these variouspower modes for the most effective main memory

power management under software control in response to workloads becoming increasingly memory-intensive

and data-centric.

I. INTRODUCTION

This report presents our exploratory efforts to minimize energy consumption of memory by power mode

control at memory bank granularity. A software approach hasbeen adopted and experimental studies have

been conducted to explore the potential benefits of such an approach. A fully functional detailed execution

driven simulator, Simics, has been utilized to perform the experimentations. A power-aware memory module

that contains a number of memory nodes organized as an array of banks has been constructed and loaded

into Simics. The module supports multiple power modes and the ability to initiate a transition from one to

the other. Each power mode is characterized by its power consumption and the time it takes to transition

back to the active mode (resynchronization cost). The report bases the experimental results on a simulated

machine both, with and without the presence of a cache hierarchy. System with caches is what actually

counts, but masks the actual characteristics of the application. Hence, and to reflect the effect of the OS due

to page allocation policies, a system without caches has been also simulated.

A study has been conducted to scrutinize memory traffic/accesses generated by comprehensive applications

(started with TPC-C then focused on the Java application server benchmark, SPECJBB, beside some in-

house Java mini-benchmarks) to the constructed banked memory architecture. Java applications have been

the focus because they stress the memory system more than traditional programs. For instance,bytecodes

are treated as data and need to be fetched from memory for interpretation or JIT-compilation. Moreover,

JVM features, such as garbage collection, make Java executions much more memory-intensive than normal

programs.



2

After constructing a power-aware memory module and loadingit into Simics, special directives (magic

instructions) have been instrumented within the benchmarks source codes (SPECJBB and the in-house

Java mini-benchmarks) so as to force some simulation actions. As such, this allowed us to identify the

different transaction types generated by the SPECJBB benchmark. SPECJBB models a wholesale company.

A spawned thread in the SPECJBB benchmark represents an active user posting transaction requests within

the warehouse. The goal was to track a certain memory access pattern in correlation with the generated

transaction types. Such an aspired correspondence was aimed to be considered as a sort of hint that can be

provided by the compiler so as to judiciously assist in manipulating power modes of the memory banks.

Finally, a study has been conducted also to identify energy bottlenecks for different software components

of the execution, such as the application itself isolated from any other incorporated component (i.e. JVM),

the JVM, and the OS. An in-house very simple Java benchmark has been run on top of a JVM so as to

isolate the energy effect of the JVM and the OS.

The rest of the report is organized as follows. Section 2 states the goals and contributions of the

investigation. Section 3 delves onto the experimental platform and explains it in detail. Details of the

experimental results are presented in section 4, and section 5 concludes.

II. GOALS AND CONTRIBUTIONS OF THEINVESTIGATION:

Given the objective of minimizing energy consumption of memory by power mode control at memory

bank granularity, this report sets the following goals:

• Discover hints that the compiler/JVM can provide so as to detect/predict module idleness and perform

transitions accordingly (i.e. Hints about types of transactions)

• Study the interaction between memory allocators of OS or JVM, memory controller, and application

behavior so as to understand the involved roles in determining the memory access patterns.

The contributions of the report are threefold:

• No specific correlation detected between transaction typesand memory access patterns. Therefore,

compiler hints based on transaction types are not of real use.

• The roles of the OS and JVM memory allocators and garbage collector (GC) are crucial in determining

the memory access patterns.

• GC is a crucial part of the JVM and greatly important for energy-constrained memory architectures.

III. E XPERIMENTAL PLATFORM:

A. Power-Aware Memory Module

Simics allows us to observe and sometimes modify the behavior of the transactions that go through the

memory system. Simics API provides some interfaces (i.e. timing-model and snoop memory) that can be

implemented in a module written in C or Python. Such a module can be added to a Simics installation to



3

Fig. 1. Operating Modes.

essentially extend its functionality. A memory module thatcontains a number of memory nodes organized

as an array of banks each of which can be independently set to adifferent power state has been developed

and loaded into Simics. The number of memory banks can be set within the memory module code. The

conventional memory interleaving scheme is utilized to allocate addressed data blocks to memory banks. The

size of the interleaved data blocks can be set to different values: a word, a cache line, multiple cache lines,

a page, or multiple pages. Four power states are offered (listed in decreasing order by power dissipation

but increasing access time): active, standby, nap, and powerdown. A bank must be in the active mode

when accessed for a read or write transaction. A bank not servicing memory requests can be in any of the

lower power modes. Power modes are dynamically determined.If a bank is not accessed for a threshold

amount of time, it transitions to the next lower power mode. When accessed again a performance penalty

(resynchronization cost) is added for transitioning it back to the active mode so as to service the request.

Figure 1 pictorially depicts the transitions and resynchronization costs that can occur between the four

different offered power states.TAS , TSN , and TNP are the time thresholds for a bank to transition from

active to standby, standby to nap, and nap to powerdown respectively. RCSA, RCNS , andRCP N are the

resynchronization costs penalized when transitioning from standby to active, nap to standby, and powerdown

to nap respectively. The time that each bank spends on a certain power mode can be measured and the total

energy consumption can be accordingly computed. Executiontime and frequency of accesses to each bank

for each power mode can be furthermore reported.

B. Special Directives to Force Simulation Actions

A module written in C or Python and loaded into Simics may wantto react to certain Simics events. This

may both be events related to the simulated machine, like processor exceptions or control register writes,

and other kinds of events like Simics stopping the simulation and returning to the command line. Simics

such events are referred to ashaps. To react to a hap, a module can register callback functions to the hap.

For each simulated processor architecture, a special no-operation has been chosen to be referred to as a

magic instruction for the simulator. When Simics executes such an instruction it triggers an already defined

hap known as the CoreMagic Instruction and, consecutively, calls all the callbacks functions (handlers)



4

Fig. 2. Results with the Simulated Machine Being Idle (No Caches and No Benchmark Running on Top of the Machine).

registered on this hap. An immediate value can be encoded in the magic instruction and when the hap is

triggered the value is passed as an argument to the hap handlers. For instance, for the SPECJBB benchmark,

we identified the different transaction types within the source code and then encoded a value for each

specified type within the magic instructions instrumented inside the code. When Simics encounters any

of these instrumented magic instructions, it triggers the Core Magic Instructin hap and an encoded value

denoting a specific transaction type is simply passed to the associated hap handlers registered by our memory

module that in return characterizes the transaction type.

C. Configuration:

Our simulated machine has a single Pentium 4 processor, runsRed Hat Linux 7.3 operating system, and

has a total of 256 MB of memory. The basic data block is a page consisting of 4K Bytes. L1 and L2 caches

are pinned to the system when required. L1 cache is 16 KB I/D and 4-way set associative with 1 cycle

access time and 64 byte line. L2 cache is 4MB and 16-way set associative with 6 cycles access time and

64 byte line.

IV. SIMULATION RESULTS

V. DETAILS OF THE EXPERIMENTAL RESULTS

A. The Simulated Machine Being Idle

The simulated machine has been run firstly without any cache hierarchy and with no benchmark running

on top of it. This is to reflect upon the memory traffic/accesses generated by the OS due to page allocation

policies. Figure 2(a) depicts the memory traffic experienced to the constructed memory architecture over



5

Fig. 3. An In-house Java Mini-Benchmark.

Fig. 4. Results for Memory Access Pattern During JVM Initialization Phase.

time at bank granularity. Though the machine is idle, clearly the OS touches almost every bank. Figure 2(b)

further depicts the memory traffic to the underlying memory architecture over time but at the physical page

granularity. It has been observed that all memory accesses are from the kernel and 0.4% of pages have been

touched. In essence, the kernel periodicallyscansthe physical memory.

B. Memory Access Pattern during JVM Initialization:

The mini-benchmark program illustrated in Figure 3 has beenrun on top of the simulated machine.

Via running such a simple benchmark, memory access patternswill be easy to learn. Figure 4 depicts the

memory traffic to the constructed memory architecture over time at the physical page granularity. The figure

demonstrates that the memory accesses during JVM startup are essentially a mess.



6

Fig. 5. An In-house Java Mini-Benchmark.

Fig. 6. Results for Memory Access Pattern During Java Objects Allocation.

C. Memory Access Pattern upon Java Objects Allocations:

The mini-benchmark program illustrated in Figure 5 has beensimulated. Figure 6 depicts the memory

traffic over time at the physical page granularity. Arraya seemed to occupy much larger than 25 MB of the

physical memory; however, in reality it didn’t. Furthermore, the GC seemed to have collected the memory

of a before allocating memory forb; however, also in reality it didn’t.

D. Memory Access Pattern of the Garbage Collector:

The mini-benchmark program illustrated in Figure 7 has beenrun on top of the simulated machine.

Figure 8 depicts the memory accesses over time at the physical page granularity. The memory accesses

during garbage collection, as demonstrated, are messy. Furthermore, though gc() doesn’t collect memory, it



7

Fig. 7. An In-house Java Mini-Benchmark.

still generates a great deal of memory traffic. Finally, adecreasing access patternhas been observed in the

6th plot of the figure.

E. Correlation between Memory Access Patterns and Transaction Types with No Cache Hierarchy:

The SPECJBB benchmark has been run on top of the simulated machine with no cache hierarchy in an

objective to detect correlations between memory access patterns and transaction types. Figure 9 portrays the

memory accesses over time at bank granularity for the following transaction type sequences respectively:

[0-> 5-> 0-> 1-> 5-> 0-> 0-> 1-> 4->], [0-> 5-> 0-> 1-> 3-> 1-> 1->], [0-> 1-> 1-> 2-> 5->



8

0-> 5-> 1-> 0-> 5-> 0-> 0-> 0->], [1-> 0-> 1->]. Figure 10 portrays the accesses over time at the

physical page granularity while Figure 11 demonstrated thetraffic over time at the virtual page granularity

and both for the same above mentioned transaction type sequences. Finally Figure 12 shows the access

frequency to different banks for the different transactiontypes. No specific correlation has been detected

between transaction types and memory access patterns.

F. Correlation between Memory Access Patterns and Transaction Types with Cache Hierarchy:

The SPECJBB benchmark has been run on top of the simulated machine with cache hierarchy this time.

Figure 13 portrays the memory accesses over time at bank granularity for the following transaction type

sequences respectively: [5-> 0-> 0-> 1-> 0-> 1-> 0-> 0-> 0-> 1-> 1->], [1-> 1-> 0-> 0-> 0-> 1->

1-> 0-> 4-> 0-> 0-> 5->], [1-> 2-> 5-> 1-> 3-> 0-> ], [5-> 0-> 5->]. Figure 14 portrays the accesses

over time at the physical page granularity while Figure 15 demonstrated the traffic over time at the virtual

page granularity and both for the same above mentioned transaction type sequences. Finally Figure 16 shows

the access frequency to different banks for the different transaction types. No specific correlation has been

detected between transaction types and memory access patterns.

VI. CONCLUSION AND FUTURE DIRECTIONS

This study revealed the importance of the role of the JVM in determining the memory access patterns. A

main component of the JVM is the garbage collector (GC) that is responsible for automatic reclamation of

heap allocated storage. GC may produce a large memory overhead that can essentially result in large energy

consumption. Aspects of the GC (i.e. Mark & Sweep and Compaction Phases) can be tuned up at runtime

to effectively mitigate the resultant overhead.

The compaction phase (CP) targets mainly the out-of-memoryexceptions problem. Upon object allocation,

if there is no enough heap space, the CP can interfere to rectify the situation via enlarging the heap free list

by sliding live objects to the bottom (or top) of the heap memory area. This CP phase can effectively be

exploited to move objects around banks so as to reduce energy. For example we need not wait for an out-of-

memory exception to trigger the CP phase. Triggering the CP phase rarely and just because of a generated

exception can simply bring up a fragmentation problem. Thisproblem means more objects scattered over

the memory and consequently more banks being active. The CP phase can in fact be controlled with energy

consumption considerations so as to avoid any fragmentation problem.

Another critical issue is to when to trigger the Mark and Sweep (MS) phase of the GC. Essentially,

the MS phase shouldn’t be triggered leisurely. For instance, a bank completely full of garbage objects and

kept on an active mode for a period time, T, means that it was wasting energy for T time. The MS phase

can be exploited to reduce T by starting garbage collection at early stages. The MS and CP phases can

further cooperate to free up more banks. The GC can fundamentally be made aware of the underlying main

memory architecture (i.e. banked memory) to track the memory banks that are inactive. An inactive bank



9

might indicate that it contains objects that are garbage. A hint could be accordingly generated for the MS

phase to simply start up.

To summarize, our future directions are as follows:

• To study the interaction of the GC with our banked memory architecture and see how its different

components/phases can be tuned up appropriately to save energy.

• To propose mechanisms to tune up GC phases for energy consumption reasons.

• To study the sensitivity of the GC to the memory architectureand different memory patterns exposed

by different java applications.



10

Fig. 8. Results for the Memory Access Pattern of the Garbage Collector.



11

Fig. 9. Results for the SpecJBB Memory Accesses Over Time to the Memory Banks (No Cache).



12

Fig. 10. Results for the SpecJBB Memory Accesses Over Time tothe Physical Pages (No Cache).



13

Fig. 11. Results for the SpecJBB Memory Accesses Over Time tothe Virtual Pages (No Cache).



14

Fig. 12. Results for the Access Frequency to Different Memory Banks for Different SpecJBB Transaction Types (No Cache).



15

Fig. 13. Results for the SpecJBB Memory Accesses Over Time tothe Memory Banks (With Cache).



16

Fig. 14. Results for the SpecJBB Memory Accesses Over Time tothe Physical Pages (With Cache).



17

Fig. 15. Results for the SpecJBB Memory Accesses Over Time tothe Virtual Pages (With Cache).



18

Fig. 16. Results for the Access Frequency to Different Memory Banks for Different SpecJBB Transaction Types (With Cache).


