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Abstract

This report presents our exploratory efforts for managimgnmemory power-aware chips. Current state-
of-the-art power-aware DRAM chips offer various power modactive, standby, nap, and powerdown
order to provide a potential to limit power consumption ie flace of increasing demand for performance.
Our goal in this study is to utilize and exploit these varipogver modes for the most effective main memory
power management under software control in response toleait& becoming increasingly memory-intensive

and data-centric.

I. INTRODUCTION

This report presents our exploratory efforts to minimizergg consumption of memory by power mode
control at memory bank granularity. A software approach lesn adopted and experimental studies have
been conducted to explore the potential benefits of such proaph. A fully functional detailed execution
driven simulator, Simics, has been utilized to perform thgegimentations. A power-aware memory module
that contains a number of memory nodes organized as an afagnéis has been constructed and loaded
into Simics. The module supports multiple power modes asedathility to initiate a transition from one to
the other. Each power mode is characterized by its powerucopgon and the time it takes to transition
back to the active mode (resynchronization cost). The tdpases the experimental results on a simulated
machine both, with and without the presence of a cache kigyaiSystem with caches is what actually
counts, but masks the actual characteristics of the apiglicaHence, and to reflect the effect of the OS due
to page allocation policies, a system without caches has bi® simulated.

A study has been conducted to scrutinize memory trafficksssegenerated by comprehensive applications
(started with TPC-C then focused on the Java applicatiomesdrenchmark, SPECJBB, beside some in-
house Java mini-benchmarks) to the constructed banked mesnchitecture. Java applications have been
the focus because they stress the memory system more thiotral programs. For instanceytecodes
are treated as data and need to be fetched from memory fopiietation or JIT-compilation. Moreover,
JVM features, such as garbage collection, make Java egasuthuch more memory-intensive than normal

programs.



After constructing a power-aware memory module and loadingto Simics, special directives (magic
instructions) have been instrumented within the benchmadurce codes (SPECJBB and the in-house
Java mini-benchmarks) so as to force some simulation actids such, this allowed us to identify the
different transaction types generated by the SPECJBB eadh SPECJBB models a wholesale company.
A spawned thread in the SPECJBB benchmark represents am aser posting transaction requests within
the warehouse. The goal was to track a certain memory ac@s=rpin correlation with the generated
transaction types. Such an aspired correspondence wad #&inte considered as a sort of hint that can be
provided by the compiler so as to judiciously assist in malapng power modes of the memory banks.

Finally, a study has been conducted also to identify eneaiitedmecks for different software components
of the execution, such as the application itself isolatednfrany other incorporated component (i.e. JVM),
the JVM, and the OS. An in-house very simple Java benchmaskbban run on top of a JVM so as to
isolate the energy effect of the JVM and the OS.

The rest of the report is organized as follows. Section 2estahe goals and contributions of the
investigation. Section 3 delves onto the experimentalfgiat and explains it in detail. Details of the

experimental results are presented in section 4, and sestmncludes.

Il. GOALS AND CONTRIBUTIONS OF THEINVESTIGATION:

Given the objective of minimizing energy consumption of noeynby power mode control at memory

bank granularity, this report sets the following goals:

« Discover hints that the compiler/JVM can provide so as ted#bredict module idleness and perform
transitions accordingly (i.e. Hints about types of tratises)

« Study the interaction between memory allocators of OS or Jyidmory controller, and application
behavior so as to understand the involved roles in detengittie memory access patterns.

The contributions of the report are threefold:

« No specific correlation detected between transaction tyres memory access patterns. Therefore,
compiler hints based on transaction types are not of real use

« The roles of the OS and JVM memory allocators and garbageatol (GC) are crucial in determining
the memory access patterns.

o GC is a crucial part of the JVM and greatly important for eergnstrained memory architectures.

I1l. EXPERIMENTAL PLATFORM:

A. Power-Aware Memory Module

Simics allows us to observe and sometimes modify the beha¥ithe transactions that go through the
memory system. Simics API provides some interfaces (ireinti-model and snoop memory) that can be

implemented in a module written in C or Python. Such a modale lse added to a Simics installation to



Tas TsN Tne
Nap

Active Standby ':’o":me'“

RCsa RCns RCen

Fig. 1. Operating Modes.

essentially extend its functionality. A memory module thahtains a number of memory nodes organized
as an array of banks each of which can be independently setliffeeent power state has been developed
and loaded into Simics. The number of memory banks can be ifgihwhe memory module code. The
conventional memory interleaving scheme is utilized tocidte addressed data blocks to memory banks. The
size of the interleaved data blocks can be set to differelniega a word, a cache line, multiple cache lines,
a page, or multiple pages. Four power states are offeredlim decreasing order by power dissipation
but increasing access time): active, standby, nap, and rdowea. A bank must be in the active mode
when accessed for a read or write transaction. A bank notckggvmemory requests can be in any of the
lower power modes. Power modes are dynamically determiified bank is not accessed for a threshold
amount of time, it transitions to the next lower power modeéhéW accessed again a performance penalty
(resynchronization cost) is added for transitioning itkb&e the active mode so as to service the request.
Figure 1 pictorially depicts the transitions and resynaization costs that can occur between the four
different offered power stateq9.45, Tsy, and Ty p are the time thresholds for a bank to transition from
active to standby, standby to nap, and nap to powerdown ceegly. RCs4, RCngs, and RCpy are the
resynchronization costs penalized when transitioningnfetandby to active, nap to standby, and powerdown
to nap respectively. The time that each bank spends on drcpdaer mode can be measured and the total
energy consumption can be accordingly computed. Exectitioe and frequency of accesses to each bank

for each power mode can be furthermore reported.

B. Special Directives to Force Simulation Actions

A module written in C or Python and loaded into Simics may wanteact to certain Simics events. This
may both be events related to the simulated machine, likeegsmr exceptions or control register writes,
and other kinds of events like Simics stopping the simutaaad returning to the command line. Simics
such events are referred to lagps To react to a hap, a module can register callback functiortbe hap.

For each simulated processor architecture, a special amtipn has been chosen to be referred to as a
magic instruction for the simulator. When Simics executgshsan instruction it triggers an already defined
hap known as the Corklagic Instruction and, consecutively, calls all the callbackactions (handlers)
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Fig. 2. Results with the Simulated Machine Being Idle (No iBzsand No Benchmark Running on Top of the Machine).

registered on this hap. An immediate value can be encodedeimmiagic instruction and when the hap is
triggered the value is passed as an argument to the hap harfelbe instance, for the SPECJBB benchmark,
we identified the different transaction types within the reeucode and then encoded a value for each
specified type within the magic instructions instrumenteside the code. When Simics encounters any
of these instrumented magic instructions, it triggers tleee®lagic_ Instructin hap and an encoded value
denoting a specific transaction type is simply passed toskecated hap handlers registered by our memory

module that in return characterizes the transaction type.

C. Configuration:

Our simulated machine has a single Pentium 4 processor,RedsHat Linux 7.3 operating system, and
has a total of 256 MB of memory. The basic data block is a pagsisting of 4K Bytes. L1 and L2 caches
are pinned to the system when required. L1 cache is 16 KB I/ 4mway set associative with 1 cycle
access time and 64 byte line. L2 cache is 4MB and 16-way setiasse with 6 cycles access time and
64 byte line.

IV. SIMULATION RESULTS
V. DETAILS OF THE EXPERIMENTAL RESULTS
A. The Simulated Machine Being Idle

The simulated machine has been run firstly without any cagd@rdchy and with no benchmark running
on top of it. This is to reflect upon the memory traffic/accesgenerated by the OS due to page allocation
policies. Figure 2(a) depicts the memory traffic experiente the constructed memory architecture over



//Jvm startup

MagicBreak.magic(0); //green line
for (int i=0; i<6250000; i++);
MagicBreak.magic(0); //blue line
//Jvm cleanup

//the machine is idle

Fig. 3. An In-house Java Mini-Benchmark.
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Fig. 4. Results for Memory Access Pattern During JVM Iniiation Phase.

time at bank granularity. Though the machine is idle, cletite OS touches almost every bank. Figure 2(b)
further depicts the memory traffic to the underlying memawhéecture over time but at the physical page
granularity. It has been observed that all memory accessefsamn the kernel and 0.4% of pages have been
touched. In essence, the kernel periodicaltansthe physical memory.

B. Memory Access Pattern during JVM Initialization:

The mini-benchmark program illustrated in Figure 3 has beenon top of the simulated machine.
Via running such a simple benchmark, memory access patteithbe easy to learn. Figure 4 depicts the
memory traffic to the constructed memory architecture ovee tat the physical page granularity. The figure
demonstrates that the memory accesses during JVM starupsaentially a mess.



MagicBreak.magic(0);

int a[]= new int[6250000];

MagicBreak.magic(0);

//beginning of the 1lst graph
//25MB
//green line of the 2nd graph

for (int i=0; i<6250000; i++) a[i]=1;

MagicBreak.magic(0);

//green line of the 4th graph

int b[] = new int[6250000];

MagicBreak.magic(0);

//green line of the 5th graph

for (int i=0; i<6250000; i++) b[i]=1;

MagicBreak.magic(0);

//end of the last graph

Fig. 5. An In-house Java Mini-Benchmark.
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Fig. 6. Results for Memory Access Pattern During Java Objédibcation.

C. Memory Access Pattern upon Java Objects Allocations:

The mini-benchmark program illustrated in Figure 5 has bsiemulated. Figure 6 depicts the memory
traffic over time at the physical page granularity. Areageemed to occupy much larger than 25 MB of the
physical memory; however, in reality it didn't. Furtherrepthe GC seemed to have collected the memory
of a before allocating memory fdo; however, also in reality it didn't.

D. Memory Access Pattern of the Garbage Collector:

The mini-benchmark program illustrated in Figure 7 has baeen on top of the simulated machine.
Figure 8 depicts the memory accesses over time at the physge granularity. The memory accesses

during garbage collection, as demonstrated, are messtherarore, though gc() doesn't collect memory, it



public class TestMagicBreak({
int data[] = new int[2500000]; //10MB

public static void main(String args[]){
TestMagicBreak b;

System.out.println(Runtime.getRuntime () .freeMemory());
MagicBreak.magic(0);

b = new TestMagicBreak();

MagicBreak.magic(0);
System.out.println(Runtime.getRuntime () .freeMemory());
for (int i=0; i<2500000; i++) b.data[i]=1;

b = new TestMagicBreak();
System.out.println(Runtime.getRuntime () .freeMemory());
for (int i=0; i<2500000; i++) b.data[i]=1;

b = new TestMagicBreak();
System.out.println(Runtime.getRuntime () .freeMemory());
for (int i=0; i<2500000; i++) b.data[i]=1;

MagicBreak.magic(0);

System.gc();

MagicBreak.magic(0);

System.out.println("gc");
System.out.println(Runtime.getRuntime () .freeMemory());

TestMagicBreak ¢ = new TestMagicBreak();
MagicBreak.magic(0);
System.out.println(Runtime.getRuntime () .freeMemory()):;
for (int i=0; i<2500000; i++) c.data[i]=1;
MagicBreak.magic(0);

for (int i=0; i<2500000; i++) b.data[i]=1;

MagicBreak.magic(0);

Fig. 7. An In-house Java Mini-Benchmark.

still generates a great deal of memory traffic. Finallglexreasing access pattehas been observed in the
6" plot of the figure.

E. Correlation between Memory Access Patterns and Traiwadlypes with No Cache Hierarchy:

The SPECJBB benchmark has been run on top of the simulatekimeagith no cache hierarchy in an
objective to detect correlations between memory accessrpatand transaction types. Figure 9 portrays the
memory accesses over time at bank granularity for the fatigwransaction type sequences respectively:
[0-> 5-> 0-> 1-> 5-> 0-> 0-> 1-> 4->], [0-> 5-> 0-> 1-> 3-> 1-> 1->], [0-> 1-> 1-> 2-> 5->



0-> 5-> 1-> 0-> 5-> 0-> 0-> 0->], [1-> 0-> 1->]. Figure 10 portrays the accesses over time at the
physical page granularity while Figure 11 demonstratedtttéiéic over time at the virtual page granularity
and both for the same above mentioned transaction type seegleFinally Figure 12 shows the access
frequency to different banks for the different transacttgpes. No specific correlation has been detected
between transaction types and memory access patterns.

F. Correlation between Memory Access Patterns and Traimadiypes with Cache Hierarchy:

The SPECJBB benchmark has been run on top of the simulatekiimeagith cache hierarchy this time.
Figure 13 portrays the memory accesses over time at banlulgréay for the following transaction type
sequences respectively: {5-0-> 0-> 1-> 0-> 1-> 0-> 0-> 0-> 1-> 1->], [1-> 1-> 0-> 0-> 0-> 1->
1-> 0-> 4-> 0-> 0-> 5->], [1-> 2-> 5-> 1-> 3-> 0-> ], [5-> 0-> 5->]. Figure 14 portrays the accesses
over time at the physical page granularity while Figure 1Bdastrated the traffic over time at the virtual
page granularity and both for the same above mentioneddittion type sequences. Finally Figure 16 shows
the access frequency to different banks for the differeamdaction types. No specific correlation has been

detected between transaction types and memory accessnpatte

VI. CONCLUSION AND FUTURE DIRECTIONS

This study revealed the importance of the role of the JVM itedrining the memory access patterns. A
main component of the JVM is the garbage collector (GC) thaksponsible for automatic reclamation of
heap allocated storage. GC may produce a large memory @gkethat can essentially result in large energy
consumption. Aspects of the GC (i.e. Mark & Sweep and Conipadthases) can be tuned up at runtime
to effectively mitigate the resultant overhead.

The compaction phase (CP) targets mainly the out-of-memargptions problem. Upon object allocation,
if there is no enough heap space, the CP can interfere tdyréoéi situation via enlarging the heap free list
by sliding live objects to the bottom (or top) of the heap memarea. This CP phase can effectively be
exploited to move objects around banks so as to reduce er@ggxample we need not wait for an out-of-
memory exception to trigger the CP phase. Triggering the G&s@ rarely and just because of a generated
exception can simply bring up a fragmentation problem. Trsblem means more objects scattered over
the memory and consequently more banks being active. Theh@sean in fact be controlled with energy
consumption considerations so as to avoid any fragmentatioblem.

Another critical issue is to when to trigger the Mark and SwvéBIS) phase of the GC. Essentially,
the MS phase shouldn’t be triggered leisurely. For instaadeank completely full of garbage objects and
kept on an active mode for a period time, T, means that it wadimgaenergy for T time. The MS phase
can be exploited to reduce T by starting garbage collectioeady stages. The MS and CP phases can
further cooperate to free up more banks. The GC can fundaihebe made aware of the underlying main

memory architecture (i.e. banked memory) to track the mgnbanks that are inactive. An inactive bank



might indicate that it contains objects that are garbageim ¢ould be accordingly generated for the MS
phase to simply start up.

To summarize, our future directions are as follows:

« To study the interaction of the GC with our banked memory it&cture and see how its different

components/phases can be tuned up appropriately to sakgyene
« To propose mechanisms to tune up GC phases for energy cotisumgasons.
« To study the sensitivity of the GC to the memory architectamd different memory patterns exposed

by different java applications.
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