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Hepatocellular carcinoma (HCC) is amongst the top common cancers and the third cause of 

cancer related death worldwide. It is a disease of dismal prognosis. Much effort has been devoted 

to identifying the major players involved in HCC to facilitate the development of efficacious 

treatments. Due to the commonalities between development and cancer, our lab used developing 

livers to identify genes that might play a crucial role in HCC. We identified increased expression 

of Platelet Derived Growth Factor Receptor Alpha (PDGFR), its ligands and activity in early 

developing mouse livers, which coincided with ongoing cell proliferation. Blockade of PDGFR 

signaling using a mouse specific PDGFR blocker in embryonic liver cultures led to 

significantly decreased cell proliferation and survival. PDGFR overexpression was also evident 

in HCC with around 63% of the patients showing around 7-fold up-regulation. PDGFR 

upregulation was also identified as the chief molecular basis of enhanced tumorigenesis in 

hepatocyte-specific -catenin knockout mice exposed to chemical carcinogen. In fact, blockade 

of PDGFR in this model led to a significant abrogation of tumorigenesis. 

Since most HCC develop in the background of cirrhosis where liver regeneration is 

ongoing and critical for maintenance of hepatic function, it is important to identify pathways that 

are dispensable for normal liver regeneration, but indispensable for tumor cell proliferation and 

viability. We sought to determine if PDGFR, which is indispensable to HCC was important in 
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liver regeneration using partial hepatectomy (PHx) model.  We identified a dramatic increase in 

total PDGFR at 24hrs after PH, which was accompanied by its tyrosine phosphorylation. 

However, hepatocyte-specific Pdgfra knockout mice (KO) that lacked any spontaneous 

phenotype, showed no difference in hepatocyte proliferation at 40hrs. Interestingly, we identified 

an increase in total and phosphorylated EGFR and MET expression in the KO at 24hrs, which 

eventually led to a modest increase in hepatocyte proliferation at 72hrs. Interestingly, PDGFRA 

knockdown in human hepatoma cells did not lead to EGFR or MET upregulation indicating that 

PDGFR is redundant in liver regeneration but not in HCC. 

Thus we have uncovered important roles of PDGFR in liver development, regeneration, 

and cancer. 
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1.0  INTRODUCTION 

1.1 LIVER DEVELOPMENT 

 

Embryonic liver development is a complex process that requires regulated signals from different 

cell types to assure the proper and efficient development of the liver [1, 2] as seen in Figure 1. 

The use of animal models have facilitated the discovery of many of the signals necessary for 

liver development in addition to revealing high evolutionary conservation for hepatic 

development between the various animal models [3]. Mouse liver initiates from the definitive 

foregut endoderm at embryonic day 8 of mouse gestation [4].  

1.1.1 Patterning of the endoderm and hepatic competence 

Endoderm patterning is a crucial step for normal development of organs that are derived 

from the endoderm such as the liver. During gastrulation, the endoderm is patterned into 3 

different divisions culminating in the foregut, midgut, and hindgut. This process is aided by 

secreted factors, most notably bone morphogenic proteins (BMP) [2, 5, 6], fibroblast growth 

factor (FGF), Wnt, and retinoic acid (RA) [7] emanating from the surrounding mesoderm germ 

layer [2]. Precise and controlled expressions of these various signals are key to successful 
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endoderm patterning. Posterior endoderm formation is majorly dependent on Wnt/-catenin [8, 

9], FGF [10, 11], and BMP signaling pathways, while RA [7] signaling is crucial for proper 

foregut-hindgut boundary formation [2]. Wnt/-catenin and FGF signaling act to suppress 

foregut fate and subsequently promote hindgut fate in the posterior endoderm. During foregut 

fate in the anterior endoderm, both FGF and Wnt/-catenin signaling must be suppressed. 

Overstimulation or blockades of these critical signaling pathways have been shown to cause 

improper or failure of liver formation [2, 9, 12]. Patterning of the endoderm to make the foregut 

is a critical step for liver development since the foregut contains hepatoblasts and is therefore 

competent to develop into the liver [13, 14].  

During endoderm formation, specific signals induce expression of endoderm transcription 

factors such as FOXA [15, 16] and GATA [17]. FOXA and other transcription factors are critical 

for inducing the endoderm to express liver specific genes [15, 18]. The importance of FOXA for 

hepatic competence was revealed by foxa1 and foxa2 double knockout studies. In this study, they 

showed an inability of liver specific genes to be expressed in the absence of foxa1 and foxa2. 

During liver development, signals from the developing heart are crucial for initiating the 

expression of these liver-specific genes in the endoderm [19-21].  

1.1.2 Hepatoblasts 

Hepatoblasts are the hepatic bipotential stem cells endowed with the ability to give rise to both 

hepatocytes and biliary epithelial cell lineages [22, 23]. These cells have a high nuclear to 

cytoplasmic ratio and are distributed between different cell types, including hematopoietic cells 

in the developing liver. Hepatoblasts express various markers including hepatocyte specific 

genes, such as hepatocyte nuclear factor 4-alpha (HNF4) and albumin. They also express fetal 
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markers like -feto-protein in addition to biliary epithelial cell marker like cytokeratin 19 

(CK19). At Embryonic day 9 during mouse embryonic liver development, the liver diverticulum 

becomes conspicuous juxtaposed to the septum transversum [2, 3].. Hepatoblasts, which are 

contained in the liver diverticulum discharges and permeates the septum transversum. Interaction 

between hepatoblasts and endothelial precursor cells are critical for hepatoblast proliferation into 

the septum transversum and promoting morphogenesis and liver bud formation, which occurs at 

embryonic day 9.5 [24]. At embryonic day 10, the newly formed bud is now ready to expand to 

generate the liver [25-27]. 

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 1. Model of Liver Development.  

    Multiple growth factors and transcription factors are required for liver development. Adapted from Nejak-Bowen     

    et al (Ref. 1) 
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The next phase of embryonic liver bud growth is characterized by expansion and 

proliferation of hepatoblasts. The liver undergoes robust growth between embryonic days 10 to 

16 aided by various signals in a paracrine fashion [3]. During the expansion of the liver bud, 

hepatoblasts, expressing many receptors, receive several paracrine growth factor and cytokine 

signals (HGF, BMP, FGF) from the mesenchyme consisting of endothelial cells, stellate cells, 

and hematopoietic cells within the expanding bud [23, 28]. This results in activation of PI3K, 

MAPK, and -catenin signaling to regulate hepatic morphogenesis include. Also NFB signaling 

at this stage is known to play important role in hepatoblast survival [29]. Eventually hepatoblast 

differentiation into either hepatocyte or biliary epithelial cell lineage commences at around 

embryonic day 13.   

1.1.3 Hepatoblast differentiation into hepatocyte and biliary epithelial cell lineage 

Differentiation of hepatoblasts into the two cell lineages is a key step during liver development. 

Interaction between hepatoblasts and the developing portal vein is crucial in facilitating this 

transition. For differentiation into hepatocytes, hepatoblasts that away from the portal 

mesenchyme suppress markers for biliary development and subsequently up regulate hepatic 

factors such as C/EBPα and HNF4α. These factors are important for controlling hepatic gene 

expression [30, 31]. Factors including HGF, Oncostatin M and -catenin signaling have been 

shown to be important for the proper execution of the hepatocyte lineage from hepatoblasts [32-

34]. Epithelial morphology that defines mature hepatocytes become evident at embryonic day 17, 

where hepatocytes are seen arranged in hepatic cords with bile canaliculi on the apical surface 

[3].   
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In contrast, hepatoblasts that are situated near the portal vein form biliary epithelial cells. 

For differentiation towards a biliary lineage, periportal hepatoblasts receive signals from the 

mesenchyme in the form of TGF and down-regulate pro-hepatocyte transcription factors such 

as HNF4α and C/EBPα [3] and increase expression of biliary transcription factors such as Sox9, 

HNF-6, HNF-1β.  Notch signaling is a critical regulator of this process as well [35, 36]. 

 

1.2 LIVER REGENERATION 

Liver is distinct from all other organs in the body for its capacity to regenerate. The liver is 

equipped with the unique ability to regenerate not only after loss of liver mass but also after 

hepatic injury. Liver regeneration (LR) is experimentally studied as growth after partial 

hepatectomy (PHx) and has been instrumental in our understanding of the cellular and molecular 

basis of this process. What has been revealed is that unlike other tissues such as bone marrow 

and skin, which require progenitor cells for homeostasis, LR is executed via proliferation of all 

mature liver cells [37]. Impressively, throughout the regenerative process, the liver continues to 

perform all the essential functions for survival. LR can be induced either by administering 

hepatotoxic chemicals like carbon tetrachloride (CCl4), or by surgically removing parts of the 

liver (2/3 PHx), which is the more utilized and preferred method.  

1.2.1 2/3 Partial Hepatectomy and the Regenerative Process 

The most common method of inducing LR is surgical removal of three of five lobes from the 
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rodent liver, commonly referred to as a 2/3
rd

 PHx [38] (Figure 2A). The remaining two lobes 

grow to recapitulate the original liver mass within approximately 5-7 days in the rat [39] and 14 

days in the mouse. The entire regenerative process can be precisely timed due to the fact that the 

lobes can be removed within a brief period of time. This method of triggering LR is reliable and 

effective because the extent of excised liver lobes are determined by the experimenter. In 

addition, this method induces LR without causing inflammation or damage to surrounding 

tissues as seen with CCl4 administration.    

At baseline, hepatocytes remain in a quiescent state and rarely undergo cell division, 

however after PHx, 95% expeditiously reenter cell division [40]. Proliferation of adult hepatic 

cell types is a distinguishing feature of LR. Hepatocytes, which are the principle cell type and 

accounting for about 70% of the liver mass are first to enter into DNA synthesis. After 2/3 PHx, 

the remaining 1/3 of hepatocytes undergo the first round of DNA synthesis, which peaks at 24 h 

in the rat and approximately 36 h in the mouse [39] (Figure 2B). A second round of DNA 

synthesis occurs constituting a smaller percent of hepatoctytes, which reestablish the original 

number of hepatocytes [39]. During LR, proliferating hepatocytes produce growth factors for 

other cell types, including stellate cells, endothelial cells, and kupffer cells in a paracrine fashion 

[37, 39, 41-43]. At approximately 48hr post PHx, biliary epithelial cells and kupffer cells 

undergo DNA synthesis, followed by sinusoidal endothelial cells occurring at 96h [37] (Figure 

2B). All these cell types work in a concerted effort to facilitate regeneration of the liver.  
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Figure 2. Schematic model of partial hepatectomy. (A) Removal of 2/3 of the mouse/rat liver lobes induces 

strong regenerative response causing the remaining two lobes to grow until restitution of the original liver mass is 

complete. (B) Time kinetics of DNA synthesis in different liver cell types during LR after PHx. The four major 

types of liver cells undergo DNA synthesis at different times. Adapted from Michalopoulos, GK and DeFrances, M 

(Ref. 37) 

1.2.2 Signaling Pathways Regulating Liver Regeneration 

PHx triggers signaling pathways and cascades that are tightly regulated. During this regenerative 

process, several genes are differentially expressed as exemplified by the rapid induction of over 

100 genes not generally expressed at baseline by quiescent hepatocytes [40, 44] and may 

represent the entry of hepatocytes into cell cycle.  One of the early events during LR is the 

matrix remodeling as indicated by a significant turnover of many matrix proteins such as matrix 
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metalloproteinases (MMPs) [45]. Matrix remodeling after PHx may be relevant since it 

sequesters important growth factors like hepatocyte growth factor (HGF) [46], which is crucial 

for initiation of LR. Several cytokine and growth factor pathways have now been identified to be 

relevant in initiating LR after PHx, Cytokines such as IL-6 and TNFα are upregulated and their 

loss affects normal LR kinetics since loss of either one leads to deficient LR [47, 48] The two 

major growth factors important for the progression of the cell cycle after PHx are HGF and EGF 

and are known to induce the transcription of genes important for regulation of cell cycle entry 

[49, 50]. Within the first 3h during LR after PHx, matrix bound HGF are released in the plasma 

and becomes utilized followed by new HGF synthesis, while EGF is constantly available to the 

liver via the portal vein [39]. EGFR and MET, receptors for EGF, and HGF, respectively are 

activated within 30-60min post PHx [51]. Once activated, hepatocytes themselves secrete 

additional mitogenic growth factors including VEGF [52, 53], TGF, FGF [54], and PDGF [55], 

which act either in a  paracrine fashion to induce proliferation of other cell types in the liver or in 

an autocrine manner. Proliferations of other liver cells are important as these cells also secrete 

factors that act to further bolster the LR process. LR is a redundant process and as such no 

elimination of any single gene has been shown to completely abrogate LR after PHx with the 

possible exception of the HGF/c-Met signaling pathway [39].  

Just as the initiation of the LR process is critical, it also important for the liver to 

terminate this process once the lost liver mass has been fully restored. Less is known about the 

termination process of LR. Based on both in vivo and in vitro data, TGF1 has been implicated 

in the termination of LR [43, 56], which produced by mesenchymal cells and is a known mito-

inhibitor for most epithelial cells. It appears that the degradation of the matrix during PHx 

releases both mitogenic factors such as HGF and mitoinhibitory factors such as TGF1 into 
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circulation, however TGF1 is bound to the hepatic matrix and made inactive until it is required 

[57]. TGF1 has been shown to inhibit hepatocyte proliferation in culture [58] and when given at 

high doses, TGF1 has been shown to delay hepatocyte DNA synthesis peak after PHx [59].   

 

 

Figure 3. Schematic representation of signaling between different hepatic cell types during LR  

During LR, liver cells secrete cytokines and growth factors that are important for executing the regenerative 

response. Adapted from Michalopoulos, GK and DeFrances, M. (Ref. 43) 
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1.3 LIVER CANCER: HEPATOCELLULAR CARCINOMA 

Hepatocellular cancer (HCC) is the most prevalent liver cancer and it continues to be a major 

health concern. It is the 5
th

 most common cancer and the 3
rd

 most fatal cancer worldwide [60-

62].  There are over 500,000 people worldwide that develop HCC yearly and roughly about the 

same number die from the disease. Epidemiological data indicate that the frequency of HCC has 

been steadily increasing over the past two to three decades in the United States. In fact HCC is 

one of few types of cancers increasing in both frequency and mortality in USA [63, 64] and 

Europe [65].  Both the incidence and the mortality rates are higher in men than women [66]. The 

cellular and molecular mechanisms underpinning this devastating disease need further 

elucidation. 

1.3.1 Cellular aberrations and signaling pathways in HCC 

Over 85% of HCCs develop as a result of chronic liver diseases, with the majority occurring in 

patients with advanced stage cirrhosis [66-68]. There are certain risk factors that are known to 

contribute to the development of HCC. Some of these factors include but are not limited to, viral 

hepatitis (B and C), alcoholic liver disease, metabolic liver disease including non-alcoholic 

steatohepatitis, primary biliary cirrhosis, primary sclerosing cholangitis, and hemochromatosis 

[69]. Of the various risk factors in HCC, viral hepatitis appears to be the most prevalent cause of 

HCC worldwide [70]. Even though other risk factors are known to also play a role, what appears 
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to be at the center of initiation and progression of HCC is hepatocyte injury and death, followed 

by compensatory regeneration [66]. As a consequence of hepatocyte injury, and in response to 

inflammatory cytokines and oxidative stress, stellate cells and portal fibroblasts become 

activated and begin producing and depositing collagen. This abnormal collagen deposition leads 

to development of fibrosis and eventually cirrhosis [71]. Deposition of collagen replaces liver 

tissue over time, which prompts residual and surviving hepatocytes to proliferate and attempt to 

repair the damaged liver.  Proliferation of hepatocytes is required for the maintenance of normal 

liver functions. However, proliferation of hepatocytes in this fibrotic and suboptimal 

environment renders these hepatocytes prone to genetic and epigenetic alterations as a result of 

continued inflammation and oxidative stress [66]. Proliferation of hepatocytes in this 

environment is thought to be driving tumorigenesis in most patients with chronic liver diseases 

[66]. 

 In order to achieve efficacious therapies for HCC, it is important to uncover signaling pathways 

that are often utilized by tumor cells to proliferate and survive. Excessive activation of several 

pathways including HGF/MET, EGFR/Ras/MAPK, Wnt/β-catenin, PI3K/AKT and IGF 

signaling cascades are known to play roles in the initiation and exacerbation of HCC [66, 72]. 

Blockade of these signaling pathways has been shown to significantly decrease cancer cell 

growth and survival [73]. 

During tumorigenesis, certain angiogenic factors like PDGF, EGF, VEGF, and HGF, 

secreted by cancer cells in the tumor microenvironment can act in either a paracrine or autocrine 

fashion to sustain and exacerbate the tumorigenesis state in HCC [74]. As previously mentioned, 

the Wnt/β-catenin pathway is one of the more studied pathways in HCC and is of interest to our 

lab.  
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1.4 SIGNALING IN LIVER BIOLOGY 

1.4.1 Wnt/ β-catenin Signaling 

The Wnt/β-catenin pathway remains suppressed in normal cells at baseline. When the pathway is 

not active, β-catenin, the key player in this signaling pathway is bound in a complex with Axin, 

adenomatous polyposis coli (APC) and glycogen synthase kinase-3 (GSK3) and casein kinase 

(CK). In this bound complex, β-catenin is phosphorylated by CK1 and GSK3α/β at 

serine/threonine residues located at the N-terminal region [75]. Phosphorylation of β-catenin 

marks it for ubiquitination, and ensuing degradation by the proteasome. However, in the 

presence of Wnt, this degradation process is precluded. When Wnt proteins bind to the Frizzled 

receptor on the surface of cells, the canonical Wnt pathway becomes activated. The interaction 

between Wnt/Frizzled induces an association with the low-density lipoprotein receptor related 

protein (LRP) 5/6, and this complex then recruits Dishevelled, which is believed to inactivate 

GSKβ [76]. Upon GSKβ inactivation, β-catenin phosphorylation is prevented, which 

subsequently releases β-catenin from the Axin/APC/GSK3 complex. β-catenin then translocate 

to the nucleus, where it binds to lymphoid enhancer-binding factor 1/T cell-specific transcription 

factor (LEF/TCF) and displaces the transcriptional inhibitor Groucho. This β-catenin/ 

(LEF/TCF) complex then induces activation of target genes important in various cellular 

processes such as proliferation and differentiation [77]. 

The Wnt/β-catenin pathway is known to play many critical roles in various aspects in 

liver biology. Utilization of antisense oligonucleotides against β-catenin gene (Ctnnb1) in 

embryonic liver cultures revealed important roles for β-catenin during liver development. The 
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authors reported decreased cell proliferation and survival [34]. Interestingly, over expression of 

constitutively active β-catenin in the developing liver was reported to lead to a three-fold 

increase in liver size and expansion of hepatocyte precursor cells [78]. Later, our lab reported a 

Foxa3-Cre driven conditional deletion of ctnnb1. This resulted in embryonic lethality at 

midgestation due to improper liver development [79].  Wnt/β-catenin signaling has been shown 

to be a key component for LR. In rats, following PHx, β-catenin is increased within minutes post 

PHx [80] and knockdown of β-catenin was shown to cause a decrease in liver weight to body 

weight ratio as a result of decreased cell proliferation [81]. This pathway has also been reported 

to be one of the major players underpinning liver disease [82-87].  

 



 14 

Figure 4. Canonical Wnt signaling pathway 

Left: Presence of Wnt induces hypophosphorylation of β-catenin at specific serine/threonine residues to induce its 

nuclear translocation leading to activate target gene expression. Right: Absence of Wnt or presence of inhibitors that 

prevent Wnt binding to its receptor or dimerization of co-receptors enable activated kinases such as GSK3β to 

phosphorylate β-catenin, which, with the help of Axin and APC, undergoes proteasomal degradation. Abbreviations: 

APC, adenomas polyposis coli; CK, casein kinase; FRP, frizzled-related protein; GSK, glycogen synthase kinase 3 

B; LRP, low-density lipoprotein receptor related protein; TCF, T-cell factor; TrCP-transducin repeat-containing 

protein. Adapted from Nejak-Bowen et al. (Ref. 1) 

 

1.4.2 Signaling in -Catenin (ctnnb1) Conditional KO mice 

The Wnt/β-catenin pathway as previously mentioned plays critical roles in many cellular 

processes. Global deletion of the -catenin gene, ctnnb1 is embryonic lethal. Previous and on-

going studies from our lab have revealed critical roles for β-catenin in liver biology. Since global 

deletion of ctnnb1 is embryonic lethal, much of the work in the field has been significantly 

advanced due to the ability to conditionally delete ctnnb1. Recently, our lab proposed to 

conclusively address the role of β-catenin in liver growth and regeneration by using a conditional 

knockout approach to delete ctnnb1 in the liver [88]. To accomplish this task, floxed ctnnb1  

(exons 2-6) mice were intercrossed with Albumin-Cre recombinase transgenic mice. Results 

from western blot and immunohistochemistry analysis showed considerable -catenin deletion at 

15 days post birth. We also showed that these conditional ctnnb1 knockout mice (Ctnnb1 

(loxp/loxp); Alb-Cre (+/-)) were viable, although there was an appreciable decrease in their liver 

weight/body weight ratio at 1 month and was sustained throughout their normal life span. Ki-67 

staining displayed basal hepatocyte proliferation. When two-thirds PHx was performed on KO 



 15 

mice, these mice showed modest morbidity during the first 2-3 days. These mice displayed 

increased apoptosis at all stages of regeneration and also decrease in hepatocyte proliferation at 

the time of peak hepatocyte proliferation (40hrs) [88]. However, a rebound increase in 

hepatocyte proliferation was evident in the knockout mice at 3 days. There were several genes 

that were upregulated in Ctnnb1 KO mice during LR after PHx. One of the genes that was highly 

upregulated was the Platelet Derived Growth Factor Receptor Alpha (Pdgfra) [88].  

Interestingly, our lab has also shown Ctnnb1 KO mice injected with Diethylnitrosamine 

(DEN), a chemical carcinogen developed enhanced tumorigenesis compared to control mice 

[73]. In this study, our lab showed significantly enhanced PDGFRα protein expression and 

downstream activation in KO mice indicating a significant role of this receptor in the enhanced 

tumorigenesis. To corroborate involvement of PDGFRα in enhanced tumorigenesis, another set 

of KO mice treated with DEN, were injected with Gleevec, a well-established tyrosine kinase 

inhibitor that also inhibits PDGFRα. After treatment wit Gleevec, we observed a significant 

abrogation in tumorigenesis when compared with KO mice injected with DEN alone without 

Gleevec [73]. These results strongly suggest that PDGFRα may be playing an important role in 

liver biology and therefore merits further investigation.  

1.5 PLATELET DERIVED GROWTH FACTOR RECEPTOR ALPHA SIGNALING  

1.5.1 Introduction 

Platelet-derived growth factor (PDGF) is a stimulating growth factor that elicits effects on 

growth and motility of connective tissue cells, such as fibroblasts and smooth muscle cells, but 
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also acts on other cell types, including capillary endothelial cells and neurons [89, 90]. In both 

human and mouse, there are four PDGF chains in the PDGF family: PDGF-A, PDGF-B, PDGF-

C and PDGF-D. PDGFs signal via two receptors, PDGF receptor-alpha and PDGF receptor-beta 

(PDGFR and PDGFR). PDGFs and PDGFRs are expressed in overlapping and distinct cell 

types. PDGFRA is mainly expressed in cells of mesodermal and neural origin and is involved in 

the regulation of cell migration, proliferation and differentiation. PDGFRA plays an important 

role in various biological processes such as embryonic development, wound healing and 

atherosclerosis, but also in tumorigenesis (31). 

1.5.2 PDGFRA gene and protein structure 

Human PDGFRA gene is located on chromosome 4q11-12, spanning approximately 65 kb of 

DNA and contains 23 exons. The gene structure is similar to that of the related receptor tyrosine 

kinase family members PDGFRB, and c-KIT [91-93]. Exon 1 encodes the 5’ untranslated region 

of the mRNA, followed by a large first intron of 23 kb. Exon 2 is responsible for encoding the 

translation initiator codon AUG and signal sequence [94]. The PDGFRA gene encodes a full-

length protein of 140 kDa, which consists of five extracellular immunoglobulin-like domains 

(ligand binding domains), a transmembrane domain and an intracellular tyrosine kinase domain 

with a characteristic inserted sequence. When fully glycosylated, the molecular mass of the 

protein increases to approximately 170 kDa and the extent of glycosylation varies among cell 

types [95].   
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1.5.3 PDGFR ligands and downstream signaling  

PDGF ligands function mainly as homodimers, but can also form heterodimers as in the case of 

PDGF-AB. They bind with different affinities to the two receptors.  PDGFA, PDGFB, and 

PDGFC can all bind to PDGFR but PDGFAA and PDGFCC bind with the highest affinities. 

PDGFA and PDGFB are synthesized and secreted as functional dimers, however, PDGF-C is 

secreted as latent PDGF and must be cleaved to function [96, 97]. PDGF-B and PDGF-D bind to 

PDGFRβ with the highest affinity. PDGFR functions as a homodimer (PDGFR) or as a 

heterodimer with PDGFRβ (PDGFRβ), but mostly as a homodimer. Upon ligand binding, these 

receptors dimerize and autophosphorylate each other on tyrosine residues. Autophosphorylation 

activates the receptor kinase and provides docking sites for downstream signaling molecules [90, 

98, 99]. As depicted in Figure 5, PDGFR can engage several well-characterized signaling 

pathways including Ras-MAPK, Phosphatidylinositol 3-kinase (PI3K), and Phospholipase C-

gamma (PLC-), which are all known to be involved in many cellular and developmental 

responses.  

 Of these signaling molecules, the PI3K pathway has been documented to be one of the 

more critical signaling molecules that bind to the phosphorylated PDGFR. Briefly, PI3K binds 

the autophosphorylated receptor at Tyr-731 and Tyr-742, and phosphorylates PI(4,5)P2 to give 

phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3). There are several downstream targets of 

this pathway, most notably AKT. These downstream targets act to mediate cellular responses 

including actin reorganization, chemotaxis, cell growth, and anti-apoptosis [89, 90]. 
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Figure 5. Simplified description of PDGFR signaling.  

Simplified description of PDGFR signaling. Binding of PDGFs to the receptor induces 

homodimerization followed by autophosphorylation and activation of the receptor. Adapted and modified 

from Heldin, CH (Ref. 90). 
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1.5.4 Platelet Derived Growth Factor Receptor alpha signaling in Development 

1.5.4.1 Expression patterns of PDGF receptor and ligands  

 

PDGFR and its ligands have been shown to play important roles during development and 

organogenesis [100, 101]. In the mouse, Pdgfra is expressed from the two cell stage onwards by 

all cells of the blastocyst, but later in development its expression becomes restricted to cells of 

mesodermal and neural origin and also in the epithelium in few cases [102]. In early post-

implantation embryos, at embryonic days 6-7.5, Pdgfra mRNA can be found in extra-embryonic 

and embryonic endoderm, as well as in the embryonic mesoderm [103, 104]. At embryonic day 

8.0-8.5, Pdgfra expression in the embryo becomes more regionalized to the somites and 

mesenchyme. At embryonic day 9.5, Pdgfra expression becomes restricted to the sclerotome and 

dermatome [103, 105]. Several cell types have been shown to express PDGF ligands during 

development. Expression of Pdgfa has been shown to be co-expressed with Pdgfra in the inner 

cell mass of the blastocyst. However as development progresses, Pdgfa expression becomes 

mostly restricted to the epithelial, muscle and nervous tissue [103, 105]. Interestingly, the 

expression pattern of Pdgfc has a large overlap with that of pdgfa, which were observed at 

embryonic days 9.5-12.5 of embryonic development [102, 106, 107]. Pdgfc is strongly expressed 

in but not limited to somatic myotome, skeletal muscle, gut, lung and kidney [102, 106, 108]. 

This indicates the general expression of receptor and ligand as non-overlapping. 

1.5.4.2 Phenotypes in Pdgfra knockout and signaling mutants in mouse  

 

Mouse studies involving deletion of Pdgfra have revealed the importance of this receptor during 
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development. Global deletion of Pdgfra is embryonic lethal and this occurs between embryonic 

days 11.5 to 15 [97]. Interestingly global deletion of Pdgfra reveals more severe phenotypes 

when compared to global deletion of its ligand Pdgfa, which indicates that PDGFC signaling via 

PDGFR during development is also critical. Global deletion of Pdgfra displays significant 

defects in the development of many organs including but not limited to brain, [109], lungs, 

testes, kidney, and skin [97].  

As previously mentioned, upon PDGF-receptor activation, there is a homo- or 

heterodimerization event that occurs. Receptor dimerization leads to transphosphorylation of 

tyrosine residues in the cytoplasmic region, after which various intracellular signaling pathways 

are activated [89, 97, 110].  In order to decipher the roles of specific PDGFR-activated 

signaling pathways during development, knock-in mice were generated. In these mice, the 

endogenous Pdgfra was substituted by a transgene encoding mutant receptors that lacked the 

ability to activate PDGFR specific downstream signaling molecules [111]. This study revealed 

the significance of certain signaling molecules, most notably PI3K, which was shown to be the 

major effector of PDGFR signaling during embryogenesis. The authors show  similar defects 

such as spina bifida and cervical vertebrae malformations when they compared Pdgfra-PI3K 

(α
PI3K

/α
PI3K

) mutants to Pdgfra null (-/-) mutants. However, defects seen in Pdgfra-PI3K 

(α
PI3K

/α
PI3K

) mutants were less severe than the defects observed in the Pdgfra null (-/-). Pdgfra-

PI3K (α
PI3K

/α
PI3K

) mutants survived longer than Pdgfra null mice, but the mutation was still 

embryonic lethal and pups that survived passed birth died shortly afterwards. The authors next 

examined mice hemizygous for the F7 allele (F7/-), a mutation that disrupts binding sites for 

PI3K, SRC family kinases, PLCγ and SHP2. Interestingly, F7/- embryos did not show 

abnormalities that were worse than those observed in αPI3K/αPI3K homozygous mutants. The 
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inability of the Pdgfra-PI3K (α
PI3K

/α
PI3K

) mutants to fully phenocopy Pdgfra null mutants was 

suggested to be the result of PI3K signaling from the -receptor via heterodimerization with 

Pdgfra. To address this, the authors generated double homozygous PI3K (α
PI3K

/
PI3K

) mutants 

and indeed these mice phenocopied Pdgfra null mice [111]. 

PDGFR signaling in liver development is not known, but our lab has recently reported 

robust expression of PDGFR during early liver development and immunohistochemistry 

showed liver progenitor cell (hepatoblast) expression of this receptor. Our data suggests that 

PDGFR maybe be important for liver development. 

1.5.5 Platelet Derived Growth Factor Receptor alpha signaling in Cancer  

PDGFR signaling has been shown to be critical for the initiation of many cancers. Interestingly, 

this receptor has been shown to be involved in normal development of many organs, but also in 

the pathogenesis of the same organs. For example, PDGFR plays a critical role in brain 

development, and cancers affecting the brain, such as gliomas are characterized by aberrant 

PDGFR signaling [112]. In addition, PDGFR is important for normal lung development and 

ironically PDGFR signaling has been implicated as a mechanism of myofibroblast hyperplasia 

during pulmonary fibrosis [113]. This receptor has also been strongly implicated in advanced 

gastrointestinal cancer [114]. Furthermore, a recent report showed enhanced expression of 

PDGFA in addition to various mutations in the PDGFRA sequence in [115, 116] 

cholangiocarcinoma.. Recently, our lab has reported significantly upregulated protein expression 

of PDGFR and it’s ligands PDGFAA, and PDGFCC in tumors of human liver cancer tissue 

samples [117].  The authors show that blockade of PDGFR signaling in various human cancer 
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cell lines using a human PDGFR specific blocking antibody, 3G3, significantly reduced cancer 

cell proliferation and survival [117]. Implications of PDGFR in the various aforementioned 

pathologies strongly make this receptor a viable potential therapeutic target in various cancers, 

especially HCC, which is a focal point of study in our lab.  
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2.0  ROLE AND REGULATION OF PLATELET DERIVED GROWTH FACTOR 

RECEPTOR ALPHA IN LIVER DEVELOPMENT 

2.1 ABSTRACT 

PDGFR signaling is crucial and indispensable during development. Global inactivation 

of this receptor has been shown to be embryonic lethal. The critical role of this receptor during 

development has been shown in certain organs including, lung and brain. Our lab recently 

identified robust PDGFR expression as early as embryonic day 11 during early liver 

development albeit with a gradual decrease until birth. We investigated the role and regulation of 

PDGFR signaling during early liver development. We identified differential expression of 

PDGFR ligands during development. PDGF-CC, a ligand for PDGFR was expressed during 

early and PDGF-AA at late stages of hepatic development, while PDGF-BB was expressed at all 

times. We also identified notable PDGFR activation in hepatic morphogenesis, which when 

interrupted by PDGFR-blocking antibody led to decreased hepatoblast proliferation and 

survival in embryonic liver cultures. Based on ongoing proliferation, survival and differentiation 

of hepatoblasts and hepatocytes at early stages of hepatic development and concomitant 

PDGFR signaling at the same stages, we conclude that PDGFR may be an important mediator 

of these critical biological events in hepatic development. 
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2.2 INTRODUCTION 

Liver development is a complex and temporal process, which entails a balanced regulation of 

proliferation and differentiation of the bipotential progenitor cells or hepatoblasts [118]. It 

involves several key steps such as competence, induction and morphogenesis. Many proteins 

have been shown to be essential in each of these phases and many more of these protein 

molecules are continuing to be discovered. With the idea of commonalities between development 

and cancer in mind, we employed developing livers to explore and identify genes that may 

possibly play a role in diseases affecting the liver such as hepatocellular carcinoma. Using 

developing livers, we previously identified high PDGFR expression at embryonic days 12 and 

14 with a gradual to significant decrease up to the adult stage by micro-array and western blot 

analysis [117]. Immunohistochemical analysis showed PDGFR localization in liver progenitor 

cells (hepatoblasts) and also hematopoietic cells at early stages during liver development 

suggesting that PDGFR- maybe playing a role in hepatoblast and hepatocyte proliferation and 

survival and is the major hypothesis. Other organs where PDGFR signaling mediated cell 

proliferation has been implicated in their development includes but is not limited to: lungs, 

testes, kidney, and skin [97]. Mouse studies involving deletion of PDGFR have delineated the 

indispensable role of this protein during development as embryonic lethality occurs between 

embryonic day 11.5 to 15 [97]. Intriguingly, much pathology affecting the aforementioned 

organs involves PDGFR signaling. For example, PDGFR plays a critical role in brain 

development, and most cancers affecting the brain, such as gliomas [119] are characterized by 

aberrant PDGFR signaling [112]. In addition, PDGFR is important for lung development and 

similarly PDGFR signaling has been implicated as a mechanism of myofibroblast hyperplasia 



 25 

during pulmonary fibrosis [113]. The fact that PDGFR plays such a critical role in development 

and also is involved in many cancers further suggests that developmental studies can facilitate 

our understanding of the mechanisms that may play roles in cancer initiation and progression. 

The robust increase in PDGFR gene and protein expression during early liver development 

merits some close attention as it could be mediating a critical process during liver development. 

2.3 METHODS 

 

2.3.1 Isolating Developing livers 

Time pregnant mice were utilized to obtained embryos from different stages. Whole embryos 

(n3) were isolated from E10-E14 stages and fixed in 10% buffered formalin for paraffin 

embedding and OCT compound for cryosections. Embryonic livers (n=3) were harvested from 

E15-E19 stages, and additional livers (n=3) were isolated from postnatal day 1 (P1), P5, P10, 

P15, P20, P30 and 3-month adult mice. 
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Figure 6. Description of experimental design for the embryonic liver isolation process as described in the 

methods 

 

 

2.3.2 Western Blot (WB) Analysis  

 Livers were isolated from embryos from each stage (E11-E19, P1, P30 and adults) and pooled 

(n>20 for E11-14; n>3 E15-adult) for whole cell lysate extraction in radio immunoprecipitation 

assay (RIPA) buffer and assessed by western blot. After autoradiography, the films were scanned 

to obtain integrated optic densitometry (IOD) using NIH Imager software. The average IOD for a 

protein was compared between the KO and WT groups and assessed for statistical significance 

by student t test and p<0.05 was considered significant.   
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Table 1: Primary antibodies used for Western Blot 

Antibody Target Concentration Source 

PDGFR  1:900 Cell signaling 

PDGFR  1:300 Santa Cruz 

phospho-PDGFR 

Tyr572/574 

1:800 Invitrogen 

phospho-PDGFR Tyr849 1:800 Cell Signaling 

phospho-PDGFR Tyr742 1:500 Invitrogen 

phospho-PDGFR Tyr720 1:800 Invitrogen 

PDGFA 1:200 Santa Cruz 

PDGFB 1:200 Santa Cruz 

PDGFC 1:200 Santa Cruz 

GAPDH 1:2000 Santa Cruz 

Actin 1:5000 Millipore 

EGFR 1:200 Santa Cruz 

 

 

Table 2: Phospho specific PDGFR Primary antibodies used for WB 

Tyr-PDGFR 

(Antibody Source) 

Downstream 

Signaling (ref.) 

Biological endpoints 

Tyr -742/731 

(Invitrogen) 

PI3K pathway 
[120-123]

  Proliferation 

 Survival 

 Motility 

Tyr-572/574 (Invitrogen) Src Kinase 
[124]

  Cell growth 

 Motility 
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Tyr-720 

(Cell Signaling) 

SHP2 
[125]

(dephosphorylates 

PDGFR) 

 Negatively modulates 

PDGFR activation 

Tyr-849 (Invitrogen) Ras 
[126]

 (?)  Kinase insert domain 

 

 

 

2.3.3 Histology, Immunohistochemistry (IHC) 

Four-micron sections from paraffin-embedded (E11-13) liver tissues were subjected to IHC. 

PCNA-positive hepatocytes were counted under an Axioskop 40 (Zeiss) upright research 

microscope in four randomly selected fields per section at 400X magnification. PCNA counts 

between control and 1E10 treated livers were compared for statistical significant by student t test 

with p<0.05 considered significant.  

 

 

 

Table 3: Primary antibodies used for immunohistochemistry 

Antibody Target Concentration Antigen Retrieval Source 

Cyclin D1 1:50 Citrate Buffer Neomarkers 

HNF4α 1:100 Citrate Buffer Santa Cruz 

PCNA 1:4000 Zinc Sulfate Santa Cruz 

PDGFR  1:50 Citrate Buffer Santa Cruz 
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2.3.4 Immunofluorescence   

For immunofluorescence studies, double stains of PDGFR and hepatoblast cell specific marker 

(HNF4+) were performed to demonstrate subset of epithelial cells that are expressing PDGFR 

during hepatic development.  Briefly, cryosections were fixed for 10 minutes in 4% 

paraformaldehyde, washed in PBS, and blocked in 2% BSA for 45 minutes. Rabbit polyclonal 

PDGFR antibody (Santa Cruz) and mouse HNF4α (Perseus Proteomics Inc.) was used at 1:40 

and 1:300 dilution respectively in 0.5% BSA and incubated for 1h, washed in 0.5% BSA, and 

Cy3-conjugated anti-Rabbit antibody and Alexa 488-conjugated anti-mouse antibody (Molecular 

Probes) was applied at 1:700 and 1:600 dilution respectively in 0.5% BSA for 30 minutes. 

Washes were repeated in 0.5% BSA, PBS, followed by incubation with DAPI for 45 seconds. 

Sections were cover slipped in Gelvatol and sections visualized under Zeiss Axioscope 

microscope. 

 

Table 4: Primary antibodies used for Immunofluorescence 

Antibody Target Concentration Source 

PDGFR 1:50 Santa Cruz 

HNF4α 1:300 Perseus Proteomics Inc. 

PDGFR  1:50 Santa Cruz 
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2.3.5 Embryonic liver culture 

As shown in Fig 7, E11 embryos from time pregnant mice were isolated and livers were micro-

dissected with atraumatic instruments under stereomicroscope as described in [127]. Livers were 

cultured on 3 pore sized tissue culture treated polycarbonate membrane in transwells in 6 well 

plates. 12 embryonic livers were cultured in DMEM in the presence of 5% FBS, 12 were 

cultured in 5% DMEM and treated with 50nM of 1E10-IMC-MAb (murine PDGFR blocking 

antibody, obtained under Material Transfer Agreement from ImClone)[128, 129]. Livers were 

cultured for 72h in fresh media with or without 1E10 blocking antibody and spent media was 

replaced every 24h. 4 livers per six well were fixed in 10% formalin for paraffin embedding and 

histological characterization.  
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Figure 7. Experimental design for ex-vivo liver cultures 

(A) Livers from E11 embryos are isolated & cultured on (B) Tissue culture treated polycarbonate 

membrane in transwells at 37C in DMEM with 5% FBS containing 1E10 blocking antibody or without 

1E10 for 72h. 

 

2.3.6 Generation of Pdgfra Conditional Knockout Mice 

Homozygous Pdgfra floxed (exons 1-4) and Foxa3 Cre mice (both in C57BL/6 background) 

were obtained from Jackson Laboratories (Bar Harbor, ME). Homozygous floxed Pdgfra mice 

were bred to Foxa3-Cre mice and the offspring carrying a floxed Pdgfra allele and Foxa3-Cre 

were then bred to the homozygous floxed Pdgfra mice. The mice with floxed and floxed-deleted 

allele of Pdgfra are henceforth referred to as Pdgfra
loxp/loxp

; Foxa3-Cre
+/−

 or knockout (KO) mice 

and all other genotypes including Pdgfra
loxp/loxp

; Foxa3-Cre
−/−

 and Pdgfra
loxp/Wt

; Foxa3-Cre
−/−

 or 

Pdgfra
loxp/loxp

; Foxa3-Cre
−/−

 are referred to as wildtype controls (WT).  

2.4 RESULTS 
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2.4.1 Increased expression and activation of PDGFR during early hepatic development.  

To validate previous findings [117], we utilized whole cell lysates from pooled livers from 

various prenatal developmental stages in mice to perform WB analysis for PDGFR and 

PDGFR. PDGFR is expressed at high levels in E11 and E12 livers with a gradual decrease in 

protein expression (Figure 8A). PDGFR was also similarly expressed (Figure 8A). To verify 

that PDGFR was expressed in epithelial cell compartment of developing liver, we performed 

double IF for PDGFR and HNF4, a known marker for both hepatoblasts and hepatocytes. 

Membranous and cytoplasmic localization of PDGFR was evident in several HNF4-positive 

cells at E12.5 stage (Figure 8B). To address PDGFR localization, we examined its co-

localization with HNF4, but could not detect any at E12.5 (Figure 8B). To further substantiate 

the expression of PDGFR in hepatoblasts, we tested HBC-3, a hepatoblast cell line, which 

showed comparable PDGFR expression to E11 murine livers (Figure 8C). Next, we tested for 

the presence of ligands that may be responsible for engaging PDGFR during early stages. 

Interestingly, while PDGF-CC was the predominant ligand at early stages, PDGF-AA became 

more prominent at E17 and beyond, while PDGF-CC levels deteriorated (Figure 8D). PDGF-BB 

appears to be minimally expressed throughout liver development. 

To address if PDGFR signaling is ongoing during hepatic development, we tested 

whole cell lysates for phosphorylation of PDGFR at specific residues. We identified several 

sites to be phosphorylated on PDGFR, prominently at Tyr-572/574, Tyr-720 and Tyr-742 at 

E11-E12 stages, whereas Tyr-849 showed only limited phosphorylation at E11 stage (Figure 8E). 

To test if some of the associated downstream signaling may be active at the corresponding times, 

we examined the state of PI3-kinase and AKT signaling, since these have been shown to be 
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regulated by PDGFR especially when it is phosphorylated at Tyr-742 and other RTKs as well 

[120]. While total PI3K-p85 and AKT levels remained relatively unaltered during hepatic 

development until after birth, phospho-PI3K-p85 and phospho-AKT-Thr308 levels were 

observed mostly in the liver lysates at E11-E13 stages followed by decrease at all later stages 

coinciding with loss of PDGFR and its phosphorylated forms (Figure 8F).  

Our results therefore suggest that concomitant PDGFR and PDGF-C expression induces 

activation of this RTK to contribute to hepatic morphogenesis.   
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Figure 8. Western blot and immunofluorescence analysis using developing livers 

A) Representative WB shows highest expression of PDGFR at E11 in liver lysates with gradual decrease over next 

days of gestational development in mice. (B) Left panel shows a representative double IF with PDGFR (red) 

expressed in HNF4-positive hepatoblasts (green) cells in E12.5 murine liver (arrowhead). Right panel shows 

PDGFR (red) expressed in non-HNF4-positive cells (arrows) whereas HNF4-positive (green) hepatoblasts 

(arrowheads) are negative for PDGFR (400X). (C) WB verifies PDGFRα expression in HBC3 hepatoblast cell line 



 35 

and embryonic day 11 liver whole cell lysate. (D) WB shows high PDGF-CC but not PDGF-AA during early liver 

development, whereas PDGF-AA levels increase at later stages. (E) WB shows PDGFR phosphorylation at 

multiple sites indicating its activation in embryonic livers at early stages of hepatic development. (F) WB shows 

tyrosine phosphorylation of PI3K-p85 and AKT depicting activation at corresponding early stages of hepatic 

development. 

 

2.4.2 Blockade of PDGFR signaling in embryonic liver cultures reveals its role in 

hepatoblast proliferation and survival. 

To further investigate the role of PDGFR signaling during early liver development, we utilized 

embryonic liver cultures and PDGFR-blocking antibody (1E10-IMC), kindly provided by 

ImClone, whose efficacy and specificity has been recently shown [128]. Livers isolated from 

E10 embryos and cultured in the presence of 1E10-IMC and 4% serum as compared to 4% serum 

alone for 72 hours showed fewer hepatoblasts when examined by IHC for HNF4 (Fig. 9). To 

determine the mechanism of reduced hepatoblasts, we tested the organoid cultures for 

proliferation and any change in cell viability. 1E10-IMC treated embryonic livers showed 

dramatically fewer cells in S-phase as indicated by IHC for PCNA suggesting decreased cell 

proliferation after 72 hours of PDGFR-blockade (Fig. 9). Simultaneously, these livers showed 

an  increase in the numbers of TUNEL-positive cells indicative of ongoing apoptosis (Fig. 9). 

Thus, based on the expression of PDGFR mostly in hepatoblasts, it is apparent that PDGFR 

signaling is one of the contributing molecular pathways in hepatoblast proliferation and viability 

and hence in liver growth during ex vivo hepatic morphogenesis. 
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Figure 9. PDGFR blockade in embryonic liver cultures reveals its role in hepatoblast proliferation. 
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Embryonic livers cultured in PDGFR blocking 1E10-IMC MAb show by IHC decreased numbers of HNF4-

positive cells. In addition, there was a notable decrease in PCNA-positive cells and increase in numbers of TUNEL-

positive cells after 1E10-IMC treatment compared to cells grown in 4% serum and shown in representative 

photomicrographs. 

2.4.3 Loss of hepatoblast PDGFRα is not embryonic lethal as evidenced by viable pups.  

Originally Pdgfra was conditionally deleted from hepatoblasts by interbreeding floxed Pdgfra 

mouse with Foxa3 cre mouse (mixed background). Out of 42 live pups, only one Pdgfra KO 

mouse was found by PCR indicating loss of Pdgfra was embryonic lethal (data not known). So 

to make sure that the mixed background was not the cause of embryonic lethality, Foxa3 mouse 

was bred into a pure C57BL6 background for 6 generations. Foxa3 mouse (C57BL6 background) 

was then bred to floxed Pdgfra mouse. Out of 36 live births, 4 Pdgfra KO pups and these pups 

were sacrificed after 1 month and livers were used for WB. As seen in figure 10, WB results 

show complete loss of Pdgfra in KO mice. As will be discussed in a later chapter, we recently 

showed significant EGFR upregulation and activation during liver regeneration after PHx in 

hepatocyte specific Pdgfra KO mice, which indicated a possible compensatory mechanism. 

Since we found surviving hepatoblast Pdgfra KO mice, we performed WB to test whether EGFR 

could be again compensating for loss of Pdgfra during liver development. Interestingly, we 

didn’t see any changes in EGFR expression between WT and KO mice as shown in figure 10. 

We also probed for PDGFRβ, which identical in structure, has similar functions, and has been 

shown to compensate for PDGFR  in cell lines. Interestingly, levels of PDGFRβ remained 

unchanged between WT and KO. These results suggest that perhaps another receptor tyrosine 
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kinase could be compensating for loss of Pdgfra or that PDGFRα signaling maybe dispensable in 

hepatoblasts.  

 

 

 

 

 

 

 

 

Figure 10. Western blot analysis confirms depletion of hepatoblast PDGFR by Foxa3 

Foxa3 driven deletion of hepatoblast Pdgfra shows no increase in EGFR or PDGFRβ in KO mice   

 

2.5 DISCUSSION 

PDGFR, a traditional serum growth factor receptor for mesenchymal cells, is expressed 

abundantly in human HCC cells and known to induce cell proliferation [89, 90, 97, 100, 117, 

130].  To address the role and regulation of PDGFR in normal liver growth, especially in 

epithelial cells of the liver, we investigated its status in liver development.  

Previously we have reported highest expression of PDGFR gene in the earliest stages of hepatic 

development, which was identified by microarray [117]. In the current study we verify that 
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hepatoblasts co-express HNF4 and PDGFR. Indeed HNF4 is a known marker of 

hepatoblasts and differentiating hepatocytes during hepatic development [131]. However there 

are other cell types in developing livers that have been reported to express PDGFR as well. One 

study has reported PDGFR to be expressed in submesothelial cell fraction, a precursor of 

hepatic stellate cells, and yet another group has reported PDGFR expression in a stromal cell 

that supports erythropoiesis [132, 133]. In the last study, the authors observed all PDGFR-

positive cells to express 1-integrin, which is also known to be expressed in hepatocytes during 

early hepatic development [134].  Utilizing previously characterized embryonic liver cultures and 

a mouse PDGFR blocking antibody, we demonstrate rampant apoptosis and decrease in cell 

proliferation that eventually led to lower numbers of HNF4-positive cells in the culture 

suggesting an important role of PDGFR in hepatoblast biology. The effect is likely direct due 

to RTK blockade of PDGFR on the hepatoblasts. Indeed, PDGFR activation is associated 

with cell survival and proliferation in several cell types [89, 120]. To address the importance of 

PDGFR signaling in-vivo, we conditionally deleted Pdgfra from hepatoblasts by interbreeding 

floxed Pdgfra mouse (C57BL6) with Foxa3 cre mouse (mixed background). Loss of Pdgfra 

appeared to be embryonic lethal since we found 1 Pdgfra KO mouse out of 42 live pups by PCR. 

To determine whether this observation was not a result of the mixed background of the Foxa3 cre 

mouse, we repeated the same experiment but this time we bred Foxa3 cre for 6 generations into 

C57BL6. This led to survival of additional Pdgfra KO mice (4 out of 36), which was still below 

the normal mendelian ratio. Our results suggest that some strains of mice might be more 

susceptible to Pdgfra loss in developing livers. Furthermore, based on our personal 

communications with Dr. Klaus Kaestner, Foxa3 cre transgenic line might exhibit some 

mosaicasm. Nonetheless, our in vivo and in vitro results, taken together, indicate an important 
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role of PDGFR signaling in liver development...Further studies using a more specific and 

robust cre to induce deletion of PDGFR in hepatoblasts would be essential to conclusively 

demonstrate it’s role in liver development 

2.6  FUTURE DIRECTIONS 

 We have obtained HBC-3 cells, which are clonal fetal murine hepatoblast cell line 

derived from an embryonic day 9.5 embryo [135]. When these cells are grown on 

fibroblast feeder layer, they maintain their stemness. When grown in DMSO on tissue 

culture plastic, they undergo hepatocyte differentiation and when grown on matrigel, they 

form bile ducts. We have data showing robust expression of PDGFR in lysates from 

these cells. We will employ these cells to test the effects of PDGF-CC and PDGFR 

specific blocking antibody (1E10). This will also allow us to assess the importance of 

PDGFR in hepatoblasts. Based on our data, we anticipate that treatment of HBC-3 with 

PDGFCC will induce their proliferation and survival. We also anticipate that treatment of 

these cells with PDGFR blocking antibody, 1E10, will lead to increased cell death and 

decreased proliferation. Additional roles in hepatic morphogenesis maybe revealed as 

well. 

 Foxa3 Cre has been shown to be mosaic (Personal communication with Dr. Klaus 

Kaestner), where a subset of cells escapes deletion. In addition, Foxa3 is also expressed 

in extrahepatic tissues such as pancreas [136].  For these reasons, we have now obtained 

AFP-Cre mice that will be bred to homozygous Pdgfra floxed mice.. This strategy will 
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enable deletion of Pdgfra in hepatoblasts at embryonic days 9.5-11 when PDGFR 

expression is highest. Tails of pups will be used for PCR analysis to determine whether 

KO pups are being produced at the normal mendelian ratio. This will conclusively allow 

us to determine whether PDGFR is important or dispensable during liver development. 

Based on our ex-vivo data, we anticipate that loss of hepatoblast Pdgfra will be 

embryonic lethal.  
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3.0  -CATENIN LOSS IN HEPATOCYTES PROMOTES HEPATOCELLULAR 

CANCER AFTER DIETHYLNITROSAMINE AND PHENOBARBITAL 

ADMINISTRATION TO MICE 

3.1 ABSTRACT 

 

HCC is the 5
th

 commonest cancer worldwide. -Catenin, the central orchestrator of the 

canonical Wnt pathway and a known oncogene is paramount in HCC pathogenesis. 

Administration of phenobarbital (PB) containing water (0.05% w/v) as tumor promoter following 

initial injected intraperitoneal (IP) diethylnitrosamine (DEN) injection (5g/gm body weight) as 

a tumor inducer is commonly used model to study HCC in mice. Herein, nine 14-day male -

catenin knockout mice (KO) and fifteen wild-type littermate controls (WT) underwent DEN/PB 

treatment and examined for hepatic tumorigenesis at 8 months. Paradoxically, a significantly 

higher tumor burden was observed in KO (p<0.05). ). Tumors in KO were -catenin and 

glutamine synthetase negative and HGF/Met, EGFR & IGFR signaling was unremarkable. A 

significant increase in PDGFR and its ligand PDGF-CC leading to increased phosphotyrosine-

720-PDGFR was observed in tumor-bearing KO mice (p<0.05). Simultaneously KO livers 

displayed increased cell death, stellate cell activation, and hepatic fibrosis and cell proliferation. 

Further, PDGF-CC significantly induced hepatoma cell proliferation especially following -
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catenin suppression. Our studies also demonstrate that the utilized DEN/PB protocol in the WT 

C57BL/6 mice did not select for -catenin gene mutations during hepatocarcinogenesis. Thus, 

DEN/PB enhanced HCC in mice lacking -catenin in the liver may be a result of an inability to 

regulate cell survival leading to enhanced fibrosis and regeneration, through PDGFR activation. 

-catenin down regulation also made hepatoma cells more sensitive to receptor tyrosine kinases 

and thus may be exploited for therapeutics.  

3.2 INTRODUCTION 

 

HCC is the fifth most common cancer and the third cause of cancer death worldwide [62]. There 

is a strong need to delineate the molecular alterations responsible for the initiation and 

exacerbation of this disease. In order to study the cellular and molecular perturbations in HCC, 

many preclinical strategies employ the use of genetic and chemical models of carcinogenesis. 

Administration of diethylnitrosamine (DEN) alone or in conjunction with phenobarbital (PB) in 

mice is frequently used to induce HCC in mice.   

One pathway of critical importance in HCC is the Wnt/-catenin signaling. -Catenin is 

the central effector of the canonical Wnt signaling, which is a highly conserved pathway 

regulating critical cellular processes such as proliferation, differentiation, survival and self-

renewal [75, 137-139]. In the absence of Wnt, β-catenin is phosphorylated at amino-terminal 

serine and threonine residues and targeted for ubiquitination [140]. Upon binding of Wnt protein 

to its cell surface receptor Frizzled and co-receptor low-density lipoprotein– related protein 5/6 

(LRP5/6), a signal is transduced through disheveled that allows for inactivation of degradation 
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complex comprised of glycogen synthase kinase 3 (GSK3), adenomatous polyposis coli gene 

product (APC) and casein kinase I, which allows -catenin to dissociate and translocate to the 

nucleus to bind to lymphoid enhancer-binding factor/T cell factor (LEF/TCF) family of proteins 

to transactivate target genes. The Wnt/β-catenin pathway has been implicated in a subset of 

HCCs where activating mutations in the β-catenin gene (CTNNB1) have been reported in 20%-

40% of patients [85, 87]. Knockdown of -catenin in hepatoma cells leads to decreased growth 

and survival. For the aforementioned reasons, β-catenin is a well-recognized oncogene and 

considered a valuable therapeutic target.  

With this background, we hypothesized that lack of β-catenin in hepatocytes might 

protect against chemical-induced carcinogenesis especially in a model where HCC is conceived 

through tumor induction by DEN and tumor promotion through the continuous use of PB [141, 

142]. We used male conditional hepatocyte-specific -catenin knockout (KO) mice and wild-

type littermate controls (WT) to study tumorigenesis in response to DEN/PB. We report a 

paradoxical increase in hepatic tumorigenesis in the absence of -catenin that was attributable to 

enhanced injury, fibrosis and ensuing regeneration, which appear to be driven by a rather non-

classical epithelial receptor tyrosine kinase receptor PDGFR. We also demonstrate that the 

commonly employed DEN/PB protocol in C57BL/6 mice does not induce tumorigenesis through 

-catenin mutations as is observed in C3H mice. Lastly, -catenin inhibition led to PDGFR 

activation and thus may make the hepatoma cells more amenable to receptor tyrosine kinase 

inhibition for therapies.  
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3.3 MATERIALS AND METHODS 

 

3.3.1 Animal studies 

All animal experiments were performed under the guidelines of the National Institutes of Health 

and the Institutional Animal Use and Care Committee at the University of Pittsburgh. The 

studies performed in the current report were approved by the Institutional Animal Use and Care 

Committee at the University of Pittsburgh. Mice with conditional deletion of -catenin in 

hepatocytes with genotype- Ctnnb1
loxp/loxp

;Alb-Cre
+/-

 are referred to as knockout mice (KO) and 

have been described previously [88]. Littermates with any of the following genotypes- 

Ctnnb1
loxp/loxp

;Alb-Cre
-/-

, Ctnnb1
loxp/WT

;Alb-Cre
+/-

, Ctnnb1
loxp/WT

;Alb-Cre
-/-

 are referred to as 

wildtype or WT. These mice are in C57BL/6 background. Male KO (n = 9) and WT (n= 15) 

mice were injected intraperitoneally with DEN (Sigma-Aldrich, Inc.) at a dose of 5g/gram body 

weight at postnatal day 14 and from day 28 onwards the drinking water available ad libitum 

contained phenobarbital (PB) (0.05% w/v). Water containing fresh PB was prepared weekly for 

the duration of the studies. Mice were sacrificed at 8 months and liver collected for histology and 

protein analysis. 

3.3.2 Western blot Analysis  

Total tissue lysates prepared in radio immuno-precipitation assay (RIPA) buffer containing 1% 

IgePAL CA-630, 0.5% Sodium Deoxycholate, 0.1% SDS in 1x PBS along with protease and  
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phosphate inhibitor (1:100) (Thermo Scientific). Proteins were resolved on sodium dodecyl 

sulfate polyacrylamide gel electrophoresis in 4-15% gels and then transferred to Immobilon-P 

membranes (Millipore, Bedford, MA) in transfer buffer containing 10% methanol. Membranes 

were probed with primary antibodies (see below) in Tris-buffered saline with Tween-20 

containing 5% nonfat milk or BSA. Horseradish peroxidase–conjugated secondary antibodies 

were used at 1:50,000 dilution and signal assessed with Super Signal West Pico 

chemiluminescence substrate (Pierce, Rockford, IL) and autoradiography. The films (Molecular 

Technology Sales, St. Louise, MI) were scanned to obtain integrated optic densitometry (IOD) 

using NIH Imager software. The average IOD for a protein was compared between the KO and 

WT groups and assessed for statistical significance by student t test and p<0.05 was considered 

significant.   

 

Table 5: Other primary antibodies used for western blot 

Antibody Target Concentration Source 

β-catenin 1:1,000 BD Biosciences 

phospho-EGFR 1:500 Santa Cruz 

MET 1:200 Santa Cruz 

phospho-MET Tyr1234/1235 1:1000 Abcam 

phospho-IGFR 1:1,000 Santa Cruz 

EGFR 1:200 Santa Cruz 

c-Myc 1:200 Santa Cruz 

Glutamine Synthetase 1:200 Santa Cruz 
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3.3.3 Histology  

Four-micron sections of paraffin-embedded liver tissues were used for histology and 

immunohistochemical staining. Hematoxylin and Eosin (H&E) staining was employed to 

identify tumor foci. Typically four representative lobes from each mouse were included on each 

slide. Tumor foci were identified based on characteristic attributes such as basophilic cytoplasm 

and mitotic figures. For comparison, total number of microscopic nodules were counted and 

average numbers compared for statistical significant by student t test with p<0.05 considered 

significant. 

3.3.4 Immunohistochemistry 

For immunohistochemistry, antigen retrieval was achieved both by steam cooking or boiling the 

slides in microwave in citrate buffer for 20 minutes or 10 minutes, respectively. The sections 

were inactivated for endogenous peroxide, blocked and incubated with primary antibody 

overnight at room temperature or for one hour at room temperature, washed and incubated with 

appropriate biotin-conjugated secondary antibody for 30 minutes. Sections were washed, 

incubated with ABC reagent, washed and incubated with DAB. Sections were next 

counterstained with Shandon hematoxylin solution (Sigma) and cover slipped using Cytoseal 

XYL (Richard Allen Scientific, Kalamazoo, MI).  For negative control, the primary antibody 

was omitted in the protocol. Slides were viewed under an Axioskop 40 (Zeiss) upright research 

microscope and digital images obtained. Collages were prepared using Adobe Photoshop CS4 

software. For PCNA and TUNEL, numbers of positive cells were counted in four random 400X 

fields in five representative livers from each group and averages compared for significance 
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between groups by student t test. P value of less than 0.05 was considered significant. For 

quantitative analysis of -catenin- and PDGFR-positivity in tumors, all microscopic foci in KO 

and WT livers were assessed. Any tumor foci showing cytoplasmic and/or nuclear -catenin 

staining were labeled as being -catenin-positive and any foci exhibiting cytoplasmic staining for 

PDGFR as compared to surrounding non-tumor areas were labeled as being PDGFR-positive. 

This enabled us to calculate percentage of -catenin and/or PDGFR-positive tumors in each 

group after DEN/PB treatment. 

For measurement of fibrosis, trichrome staining was performed by the Department of 

Pathology Histology Services. Photomicrographs were taken at 50x magnification and % area of 

fibrosis measured using Adobe Photoshop as previously described 

 

Table 6: Other primary antibodies used for Immunohistochemistry 

Antibody Target Concentration Antigen Retrieval Source 

Alpha smooth muscle 

actin 

1:300 Citrate Buffer Abcam 

Glutamine 

Synthethase 

1:50 Citrate Buffer Santa Cruz 

3.3.5 Cell culture and treatment 

Hep3B cells (ATCC) were grown to 100% confluence in 10% FBS and EMEM media. Cells 

were trypsinized and plated in 6 well plates containing 2 ml of 10% FBS EMEM media and 

serum-starved overnight. Transfection was performed using pre-validated -catenin and control 

siRNA (Ambion) using lipofectamine as described previously [143]. After 24 hours, the media 
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was discarded and 1 ml of 5% trichloroacetic acid (TCA) was added to each well and plates 

placed in 4°C for 15 minutes. Cells were washed, dried and suspended in 1 ml of 0.33M NaOH 

for 20 minutes, and 300 l of total mixture from each well was added to 3 ml of scintillation 

fluid and then placed in scintillation counter. Experiment was repeated at least twice and each 

condition was done in triplicates. Average counts per minute (CPM) were compared between 

different conditions for statistical significance by student t test with value of less than 0.05 

considered significant.  

3.4 RESULTS 

3.4.1 -Catenin loss in hepatocytes leads to enhanced hepatocarcinogenesis in mice in 

response to DEN/PB. 

 WT and KO male mice (C57BL/6) were given a single dose (5g/gram body weight) of DEN 

injection at postnatal day 14 days and two weeks later allowed ad libitum access to PB 

containing drinking water (0.05% w/v) for 8 months at which time mice were examined for liver 

tumors as seen in Figure 11A. Intriguingly, the mice lacking -catenin in hepatocytes displayed 

significantly enhanced tumorigenesis compared to WT mice that was grossly appreciable as 

larger and greater numbers of tumors (Fig. 11B). H&E staining was employed to also determine 

the microscopic tumor foci in both groups of animals (Fig. 11C). The total numbers of foci were 

counted in representative sections from four lobes from the KO and WT, which show 

significantly more tumors in KO as compared to the WT (p<0.05) (Fig. 11D). 
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Figure 11. Enhanced tumorigenesis in -catenin KO mice exposed to DEN/PB regimen. 

(A) Experimental strategy summarizing DEN/PB treatment in KO and WT mice. (B) Representative photographs of 

tumor-bearing livers in DEN/PB treated KO and WT mice at the time of harvest at 8 months of age. (C) DEN/PB 

induced microscopic tumor foci (outlined by arrowheads) visualized by H&E in WT and KO livers at 8 months of 
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age. (D) A significant increase in microscopic tumor foci in KO as compared to WT (p<0.05). Tumors were counted 

from H&E stained sections representing 4 liver lobes from each KO and WT animals on DEN/PB protocol.  

 

 

3.4.2 -Catenin KO livers after DEN/PB treatment shows increased cell death, stellate cell 

activation and fibrosis and tumor proliferation.  

Next, we addressed the cellular mechanisms that may be the basis of enhanced tumorigenesis in 

KO. We identify higher numbers of TUNEL-positive hepatocytes in KO at 8 months after 

DEN/PB as compared to similarly treated WT, suggesting greater cell death (Fig. 12A). There 

was an accompanying increase in hepatic parenchymal cell proliferation in KO that exceeded 

that of WT (Fig. 12A). In addition, KO mice exhibited a dramatic increase in the numbers of -

smooth muscle actin, which identifies activated stellate cells that are responsible for collagen 

deposition and fibrosis (Fig. 12A). Concomitant to stellate cell activation, we observed enhanced 

fibrosis by Masson Trichrome staining in the KO as compared to the WT (Fig. 12B). In fact only 

one of the 15 WT animals after DEN/PB challenge showed fibrosis, which was comparable to 

fibrosis in the KO. All together, our results suggest that greater tumorigenesis in KO livers 

occurred concomitantly with significantly greater cell death, proliferation (Fig. 12C), and hepatic 

fibrosis. 
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Figure 12. Tumorigenesis in KO mice following DEN/PB treatment is associated with greater injury, fibrosis 

and regeneration. 

(A) Representative tumor-bearing KO livers show increased parenchymal cell death (TUNEL), greater stellate cell 

activation (-SMA) and increased parenchymal cell proliferation (PCNA) as compared to WT. (B) Increased 

hepatic fibrosis (blue) in tumor-bearing KO livers is evident by Masson Trichrome staining as compared to control. 

(C) PCNA- and TUNEL-positive cells were counted in 4 random sections of 5 representative KO and WT livers. A 

significant increase in both PCNA and TUNEL positive parenchymal cells was evident in KO livers as compared to 

WT after DEN/PB treatment. 

 

 

3.4.3 Tumors in KO livers after DEN/PB are not composed of -catenin-positive 

hepatocytes.  

Since there have been reports from our lab and others that in response to specific injuries, there is 

pressure on hepatocytes that may have escaped cre-mediated deletion, our first goal was to 

ascertain if livers exposed to DEN/PB from KO group showed any reappearance of -catenin 

especially when compared to the WT. A representative WB showed that all KO livers from 

DEN/PB exposed mice expressed dramatically lower levels of -catenin as compared to WT by 

western blots (Fig. 13A). This was also verified by a detailed immunohistochemical analysis 

included in a forthcoming section (Table 7 and Fig.14). The low level of -catenin in KO livers 

represents its presence in the non-parenchymal cells of the liver that show no albumin cre-

mediated recombination. Similarly analysis presented from representative KO and WT livers 

also showed absence of glutamine synthetase, a known target gene of -catenin signaling in the 

KO (Fig. 13A). Cyclin-D1, another prominent target of -catenin in liver and elsewhere was 
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increased in most WT, whereas 8/9 KO showed very low or absent cyclin-D1 in response to 

DEN/PB (Fig. 13A and not shown). c-Myc, another target of -catenin, was ironically higher in 

KO as compared to WT mice after DEN/PB exposure as shown in a representative western blot 

(Fig. 13A). Increased c-Myc in KO livers is most likely due to PDGFR and PDGFCC increase 

since PDGF has been shown to stimulate c-Myc mediated proliferation via the PI3K/Akt 

pathway [144]. KO livers after DEN/PB continue to be negative for -catenin after 8 months. 

 

3.4.4 Tumors in KO livers after DEN/PB are not associated with activation of traditional 

HCC associated receptor tyrosine kinases.  

Due to a paradoxical increase in DEN/PB-induced tumorigenesis in KO, we next explored 

possible molecular mechanisms. Both epidermal growth factor (EGF) signaling and hepatocyte 

growth factor (HGF) signaling are critical players in the development and exacerbation of HCC 

[145]. We explored both total and phosphorylated status of these receptor tyrosine kinases 

(RTKs) in livers from DEN/PB-treated KO and WT mice. Interestingly we noted a decrease in 

total and phosphorylated levels of MET, the HGF receptor in KO animals as compared to WT 

(Fig. 13B). Both total and phosphorylated levels of EGFR between WT and KO animals remain 

unaltered (Fig. 13B). We also examined insulin like growth factor receptor, another signaling 

pathway implicated in HCC [145]. We noted higher levels of its phosphorylation in the WT as 

compared to KO (Fig. 13B). Thus, classical RTKs do not appear to be responsible for enhanced 

HCC in KO but p-MET and P-IGFR are prominently induced in tumor bearing WT mice 

suggesting their important role in HCC. 
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Figure 13. Molecular signaling in tumor-bearing B-catenin KO and WT mice. 

(A) Representative western blot analysis from 5 WT and 4 KO tumor-bearing livers shows low -catenin, absent GS 

and dramatically lower cyclin-D1 in KO whereas c-Myc levels were increased. Actin verifies equal loading. (B) 

Examination of RTK in the same sets of animals shows notably lower phospho-MET and phospho-IGFR and only 

marginally lower phospho-EGFR, in KO than WT livers by western blots. GAPDH verifies comparable loading 
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3.4.5 Immunohistochemical characterization of KO and WT liver tumors for -catenin 

and PDGFR.  

We next characterized the tumors observed in the WT and KO by immunohistochemistry for -

catenin localization. Around 31% of total tumor foci in WT mice showed nuclear -catenin 

(Table 7, Fig. 14). Out of 63 observed foci in 9 KO mice, only two were composed of -catenin-

positive tumor cells that exhibited its nuclear/cytoplasmic localization (data not shown) while 

others were negative (Fig. 14). This substantiated the observations in Figure 13A and also 

demonstrates that almost all tumors in this group were comprised by -catenin-negative 

hepatocytes and cannot be due to expansion of cells, which may have retained -catenin due to 

incomplete albumin-cre recombination.  

We next investigated PDGFR signaling, which has been implicated in HCC and is 

involved in tumor growth, angiogenesis, and maintenance of tumor microenvironment [117, 130, 

146]. 54.5% of all tumor foci in the WT mice showed cytoplasmic PDGFR expression (Table 

7). We found around 94% of tumor foci in KO to be strongly positive for PDGFR in the 

cytoplasm of tumor cells (Table 7, Fig. 14). Only four foci were negative for PDGFR. The two 

tumor foci that were -catenin-positive in the KO livers were simultaneously positive for 

PDGFR. 

In an additional analysis, 9 of the 55 tumors observed in the WT were concomitantly 

positive for both PDGFR and nuclear -catenin, while others were positive for either one of the 

two (Table 7, Fig. 14). A small fraction of tumors were negative for both these proteins. The two 

tumors that were composed of -catenin-positive hepatocytes in the KO were also positive for 

PDGFR signaling (Table 7). Overall, PDGFR expression was higher and also in greater 
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numbers of tumor foci in the KO as compared to the WT 8 months after DEN/PB exposure. 
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Figure 14. -catenin and PDGFR immunohistochemistry in tumors in WT and KO mice exposed to 

DEN/PB. 
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Tumors in WT were heterogeneous and were either positive for both -catenin and PDGFR, or for either one of 

them. In KO, almost all tumors lacked any -catenin and showed intense PDGFR-positivity. 

 

Table 7: Summary of Immunohistochemical findings of microscopic tumor foci 

 

SAMPLE 

 

NUMBER OF 

TUMOR FOCI 

 

-CATENIN-

POSITIVE FOCI 

 

 

 

N/C                M 

 

PDGFR-

POSITIVE 

FOCI 

 

 

C 

 

NUMBER OF 

FOCI 

POSITIVE FOR 

BOTH N/C 

-CATENIN 

and  PDGFR 

 

FIGURE 14 

 

WT1 2 0 1 0 0  

WT2 2 0 0 2 0  

WT3 0 0 0 0 0  

WT4 4 4 3 2 2  

WT5 0 0 0 0 0  

WT6 9 2 1 6 1  

WT7 2 0 1 0 0  

WT8 6 5 5 3 3  

WT9 4 1 4 1 0 X 

WT10 2 2 2 2 2 X 

WT11 6 0 6 4 0  

WT12 2 0 2 1 0  

WT13 2 1 2 2 1  
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Abbreviations: WT-wildtype; KO-knockout; N/C- nuclear/cytoplasmic; M-membranous; C-cytoplasmic 

3.4.6 DEN/PB induced increased tumorigenesis is associated with activation of PDGFR 

signaling.  

To further verify PDGFR increase in the KO over WT after DEN/PB, we utilized western blots 

analysis. PDGFR protein levels were higher in the KO than the WT livers (Fig. 15A), and this 

difference was statistically significant (Fig. 15B). There was a modest increase in PDGFR 

levels in the KO livers (Fig. 15A). We also identified an increase in total protein levels of 

selective PDGFR ligand PDGF-CC while PDGF-AA and PDGF-BB remained unaltered 

between the two groups. To determine consequences of enhanced PDGF-CC/PDGFR levels in 

WT14 11 2 8 7 1 X 

WT15 1 0 1 0 0  

 55 17 36 30 9  

 

KO1 17 1 0 17 1 X 

KO2 11 0 0 10 0  

KO3 3 0 0 3 0 X 

KO4 4 0 0 4 0  

KO5 2 0 0 2 0  

KO6 6 0 0 6 0  

KO7 6 1 0 4 1  

KO8 10 0 0 10 0  

KO9 4 0 0 3 0  

 63 2 0 59 2  
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KO we assessed levels of PDGFR phosphorylation at several specific tyrosine residues using 

antibodies listed in methods. As shown in densitometric analyses, a significant increase in 

Tyr720-PDGFR (p<0.05) (Fig. 15D) but not in Tyr849-PDGFR (Fig. 15E) or Tyr572/574- 

and Tyr754-PDGFR (not shown) was observed in the KO. These observations demonstrate 

PDGFR activation in KO, which may be playing an important role in hepatocarcinogenesis.  
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Figure 15. Tumor-bearing -catenin KO mice display active PDGFR signaling when compared to WT.  

(A) Representative western blots from 8 KO and 9 WT show a dramatic increase in total levels of PDGFR and 

modest increase in PDGFR in the KO. Actin loading verifies equal loading. (B) Average integrated optical density 

(IOD) obtained from scanned autoradiographs shown in Fig. 5A revealed significantly higher PDGFR levels in KO 

(p=0.002). (C) Western blot from representative samples shows a dramatic increase in PDGF-CC, a ligand for 

PDGFR in KO whereas PDGF-AA and BB remained unremarkable between the two groups. (D) Bar graph depicts 

a significant increase in Tyr720-PDGFR in KO as compared to WT (p<0.05). (E) Insignificant differences were 

evident in Tyr-849-PDGFR between the WT and KO. 

 

3.4.7 PDGFR ligand stimulates hepatoma cell proliferation only upon -catenin 

suppression.  

To further ascertain the relevance of PDGFR signaling in absence of -catenin, we utilized 

human hepatoma cells. PDGF-CC induced an insignificant increase in Hep3B cell proliferation 

in almost confluent cell cultures (Fig. 16). -Catenin knockdown when compared to control 

siRNA transfection, significantly lowered thymidine incorporation in Hep3B cells (p<0.0005) 

(Fig. 16). Only upon -catenin silencing, was PDGF-CC treatment able to induce significant 

DNA synthesis in Hep3B cells as compared to HCl (p<0.005). Thus -catenin suppression 

enabled PDGF-CC to be mitogenic to Hep3B cells.  
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Figure 16. -catenin suppression increases mitogenicity to PDGF-CC in human hepatoma cell culture. 

PDGF-CC (10ng/ml) treatment does not increase DNA synthesis as compared to HCl treatment of Hep3B cells. -

Catenin knockdown led to significant decrease in thymidine incorporation as compared to control siRNA 

(p<0.0005). However PDGF-CC treatment led to a significant increase in thymidine incorporation in -catenin-

suppressed as compared to control siRNA-transfected cells (p<0.005). 

 

3.5 DISCUSSION 

To understand the molecular and cellular basis of HCC in patients, several preclinical models are 

in use including DEN or DEN/PB regimens in rodents. DEN is a commonly used carcinogen to 

induce HCC in rodent models, however it has high strain specificity. In C57BL/129Sv x C3H/He 

mice, a strain more susceptible to hepatocarcinogenesis, DEN injection at 6 weeks of age at a 
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dose of 90 g/gm body weight, induces HCC through Ha-Ras mutations, while inclusion of PB 

in drinking water after 3 weeks of DEN, promotes tumorigenesis due to -catenin  mutations 

[147]. However, another study in male B6C3F1 mice, obtained by interbreeding female 

C57BL/6J and male C3H/HeJ mice, injected DEN at 10 g/gm body weight at 3 weeks of age 

without PB, showed HCC via -catenin  mutations [148]. Another model utilizes DEN at a dose 

of 5g/gm body weight in C57BL/6 mice, a strain relatively resistant to HCC. Here, DEN 

induces DNA adducts in hepatocytes undergoing cell division, and eventually leads to 

development of HCC [149, 150]. Inclusion of PB enhances tumorigenesis via its tumor 

promoting ability [141, 142]. In our study, we show that DEN/PB induced liver tumors in the 

C57BL/6 mice did not exhibit nuclear/cytoplasmic localization of -catenin and hence not 

selectively cause HCC via -catenin  mutations. This could be because of either the timing of 

DEN/PB administration, since we injected at 2 weeks after birth as opposed to Dr. Schwarz’s 

group, where DEN was administered at 6weeks after birth. The other possibility is strain 

difference of mice, since we used pure C57BL/6 as compared to C57BL/129 X C3H/He mice 

utilized by Dr. Schwarz’s group. 

Many pathways broadly categorized into Ras/MAPK, PIK3CA/AKT, and Wnt/β-catenin 

signaling, have been shown to be of significance in HCC [69, 145]. -Catenin, the central 

orchestrator of Wnt signaling, is a known oncogene due to its implications in a variety of 

cancers, including 20%-40% of all HCCs [151]. Intriguingly though, overexpression of either 

wild type or mutant form of -catenin in murine livers is unable to induce spontaneous HCC 

[152-155]. However, in the presence of another ‘hit’ in the form of a transgene or a chemical 

carcinogen, these various mice show enhanced tumorigenesis [154, 156]. Paradoxically, 

conditional loss of -catenin in hepatocytes in C57BL/6 mice led to an unexpectedly higher 
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susceptibility to DEN-induced HCC [73]. Another group also recently demonstrated increased 

injury, fibrosis, and HCC in KO mice in response to DEN/PB, albeit in C3H/N mice [157]. In 

the current study, we provide evidence that -catenin KO mice in C57BL/6 background 

subjected to DEN-mediated tumor induction at P14 followed by tumor promotion 2 weeks later 

by PB also led to a dramatically higher tumor burden.  

DEN or DEN/PB induced HCC in any strain of mice is not typically associated with any 

hepatic fibrosis. However, in the -catenin conditional null mice DEN/PB exposure led to 

development of HCC, which was associated with hepatic fibrosis and is in line with recent 

studies by others and us [73, 157]. We also saw an increase in cell death and resulting increase in 

cell proliferation. In fact we identified increased stellate cell activation, a modest increase in 

PDGFR and ensuing hepatic fibrosis. These data indicate that -catenin loss makes livers more 

prone to genotoxic injury and eventually tumorigenesis mimicking the predominant scenario of 

human HCC where tumors often occurs in cirrhotic background [158]. Role of -catenin in 

regulating redox state has been implied in many recent studies where its interactions with HIF1, 

FOXO3 and others may be critical [159, 160]. It will thus be important to understand the basis of 

such ‘tumor suppressive’ roles of -catenin in HCC that may eventually require careful selection 

of patients to be treated with anti--catenin therapies [66]. 

To ascertain the molecular basis of HCC in the absence of β-catenin, we were interested 

in signaling pathways that are well known in the development and exacerbation of HCC. MET 

and IGFR phosphorylation was increased in WT but not in KO mice while EGFR activation was 

only mildly elevated in WT. Thus while these RTK’s may be playing an important role in 

tumorigenesis in the WT exposed to DEN/PB, their participation in KO is unlikely. Based on our 

previous findings in DEN-induced tumorigenesis in KO [73] and independent studies showing an 
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important role of PDGFR signaling in HCC [117, 130, 146], we investigated its expression and 

activation in DEN/PB studies. PDGFR levels were significantly upregulated in KO after 

DEN/PB-exposure. In addition, PDGF-CC a selective ligand of PDGFR, whose overexpression 

in liver-specific transgenic mice has been shown to induce cirrhosis and HCC [161], was also 

increased in KO. In fact PDGF-CC was localized to hepatocytes in KO exposed to DEN/PB 

(data not shown) suggesting an autocrine loop of signaling. The results obtained from thymidine 

incorporation assay in the Hep3B cells, corroborates in vivo findings. While decreased cell 

proliferation was observed in hepatoma cells after -catenin knockdown [143], PDGF-CC 

promoted their mitogenesis more robustly only after -catenin suppression that leads to 

PDGFR upregulation [73]. This also verifies PDGFR signaling as a means of escape from -

catenin therapeutic inhibition. 

PDGFR overexpression in the presence of increased PDGF-CC led to increased 

Tyr720-PDGFR in tumor bearing KO but not WT livers after DEN/PB. Phosphorylation at 

tyrosine 720 is known to activate phosphatase SHP2, which in turn dephosphorylates Src, 

leading to its activation [89]. Src activation has been shown to induce c-Myc, an important proto-

oncogene [124], which was concomitantly elevated in KO. Other tyrosine sites in PDGFR 

showed inconspicuous changes in phosphorylation between the KO and WT and thus may be of 

lesser relevance in the current tumorigenesis model. 

Only around 3% of all tumors in the 9 KO’s at 8 months after the DEN/PB regimen were 

-catenin-positive tumors that may be due to ‘leaky’ cre-recombinase. -catenin-negative tumors 

were also negative for GS and mostly negative for cyclin-D1. We have not followed any animals 

in this study beyond 8 months. Others have recently reported extensive spontaneous repopulation 

in KO livers albeit at 18-20 months of age [162]. One group has reported a more robust 
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spontaneous repopulation and hepatic adenomatosis in KO, which has not been reported by any 

other group working with the -catenin conditional knockout mice [163]. The only instance of 

extensive repopulation in the KO mice in our experience was observed after continuous 

administration of diet containing 0.1% 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) for 5 

months [164]. In fact KO mice have been studied after PHx, methionine-choline deficient diet, 

alcohol diet or DEN and have exhibited lack of hepatic repopulation with -catenin-positive 

hepatocytes [73, 88, 160, 165]. 

3.6  FUTURE DIRECTIONS 

 Generate Pdgfra/-catenin conditional double KO mice and perform the same DEN/PB 

induced tumorigenesis studies and assess whether there will be abrogation of increased 

tumorigenesis. This will conclusively corroborate our results that PDGFR activation is 

the escape mechanism for increased tumorigenesis in -catenin conditional KO mice. 

Based on both in vivo and cell culture results, we anticipate that Pdgfra/-catenin mice 

will have significantly reduced tumorigenesis when compared to -catenin KO alone.  

 Our lab has previously shown increased PDGFR protein expression 24hr after -catenin 

knockdown [73]. We show here that treatment of Hep3B cells with PDGFCC induced 

insignificant changes in Hep3B cell proliferation. However, we observed a significant 

increase in Hep3B cell proliferation upon PDGFCC treatment 24hr after -catenin 

knockdown. Based on these observations, we will perform siRNA knock down of -

catenin in Hep3B cells and obtain lysates. Lysates will be utilized for WB analysis using 
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site-specific PDGFR phospho antibodies to identify which sites are activated after -

catenin knockdown. Based on our in vivo data, we anticipate that several PDGFR sites, 

especially the SHP2 site will be highly activated after -catenin knockdown. If the 

phosphorylation of the PDGFR-SHP2 site is increased after -catenin suppression as 

anticipated, we will then utilize SHP2 site mutant to address the importance of this 

phosphorylation site of PDGFR upon -catenin silencing. We anticipate that 

transfection of Hep3B cells with the PDGFR-SHP2 mutant 24hr after -catenin 

suppression will abrogate PDGFCC induced Hep3B cell proliferation. 
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4.0  ROLE AND REGULATION OF PDGFR SIGNALING IN LIVER 

REGENERATION   

4.1 ABSTRACT 

 

Aberrant PDGFR signaling is evident in a subset of hepatocellular cancers (HCCs). 

However, its role and regulation in hepatic physiology remains elusive. In the current study we 

examine PDGFR signaling liver regeneration (LR). We identified temporal PDGFR 

overexpression, which is regulated by EGF and TNF, and its activation at 3 hours (3h)-24h 

after partial hepatectomy (PHx). Through generation of hepatocyte-specific Pdgfra knockout 

(KO) that lack an overt phenotype, we show absent PDGFR compromises Erk and AKT 

activation at 3h after PHx, which however is alleviated by temporal compensatory increases in 

EGF receptor (EGFR) and HGF receptor (MET) expression and activation along with rebound 

activation of Erk and ATK at 24h. These untimely increase in EGFR and MET allow for normal 

hepatocyte proliferation at 48h in KO, which however is aberrantly prolonged up to 72h. 

Intriguingly, such compensation was also visible in primary KO hepatocyte cultures but not in 

HCC cells after siRNA-mediated PDGFR knockdown. Thus, temporal activation of PDGFR 

in liver development is important in hepatic morphogenesis. In LR, despite increased signaling, 

PDGFR is dispensable due to EGFR and MET compensation, which is unique to normal 
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hepatocytes and not HCC cells. 

4.2 INTRODUCTION 

Platelet-derived growth factor receptor-alpha (PDGFR) is a receptor tyrosine kinase 

(RTK) expressed chiefly on mesenchymal cells including fibroblasts and smooth muscle cells 

[95, 97, 100]. In addition, it is also expressed on other cell types including neurons and 

endothelial cells. It’s activation is elicited by platelet derived growth factors, especially AA and 

CC, which induce potent effects on the growth, motility, and survival, thus regulating function 

of these cells [89]. Following engagement, PDGFR tyrosine phosphorylation can occur at 

diverse residues to elicit activation of distinct downstream effectors. Specifically relevant are 

downstream activation of phosphatidylinositide 3-kinases (PI3K) and AKT as well as Erk 

signaling [90, 120, 166] 

Our lab has recently identified PDGFRα expression in hepatoblasts during early liver 

development coinciding with the time of peak proliferation that gradually decreases to low 

levels. In an adult liver only low PDGFR expression is evident, however, its expression is 

dramatically increased in a significant subset of hepatocellular carcinomas (HCC) and its 

inhibition in human HCC cells leads to reduced tumor cell proliferation and viability [117, 130].   

It is thus pertinent to further investigate the role and regulation of PDGFR in liver 

growth. In the current study, we investigate the role of this RTK in a major model of hepatic 

growth. Liver regeneration (LR) after PHx is commonly used to study importance of signaling 

molecules in hepatic growth. The process of LR requires an orderly interplay between many cell 

types and several signaling pathways [39, 41]. The cellular and molecular mechanisms 
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responsible for LR exhibit significant redundancy to allow completion of the process as shown 

by studies in genetic models or after chemical intervention.  

In the current study we demonstrate that adult murine hepatocytes indeed express 

PDGFR albeit at low levels. However, after PHx, we observe temporal early upregulation and 

activation of PDGFR. Through generation of hepatocyte-specific Pdgfra knockout mice (KO) 

by interbreeding floxed Pdgfra [167] and albumin-cre animals [168], we demonstrate that its 

conditional loss from hepatocytes is well tolerated. When subjected to PHx, LR proceeds 

uneventfully owing to compensatory increases in the expression of epidermal growth factor 

receptor (EGFR) and MET, the hepatocyte growth factor (HGF) receptor. Such redundancy is 

unique to LR and not HCC growth making PDGFR an attractive therapeutic target. Thus we 

show an important role of PDGFR in various aspects of liver growth 

  

 

4.3 MATERIALS AND METHODS 

4.3.1 Generation of Pdgfra Conditional Knockout Mice  

Homozygous Pdgfra floxed (exons 1-4) and albumin-Cre mice (both in C57BL/6 background) 

were obtained from Jackson Laboratories (Bar Harbor, ME). Homozygous floxed Pdgfra mice 

were bred to albumin-Cre mice and the offspring carrying a floxed Pdgfra allele and albumin-

Cre were then bred to the homozygous floxed Pdgfra mice. The mice with floxed and floxed-

deleted allele of Pdgfra are henceforth referred to as Pdgfra
loxp/loxp

; Alb-Cre
+/−

 or knockout (KO) 
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mice and all other genotypes including Pdgfra
loxp/loxp

; Alb-Cre
−/−

 and Pdgfra
loxp/Wt

; Alb-Cre
−/−

 or 

Pdgfra
loxp/loxp

; Alb-Cre
−/−

 are referred to as wildtype controls (WT).  

4.3.2 Animal studies and PHx.  

All experiments on mice were performed under the strict guidelines of the National Institutes of 

Health and the Institutional Animal Use and Care Committee at the University of Pittsburgh. 

Eight to 12 week-old female KO and littermate female controls were subjected to PHx as 

described previously [88, 154]. Mice (n>3 per genotype) were sacrificed at specified time-points 

post surgery as indicated in results and figures. Baseline and regenerating livers were harvested 

and stored at -80°C until use. Livers were also fixed in 10% formalin to be used for paraffin 

embedding or placed in OCT compound for cryosectioning. 

4.3.3 Serum Biochemistry 

Serum biochemical measurements were performed by the University of Pittsburgh Department 

of Pathology Lab Support Services.  Blood from male or female KO along with sex and age-

matched WT was collected at 3-10 months (Table 9) for serum biochemistry Total bilirubin, 

alkaline phosphatase, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) 

were measured on samples taken prior to sacrifice at different time points.   

4.3.4 Western Blot (WB) Analysis 

 Total tissue lysates were prepared from independent or pooled (n≥3) livers in the radio immuno-
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precipitation assay (RIPA) buffer and assessed by WB as discussed elsewhere. After 

autoradiography, the films were scanned to obtain integrated optic densitometry (IOD) using 

NIH Imager software. The average IOD for a protein was compared between the KO and WT 

groups and assessed for statistical significance by student t test and p<0.05 was considered 

significant.   

 

Table 8: EGFR and Met phospho specific antibodies used for western blot 

Antibody Target Concentration Source 

phospho-EGFR1173 1:200 Santa Cruz 

phospho-EGFR1068 1:300 Cell Signaling 

phospho-MET1234 1:200 Cell Signaling 

 

4.3.5 Real time-PCR  

RNA was extracted from livers using Trizol (Invitrogen) as per the manufacturer’s instructions. 

RNA from each sample was reverse transcribed with SuperScript III First –Strand Synthesis 

System for RT-PCR with an RNase H treatment (Invitrogen). Also, equal amounts of RNA from 

three age- and sex-matched KO mouse livers were pooled to make cDNA. A total of 0.1 μg 

cDNA along with 1x Power SYBR-Green PCR Master Mix (Applied Biosystems) and the 

appropriate primers (see below) were used for each real-time PCR reaction. The samples were 

analyzed for each condition in triplicates to enable statistical analysis. The Applied Biosystems 

StepOnePlus Real-Time PCR System was used for the analysis of the transcripts with the 

StepOne v2.1 software. Comparative ΔΔCT was used for analysis of the data, and calculations 
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were made without the StepOne software. 

The real-time PCR analysis was performed with a liver-specific reference gene 

(cyclophilin-A). Primer efficiencies were performed for each primer, and only similar 

efficiencies were used for analysis. The following real-time PCR primers were designed using 

Primer-BLAST (NIH):  mouse Pdgfra forward: 5’- TCC TTC TAC CAC CTC AGC GAG -3’; 

mouse Pdgfra reverse: 5’- CCG GAT GGT CAC TCT TTA GGA AG -3’; mouse cyclophilin-A 

forward: 5'- CCC CAC CGT GTT CTT CGA CA -3'; mouse cyclophilin-A reverse: 5'- TCC 

AGT GCT CAG AGC TCG AAA -3'. 

4.3.6 Histology, Immunohistochemistry (IHC) and Immunofluorescence (IF) 

 Four-micron sections from paraffin-embedded liver tissues were subjected to IHC [154]. PCNA-

positive hepatocytes were counted under an Axioscope 40 (Zeiss) upright research microscope in 

four randomly selected fields per section at 400X magnification. PCNA counts between WT and 

KO livers after PH were compared for statistical significant by student t test with p<0.05 

considered significant.  

For IF, cryosections were fixed for 10 minutes in 4% paraformaldehyde, washed in PBS, and 

blocked in 2% BSA for 45 minutes. Rabbit polyclonal PDGFR antibody (Santa Cruz) was used 

at 1:40 dilution in 0.5% BSA and incubated for 1h, washed in 0.5% BSA, and Cy3-conjugated 

anti-Rabbit antibody (Molecular Probes) was applied at 1:700 dilution in 0.5% BSA for 30 

minutes. Washes were repeated in 0.5% BSA, PBS, followed by incubation with DAPI for 45 

seconds. Sections were cover slipped in Gelvatol and sections visualized under Zeiss Axioscope 

microscope. 
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4.3.7 Cell culture and treatment  

Human hepatoma cells (Hep3B; ATCC) cultured in serum free EMEM were treated with 

20ng/ml EGF (BD, Durham NC), 40ng/ml HGF (Kind gift from Snow Brand milk company), 

25ng/ml TNFα (R&D systems, Minneapolis MN), 3uM/ml EGFR inhibitor (SelleckBio, Houston 

TX) for 24hr. Cells were washed and lysed in RIPA buffer and assessed by WB. Briefly, Hep3B 

cells were plated in 10cm dish plates containing EMEM with 10% FBS and serum starved for 

4hr for synchronization. Cells were treated with the various cytokine or growth factors and 

harvested 24hr later. 

4.3.8 Cell culture and Transfection 

Human hepatoma cells (Hep3B; ATCC) were plated and cultured in six well plates in EMEM 

with 10% FBS. The next day cells were serum starved for 14hr to allow for synchronization. 

Cells were then transfected with 30uM PDGFRA siRNA (Ambion®, Austin TX) or control for 

6h. After 6h transfection, 1ml of EMEM media with 4% FBS was added to each well for 

overnight and cells were harvested at 24h and 48h for western blot analyses.  

4.3.9 Collagenase Perfusion 

A modified 2-step collagenase perfusion and mouse hepatocyte culture was done as described 

previously.  Primary hepatocytes from WT and Pdgfra KO mice were isolated and plated on 

collagen coated six well plates in MEM media with 10% FBS for 2h. Afterwards the media was 

discarded and replaced with basic mouse growth media (MGM) or MEM media with 10% FBS. 
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Cells in basic MGM were untreated or treated with 20ng/ml EGF (BD, Durham NC) 40ng/ml 

HGF (Kind gift from Snow Brand milk company), 25ng/ml TNFα (R&D systems, Minneapolis 

MN), combined EGF/HGF and harvested 24h later for WB analyses.  

 

4.4 RESULTS 

4.4.1 Temporal increase in PDGFRα protein and activity after PHx.  

To determine if PDGFR may have a role in another model of regulated hepatic growth, 

we assessed its expression during the process of LR after PHx especially since hepatocytes are 

known to secrete PDGFs during this process [43]. We examined whole cell lysates from pooled 

livers (n≥3) from different times after PH. A dramatic increase in PDGFRα protein level was 

evident at 24h during LR (Fig. 17A and C). No change in PDGFR expression in sham surgery 

was observed (not shown). To further verify this observation, PDGFR expression was 

examined in individual livers from four mice harvested at 24h after PHx. All four samples 

showed a clear increase in PDGFR expression at this time during LR (Fig. 17B). While no 

other phospho-specific forms of PDGFR were detectable (data not shown), increased 

phosphorylation at Tyr-572/574 was observed in regenerating livers from 3h-28h while 24h 

sham sample lacks such an increase (Fig. 17C). Concomitant to an early increase in p-PDGFR, 

there was a notable increase in both p-Erk and p-AKT that indicates the role of PDGFR in 

regulating the activity of these important mediators of LR (Fig. 17C). To determine the 

mechanism of enhanced protein expression of PDGFR, we examined mRNA expression and 
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identified a 2.0 fold increase in Pdgfra in pooled 24h livers as compared to pre-hepatectomy 

samples (Fig. 17D). To address the molecular basis of increased PDGFR expression after PHx, 

we examined the effects of known growth factors and cytokines that are known to critical 

initiators of LR [39]. A human hepatoma cell line Hep3B was treated for 24h with HGF, EGF 

and TNF as indicated in methods and cells tested for changes in PDGFR protein expression 

by WB. EGF treatment brought about an increase in PDGFR levels, which was abrogated by 

concomitant treatment of cells with an EGFR inhibitor (Fig. 17E). TNF treatment also led to an 

increase in total PDGFR. Thus, EGF and TNF induce the expression of PDGFR during early 

LR. 
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Figure 17. Temporal increase in PDGFR expression and activation during LR after PHx. 

(A) Representative WB from pooled livers shows increased PDGFRα protein expression after PHx with peak 

expression evident at 24h post-PHx. GAPDH verifies comparable loading. (B) WB using whole cell lysates from 4 

individual animals show a notable increase in total PDGFR at 24h after PHx as compared to normal livers at 

baseline, while GAPDH shows comparable loading. (C) Representative WB shows activation of PDGFR 
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(phosphorylated at Tyr 572, 574), Erk (phosphorylated at Thr202 and Tyr204 of Erk1 or Thr185 and Tyr187 of 

Erk2) and AKT (phosphorylated at Thr308) at various time-points after PHx using a site-specific PDGFRα. 

Abbreviation: SH-sham surgery sample. (D) Real-Time PCR showing 2-fold increase in Pdgfra 24hr post-PHx 

(p=0.0001). (E) Lysates from Hep3B cells treated with various growth factors for 24h shows increased PDGFR 

expression in response to EGF and TNF treatment. The increase by EGF was abrogated by concomitant use of 

EGFR inhibitor AG-1478. GAPDH depicts equal loading., 

. 

4.4.2 Pdgfra conditional KO mice lack an overt phenotype.  

To address the function of PDGFR during LR, we generated hepatocyte-specific conditional 

Pdgfra KO mice. Mice were born in normal Mendelian ratio and did not exhibit any apparent 

phenotype. Genotype was verified by the presence of homozygous floxed Pdgfr allele and cre-

recombinase by PCR (Fig. 18A). The livers from KO and WT livers showed unremarkable gross 

differences (not shown). No differences were observed in liver weight to body weight ratios 

between KO and WT mice (Fig. 18B) and serum biochemistry showed insignificant differences 

between WT and KO animals (Table 1). KO livers (≥2 months old) were utilized for WB, IHC 

and real-time PCR. A decrease in total PDGFR was evident in KO by WB as compared to the 

control livers (Fig. 18C). No changes in PDGFR, or PDGFR ligands such as PDGF-AA or 

PDGF-CC were observed in the KO versus WT in the livers from age-and sex-matched 

littermates (Fig. 18C). Since there was significant remnant expression of PDGFR in KO livers, 

we next tested PDGFR by IHC in KO and WT livers. Indeed PDGFR continued to be 

expressed in non-parenchymal cells in the KO livers as compared to WT since albumin-cre will 

specifically delete floxed gene from hepatocytes (Fig. 18D). Real-time PCR also showed around 
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50% decrease in Pdgfra expression in KO livers, which was significantly lower than littermate 

controls (Fig. 18E). 

 

 

Figure 18. Generation of Pdgfra KO mice reveal lack of overt phenotype. 

(A) Genotyping PCR identifies KOs (lanes 2 and 4) by the presence of cre recombinase (lower panel) and floxed 

PDGFR allele (242 bp) (upper panel). WT controls were identified by the absence of cre (lane 3) or presence of cre 
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in animals that harbor WT PDGFR allele (451 bp) and floxed allele (lane 1). (B) Graph depicting insignificant 

change in liver weight to body weight ratios between WT (n=6) and KO (n=5) at baseline. (C) WB in lower panel 

shows significant decrease in total PDGFRα protein in the KO livers. No changes in levels of PDGFR and 

PDGFR ligands including PDGF-AA and CC were observed. (D) IHC of WT (left) livers show expression of 

PDGFR at hepatocyte membrane (arrows). PDGFR KO (right) show reduced PDGFR staining which was 

localized to non-parenchymal cells (arrowheads). (400X) (E) Real-Time PCR showing a significant decrease of 

Pdgfra expression in KO livers (p=0.0001). 

 

Table 9: Serum biochemistry results comparing WT and Pdgfra KO mice 

Genotype Sex AGE 

(Months) 

Total 

Bilirubin 

(mg/dl) 

Aspartate 

transaminase 

(AST)  (IU/L) 

Normal (5-40) 

Alanine 

transaminase 

(ALT) (IU/L) 

Normal (7-56) 

WT1 M 3 .3 70 31 

WT3 F 8 .2 53 16 

WT2 F 8 .3 44 20 

KO F 3 .4 87 23 

KO F 3 .2 82 25 

KO M 3 .3 117 48 

KO1’ F 10 .1 59 16 

KO2’ F 10 .2 61 15 

KO2 F 8 .3 160 30 
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4.4.3 Pdgfra KO mice show normal hepatocyte proliferation after PHx.  

Eight weeks or older female littermate KO and WT were subjected to PHx. Since peak PDGFR 

expression was observed at 24h, we first determined its levels at this time in KO. KO livers lack 

any increase in PDGFR at 24h after PHx as compared to WT, indicating the predominant 

increase in PDGFR protein to be in the parenchymal cell compartment (Fig. 19A). IF at 24h 

during LR demonstrates PDGFR expression to be dramatically lower in KO and evident in 

non-parenchymal cells whereas WT show strong membranous localization in the hepatocytes 

(Fig. 19B). 

The KO mice were followed after PHx for any morbidity. There appeared to be a 

temporal restricted activity in the KO around 24h after PHx, however all KO mice recovered 

from surgery and were indistinguishable from WT at all later time points. Based on the role of 

PDGFR in liver development and in HCC [117], we compared hepatocyte proliferation 

between the two groups of animals during LR. We hypothesized that PDGFR induction and 

activation at 24h may be one of the upstream signaling cascades regulating hepatocyte 

proliferation during LR, which usually peaks at around 48h after PHx in C57BL6 mice, although 

cell cycle initiation occurs much earlier. However, we found comparable and high number of 

hepatocytes in S-phase as detected by IHC for PCNA at 48h in KO and WT (Figure 19C-D). 

Intriguingly, at 72h, while PCNA staining was expectedly lower in WT, KO mice continued to 

display several hepatocytes in S-phase (Fig. 19C-D). However, no further growth advantage was 

evident at later stages and KO and WT mice had comparable restoration in hepatic mass at 14 

days after PHx. 
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4.4.4 Pdgfra KO mice show no compensatory changes in PDGF signaling but show 

enhanced EGFR and MET expression and activation during LR.  

Due to lack of any defect in cell proliferation in KO at 48h and in fact a continued proliferation 

at higher than normal levels at 72h we wondered if any compensatory mechanisms could account 

for such observation. We focused on 24-72h, which represent the times of activation of cell cycle 

and of ongoing cell proliferation during the LR process. First, liver lysates were assessed for 

PDGF signaling which was unremarkable for any differences in PDGF-AA, PDGF-CC and also 

for PDGFR, which has been shown to compensate for PDGFR loss in vitro [166] (Fig. 20A). 

We next investigated expression for RTKs, such as EGFR and MET, which are major drivers of 

LR and also associated with hepatocyte proliferation [39]. Interestingly, WB showed increased 

EGFR and MET protein prominently at 24h in the regenerating KO livers (Fig. 20B). 

Quantification after normalization to loading control revealed around 3.5-fold increase in EGFR 

and 2.5-fold increase in MET above the WT levels at 24h (Fig. 20C-D). To address the state of 

RTK signaling, we assessed lysates for phosphorylation of EGFR and MET. Elevated levels of  

Tyr1068-EGFR, Tyr1173-EGFR and Tyr1234-MET were observed in lieu of PDGFR-

activation at 24h after PHx in KO livers (Fig. 20E). Thus, the anomalous increases in EGFR and 

MET expression and activity at 24h ensure hepatocyte proliferation at 48h in PDGFR KO that 

is comparable to WT, but the aberration eventually became apparent at 72h when proliferation in 

WT receded while KO hepatocytes continued to proliferate albeit temporally and without 

chronic consequences. 
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Figure 19. Continued proliferation in Pdgfra KO livers during LR after PHx 

(A) Representative WB verifies abrogation of surge in PDGFR expression in KO livers at 24h after PHx as 

compared to WT. (B) IF shows PDGFR localizing to hepatocyte membrane (red) at 24h after PHx in WT liver 

(upper panel) whereas it is localized to non-parenchymal cells and is conspicuously absent from hepatocyte 

membranes in KO (lower panel). (400X). (C) PCNA IHC in WT liver and KO liver at 48h and 72h post PHx shows 

enhanced nuclear staining (arrowhead) and mitosis (arrows) in KO especially at 72h. PCNA-negative hepatocytes 

are indicated with red arrowheads. (100X). (D) Bar graph of PCNA index of WT and KO livers shows comparable 

cells in S-phase at 48h whereas a significant increase is observed in KO at 72h (*p<0.05).  
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Figure 20. Loss of hepatocyte Pdgfra induces temporal increase in EGFR and MET expression and activation 

at 24hr after PHx 
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(A) Representative WB from pooled livers shows no changes in protein expression of PDGFR, PDGF-AA or 

PDGF-BB at various time points after PHx in KO when compared to WT. (B) Representative WB shows decreased 

p-AKT and p-Erk in KO as compared to WT at 3h during LR. Enhanced EGFR and MET protein expression in KO 

livers at 24h after PHx coincides with increased p-AKT and p-Erk at this time in KO as compared to WT. (C) 

Quantification of changes in EGFR protein after PHx shows a 2.5-fold increase in KO livers at 24h post PHx. 

Normalized to baseline WT. (D) Quantification of changes in MET protein levels after PHx shows 2-fold increase 

over baseline. Normalized to baseline WT. (E) Representative WB shows enhanced protein expression of 

phosphorylated forms of EGFR and MET as indicated, especially at 24h after PHx. 

   

4.4.5 Inhibition of PDGFRα signaling induces EGFR or MET expression in vitro only in 

hepatocytes and not hepatoma cells.  

 To determine if EGFR and MET are globally induced upon PDGFR inhibition, we first tested 

the impact of PDGFR loss in primary hepatocytes, which were isolated by collagenase 

perfusion from WT and KO mice and cultured for 24h as described in methods. An increase in 

total EGFR and MET expression was evident in KO hepatocytes as compared to WT after 24h in 

culture (Figure 21A).  

Next we tested the impact of PDGFR knockdown in human hepatoma cells on EGFR and MET 

expression. After transfection of PDGFR siRNA but not control siRNA for either 24h or 48h 

led to a robust PDGFR decrease in Hep3B cells (Figure 21A). However, no change in either 

EGFR or MET protein levels were observed at the corresponding times indicating that only 

primary hepatocytes but not HCC cells had the capability to enhance the expression of the two 

RTKs upon PDGFR inhibition. 
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Figure 21. EGFR and MET expression are induced after Pdgfra loss in normal mouse hepatocytes but not in 

HCC cells. 

(A) Primary hepatocytes isolated from age- and sex- matched WT and KO livers upon culture for 24h show 

increased expression of EGFR and MET in KO. Densitometric analysis on the representative WB shows at least 2.0 

fold increase in MET and 2.5-fold increase in EGFR levels in the KO hepatocytes. (B) A representative WB shows 

PDGFR-siRNA and not control-siRNA transfection of Hep3B cells leads to a notable decrease in PDGFR 

expression, at both 24h and 48h. However no changes in EGFR or MET were detectable at either time point. 

  

4.5 DISCUSSION 

PDGFR, a traditional serum growth factor receptor for mesenchymal cells, is expressed 
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abundantly in human HCC cells and known to induce cell proliferation [117]. To address the role 

and regulation of PDGFR in normal liver growth, especially in epithelial cells of the liver, we 

investigated its status in a model of surgically induced LR. We observed an Increase in PDGFR 

activation and expression at 3-24h after PHx. There was an associated increase in AKT and Erk 

signaling that are know to be important in LR and also shown to be downstream effectors of 

PDGFR signaling [166, 169, 170]. At the same time PDGFR is activated as evident by its 

phosphorylation status, which may be due to an autocrine mechanism since PDGFs are known to 

be secreted by hepatocytes during LR, although no changes in their total protein is observed 

during LR [43]. We next wanted to address possible mechanisms of PDGFR upregulation after 

PH. Many important cytokines and growth factors including TNFα, EGF and HGF are secreted 

very shortly during liver regeneration after PHx and are important for this process [41, 56, 171-

174]. Our laboratory recently showed NFB as a possible mechanism for PDGFR protein 

upregulation after knockdown of CTNNB1 (-catenin) in human hepatoma cells [73]. NFB 

plays an important role during liver regeneration [175] and TNFα is known to activate NFB 

[173, 176, 177]. Based on these reports, we speculated that EGF, HGF, or TNFα could be 

inducing PDGFR increase during liver regeneration after PH.  To address this, we cultured and 

treated human hepatoma cells (Hep3B) with EGF, HGF, and TNFα for 24h and harvested cells 

for WB analyses.  Treatment of Hep3B cells with EGF and TNFα respectively induced a salient 

increase in PDGFR protein levels while HGF had no affect. To address the role of PDGFR, 

we generated Pdgfra-conditional KO mice lacking Pdgfra in hepatocytes. These mice showed no 

overt phenotype and this is not surprising because of normally low expression of PDGFR in the 

liver and perhaps due to existing redundancy in RTK signaling pathways. Also, remnant 

expression of PDGFR in KO is due to its presence in non-parenchymal cells such as endothelial 
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cells and hepatic stellate cells [132, 178]. When the KO mice were subjected to PHx, we 

observed a notable decrease in PDGFR expression at 3h and 24h supporting the increased 

expression and activity of PDGFR in hepatocytes during the early LR period. Simultaneously, a 

decrease in p-Erk and AKT activity was evident at 3h in the KO. Intriguingly though, increased 

p-AKT and p-ERK levels were evident in the KO at 24h, which corresponded to increased EGFR 

and MET expression over the WT levels.  MET and EGFR are paramount in normal LR ad in 

regulating hepatocyte proliferation [179, 180]. This excessive EGFR and MET expression and 

activity in absence of PDGFR enabled comparable hepatocyte proliferation at 48h in KO and 

WT. These findings again highlight the existing molecular redundancy that exists in normal LR 

process where blockade of a single signaling pathway is readily compensated by an alternate 

signaling cascade [39, 56]. However, this untimely and non-scheduled aberration appears to be 

responsible for transiently prolonging hepatocyte proliferation in PDGFR in KO at 72h as 

reflected by increased hepatocytes in S-phase when compared to WT where proliferation has 

receded. However all later time points in KO are unremarkable for any proliferative changes 

when compared to the WT. These observations highlight a fine balance that exists between 

various signaling mechanisms during the process of normal LR [39, 41]. 

Interestingly, the inverse relationship between EGFR and PDGFR was also described in 

EGFR-suppression studies. shRNA mediated silencing of EGFR during LR led to an increase in 

both gene and protein expression of PDGFRα [180]. Similarly, deletion of Pdgfra lead to 

enhanced stimulation of the EGFR pathway in mouse embryonic fibroblasts [166]. The exact 

mechanism of the relationship between PDGFR and EGFR will need further studies although 

EGFR and PDGFRα may be physically interacting as has shown to occur between EGFR and 

PDGFR [102, 181, 182]. 
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Hepatic fibrosis and cirrhosis as a result of chronic liver diseases are precursors of HCC. 

Around 80% of all HCC have underlying cirrhosis [69]. In fact chronic liver injury leads to 

hepatocyte death, inflammation, fibrosis, oxidative stress and hepatocyte proliferation [158]. The 

regenerating nodules that occupy cirrhotic liver are considered critical for maintenance of hepatic 

function, but proliferation in these nodules in a suboptimal environment also makes them prone 

to genotoxic insult, eventually evolving into dysplastic nodules and HCC. Since several signaling 

pathways are commonly relevant in LR and HCC, molecular targeting can be a concern in HCC 

in chronic liver diseases. Thus it is critical to identify targets that may be dispensable for LR but 

are critical for HCC. In our current study, we show that PDGFR signaling, which has been 

previously shown to be a valid, biologically relevant, therapeutic target in HCC [117, 130, 183], 

may be dispensable for LR because of redundancy with other RTKs like EGFR and MET. 

Intriguingly, such redundancy is unique to normal hepatocytes and not HCC cells as siRNA 

mediated PDGFR knockdown in Hep3B cells did not induce the expression of these RTKs. 

Although additional studies will be necessary, we propose that selective targeting of PDGFR in 

eligible HCC patients may be efficacious even in chronic liver diseases without a concern of 

impairing hepatic functions. Humanized PDGFR-blocking antibody is in fact on the horizon for 

treatment of various cancers [128, 184, 185].  

4.6  FUTURE DIRECTIONS  

 EGFR floxed and c-met floxed mice are available [186, 187]. Using similar breeding 

strategy outlined in the methods, we plan to breed these mice to Pdgfra floxed mice in 

order to generate double Pdgfra/EGFR or Pdgfra/c-Met conditional double KO mice. We 
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will then perform PHx on these mice to conclusively address the importance of these 

possible compensations.. We show that lack of hepatocyte Pdgfra do not delay LR and  

this appears to be due to MET and EGFR signaling. Lacks of hepatocyte c-Met or EGFR 

alone have been shown to delay LR [179, 180, 186, 187]. It will be interesting to 

determine whether there are any additive or synergistic defects in either of the double KO 

mice compared to EGFR, c-Met, or Pdgfra single KO after PHx   

 As displayed in figure 22, we have also identified enhanced PDGFR protein expression 

in wild type mice 12 weeks after bile duct ligation. We next plan to do 

immunohistochemistry to determine if hepatocytes are responsible for increased 

PDGFR expression after BDL. If hepatocytes show high expression, we plan to perform 

BDL on our conditional Pdgfra KO mice and determine whether loss of Pdgfra 

accelerates or negatively impacts the regenerative process. It is unclear whether 

hepatocyte proliferation after BDL is protective or part of the pathological process. Based 

o this, it is difficult to predict an outcome but nonetheless it will be interesting to 

decipher the effects of hepatocyte Pdgfra loss during this process. 

 

 

 

 

 

 

 

Figure 22. WB analysis of PDGFR levels in bile duct ligated mice. 
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WB showing significantly upregulated PDGFR levels in livers of mice 12 weeks after Bile duct ligation 

(BDL) compared to baseline line levels. Ponceau stain verifies comparable loading 
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5.0  GENERAL DISCUSSION 

  

5.1 IDENTIFICATION OF OTHER DEVELOPMENTAL SIGNALS AS A WAY TO 

GENERATE HEPATIC LIKE CELLS. 

 

The liver performs functions that are critical for survival. Some of these functions include 

processing nutrients from food, making bile, removing toxins from the body and synthesizing 

proteins. However when the liver becomes disease stricken, these basic functions of the liver are 

precluded and this can ultimately lead to death of the patient. Fortunately, the liver is equipped 

with extraordinary innate regenerative capacity to re-grow when a portion of the liver mass is 

removed or when the liver is damaged [39, 41]. Currently, the most efficacious treatment of 

choice for patients with end stage liver disease is orthotopic liver transplantation (OLT) [2, 188, 

189]. However, this form of treatment has been met with many challenges in that it demands 

major surgery in addition to the threat of morbidity in case of graft failure and lifelong 

immunosuppressant, but the biggest challenge is the paucity of liver donors and this mandates 

careful research for alternate options. As a way to circumvent the need of whole liver transplant, 

researchers have been employing hepatocyte transplantation as an alternative method especially 

as a bridge to transplantation. However this method has also been met with many challenges 
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including engraftment efficiency, cell viability, and obtaining optimum hepatocyte function 

[188]. The use of bio-artificial liver devices to support limited functions is also becoming a 

potential option [190, 191]. 

 

Figure 23. Diagram showing hepatocyte differentiation from embryonic stem or induced stem cells and the 

direct reprogramming of fibroblasts. 

Exogenous factors that induce differentiation are written in black and transcription factors that are 

required for fibroblast reprogramming are written in red of adult hepatocyte from various cell types.  

Adopted and modified from Shin, D and Monga, SP (Ref. 2). 

 

 

 

In order to circumvent the challenges of limited cell source and shortage of organ donors, 

cell based hepatocyte transplantation and generation of hepatic tissue from various stem cell 
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sources have become very attractive. Researchers have made numerous attempts to generate 

adult hepatocytes from various cell sources including but not limited to ES cells, iPS cell and 

mesenchymal stem cells [2, 189]. For a long period of time, efforts to generate hepatic tissue 

from ES cells have been challenging and often times results vary with inconsistencies in 

generating a homogenous cell population in addition to fully mature cells [192, 193]. Recent 

attempts to generate hepatocytes from these cell sources have been tremendously aided by the 

growing understanding and further elucidation of embryonic liver development process [2, 189]. 

 

 

Figure 24. Schematic representation of the differentiation process of ES and iPS cells to mature hepatocyte. 

Key factors are required to differentiate ES cells and iPS cells into mature hepatocytes. After 

differentiation, some cells appear to be fully differentiated and some cells remain immature 

hepatocytes so perhaps other factors are required to obtain fully differentiated mature hepatocyte. 

Based on our development data, I propose that perhaps addition of PDGFCC and PDGFAA are 

required to achieve mature hepatocytes. Adopted and modified from Shin, D and Monga, SP (Ref. 2). 
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Different researchers employ different but yet similar differentiation protocols in efforts 

to generate mature functional hepatocytes. Amid the slight differences in protocols, the general 

consensus has been to model the stepwise differentiation seen during liver development. For 

generation of hepatocytes from ES cells, it is critical to show that mouse and human ES cell can 

efficiently generate definite endoderm tissue, which is critical for liver development, by treating 

these cells with varying concentrations of known factors that are required for endoderm 

formation. As shown in Figure 23, treatment of ES cells with critical developmental factors at 

specific times facilitates generation of mature hepatocytes. Using different developmental 

protocols on mouse and human ES cells, cultures have been generated where 70% of the cells 

resemble mature hepatocytes and perform many hepatocyte functions including albumin 

secretion, expression of hepatic enzymes, and drug metabolism [189]. Furthermore, continued 

understanding of the developmental process has allowed others to generate mature hepatocyte 

like cells from fibroblasts by overexpression of hepatocyte specific transcription factors [194, 

195].  

These results show great promise, however the expression of fetal markers by a 

population of these generated hepatic-like cells suggests these cells are not fully differentiated 

and that there are still certain unidentified factors required to fully differentiate these cells. As 

shown in Figure 8, we have identified robust PDGFR expression and activation during early 

liver development. We show that hepatoblasts in addition to other cell types express this receptor 

during liver development. In addition, we show that there is differential expression of PDGFR 

ligands, where PDGFC is expressed early, while PDGFA is expressed during later stages of liver 

development. Finally, we show that blocking of PDGFR signaling in ex vivo liver cultures 

leads to decreased cell proliferation, increased cell death, and decreased HNF4 positive cells 
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(Fig. 9). These novel results strongly suggest that PDGFR and its ligands play essential roles 

during liver development. As shown in figure 24, we speculate that perhaps PDGFs could be part 

of certain key missing factors that could also be included in the developmental protocols to 

efficaciously achieve much higher populations of mature hepatocytes from ES cells or other cell 

types.  

We believe that a more in depth understanding of pathway cross talks and regulations 

will be key to obtaining a functional and mature hepatocyte from cells. Over the past decade, one 

of the major findings is that many of these signaling pathways and transcription factors seem to 

have completely different functions at precisely different times-points during the course of liver 

development. Detailed understanding of these pathways and discovery of other important genes 

will facilitate the production of large quantities of human liver tissue that can be used to not only 

treat diseased patients but also to test the toxicity of new drugs. 

5.2 TARGETING PLATELET DERIVED DROWTH FACTOR RECEPTOR-ALPHA 

FOR HCC THERAPY  

Liver cancer is ranked amongst some of the most deadly cancers [196]. Hepatocellular 

Carcinoma (HCC) is the fifth most common cancer and the third cause of cancer death 

worldwide [62]. Five hundred million individuals are infected with Hepatitis B or C and a 

proportion will progress to liver failure and cancer [197]. With these statistics in mind, it is 

without doubt that there is an urgent need to understand the mechanism of liver carcinogenesis in 

order to facilitate the development of new cancer therapy that will ameliorate this problem. 

Hepatic fibrosis and cirrhosis as a result of chronic liver diseases are precursors of HCC. 
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Approximately 80% of all HCC have underlying cirrhosis [69]. In fact chronic liver injury leads 

to hepatocyte death, inflammation, fibrosis, oxidative stress and hepatocyte proliferation [158]. 

The regenerating nodules that occupy cirrhotic liver are considered critical for maintenance of 

hepatic function, however proliferation in these nodules in this abnormal environment also 

makes them susceptible to genotoxic insult, eventually leading dysplastic nodules and HCC. 

Since several signaling pathways are commonly relevant in LR and HCC, molecular targeting 

can be a concern in HCC in chronic liver diseases. Thus it becomes important to identify targets 

that may be dispensable for LR but are critical for HCC.  

There is preponderance of literature showing many parallel pathways critically involved in both 

liver regeneration and liver cancer. Examples of such pathways include EGFR and MET 

signaling pathways. Both of these pathways are crucial for the liver regeneration process as 

signified by their early activation after PHx [37, 42, 56, 180]. Interestingly both of these 

pathways are also well document therapeutic targets for HCC. Blockade of EGFR has been 

shown to inhibit HCC cell proliferation [198, 199]. A recent report showed that HCC patients 

with an active HGF/c-Met signaling pathway show significantly worse prognosis and inhibition 

of this pathway significantly inhibited tumor growth and tumor cell proliferation [200]. Another 

pathway that is a major player in liver regeneration is Wnt/-catenin signaling pathway. 

Conditional deletion of -catenin gene, ctnnb1 in the liver led to a 24hr delay during liver 

regeneration. Interestingly, the Wnt/β-catenin pathway has been implicated in a subset of HCC 

where activating mutations in the β-catenin gene (CTNNB1) have been reported in around 30% 

of patients [85, 87]. This makes β-catenin a critical therapeutic target. Interestingly, our lab has 

reported increased tumorigenesis in liver specific conditional Ctnnb1 KO as a result of robust 

hepatocyte PDGFR expression and PDGFR-PI3K-Akt signaling. This strongly corroborates 
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PDGFR as a relevant therapeutic target in HCC as has been shown [117, 130, 183].  It has been 

shown that PDGFR signaling plays a critical role in HCC, but whether this receptor is critical 

for normal liver regeneration is not yet known. We show that loss of hepatocyte Pdgfra does not 

compromise normal liver regeneration after PHx due to EGFR and MET upregulation possibly 

driving increased hepatocyte proliferation. Interestingly, we failed to observe EGFR or MET 

increase when we knocked down PDGFRA in human hepatoma cell line. Our results clearly 

show that signaling is PDGFR dispensable for normal liver regeneration but it’s blockade is 

detrimental for liver cancer. Also these results are indications that normal hepatocytes maybe 

more intelligent than abnormal hepatocytes. As mentioned earlier, proliferation of hepatocytes 

inside regenerating nodules that occupy cirrhotic liver are considered critical for maintenance of 

normal hepatic function. Our current findings also show that PDGFR signaling, which has been 

previously shown to be a valid, biologically relevant, therapeutic target in HCC [117, 130, 183], 

may be dispensable for LR because of redundancy with other RTKs like EGFR and MET. Our 

results suggest that not only would inhibition of PDGFR kill cancer cells in HCC, it will allow 

for normal hepatocytes to grow in the regenerative nodules by upregulating EGFR and MET 

levels to maintain hepatic function.  

While our results show promise for targeting PDGFR signaling in HCC, it will be 

relevant to conduct more experiments to show whether these results are specific to the liver or 

whether such paradigms exist in other organs or cancers. Perhaps in other cancers such as 

glioblastomas or colon cancer, where PDGFR, EGFR, and MET signaling/cross-talks have 

been shown to be critical [201-204], PDGFR blockade may lead to EGFR and MET 

upregulation to exacerbate tumorigenesis. In fact the significance of activation of alternate 

pathways is immense in oncology as tumors often become resistant to chemotherapy through 



 102 

various mechanisms including activation of alternate pathways. Since PDGFR inhibition is 

imminent for many forms of tumors, our study divulges EGFR and MET as possible ‘escape 

pathways’ in cells that may have to be concomitantly or sequentially targeted for a more 

effective response. 
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